
Fast and Accurate NN Approach for Multi-Event Annotation of Time Series

Brijesh Garabadu Cindi Thompson Gary Lindstrom

School of Computing
University of Utah

{garabadu, cindi, gary} @cs.utah.edu

Joe Klewicki

Mechanical Engineering Department
University of Utah

klewicki@mech.utah.edu

Abstract
Similarity search in time-series subsequences is an
important time series data mining task. Searching in time
series subsequences for matches for a set of shapes is an
extension of this task and is equally important. In this
work we propose a simple but efficient approach for
finding matches for a group of shapes or events in a given
time series using a Nearest Neighbor approach. We
provide various improvements of this approach including
one using the GNAT data structure. We also propose a
technique for finding similar shapes of widely varying
temporal width. Both of these techniques for primitive
shape matching allow us to more accurately and
efficiently form an event representation of a time-series,
leading in turn to finding complex events which are
composites of primitive events. We demonstrate the
robustness of our approaches in detecting complex shapes
even in the presence of “don’t care” symbols. We
evaluate the success of our approach in detecting both
primitive and complex shapes using a data set from the
Fluid Dynamics domain. We also show a speedup of up to
5 times over a naïve nearest neighbor approach.

Keywords
Time Series Data Mining, Subsequence Matching,
Querying Shapes, Nearest Neighbor, Pattern Matching,
Clustering

1. INTRODUCTION
Time Series data occur frequently in many scientific and
business applications. Time series are one of the most
frequently examined type of data by the data mining
community. The problem of finding patterns and
associating patterns for temporal rule discovery is an
important research area in time series data mining. Due to
the complex nature of the time series data, detailed study
is not practical particularly with high volume data [23].
Reducing a high-dimension time series into a
representation that is more easily understandable by the
users is necessary and helpful in interpreting sections of a
given time-series. Before we discuss the details of such

user defined shapes or events and their matches in a time
series, we give a graphic example of shapes or events to
help develop an intuition of the problem. Figure 1 shows
various types of events occurring in a small portion of a
time series.

Figure1: Example of different types of shapes or events
occurring in a time series.

The event representation of a time series can be used for
different purposes as discussed in [8], some of which are
as follows: (a) Association rule mining [4] in time series,
which requires an event representation of time series.
Events in our case are analogous to the primitive shapes
in [9] for rule discovery in time series and frequent
patterns in [18]. (b) Anomaly detection in time series uses
a set of typical shapes to model normal behavior and
detect future patterns dissimilar to known typical events
or shapes [10]. (c) Finding approximate periodic patterns
in occurrences of events in time series as discussed in
[30]. (d) Hypothesis Generation as discussed in [11].
There has been a lot of work on efficiently detecting a
particular shape in a time series [1, 3, 7, 12, 13, 16, 17,
22]. This is similar to querying the database for a
particular shape. Our problem, however, is finding
matches for a given set of shapes in any given time series.
This problem can be seen as a simple extension of the
earlier one. Figure 2 gives an intuition of the two
problems. In this paper we demonstrate that using 1-NN
(i.e. One Nearest Neighbor) along with single shape
search techniques can actually get us high quality
approximate matches in a reasonable amount of time. We

 1

Figure 2: The problem of single shape search (left) and
multiple shape searches (right) where qi is a query shape.

provide various improvements of the simple approach to
achieve considerable performance gain in terms of search
time. One of the performance improvement techniques
uses statistics of patterns/shapes collected from a small
portion of a time series and uses this in early termination
of distance calculation. We also used the GNAT
(Geometric Near-Neighbor Access Tree) data structure as
discussed in [5] to form a hierarchical tree to reduce the
search space for the nearest shape. We show in the
experiments that a speed up of up to 5 times is obtained
depending on the width of subsequences searched.

The second problem that we are trying to deal with is as
follows: find all similar shapes of widely varying temporal
widths. By widely varying we mean in the range of .50
times to ~5.0 times the width of the query templates,
sometimes even more. Examples of such matches can be
best demonstrated visually as shown in Figure 4.
Dynamic Time Warping [6] can be used to detect shapes
that are compressed or stretched along the time axis. But
one of the common problems with this technique is that it
cannot find the boundary (start and end points of a match)
correctly. And even if some improvement of the simple
DTW can detect boundaries correctly, the width of
subsequences in which such searches can be performed is
limited. This is as shown in Figure 3 where Dynamic
Time Warping can find matches but not the correct shape
boundary. Detecting correct boundaries for such shapes of
widely varying width is important for two reasons: firstly,
they are informative in the sense that users might want to
see if at any particular point of time a particular event is
happening or is already over; secondly, while using
association rule mining for temporal rule discovery in
multiple time series as in [9] and using parallel episode
rule as in [28] when we are trying to correlate events
across multiple time series, it is important to know at any
particular time if events in two different time-series are
overlapping each other or one is happening before the
other, etc. Example rules as mentioned in [28] are “A
overlaps B” or “A after B”. This problem is also very
important for the dataset under consideration for one more
reason: two different time series for the same attribute
collected under different conditions or at two different
locations in space have similar events compressed or
stretched over time. It has been proven theoretically that
such situations are common in the current domain (and
dataset) and that the average ratio of the width of events

in two time series of the same attributes can be calculated
using domain knowledge (see section 6.1 for more
information).

1 2 3 4 5 6 7 8 9 10

q1

1 2 3 4 5 6 7 8 9 10

q1 q2 q3 q4

Figure 3: Match for a given query shape. Query template
width is 25. The right window shows a match of window
width=25 found using DTW. The actual boundary of the
match is shown by the start and end arrows and the
correct window size of the match should be 17 instead of
25.

Motivation for using NN: Time series data is very high-
dimensional. Nearest neighbor techniques have been
shown to perform very well in low dimensional space.
But with the increase in dimensionality, the scalability of
the algorithm is the major problem [5]. However, we use
1-NN technique to search for only the primitive shapes
(or simplest of shapes) and so the length of our
subsequence is going to be very small in comparison to
that of the whole time sequence. But this does not mean
that we do not search for complex shapes. Complex
shapes can be formed by combining one or more types of
primitive shapes as discussed in [9]. An example of
complex shape is “rapid transition from increasing to
decreasing pattern” which can be represented as a
combination of upward spike followed by a reverse spike
or vice-versa. Various techniques have been developed in
the past to accommodate “don’t care” symbols. The
robustness of our technique lies in the fact that we can
take care of “don’t care” symbols in complex shapes
using a fairly simple technique (see section 5).

The second motivation for using NN search for finding
shapes lies in the typical requirement to distinguish
between similar shapes of different amplitudes. An
example is a search for different kinds of upward spikes
(e.g. short, medium and tall spikes). This is a common
requirement in many applications and is also found in
many data sets from fluid dynamics domain. A major
problem with such requirements is that we cannot do a
general window based normalization as this would fit
most of the subsequences into the same height, and
distinguishing them based on their amplitude would no
longer be possible. A straightforward solution is to
normalize the windows into different heights. But given
the number of possibilities of heights and the number of

Query Shape Matched Subsequence

End
Point

Start
Point

 2

Figure: 4 Pattern matching for reverse spikes. The template pattern is of width 15. The matches are shown with the green
boxes that indicate the width of the pattern. Note that patterns occur in various widths (in this case ranging from .800 to 2.733
times the width of the template pattern).

different normalization ranges, this is not reasonable.
Hence the need for a technique that can overcome this
problem automatically by comparing the current window
with various available shapes of different heights before
labeling a subsequence as a match.

Our contributions in this paper are twofold. Firstly, we
use a nearest neighbor technique to attend the problem of
finding matches for a given set of query shapes or events
from a given time series and provide techniques for
improvement of the search time. Secondly, we propose a
technique to accurately detect boundary of similar shapes
(or events) of widely varying temporal widths.

In this section we motivated a problem and an approach
that we propose to use to handle such problems. The rest
of the paper is organized as follows. In section 2 we
define the problem of event matching formally along with
the definition of some of the terms that we are going to
use throughout the paper. In section 3 we discuss the
approach using 1-NN to handle the problem elegantly and
also discuss improvement techniques for a significant
reduction in computational time. In section 4 we provide
an algorithm for searching patterns of widely varying
temporal widths. Section 5 discusses the technique of
finding complex patterns using simple shapes. Section 6
provides experiments for extensively evaluating the
accuracy of our approach and comparing various
improvements for speedup. In section 7 we briefly discuss
related work in time series data mining and particularly
the subsequence matching techniques. Section 8 provides
a conclusion followed by possible future directions to our
work.

2. DEFINITIONS AND NOTATIONS
Here we define a few terms that are of importance to this
paper.
Definition-1 Time Series: A time series T = {t1, t2,…, tn}
is a set of ordered real-valued variables.

Definition-2 Subsequence: A subsequence ssi is a small
section of a time series that consists of values from
contiguous positions in the time series. If m is the length
of the subsequence then in our case m << n where n is the
length of the time series. SS = {ss1, …, ssn-m+1} is the set
of all consecutive subsequences in a given time series.

Definition-3(a) Window: A window of length m is a
subsequence of length m from the time series T. Sliding
window technique is used to retrieve all consecutive
windows from a time series.

Definition-3(b) Shape: A shape is an ordered,
consecutive, real-valued vector representing a particular
subsequence of interest in a time series. An event can be
represented with a shape. In the rest of the paper we will
use shape, event and pattern interchangeably.

Definition-4 Match: Given a time series T, a shape s, a
positive threshold t and a subsequence c starting at
position q in the time series, if Dist(s,c) ≤ t, then c is
called a matching subsequence for s. Dist(s,c) is the
distance function to calculate the distance between two
real-valued vectors. Euclidean distance and DTW are
examples of distance functions.

Definition-5 Best Match and Trivial Match: Given a time
series T, a shape s and a threshold t there can be a set of
consecutive subsequences C={ci, ci+1, …, ci+m} where
subsequence ci starts at the ith position in the time series
and all of them are a matches. The best match is the one
subsequence that is least distant from s i.e.

BestMatch(C)=ck where Dist(s, ck)= minj=i:i+m (Dist(s, cj)).

All the remaining matches in C are trivial matches. The
definition of trivial match is similar to that in [8] in some
ways. This is demonstrated in Figure 5.

vωz

 3

Figure 5: Trivial Matches. From [8]

Definition-6 Single Shape Search: Given a shape s of a
given width w, a threshold t and a time-series T, find all
non-trivial matches in all the subsequences of width w in
T.
Definition-7 Multiple Shape Search: Given a set of
shapes/patterns S = {s1, s2 ... sn} of a given width w, a
threshold t and a time-series T, find all the Best Matches
for shapes in S. The matches should be non-overlapping.

Definition-8 Single Shape Matches of Widely Varying
Widths:
Definition-8(a) Different but constant width match:
Given a shape s of width w, a threshold t and a time-
series T, find all the Best Matches of width w’ in T where
w’ = w + τ and τ is some constant value.

Definition-8(b) Different range of widths match: Given a
shape s of width w, a range of thresholds Rt and a time-
series T, find all the Best Matches of width w’ in T where
w’ is any width within the range w ± τ time units. This is
different from Definition-8(a) in the sense that 8(a) finds
all matches with one particular window width w’ while
8(b) deals with searching for all matches with a window
width in the range of w ± τ.

Definition 9: Multiple Shape Matches of Widely Varying
widths: Same as in definition-8 except here the search is
for more than one shape.

One of the goals of this paper is Multiple Shape Search
and Multiple Shape Matches of Widely varying widths.

3. NEAREST NEIGHBOR APPROACH
In this section we discuss the NN approach for dealing
with the problems defined in definitions 7 through 9 of
the previous section. But before that we will see how
shapes can be discovered from time series using
clustering. These shapes in addition to other user defined
templates are later used as the set of query shapes for NN
search.

3.1. Clustering to extract shapes from time series:
Clustering is used to group similar objects together. It has
been used to discover distinct shapes from time-series,
which in turn can be used for symbolic representation of
time-series as in [9]. Such symbolic representations are

used for temporal rule discovery as shown in the above
work.

We use clustering to obtain distinct and maximally
different shapes from a small portion of a time series. The
users label these subsequences as “interesting” or “non-
interesting”. The users can add their own shapes or
templates to the clustering results and label them as
“interesting”. Hence the result of clustering, and the extra
“interesting” shapes, form the set of shapes S while Q is
the subset of S that are labeled as “interesting” by the
user.

We explored two types of clustering: k-means and
hierarchical clustering and finally decided to use k-means
for our purpose since we are looking for mostly simple
and primitive subsequences.

3.2. 1-NN for parallel search of multiple shapes:
Nearest Neighbor in the subsequence search problem can
be defined as follows: given a set of subsequences SS and
a query shape q, find all the non-trivial matches in SS that
are within a distance r from q. SS is the set of
subsequences in time series T obtained using sliding
window of width w and sliding distance d. The 1-NN
search is the problem of finding the closest match to q
from SS. If the search is for multiple shapes, then search
for each of these shapes individually, by scanning through
S once for every shape.

Our use of 1-NN is slightly different from the above
technique. Unlike the above approach, we take each
subsequence ssi in SS and find if there is a match to one of
the shapes in Q and also satisfy some constraints. And we
perform all the required matching in just one sequential
scan through SS as opposed to multiple scans of the
earlier approach. The constraints can be in the form of a
distance threshold or a correlation coefficient threshold.

Algorithm 1: 1NNP (1NN Parallel)

1NNP (T, Q, w, threshold)
1. Use sliding window to retrieve one subsequence

(window of width=w) at a time from the time
series.

2. Do the following for each of the above
subsequences:
o Find the closest shape in the set of shapes Q.

Euclidean distance measure is used for this
purpose.

o Label the subsequence with the closest
shape.

3. Remove trivial matches.
4. Prune all matches below a specified threshold.

 4

Given a set of shapes Q of width w and a time series T,
we use the following simple algorithm, we call 1NNP
(1NN Parallel), to find all non-trivial matches in T.

Removing trivial matches: The algorithm for removing
all trivial matches is as follows:
For each of the shapes in Q, do the following:
a) Find all the matches for the current shape from the

list of ordered matches obtained in Step (2) above.
b) For each set of consecutive matches in the above list,

find the match that is least distant from the current
shape.

Consecutive matches in (a) refer to all matches with
consecutive offsets. We can remove trivial matches
efficiently by keeping track of the distance measure for
each match in Step (2) of Algorithm 1.

 Pruning of matches: Pruning as mentioned in Step (4) of
Algorithm 1 is done using a correlation coefficient
threshold. This is the constraint applied on individual
matches. Correlation Coefficient (CC) threshold can be
used for shapes that are fairly simple. The correlation
coefficient can be maintained at a fixed value for all the
shapes. This prevents the need to find a good distance
threshold for each query shapes. We show experimentally
that this threshold actually yields good results in terms of
accuracy of matches. Our system can accommodate any
distance metric including both Euclidean Distance (ED)
as well as Dynamic Time Warping (DTW) for pruning.
DTW is computationally expensive but is more accurate
to matches with various levels of elasticity along the time
axis (CC threshold won’t work well). We show the ED
can give us really good results when the primitive shapes
are fairly simple. DTW can be used to find shapes
deformed along the time axis.

We call the above algorithm 1NN Parallel because it uses
1NN search and it can find matches for all the shapes in Q
in parallel with a single sequential scan. This is unlike the
naive approach where search for each shape requires a
sequential scan through all the subsequences in time
series T.

One of the obvious problems with our approach is the
high number of distance calculations that need to be
performed. One simple technique to speed up algorithm is
by using the “early termination” technique in distance
measurement. This helps in Step 2(a) of the 1NNP
algorithm which has been seen to take 99% of the
computation time. We call this improved algorithm the
1NNP_ETD (1NNP with Early Termination in Distance
computation).
The “early termination” for distance calculation algorithm
for our purpose is as follows:

// finding closest shape using the early termination
// distance calculation
// ssi → current subsequence and Q → set of shapes
closest_shape(Q, ssi)
1. best_query=1
2. best_distance = dist(ssi, q1)
3. For each shape qj in Q, do the following:

a. curr_distance = dist_et(si, qj, best_distance)
b. if (curr_distance < best_distance)
 best_distance = curr_distance
 best_query = qj

// early termination distance calculation
dist_et (s, q, best_distance) sum=0;
1. for i=1:n
2. sum+= (s[i]-q[i])^2 // Euclidean Distance
3. if (sum >= best_distance)
4. return sum
5. end
6. end

Figure 6 shows graphically how early termination works.
It can be seen in the experiment section that using the
early termination distance calculation efficiently reduces
the computation time by almost one-third the original
time of 1NNP. Shapes in Q are matched in the order in
which they appear in the list. Since early termination is
dependent on how early we find the closest match, the
idea is to order the shapes for most efficient use of early
termination.

We use the statistics gathered during clustering to decide
the order of the search to improve the classifier
performance. Table 2 shows the result of k-means
clustering with k=10. The number of windows and the
percentage of windows covered by each of the 10 shapes
are shown in the table. It can be seen that just the 3 most
frequent shapes account for 70% of the subsequences and
5 most frequent shapes account for 90% of the
subsequences. It is also interesting to note that the
“interesting” shapes identified by the users are # 6 and # 9
which account for 2% of the matches. Also the “extra”
templates added by the users are of similar rarity. Given
all these statistics, it can be inferred that more than 95%
of the subsequences to be searched are going to be
unsuccessful matches. In other words only less than 5% of
the searches are going to be matches.

Given all these statistics, the question is can we order the
shapes so that the early termination of distance calculation
is most efficient. Early termination is most successful
when the least distant shape is matched first during the
matching process. In such a case, matching with the rest
of the query shapes will result in efficient early
termination of the distance calculation as shown in Figure
6.

 5

Table 2: Result of k-means clustering with k=10. The
table shows the number of windows that were grouped
into each of the 10 shapes found using clustering on a
small part (10,000 data points) of a time series with more
than 1 Million data points. The rows in bold show the top
3 shapes in terms of the percentage of matches.

Figure 6: Early termination during distance calculation for
windows of width=25. The shape shown in dotted line is
the current subsequence and it is matched to 4 different
query shapes. The best case ordering of matches to query
shape (which is the case in the current situation) can save
computation when using early termination. Note that the
Euclidean Distance at the time of termination just exceeds
the best distance so far (i.e. 0.057) as shown in the boxes
inside each comparison.

We order the shapes in the descending order of their
frequency of occurrence (as found from a small portion of
the time series). We call this the “best order” of shapes
while the “worst order” is the reverse of the “best order”.
In the experiments section, we will show that the best
order gives an improvement of nearly one-third the time
taken by that without early termination. The “worst order”
although gives an improvement over the 1NNP without
early termination is still worse than the “best order”. A
random order performs in between.

With all these modifications, the overall average number
of distance computations is still very high. We have
obtained an improvement of just 50% with the early
termination and shape ordering process. In the next sub-
section we use a data structure that can reduce the number

of distance computations tremendously (up to 500%) by
reducing the search space in Q for each subsequence
matching. This tree like structure works better as the
number of query shapes increases.

3.3. 1-NNP with GNAT (1NNP_GNAT)
One of the major bottlenecks of the above algorithm is
that the distance calculation has to be performed between
the current window and all the given shapes in Q even
though early termination is used to stop the calculation
after a certain point for each query shape. Since the
distance calculation is itself a curse in the high-
dimensional space, even if it is only a partial calculation,
we use a data structure aimed at reducing the search space
to a few distance calculations. This data structure is
described in [5] and is known as GNAT- Geometric Near-
neighbor Access Tree.

GNAT: Geometric Near-Neighbor Access Tree
Overview of GNAT: The goal behind the design of
GNAT is to build a data structure that reflects the intrinsic
geometry of the underlying data (here, it is the set of
shapes Q). It creates a hierarchical structure such that as
we traverse down the tree we can get more and more
accurate sense of the geometry of the data. It has been
used to reduce the search space in high-dimensional
metric space.

GNAT is viewed as a generalization of gh-trees and has
been shown in [5] to always perform better than
techniques using vp-trees and gh-trees with better
scalability. The advantage of the GNAT tree is that the
query time is reduced. But at the same time the build time
of the data structure is sharply increased. But since our
application is query dominant and the number of shapes
in the search space is relatively much smaller, the relative
cost of building the GNAT tree becomes almost
negligible. Detailed description of the GNAT construction
and search technique is beyond the scope of this paper.

The GNAT implementation involves (a) constructing the
GNAT data structure (tree) from Q and (b) searching
through the GNAT data structure for finding matches.
Input to the GNAT search process is a vector (in this case
the current subsequence ssi) and the minimum distance
between searches, r. The advantage of this technique is
that we limit of matching process to all shapes within a
distance r from the current subsequence. This is unlike the
earlier technique where we just find the closest match and
then apply a threshold. From all the shapes within the
minimum distance r, we select the closest shape.
Parameters for GNAT:
(a) Selecting split points: At every stage, we select the

two farthest points in the metric space as the split
points.

Cluster

No. of
windows

% of
windows

1 5139 10%
2 4242 8%
3 1089 2%
4 4742 9%
5 767 1%
6 620 1%
7 23001 46%
8 6733 13%
9 753 1%

10 2890 5%

 6

(b) Degree of a node: We choose a maximum degree of 2
for each node in the tree.

1NNP_GNAT Algorithm:

Algorithm 2: 1NNP_GNAT

Early termination in the distance calculation cannot be
used with GNAT. However, we can take advantage of the
high frequency of the most frequent shape in Q and stop
with searching in GNAT tree if the following condition is
satisfied:

Dist (ssi, f) < (½ * Dist (f , fc))
where, ssi = current subsequence, f is the most frequent
shape in Q and fc is the closest shape to f in Q. This will
ensure that f is the closest shape to ssi in Q because of the
triangle inequality condition satisfied by Dist() functions
like Euclidean Distance, etc. This condition is checked for
just before Step (3) in algorithm 2. If satisfied, the closest
shape returned is f. We call this algorithm
1NNP_GNAT_EFSP (EFSP for Early Frequent Shape
Pruning).

4. FILTER BASED GRADIENT SEARCH
In the previous section we discussed the problem of
searching a time series for a given set of query shapes and
have used various techniques to speed up the basic 1-NN
search algorithm. In this section we propose an algorithm
that is used to find similar shapes of widely varying
temporal widths as shown in Section 1. We use the fast
1NN from section 3 to speed up the search process. We
also describe a novel scaling technique for scaling a query
shape in the time axis before finding matches.

We propose a technique we call Filter Based Gradient
Pattern Matching to solve the problem of widely varying
temporal width. Filter Based Gradient Pattern Matching
(FBGPM) is based on a technique whereby we use
multiple versions of the same query shape and search for

matches for each versions of the shape. Each version of
the shape is of a different temporal width: stretched or
compressed along the time axis. The technique is called
“gradient” because we use a gradient of widths for the
same pattern. The gradient is formed by selecting a range
of compression and stretching levels. We call it a “filter
based” approach since for each scaled version of the
shape/ pattern we find matches from the time series and
remove or filter out all the matched windows from the
time series before performing matching with the next
version of the shape.

The algorithm for implementing the FBGPM technique is
as follows:

Algorithm 3: FBGPM

GS (Gradient Scale): A range of scaling percentages by
which a shape is to be scaled before searching for
matches.
GT (Gradient Threshold): A set of thresholds for deciding
a good match for each version of shapes decided by GS.

The algorithm works as follows: We form a set of
subsequences which initially is just one subsequence that
represents that entire time series <1, length(T)>. For each
of the scale in the gradient, the shapes in Q are scaled to
the temporal scale using a Hinge Based Scaling technique
described below. Q’ is a scaled version of Q. The 1NN
algorithm described in Section 4 is used to find all the
matches for shapes in Q’. The matches are filtered out
from the current set of subsequences and a new set of
subsequences is formed. For example initially we have a
subsequence {<1, 200>} in the set of subsequences where
200 is the length of the time series. Let’s say we found
two matches with offset 21 and 106 and the current width
of shapes in Q’ be w’=30. After filtering, the new set of
subsequences is {<1, 20>, <51, 105>, <136, 200>}. This
process of scaling of shapes in Q, finding matches in the

1NNP_GNAT (T, Q, w, threshold, r)
Input:
Output:
1. Construct the GNAT tree from Q
2. Use sliding window to retrieve one subsequence

(window of width=w) at a time from the time
series.

3. Do the following with each of the above
subsequences obtained in (2):

a. Find the closest shapes in the set of shapes Q
using the GNAT search that are within a
distance r. Euclidean distance measure is used
for this purpose.

b. Label the subsequence with the closest shape
from (a).

4. Remove redundant matches.
5. Prune all matches below a specified threshold.

FBGPM (T, Q, w, GS, GT)
1. Subs = {<1,length(T)>} //initial set of subsequences
2. Select a scale gsi from the gradient scale in GS.
3. w’ = w + (w*gsi/100) // scaled width of patterns
4. Scale all the shapes in Q to the current temporal

scale gsi using HingeBasedScaling. This is done
as follows:

 Q’ = HBS(Q, w, gsi)
5. c_threshold = GT(i) // current threshold
6. Apply 1NN search algorithm to find all matches

for the shapes in Q’.
 c_ms = 1NN_Parallel(T, Q’, w’, c_threshold)
7. Filter the matched window in c_ms and form a

new set of subsequences.
 Subs = Filter(T, c_ms, w’)
8. Repeat steps (2-7) for each of the scales in GS in

the given order..

 7

set of subsequences followed by filtering of matches is
continued for each of the scales in the gradient.

Parameters for FBGPM:
There are some choices that we have to make when using
the above algorithm. They are as follows:
1. Choice of the gradient.
(a) Order of gradient: A gradient can begin with the most
compressed pattern and gradually move towards the
original patterns ending up with the most stretched
pattern. We will call this gradient COS (Compressed-
>Original->Stretched). Another possible gradient can be
the opposite of the above gradient where we start with the
most stretched version of patterns in Q and end up with
the most compressed versions. We will call this SOC
(Stretched->Original->Compressed).
We will test with both versions of the gradient to find the
better of the two.
(b) Values of the gradient: We also need to decide the
amount of stretching and compression that needs to be
done. For example we can start with a compression level
of 80% and go up in steps of 10% (i.e. -80%, -70%, ….., -
10%, 0%, 10%, …, 80%). Or we can start with a
compression of -75% and go up in steps of 25% up to a
stretching of 75%. The compression and the stretching
levels need not be symmetric.
These choices have to be made based on the time series
and the kind of pattern that we are looking for. For
example, if most of the patterns occurring in the time
series are thinner than the original pattern width, then it
makes sense to have more compression levels than
stretched levels in the gradient scale (GS).
2. Choice of thresholds for a given gradient.
The two threshold choices are as follows:
(a) Single threshold for all degrees of scaling.
(b) Variable thresholds depending upon the scaling.
A variable threshold with a very high initial value is
suggested since we would want all the initial matches to
be highly accurate so that the current version of the
pattern doesn’t match the shapes that might match more
accurately with a wider or thinner version of the pattern
that occurs later on in the gradient.

Hinge Based Scaling: A Pattern Scaling Technique
In FBGPM, we form a gradient scale. Now we need a
way to scale the pattern to a particular level of
compression or stretching along the time axis as
mentioned in Step (4) of the FBGPM algorithm. We
propose a technique we call Hinge Based Scaling to
perform scaling on the temporal axis. The idea behind
hinge based scaling is to divide a shape into multiple
segments. The segments are decided by the location of
hinge points: the points at which there is a reversal in the
trend in the shape (articulation points in a shape). This
point is otherwise known as articulation point. The
various segments are compressed or stretched individually

to a required width by insertion or removal of points using
the averaging of two consecutive points technique. Each
of the segments is then offset and amplitude scaled to
match the offset and amplitude in the original shape. The
individual segments are then merged at the
hinge/articulation points to form the scaled pattern. An
example of scaling Hinge Based scaling is shown in
figure 7.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25

Original Normal 25% Hinge 25%

Original Pattern

25 % compressed with a
Simple Scaling technique
using consecutive point
averaging with offset and
amplitude scaling

25 % compressed
using Hinge Based
Technique

Figure 7: Hinge Based Scaling vs. Simple Temporal
Scaling. With Hinge Based Scaling, the overall shape is
more consistent with the original shape. Note that the left
end of the HB Scaled shape matches the start point of the
original shape. The start offset of Simple Scaled shape is
raised above the original start point offset.

5. EVENT REPRESENTATION OF TIME

SERIES AND SEARCHING FOR
COMPLEX EVENTS/SHAPES

An event representation of the time series is formed as
mentioned in [9]. Matches for each of the shapes in the set
of “interesting” events, Q, are found using the 1-NN
algorithm. Similar shapes of widely varying width are
found using the Filter Based Gradient Approach
mentioned in Section 5. Our technique of event
representation differs from [9] in that we do not match
every window to a shape. Rather we just label each non-
trivially matched window with the name of symbol of the
event/shape. All the unmatched subsequences are labeled
as “non-interesting” or “don’t cares”. This form of event
representation is also similar to [18] where the time series
is labeled with “increasing”, “decreasing” and “plateau”

 8

labels. An example event representation of a time series is
shown in figure 8.

gradient may then be decomposed in to the difference of
two velocity –vorticity correlations, one of which is vωz.
Thus, exploration of the coherent signatures in the vωz
signals has direct relevance to the instantaneous

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of each match

Figure 8: Event Representation of Time Series where the
time series is replaced with the symbols for the primitive
shapes. The 3 shapes matched here are P1, P2 and P3 and
DC stands Don’t Care regions or the “uninteresting”
regions.

Primitive shapes are used for finding more complex
shapes as described in [9]. An example of a complex
shape is an “upward spike followed by a reverse spike” as
shown in Figure 3. Such a search approach allows for
“don’t care” symbols within complex shapes. Abstract
patterns for finding such complex shapes can be formed
as follows: [Rule-1: P1 → P2, τ] which can be interpreted
as an event P1 followed by an event P2 with the
maximum allowed gap being τ time units.

Event representation is commonly used for temporal rule
discovery as in [9]. Because of space limitations we are
not going to discuss this part which is also beyond the
scope of current paper.

6. EXPERIMENTS AND RESULTS

6.1 Dataset:
To evaluate our approach, we use measurements from one
of the signals collected from boundary layer experiments
in the fluid dynamics research domain. This is the vωz
signal which is collected at a frequency of 500Hz. We use
the vωz time series from these experiments. The vωz
signals are derived from four element hot-wire sensor
measurements of the zero pressure gradient turbulent
boundary layer as discussed in [24]. The four element
sensor is unusual in that it allows the simultaneous
measurement of the fluctuating axial and wall-normal
velocities and the spanwise vorticity, and thus constitutes
one of very few data sets that have directly measured
vωz. Owing to the fact that the boundary layers studied
developed over a 15m length at 25 different locations, an
important characteristic of these experiments is their high
spatial and temporal resolution.

The motivations for studying coherent patterns in the vωz
signals presented herein are primarily derived from the
time averaged Navier-Stokes equations as applied to wall-
bounded flows. In particular, it may be shown in [25] that
the net effect of the turbulence on mean flow dynamics is
reflected in the gradient of the Reynolds stress. This

mechanisms for momentum transport.
DC P1 DC P2 DC P1 P3 P2 DC P1 P2 ………...
24 10 5 10 22 6 5 10 20 7 9

Width of each match

DC P1 DC P2 DC P1 P3 P2 DC P1 P2 ………...
24 10 5 10 22 6 5 10 20 7 9

Width of each match

DC P1 DC P2 DC P1 P3 P2 DC P1 P2 ………...
24 10 5 10 22 6 5 10 20 7 9

Width of each match

24 10 5 10 22 6 5 10 20 7 9

Width of each match

6.2 Data Preprocessing
Different time-series of the vωz attribute that are collected
at different points in the boundary layer or under different
experimental conditions have very different scales (both
amplitude and temporal widths). The maximum value of
amplitude varies widely between two time-series (e.g. 0.3
and 1000). To handle this problem, we normalized all the
time series to a fixed range. The second problem with the
data set is the widely varying temporal widths of events.
This happens because of the acceleration or deceleration
of the speed at which events occur in the time-series.
Researchers can theoretically find the average width of
events in the time-series of an attribute collected at
different points in the boundary layer. We use this value
to determine the base width of all the shapes in the query
set Q. The actual width of patterns can range from
anywhere between -75% to +200% of the base width.

6.3 Experiments
We performed all our experiments using Euclidean
distance. However for comparison of matches, we did us
Dynamic Time Warping (DTW) in some of the
experiments. ED is found to get us the desired results
when the searched shape is not very complex. For
complex primitive shapes that cannot be found using the
event representation (discussed in section 5), DTW gives
better accuracy.

We conducted two types of experiments; the goals for
each are as follows:
(a) To compare the performance of the 1NN approaches
in terms of computation time, and
(b) To determine the accuracy of the FBGPM with 1NN
algorithm in terms of finding patterns “correctly” and
“accurately” (we will see the definitions below).

6.3.1. Comparison of Computation Time of 1NN
approach:
We use the results of our basic 1NNP algorithm as the
baseline. Another baseline could be a sequential search
algorithm that searches for one pattern at a time by
sequentially scanning through the time series. For
example if there are m shapes in the query set Q, this
approach will require m sequential scanning of the time
series. Obviously the number of distance computations of
this approach will be the same as that of the basic 1NNP
algorithm but the overhead in 1NNP is much less due to
the single scan as opposed to the multiple scans in the
serial approach. Thus the 1NNP is faster than the serial
algorithm and hence a good baseline.

 9

We compare the computation time and the average
number of distance computations required for various
improvements of the basic 1NNP algorithm. The
algorithms that we compare are as follows:
1NNP, 1NNP_ETD, 1NNP_ETD_EFSP, 1NNP_GNAT
and 1NNP_GNAT_EFSP
1NNP_ETD_EFSP uses the early pruning of the most
frequent shape as discussed in section 3.3.

We conducted two sets of experiments, first with a 50,000
data point long time-series and the second time series
with a million data points. We searched for patterns of
different widths in each of the above time series using all
the approaches mentioned earlier. The number of shapes
in Q for this purpose was 15. We ran all the experiments
in a Pentium-4 (1.6 GHz) machine with 256 MB main
memory.

From Graph 1 and 2, we can see that the performance of
1NNP_GNAT is the best at higher width of query shapes.
1NNP_GNAT performs better over the simple 1NNP
approach by over 500% for query width=400 for both
versions of the time-series studied. It can be observed that
with width ≤ 50, the 1NNP_GNAT_EFSP performs better
than the one without EFSP. This implies that comparing a
subsequence with the most frequent shape (see section
3.3) in Q can help eliminate further search in the GNAT
structure. Such improvement can also be seen with
1NNP_ETD_EFSP in comparison to 1NNP_ETD, which
improves the performance by approximately 33%.

Graph 3 shows the average number of distance
computations for each subsequence in the time series with
GNAT and GNAT_EFSP. NOTE that our baseline
average is 15 which is equal to the number of shapes in Q.
The GNAT_EFSP performs less number of distance
computations for query width ≤ 50 while GNAT performs
fewer average distance computations for greater width.
For large widths, 1NNP_GNAT's distance computation
almost never exceeds 2.

GNAT also performs much better with higher number of
shapes in Q. For example, with 20 shapes of width=50,
GNAT_EFSP takes 20.5 seconds while the second best is
1NNP_ETD with 24.7 seconds. With 30 shapes,
GNAT_EFSP is 25% faster than 1NNP_ETD.

Using “early termination” in distance computation (ETD)
helped reduce the computation time by reducing each
distance computation by an average of at least 50% the
width of shapes. But the overhead associated with the
implementation of “early termination” could not give a
similar performance improvement in terms of
computation time.

Time Series with 50,000 Data Points

0

2

4

6

8

10

12

14

25 50 100 200 300 400

Width of Query Shapes

Ti
m

e
(in

 s
ec

)

1NNP_GNAT

1NNP_GNAT_EFSP

1NNP

1NNP_ETD

1NNP_ETD_EFSP

Time Series with 1 Million Data Points

0

50

100

150

200

250

300

10 20 30 50 100 200 300 400

Width of Query Shapes

Ti
m

e
(in

 s
ec

)

1NNP_GNAT

1NNP_GNAT_EFSP

1NNP

1NNP_ETD

1NNP_ETD_EFSP

Graph 1 & 2: Graphs comparing the “width of shapes”
vs. “computation time” in seconds for various algorithms
for two different time series of given length 50,000 and 1
million data points.

Time Series Length=1M

0

2

4

6

8

10

12

10 20 30 50 100 200 300 400

Width

A
vg

. N
o.

 o
f D

is
ta

nc
e

C
om

pu
ta

tio
ns

1NNP_GNAT
1NNP_GNAT_EFSP

Graph 3: Avg. Distance Computations per subsequence.
The no. of shapes in Q is 15. Our baseline is 15 since for
each subsequence in the time series, 1NNP computes the
distance between the current subsequence and each of the
15 shapes in Q.

 10

6.3.2. FBGPM for shapes of widely varying width:
We define a match to be correct if the classifier label for a
window is same as that labeled by users. An accurate
match is one whose end points are within ±δ data points
from the end points of the window containing the actual
match (as identified by users). Let so and eo be the start
and end point of a window containing an event as labeled
by users. Let sf and ef be the end points of the window
found by our FBGPM technique. A match is considered
accurate if |so-sf|= δ and |eo-ef|= δ. For our experiments,
we set δ=3.

We conducted experiments for FBGPM with various time
series subsequences of length 10,000 data points and
50,000 data points. We used a SOC gradient of {+100%,
+75%, +50%, +25%, 0%, -10%, -20%, -30%, -40%}. The
width of events in Q was 25. Thus the FBGPM searched
for all shapes of in windows varying from 50 to 19 data
points wide. We used a very high threshold for initial
matches and a comparatively low one for later matches.
The FBGPM found all the shapes in all the experiments
with less than 4% false positives and no more than 1%
false dismissals. A simple implementation of a technique
using DTW on window width of 25 also found most of
the matches of less than width 25 correctly. But for all the
longer subsequences, DTW could not find any match.
DTW performance in terms of execution time was also
very high. For example, the FBGPM using simple
Euclidean distance found most of the matches accurately
in just 1.2 seconds while the DTW technique took
approximately 30 seconds. The computation time with
DTW also increased tremendously for wider queries.
Graph 4 shows all the shapes of various widths found
using the FBGPM. Since all these matches were within
our definition of a correct boundary, it can be seen from
the graph that patterns are occurring at widely varying
width and hence the need for FBGPM.

Matches found at various scales

0
20
40
60
80

100
120
140
160
180
200

-40% -30% -20% -10% 0% 25% 50% 75% 100%

Percentage Scaling

Nu
m

be
r

of
 M

at
ch

es

50K Time Series
10K Time Series

Graph 4: Number of matches found for all shapes at
various scales of the original template of width 25 in two
different time series of lengths 10,000 and 50,000.

6.4 Complex Pattern Search
Example of complex patterns with “gap” or “don’t care”
regions
An example complex pattern that we searched for was
“sudden trend reversal” which can be represented by the
two primitive shapes “upward spike” and “reverse spike”.
The rule formed was as follows: [“upward spike” →
“reverse spike” τ=10]. Instances of such rules can be
found easily using simple string matching techniques
using the event representation explained in section 5. The
maximum gap allowed in this case was 10 time units.

7. RELATED WORK

Several techniques for fast retrieval of similar
subsequences in time series have been proposed. Methods
vary from simple template matching technique using
Euclidean Distance to more complex matching techniques
using distance metrics like Dynamic Time Warping [6].
There has been plenty of work on fast searching for a
particular shape occurring in different scales (amplitudes
and temporal scales) in a given time series [1, 3, 6, 12,
16]. In [1] DFT and R-Trees are used to find similar
sequences while [16] extended it to find similar
subsequences. Since [1, 16] both use ED, they cannot be
used for sequences of different lengths as discussed in
[19]. But this is true only when we try to do a direct
match. In our paper we show that by stretching or
compressing the query shapes to a certain range of widths,
ED can in fact be used for matching sequences of
different lengths. In [1] they introduced the concept of
allowing for “don’t care” regions while searching for
similar sequences. In [9], complex subsequences were
searched by first finding primitive shapes (using
clustering) and then looking for complex shapes using
combination of primitive shapes using certain abstract
rules. This will allow for “don’t care” regions. Our work
is similar to this in the sense that we use a similar
technique for finding complex shapes.

Several researchers have done work on similarity
matching based on shapes of sequences including [0, 20].
A shape definition language is defined [2] and it provides
index structure for speeding up the search process. In
[20], the notion of generalized approximate queries is
introduced that specify the general shapes of data
histories. Both these approaches can handle some
deformation in the time axis. Many approaches to find
similar subsequences of different lengths have been
proposed in [19, 21, 22]. But none of these approaches
can take care of very widely varying temporal widths. We
take advantage of the user knowledge of the average
width around which most of the shapes occur and use that
to define the range of widths in which to search for the
shapes by compressing or stretching the query shapes
before performing similarity search.

 11

In [9] clustering is used to retrieve primitive patterns from
a time series and then a symbolic representation of the
time series is formed which is later used for discovery of
temporal rules. They also propose that primitive shapes
can be used to find more complex shapes and the abstract
rules that they provide can be used to allow “don’t care”
symbols. Our work is similar to this in the sense that we
also use clustering to find primitive shapes. We also form
complex shapes by merging primitive shapes of one or
more types. Our work is different from this one in that in
our group of query shapes we consider only those shapes
that the user find interesting. Plus we also allow user
templates to be added to our set of query shapes. We do
this since from the clustering results we found that some
of the shapes obtained were very similar to each other but
shifted in the time axis. Such redundant shapes should be
removed from the clustering result. This has been shown
in [15]. On top of that some of the shapes representing
certain events were not found automatically using
clustering. The second way in which our representation is
different from this one is that they represent each sliding
window in the time series with a shape symbol. In our
case, we find labels for only those windows that match
the set of query /interesting shapes without considering
any of the trivial matches (see section 2). All the
unmatched subsequences are labeled as “don’t care”
windows. In [28] an event representation of time series is
formed which is used for the same purpose of temporal
rule discovery but it doesn’t discuss as to how to label the
time series with these set of events or primitive patterns.

We use a GNAT structure described in [5] to reduce the
search space for nearest neighbor search. This is
particularly suitable for our type of high dimensional
metric spaces and has been shown to work efficiently in
various domains like genetics, speech recognition, image
recognition and data mining for finding approximate time
series matches.

8. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a simple Nearest Neighbor
based approach for annotating time series with multiple
events. It combined parallel search with early termination
using clustering statistics. We used the GNAT data
structure to scale up the basic algorithm. We showed an
improvement of up to 500% in computation time over the
naïve NN approach. This performance improvement was
achieved without using dimension reduction of the time
series and without any type of indexing of subsequences
in the time-series. We instead indexed the set of shapes to
be searched, which is a one time process.

We also proposed the Filter Based Gradient Pattern
Matching technique for finding patterns of widely varying
temporal width. We demonstrated this approach to be
very effective in finding events in the boundary layer
datasets from the Fluid Dynamics research domain. We
also formed an event representation of the time-series for
both primitive and complex events.

In future work we plan to investigate the following:
• Finding techniques to automatically form an efficient

gradient for the FBGPM algorithm.
• Performing dimension reduction of the time series by

using various types of time series representations like
Piecewise Aggregate Approximation [13], etc to
further scale-up our algorithms performance.

• Using the event representation of time-series to
discover temporal patterns in event occurrences in
one or more time series in the current dataset and
forming a prediction model.

References
 [1] Agrawal, R., Faloutsos, C., Swami, A. (1993)
 Efficient Similarity Search In Sequence Databases. In
 Proceedings of the 4th International Conference of
 Foundations of Data Organization and Algorithms
 (FODO).
[2] Agrawal, R.; Psaila, G.; Wimmers, E. L.; and Zait,
 M. (1995) Querying shapes of histories. In Proc. of
 the 21st Int'l Conference on Very Large Databases.
[3] Agrawal, R., Lin, K., Harpreet, S., Shim, S. (1995)
 Fast Similarity Search in the Presence of Noise,
 Scaling, and Translation in Time-Series Databases. In
 Twenty-First International Conference on Very Large
 Data Bases.
[4] Agrawal, R., Srikant, R. 1995. Mining Sequential
 Patterns. In the 11th International Conference of Data
 Engineering.
[5] Brin, S. (1995). Near Neighbor Search in Large
 Metric Spaces. In Proceedings of the 21st VLDB
 Conference, Zurich, Sqitzerland.
[6] Berndt, D.J. and Clifford, J. (1994) Finding Patterns
 in Time Series: A Dynamic Programming Approach.
 In KDD 1994.
[7] Chan, K. & Fu, A. W. (1999). Efficient time series
 matching by wavelets. In proceedings of the 15th
 IEEE Int'l Conference on Data Engineering. Sydney,
 Australia, Mar 23-26. pp 126-133.
[8] Chiu, B., Keogh, E., Lonardi, S. (2003). Probabilistic
 Discovery of Time Series Motifs. In SIGKDD-2003
[9] Das, G., Lin, K., Mannila, H., Renganathan, G. &
 Smyth, P. (1998). Rule discovery from time series. In
 proceedings of the 4th Int'l Conference on
 Knowledge Discovery and Data Mining. New York,
 NY, Aug 27-31. pp 16-22.
[10] Dasgupta., D. & Forrest, S. (1999). Novelty detection
 in time series data using ideas from immunology. In

 12

 Proceedings of the 5th International Conference on
 Intelligent Systems.
[11]Engelhardt, B., Chien, S. &Mutz, D. (2000).
 Hypothesis generation strategies for adaptive
 problem solving. In Proceedings of the IEEE
 Aerospace Conference, Big Sky, MT.
[12] Keogh, J., Smyth, P. (1997) A Probabilistic
 Approach to Fast Pattern Matching in Time Series
 Databases. In the Third International Conference on
 Knowledge Discovery and Data Mining.
[13] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra
 (2000). Dimensionality reduction for fast similarity
 search in large time series databases. Journal of
 Knowledge and Information Systems. pp 263-286.
[14] Keogh, E. and Kasetty, S. (2002). On the Need for
 Time Series Data Mining Benchmarks: A Survey and
 Empirical Demonstration. In the 8th ACM SIGKDD
 International Conference on Knowledge Discovery
 and Data Mining.
[15] Keogh, E., Lin, J. and Truppel,W. (2003). Clustering
 of Time Series Subsequences is Meaningless:
 Implications for Past and Future Research. In
 proceedings of the 3rd IEEE International
 Conference on Data Mining.
[16] Faloutsos, C., Ranganathan, M., Manolopoulos,
 Y.(1994) Fast Subsequence Matching in Time-Series
 Databases. In Proceedings 1994 ACM SIGMOD
 Conference, Minneapolis, MN.
[17] Ge, X. & Smyth, P. (2000). Deformable Markov
 model templates for time-series pattern matching. In
 proceedings of the 6th ACM SIGKDD International
 Conference on Knowledge Discovery and Data
 Mining. Boston, MA, Aug 20-23. pp 81-90.
[18]Höppner, F. (2001). Discovery of temporal patterns -
 learning rules about the qualitative behavior of time
 series. In Proceedings of the 5th European
 Conference on Principles and Practice of Knowledge
 Discovery in Databases. Freiburg, Germany, pp 192-
 203.
[19]Park, S., Chu, W., Yoon, J. and Hsu, C. (2000)
 Efficient searches for similar subsequences of
 different lengths in sequence databases. In
 Proceedings of IEEE ICDE,
[20] Shatkay H. and Zdonik. S. (1996) Approximate
 Queries and Representations for Large Data
 Sequences. In ICDE.
[21] T. Bozkaya, N. Yazdani, Z.M. Ozsoyoglu, "Matching
 and Indexing Sequences of Different Lengths", Tech.
 Report, CES, CWRU, CIKM-1997
[22] Yi, B.K., Jagadish, H.V. and Faloutsos, C. (1998)
 Efficient retrieval of similar time sequences
 under time warping. In Proceedings of the 14th
 International Conference on Data Engineering
 (ICDE'98), pp. 201- -208, IEEE Computer Society
 Press.

[23]Wang, C., Wang, X. (2000). Supporting Content-
 based Searches on Time Series via
 Approximation. Statistical and Scientific Database
 Management.
[24] Klewicki, J., Gendrich, C., Foss, J., and Falco, R.
 (1990) On the sign of the instantaneous spanwise
 vorticity component in the near-wall region of
 turbulent boundary layers,’’ Phys. Fluids A 2, 1497
[25] Klewicki, J.C., Murray, J.A. and Falco, R.E. (1994)
 Vortical motion contributions to stress transport in
 turbulent boundary layers. In Phys. Fluids 6 (277).

 13

