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Abstract 
Similarity search in time-series subsequences is an 
important time series data mining task. Searching in time 
series subsequences for matches for a set of shapes is an 
extension of this task and is equally important. In this 
work we propose a simple but efficient approach for 
finding matches for a group of shapes or events in a given 
time series using a Nearest Neighbor approach. We 
provide various improvements of this approach including 
one using the GNAT data structure. We also propose a 
technique for finding similar shapes of widely varying 
temporal width. Both of these techniques for primitive 
shape matching allow us to more accurately and 
efficiently form an event representation of a time-series, 
leading in turn to finding complex events which are 
composites of primitive events. We demonstrate the 
robustness of our approaches in detecting complex shapes 
even in the presence of “don’t care” symbols. We 
evaluate the success of our approach in detecting both 
primitive and complex shapes using a data set from the 
Fluid Dynamics domain. We also show a speedup of up to 
5 times over a naïve nearest neighbor approach. 
 
Keywords  
Time Series Data Mining, Subsequence Matching, 
Querying Shapes, Nearest Neighbor, Pattern Matching, 
Clustering 
 
1. INTRODUCTION 
Time Series data occur frequently in many scientific and 
business applications. Time series are one of the most 
frequently examined type of data by the data mining 
community. The problem of finding patterns and 
associating patterns for temporal rule discovery is an 
important research area in time series data mining. Due to 
the complex nature of the time series data, detailed study 
is not practical particularly with high volume data [23].  
Reducing a high-dimension time series into a 
representation that is more easily understandable by the 
users is necessary and helpful in interpreting sections of a 
given time-series. Before we discuss the details of such 

user defined shapes or events and their matches in a time 
series, we give a graphic example of shapes or events to 
help develop an intuition of the problem. Figure 1 shows 
various types of events occurring in a small portion of a 
time series.  
 

 
Figure1: Example of different types of shapes or events 
occurring in a time series. 
 
The event representation of a time series can be used for 
different purposes as discussed in [8], some of which are 
as follows: (a) Association rule mining [4] in time series, 
which requires an event representation of time series. 
Events in our case are analogous to the primitive shapes 
in [9] for rule discovery in time series and frequent 
patterns in [18]. (b) Anomaly detection in time series uses 
a set of typical shapes to model normal behavior and 
detect future patterns dissimilar to known typical events 
or shapes [10]. (c) Finding approximate periodic patterns 
in occurrences of events in time series as discussed in 
[30]. (d) Hypothesis Generation as discussed in [11]. 
There has been a lot of work on efficiently detecting a 
particular shape in a time series [1, 3, 7, 12, 13, 16, 17, 
22]. This is similar to querying the database for a 
particular shape. Our problem, however, is finding 
matches for a given set of shapes in any given time series. 
This problem can be seen as a simple extension of the 
earlier one. Figure 2 gives an intuition of the two 
problems. In this paper we demonstrate that using 1-NN 
(i.e. One Nearest Neighbor) along with single shape 
search techniques can actually get us high quality 
approximate matches in a reasonable amount of time. We
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Figure 2: The problem of single shape search (left) and 
multiple shape searches (right) where qi is a query shape. 
 
provide various improvements of the simple approach to 
achieve considerable performance gain in terms of search 
time. One of the performance improvement techniques   
uses statistics of patterns/shapes collected from a small 
portion of a time series and uses this in early termination 
of distance calculation. We also used the GNAT 
(Geometric Near-Neighbor Access Tree) data structure as 
discussed in [5] to form a hierarchical tree to reduce the 
search space for the nearest shape. We show in the 
experiments that a speed up of up to 5 times is obtained 
depending on the width of subsequences searched. 
 
The second problem that we are trying to deal with is as 
follows: find all similar shapes of widely varying temporal 
widths. By widely varying we mean in the range of .50 
times to ~5.0 times the width of the query templates, 
sometimes even more. Examples of such matches can be 
best demonstrated visually as shown in Figure 4. 
Dynamic Time Warping [6] can be used to detect shapes 
that are compressed or stretched along the time axis. But 
one of the common problems with this technique is that it 
cannot find the boundary (start and end points of a match) 
correctly. And even if some improvement of the simple 
DTW can detect boundaries correctly, the width of 
subsequences in which such searches can be performed is 
limited. This is as shown in Figure 3 where Dynamic 
Time Warping can find matches but not the correct shape 
boundary. Detecting correct boundaries for such shapes of 
widely varying width is important for two reasons: firstly, 
they are informative in the sense that users might want to 
see if at any particular point of time a particular event is 
happening or is already over; secondly, while using 
association rule mining for temporal rule discovery in 
multiple time series as in [9] and using parallel episode 
rule as in [28] when we are trying to correlate events 
across multiple time series, it is important to know at any 
particular time if events in two different time-series are 
overlapping each other or one is happening before the 
other, etc. Example rules as mentioned in [28] are “A 
overlaps B” or “A after B”. This problem is also very 
important for the dataset under consideration for one more 
reason: two different time series for the same attribute 
collected under different conditions or at two different 
locations in space have similar events compressed or 
stretched over time. It has been proven theoretically that 
such situations are common in the current domain (and 
dataset) and that the average ratio of the width of events 

in two time series of the same attributes can be calculated 
using domain knowledge (see section 6.1 for more 
information). 

1 2 3 4 5 6 7 8 9 10

q1

1 2 3 4 5 6 7 8 9 10

q1 q2 q3 q4  

 
Figure 3: Match for a given query shape. Query template 
width is 25. The right window shows a match of window 
width=25 found using DTW. The actual boundary of the 
match is shown by the start and end arrows and the 
correct window size of the match should be 17 instead of 
25. 
 
Motivation for using NN: Time series data is very high-
dimensional. Nearest neighbor techniques have been 
shown to perform very well in low dimensional space. 
But with the increase in dimensionality, the scalability of 
the algorithm is the major problem [5]. However, we use 
1-NN technique to search for only the primitive shapes 
(or simplest of shapes) and so the length of our 
subsequence is going to be very small in comparison to 
that of the whole time sequence. But this does not mean 
that we do not search for complex shapes. Complex 
shapes can be formed by combining one or more types of 
primitive shapes as discussed in [9]. An example of 
complex shape is “rapid transition from increasing to 
decreasing pattern” which can be represented as a 
combination of upward spike followed by a reverse spike 
or vice-versa. Various techniques have been developed in 
the past to accommodate “don’t care” symbols. The 
robustness of our technique lies in the fact that we can 
take care of “don’t care” symbols in complex shapes 
using a fairly simple technique (see section 5).  
 
The second motivation for using NN search for finding 
shapes lies in the typical requirement to distinguish 
between similar shapes of different amplitudes. An 
example is a search for different kinds of upward spikes 
(e.g. short, medium and tall spikes). This is a common 
requirement in many applications and is also found in 
many data sets from fluid dynamics domain. A major 
problem with such requirements is that we cannot do a 
general window based normalization as this would fit 
most of the  subsequences into the same height, and 
distinguishing them based on their amplitude would no 
longer be possible. A straightforward solution is to 
normalize the windows into different heights. But given 
the number of possibilities of heights and the number of
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Figure: 4 Pattern matching for reverse spikes. The template pattern is of width 15. The matches are shown with the green 
boxes that indicate the width of the pattern. Note that patterns occur in various widths (in this case ranging from .800 to 2.733 
times the width of the template pattern). 
 
different normalization ranges, this is not   reasonable. 
Hence the need for a technique that can overcome this 
problem automatically by comparing the current window 
with various available shapes of different heights before 
labeling a subsequence as a match. 
 
Our contributions in this paper are twofold. Firstly, we 
use a nearest neighbor technique to attend the problem of 
finding matches for a given set of query shapes or events 
from a given time series and provide techniques for 
improvement of the search time. Secondly, we propose a 
technique to accurately detect boundary of similar shapes 
(or events) of widely varying temporal widths. 
 
In this section we motivated a problem and an approach 
that we propose to use to handle such problems. The rest 
of the paper is organized as follows. In section 2 we 
define the problem of event matching formally along with 
the definition of some of the terms that we are going to 
use throughout the paper. In section 3 we discuss the 
approach using 1-NN to handle the problem elegantly and 
also discuss improvement techniques for a significant 
reduction in computational time. In section 4 we provide 
an algorithm for searching patterns of widely varying 
temporal widths. Section 5 discusses the technique of 
finding complex patterns using simple shapes. Section 6 
provides experiments for extensively evaluating the 
accuracy of our approach and comparing various 
improvements for speedup. In section 7 we briefly discuss 
related work in time series data mining and particularly 
the subsequence matching techniques. Section 8 provides 
a conclusion followed by possible future directions to our 
work. 
 
2. DEFINITIONS AND NOTATIONS 
Here we define a few terms that are of importance to this 
paper.  
Definition-1 Time Series: A time series T = {t1, t2,…, tn} 
is a set of ordered real-valued variables.  
 

Definition-2 Subsequence: A subsequence ssi is a small 
section of a time series that consists of values from 
contiguous positions in the time series. If m is the length 
of the subsequence then in our case m << n where n is the 
length of the time series. SS = {ss1, …, ssn-m+1} is the set 
of all consecutive subsequences in a given time series. 
 
Definition-3(a) Window: A window of length m is a 
subsequence of length m from the time series T. Sliding 
window technique is used to retrieve all consecutive 
windows from a time series. 
 
Definition-3(b) Shape: A shape is an ordered, 
consecutive, real-valued vector representing a particular 
subsequence of interest in a time series. An event can be 
represented with a shape. In the rest of the paper we will 
use shape, event and pattern interchangeably. 
 
Definition-4 Match: Given a time series T, a shape s, a 
positive threshold t and a subsequence c starting at 
position q in the time series, if Dist(s,c) ≤ t, then c is 
called a matching subsequence for s. Dist(s,c) is the 
distance function to calculate the distance between two 
real-valued vectors. Euclidean distance and DTW are 
examples of distance functions. 
 
Definition-5 Best Match and Trivial Match: Given a time 
series T, a shape s and a threshold t there can be a set of 
consecutive subsequences C={ci, ci+1, …, ci+m} where   
subsequence ci starts at the ith position in the time series 
and all of them are a matches. The best match is the one 
subsequence that is least distant from s i.e.  
 
BestMatch(C)=ck where Dist(s, ck)= minj=i:i+m (Dist(s, cj)).  
 
All the remaining matches in C are trivial matches. The 
definition of trivial match is similar to that in [8] in some 
ways. This is demonstrated in Figure 5. 
 

vωz
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Figure 5: Trivial Matches. From [8] 
 
Definition-6 Single Shape Search: Given a shape s of a 
given width w, a threshold t and a time-series T, find all 
non-trivial matches in all the subsequences of width w in 
T. 
Definition-7 Multiple Shape Search: Given a set of 
shapes/patterns S = {s1, s2 ... sn} of a given width w, a 
threshold t and a time-series T, find all the Best Matches 
for shapes in S. The matches should be non-overlapping. 
 
Definition-8 Single Shape Matches of Widely Varying 
Widths: 
Definition-8(a) Different but constant width match:  
Given a shape s  of width w, a threshold t and a time-
series T, find all the Best Matches of width w’ in T where 
w’ = w + τ and τ is some constant value.  
 
Definition-8(b) Different range of widths match: Given a 
shape s of width w, a range of thresholds Rt and a time-
series T, find all the Best Matches of width w’ in T where 
w’ is any width within the range w ± τ time units.  This is 
different from Definition-8(a) in the sense that 8(a) finds 
all matches with one particular window width w’ while 
8(b) deals with searching for all matches with a window 
width in the range of w ± τ. 
 
Definition 9: Multiple Shape Matches of Widely Varying 
widths: Same as in definition-8 except here the search is 
for more than one shape. 
  
One of the goals of this paper is Multiple Shape Search 
and Multiple Shape Matches of Widely varying widths.  
 
3. NEAREST NEIGHBOR APPROACH 
In this section we discuss the NN approach for dealing 
with the problems defined in definitions 7 through 9 of 
the previous section. But before that we will see how 
shapes can be discovered from time series using 
clustering. These shapes in addition to other user defined 
templates are later used as the set of query shapes for NN 
search. 
 
3.1. Clustering to extract shapes from time series: 
Clustering is used to group similar objects together. It has 
been used to discover distinct shapes from time-series, 
which in turn can be used for symbolic representation of 
time-series as in [9]. Such symbolic representations are 

used for temporal rule discovery as shown in the above 
work. 
 
We use clustering to obtain distinct and maximally 
different shapes from a small portion of a time series. The 
users label these subsequences as “interesting” or “non-
interesting”. The users can add their own shapes or 
templates to the clustering results and label them as 
“interesting”. Hence the result of clustering, and the extra 
“interesting” shapes, form the set of shapes S while Q is 
the subset of S that are labeled as “interesting” by the 
user.  
 
We explored two types of clustering: k-means and 
hierarchical clustering and finally decided to use k-means 
for our purpose since we are looking for mostly simple 
and primitive subsequences.  
 
3.2. 1-NN for parallel search of multiple shapes: 
Nearest Neighbor in the subsequence search problem can 
be defined as follows: given a set of subsequences SS and 
a query shape q, find all the non-trivial matches in SS that 
are within a distance r from q. SS is the set of 
subsequences in time series T obtained using sliding 
window of width w and sliding distance d. The 1-NN 
search is the problem of finding the closest match to q 
from SS. If the search is for multiple shapes, then search 
for each of these shapes individually, by scanning through 
S once for every shape.  
 
Our use of 1-NN is slightly different from the above 
technique. Unlike the above approach, we take each 
subsequence ssi in SS and find if there is a match to one of 
the shapes in Q and also satisfy some constraints. And we 
perform all the required matching in just one sequential 
scan through SS as opposed to multiple scans of the 
earlier approach. The constraints can be in the form of a 
distance threshold or a correlation coefficient threshold.  
 

 
Algorithm 1: 1NNP (1NN Parallel) 

 

1NNP (T, Q, w, threshold) 
1. Use sliding window to retrieve one subsequence 

(window of width=w) at a time from the time 
series. 

2. Do the following for each of the above 
subsequences: 
o Find the closest shape in the set of shapes Q.

Euclidean distance measure is used for this 
purpose.  

o Label the subsequence with the closest 
shape. 

3. Remove trivial matches. 
4. Prune all matches below a specified threshold.  
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Given a set of shapes Q of width w and a time series T, 
we use the following simple algorithm, we call 1NNP 
(1NN Parallel), to find all non-trivial matches in T. 

 
Removing trivial matches: The algorithm for removing 
all trivial matches is as follows: 
For each of the shapes in Q, do the following: 
a) Find all the matches for the current shape from the 

list of ordered matches obtained in Step (2) above. 
b) For each set of consecutive matches in the above list, 

find the match that is least distant from the current 
shape. 

Consecutive matches in (a) refer to all matches with 
consecutive offsets. We can remove trivial matches 
efficiently by keeping track of the distance measure for 
each match in Step (2) of Algorithm 1. 
 
 Pruning of matches: Pruning as mentioned in Step (4) of 
Algorithm 1 is done using a correlation coefficient 
threshold. This is the constraint applied on individual 
matches. Correlation Coefficient (CC) threshold can be 
used for shapes that are fairly simple. The correlation 
coefficient can be maintained at a fixed value for all the 
shapes. This prevents the need to find a good distance 
threshold for each query shapes. We show experimentally 
that this threshold actually yields good results in terms of 
accuracy of matches. Our system can accommodate any 
distance metric including both Euclidean Distance (ED) 
as well as Dynamic Time Warping (DTW) for pruning. 
DTW is computationally expensive but is more accurate 
to matches with various levels of elasticity along the time 
axis (CC threshold won’t work well). We show the ED 
can give us really good results when the primitive shapes 
are fairly simple. DTW can be used to find shapes 
deformed along the time axis. 
 
We call the above algorithm 1NN Parallel because it uses 
1NN search and it can find matches for all the shapes in Q 
in parallel with a single sequential scan. This is unlike the 
naive approach where search for each shape requires a 
sequential scan through all the subsequences in time 
series T. 
 
One of the obvious problems with our approach is the 
high number of distance calculations that need to be 
performed. One simple technique to speed up algorithm is 
by using the “early termination” technique in distance 
measurement. This helps in Step 2(a) of the 1NNP 
algorithm which has been seen to take 99% of the 
computation time. We call this improved algorithm the 
1NNP_ETD (1NNP with Early Termination in Distance 
computation). 
The “early termination” for distance calculation algorithm 
for our purpose is as follows: 
 
 

// finding closest shape using the early termination  
// distance calculation 
// ssi → current subsequence and Q → set of shapes 
closest_shape(Q, ssi) 
1. best_query=1 
2. best_distance = dist(ssi, q1) 
3. For each shape qj in Q, do the following:  

a. curr_distance  = dist_et(si, qj, best_distance) 
b. if (curr_distance < best_distance) 
           best_distance = curr_distance 
           best_query = qj

 
// early termination distance calculation 
dist_et (s, q, best_distance) sum=0; 
1. for i=1:n 
2.    sum+= (s[i]-q[i])^2 // Euclidean Distance 
3.    if (sum >= best_distance) 
4.  return sum 
5.    end 
6. end 
 
Figure 6 shows graphically how early termination works. 
It can be seen in the experiment section that using the 
early termination distance calculation efficiently reduces 
the computation time by almost one-third the original 
time of 1NNP. Shapes in Q are matched in the order in 
which they appear in the list. Since early termination is 
dependent on how early we find the closest match, the 
idea is to order the shapes for most efficient use of early 
termination. 
 
We use the statistics gathered during clustering to decide 
the order of the search to improve the classifier 
performance.  Table 2 shows the result of k-means 
clustering with k=10. The number of windows and the 
percentage of windows covered by each of the 10 shapes 
are shown in the table. It can be seen that just the 3 most 
frequent shapes account for 70% of the subsequences and 
5 most frequent shapes account for 90% of the 
subsequences. It is also interesting to note that the 
“interesting” shapes identified by the users are # 6 and # 9 
which account for 2% of the matches. Also the “extra” 
templates added by the users are of similar rarity. Given 
all these statistics, it can be inferred that more than 95% 
of the subsequences to be searched are going to be 
unsuccessful matches. In other words only less than 5% of 
the searches are going to be matches. 
 
Given all these statistics, the question is can we order the 
shapes so that the early termination of distance calculation 
is most efficient. Early termination is most successful 
when the least distant shape is matched first during the 
matching process. In such a case, matching with the rest 
of the query shapes will result in efficient early 
termination of the distance calculation as shown in Figure 
6.  
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Table 2: Result of k-means clustering with k=10. The 
table shows the number of windows that were grouped 
into each of the 10 shapes found using clustering on a 
small part (10,000 data points) of a time series with more 
than 1 Million data points. The rows in bold show the top 
3 shapes in terms of the percentage of matches. 
 

 
Figure 6: Early termination during distance calculation for 
windows of width=25. The shape shown in dotted line is 
the current subsequence and it is matched to 4 different 
query shapes. The best case ordering of matches to query 
shape (which is the case in the current situation) can save 
computation when using early termination. Note that the 
Euclidean Distance at the time of termination just exceeds 
the best distance so far (i.e. 0.057) as shown in the boxes 
inside each comparison. 
 
We order the shapes in the descending order of their 
frequency of occurrence (as found from a small portion of 
the time series). We call this the “best order” of shapes 
while the “worst order” is the reverse of the “best order”. 
In the experiments section, we will show that the best 
order gives an improvement of nearly one-third the time 
taken by that without early termination. The “worst order” 
although gives an improvement over the 1NNP without 
early termination is still worse than the “best order”. A 
random order performs in between. 
 
With all these modifications, the overall average number 
of distance computations is still very high. We have 
obtained an improvement of just 50% with the early 
termination and shape ordering process. In the next sub-
section we use a data structure that can reduce the number 

of distance computations tremendously (up to 500%) by 
reducing the search space in Q for each subsequence 
matching. This tree like structure works better as the 
number of query shapes increases. 
 
3.3. 1-NNP with GNAT (1NNP_GNAT) 
One of the major bottlenecks of the above algorithm is 
that the distance calculation has to be performed between 
the current window and all the given shapes in Q even 
though early termination is used to stop the calculation 
after a certain point for each query shape. Since the 
distance calculation is itself a curse in the high-
dimensional space, even if it is only a partial calculation, 
we use a data structure aimed at reducing the search space 
to a few distance calculations. This data structure is 
described in [5] and is known as GNAT- Geometric Near-
neighbor Access Tree. 
 
GNAT: Geometric Near-Neighbor Access Tree 
Overview of GNAT: The goal behind the design of 
GNAT is to build a data structure that reflects the intrinsic 
geometry of the underlying data (here, it is the set of 
shapes Q).  It creates a hierarchical structure such that as 
we traverse down the tree we can get more and more 
accurate sense of the geometry of the data. It has been 
used to reduce the search space in high-dimensional 
metric space. 
 
GNAT is viewed as a generalization of gh-trees and has 
been shown in [5] to always perform better than 
techniques using vp-trees and gh-trees with better 
scalability. The advantage of the GNAT tree is that the 
query time is reduced. But at the same time the build time 
of the data structure is sharply increased. But since our 
application is query dominant and the number of shapes 
in the search space is relatively much smaller, the relative 
cost of building the GNAT tree becomes almost 
negligible. Detailed description of the GNAT construction 
and search technique is beyond the scope of this paper.
 
The GNAT implementation involves (a) constructing the 
GNAT data structure (tree) from Q and (b) searching 
through the GNAT data structure for finding matches. 
Input to the GNAT search process is a vector (in this case 
the current subsequence ssi) and the minimum distance 
between searches, r. The advantage of this technique is 
that we limit of matching process to all shapes within a 
distance r from the current subsequence. This is unlike the 
earlier technique where we just find the closest match and 
then apply a threshold. From all the shapes within the 
minimum distance r, we select the closest shape. 
Parameters for GNAT:  
(a) Selecting split points: At every stage, we select the 

two farthest points in the metric space as the split 
points.  

Cluster 
# 

No. of 
windows 

% of 
windows 

1 5139 10% 
2 4242 8% 
3 1089 2% 
4 4742 9% 
5 767 1% 
6 620 1% 
7 23001 46% 
8 6733 13% 
9 753 1% 

10 2890 5%
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(b) Degree of a node: We choose a maximum degree of 2 
for each node in the tree. 
 

1NNP_GNAT Algorithm: 

 
Algorithm 2: 1NNP_GNAT 

 
Early termination in the distance calculation cannot be 
used with GNAT. However, we can take advantage of the 
high frequency of the most frequent shape in Q and stop 
with searching in GNAT tree if the following condition is 
satisfied: 

Dist (ssi, f) < (½ * Dist (f , fc))  
where,  ssi = current subsequence, f is the most frequent 
shape in Q and fc is the closest shape to f in Q. This will 
ensure that f is the closest shape to ssi in Q because of the 
triangle inequality condition satisfied by Dist() functions 
like Euclidean Distance, etc. This condition is checked for 
just before Step (3) in algorithm 2. If satisfied, the closest 
shape returned is f. We call this algorithm 
1NNP_GNAT_EFSP (EFSP for Early Frequent Shape 
Pruning). 
 
4. FILTER BASED GRADIENT SEARCH 
In the previous section we discussed the problem of 
searching a time series for a given set of query shapes and 
have used various techniques to speed up the basic 1-NN 
search algorithm. In this section we propose an algorithm 
that is used to find similar shapes of widely varying 
temporal widths as shown in Section 1. We use the fast 
1NN from section 3 to speed up the search process. We 
also describe a novel scaling technique for scaling a query 
shape in the time axis before finding matches.  
 
We propose a technique we call Filter Based Gradient 
Pattern Matching to solve the problem of widely varying 
temporal width. Filter Based Gradient Pattern Matching 
(FBGPM) is based on a technique whereby we use 
multiple versions of the same query shape and search for 

matches for each versions of the shape. Each version of 
the shape is of a different temporal width: stretched or 
compressed along the time axis. The technique is called 
“gradient” because we use a gradient of widths for the 
same pattern. The gradient is formed by selecting a range 
of compression and stretching levels. We call it a “filter 
based” approach since for each scaled version of the 
shape/ pattern we find matches from the time series and 
remove or filter out all the matched windows from the 
time series before performing matching with the next 
version of the shape. 
 
The algorithm for implementing the FBGPM technique is 
as follows: 

 
Algorithm 3: FBGPM 

 
GS (Gradient Scale): A range of scaling percentages by 
which a shape is to be scaled before searching for 
matches. 
GT (Gradient Threshold): A set of thresholds for deciding 
a good match for each version of shapes decided by GS. 
 
The algorithm works as follows: We form a set of 
subsequences which initially is just one subsequence that 
represents that entire time series <1, length(T)>. For each 
of the scale in the gradient, the shapes in Q are scaled to 
the temporal scale using a Hinge Based Scaling technique 
described below. Q’ is a scaled version of Q. The 1NN 
algorithm described in Section 4 is used to find all the 
matches for shapes in Q’. The matches are filtered out 
from the current set of subsequences and a new set of 
subsequences is formed. For example initially we have a 
subsequence {<1, 200>} in the set of subsequences where 
200 is the length of the time series. Let’s say we found 
two matches with offset 21 and 106 and the current width 
of shapes in Q’ be w’=30. After filtering, the new set of 
subsequences is {<1, 20>, <51, 105>, <136, 200>}. This 
process of scaling of shapes in Q, finding matches in the 

1NNP_GNAT (T, Q, w, threshold, r) 
Input: 
Output: 
1. Construct the GNAT tree from Q 
2. Use sliding window to retrieve one subsequence 

(window of width=w) at a time from the time 
series. 

3. Do the following with each of the above 
subsequences obtained in (2): 

a. Find the closest shapes in the set of shapes Q 
using the GNAT search that are within a 
distance r. Euclidean distance measure is used 
for this purpose.  

b. Label the subsequence with the closest shape 
from (a). 

4. Remove redundant matches. 
5. Prune all matches below a specified threshold.  

FBGPM (T, Q, w, GS, GT) 
1. Subs = {<1,length(T)>} //initial set of subsequences 
2. Select a scale gsi from the gradient scale in GS.  
3. w’ = w + (w*gsi/100) // scaled width of patterns 
4. Scale all the shapes in Q to the current temporal 

scale gsi using HingeBasedScaling. This is done 
as follows: 

        Q’ = HBS(Q, w, gsi) 
5. c_threshold = GT(i) // current threshold 
6. Apply 1NN search algorithm to find all matches 

for the shapes in Q’. 
        c_ms = 1NN_Parallel(T, Q’, w’, c_threshold) 
7. Filter the matched window in c_ms and form a 

new set of subsequences. 
       Subs = Filter(T, c_ms, w’) 
8. Repeat steps (2-7) for each of  the scales in GS in 

the given order.. 
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set of subsequences followed by filtering of matches is 
continued for each of the scales in the gradient. 
 
Parameters for FBGPM: 
There are some choices that we have to make when using 
the above algorithm. They are as follows: 
1. Choice of the gradient. 
(a) Order of gradient: A gradient can begin with the most 
compressed pattern and gradually move towards the 
original patterns ending up with the most stretched 
pattern. We will call this gradient COS (Compressed-
>Original->Stretched). Another possible gradient can be 
the opposite of the above gradient where we start with the 
most stretched version of patterns in Q and end up with 
the most compressed versions. We will call this SOC 
(Stretched->Original->Compressed).  
We will test with both versions of the gradient to find the 
better of the two. 
(b) Values of the gradient: We also need to decide the 
amount of stretching and compression that needs to be 
done. For example we can start with a compression level 
of 80% and go up in steps of 10% (i.e. -80%, -70%, ….., -
10%, 0%, 10%, …, 80%).  Or we can start with a 
compression of -75% and go up in steps of 25% up to a 
stretching of 75%. The compression and the stretching 
levels need not be symmetric. 
These choices have to be made based on the time series 
and the kind of pattern that we are looking for. For 
example, if most of the patterns occurring in the time 
series are thinner than the original pattern width, then it 
makes sense to have more compression levels than 
stretched levels in the gradient scale (GS). 
2. Choice of thresholds  for a given gradient. 
The two threshold choices are as follows: 
(a) Single threshold for all degrees of scaling. 
(b) Variable thresholds depending upon the scaling.  
A variable threshold with a very high initial value is 
suggested since we would want all the initial matches to 
be highly accurate so that the current version of the 
pattern doesn’t match the shapes that might match more 
accurately with a wider or thinner version of the pattern 
that occurs later on in the gradient. 
 
Hinge Based Scaling: A Pattern Scaling Technique 
In FBGPM, we form a gradient scale. Now we need a 
way to scale the pattern to a particular level of 
compression or stretching along the time axis as 
mentioned in Step (4) of the FBGPM algorithm. We 
propose a technique we call Hinge Based Scaling to 
perform scaling on the temporal axis. The idea behind 
hinge based scaling is to divide a shape into multiple 
segments. The segments are decided by the location of 
hinge points: the points at which there is a reversal in the 
trend in the shape (articulation points in a shape). This 
point is otherwise known as articulation point. The 
various segments are compressed or stretched individually 

to a required width by insertion or removal of points using 
the averaging of two consecutive points technique. Each 
of the segments is then offset and amplitude scaled to 
match the offset and amplitude in the original shape. The 
individual segments are then merged at the 
hinge/articulation points to form the scaled pattern. An 
example of scaling Hinge Based scaling is shown in 
figure 7. 
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Figure 7: Hinge Based Scaling vs. Simple Temporal 
Scaling. With Hinge Based Scaling, the overall shape is 
more consistent with the original shape. Note that the left 
end of the HB Scaled shape matches the start point of the 
original shape. The start offset of Simple Scaled shape is 
raised above the original start point offset. 
 
5. EVENT REPRESENTATION OF TIME 

SERIES AND SEARCHING FOR 
COMPLEX EVENTS/SHAPES 

An event representation of the time series is formed as 
mentioned in [9]. Matches for each of the shapes in the set 
of “interesting” events, Q, are found using the 1-NN 
algorithm. Similar shapes of widely varying width are 
found using the Filter Based Gradient Approach 
mentioned in Section 5. Our technique of event 
representation differs from [9] in that we do not match 
every window to a shape. Rather we just label each non-
trivially matched window with the name of symbol of the 
event/shape. All the unmatched subsequences are labeled 
as “non-interesting” or “don’t cares”. This form of event 
representation is also similar to [18] where the time series 
is labeled with “increasing”, “decreasing” and “plateau” 
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labels. An example event representation of a time series is 
shown in figure 8. 
 
 
 

gradient may then be decomposed in to the difference of 
two velocity –vorticity correlations, one of which is vωz.  
Thus, exploration of the coherent signatures in the vωz 
signals has direct relevance to the instantaneous 

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of  each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of  each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of  each match

1 25 35 40 50 72 78 88 90 110 117 126
Start offset of  each match
 
 
 
Figure 8: Event Representation of Time Series where the 
time series is replaced with the symbols for the primitive 
shapes. The 3 shapes matched here are P1, P2 and P3 and 
DC stands Don’t Care regions or the “uninteresting” 
regions. 
 
Primitive shapes are used for finding more complex 
shapes as described in [9]. An example of a complex 
shape is an “upward spike followed by a reverse spike” as 
shown in Figure 3. Such a search approach allows for 
“don’t care” symbols within complex shapes. Abstract 
patterns for finding such complex shapes can be formed 
as follows: [Rule-1: P1 → P2, τ] which can be interpreted 
as an event P1 followed by an event P2 with the 
maximum allowed gap being τ time units.  
 
Event representation is commonly used for temporal rule 
discovery as in [9]. Because of space limitations we are 
not going to discuss this part which is also beyond the 
scope of current paper. 
 
6. EXPERIMENTS AND RESULTS 
 
6.1 Dataset: 
To evaluate our approach, we use measurements from one 
of the signals collected from boundary layer experiments 
in the fluid dynamics research domain. This is the vωz 
signal which is collected at a frequency of 500Hz. We use 
the vωz time series from these experiments. The vωz 
signals are derived from four element hot-wire sensor 
measurements of the zero pressure gradient turbulent 
boundary layer as discussed in [24]. The four element 
sensor is unusual in that it allows the simultaneous 
measurement of the fluctuating axial and wall-normal 
velocities and the spanwise vorticity, and thus constitutes 
one of very few data sets that have directly measured  
vωz.  Owing to the fact that the boundary layers studied 
developed over a 15m length at 25 different locations, an 
important characteristic of these experiments is their high 
spatial and temporal resolution.  
   
The motivations for studying coherent patterns in the vωz 
signals presented herein are primarily derived from the 
time averaged Navier-Stokes equations as applied to wall-
bounded flows.  In particular, it may be shown in [25] that 
the net effect of the turbulence on mean flow dynamics is 
reflected in the gradient of the Reynolds stress.  This 

mechanisms for momentum transport. 
DC P1 DC P2 DC P1 P3 P2 DC P1 P2 ………...
24 10 5 10 22 6 5 10 20 7 9

Width of each match

DC P1 DC P2 DC P1 P3 P2 DC P1 P2 ………...
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Width of each match
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Width of each match

 
6.2 Data Preprocessing 
Different time-series of the vωz attribute that are collected 
at different points in the boundary layer or under different 
experimental conditions have very different scales (both 
amplitude and temporal widths). The maximum value of 
amplitude varies widely between two time-series (e.g. 0.3 
and 1000). To handle this problem, we normalized all the 
time series to a fixed range. The second problem with the 
data set is the widely varying temporal widths of events. 
This happens because of the acceleration or deceleration 
of the speed at which events occur in the time-series. 
Researchers can theoretically find the average width of 
events in the time-series of an attribute collected at 
different points in the boundary layer. We use this value 
to determine the base width of all the shapes in the query 
set Q. The actual width of patterns can range from 
anywhere between -75% to +200% of the base width. 
 
6.3 Experiments 
We performed all our experiments using Euclidean 
distance. However for comparison of matches, we did us 
Dynamic Time Warping (DTW) in some of the 
experiments. ED is found to get us the desired results 
when the searched shape is not very complex. For 
complex primitive shapes that cannot be found using the 
event representation (discussed in section 5), DTW gives 
better accuracy. 
 
We conducted two types of experiments; the goals for 
each are as follows:  
(a) To compare the performance of the 1NN approaches 
in terms of computation time, and  
(b) To determine the accuracy of the FBGPM with 1NN 
algorithm in terms of finding patterns “correctly” and 
“accurately” (we will see the definitions below). 
 
6.3.1. Comparison of Computation Time of 1NN 
approach: 
We use the results of our basic 1NNP algorithm as the 
baseline. Another baseline could be a sequential search 
algorithm that searches for one pattern at a time by 
sequentially scanning through the time series. For 
example if there are m shapes in the query set Q, this 
approach will require m sequential scanning of the time 
series. Obviously the number of distance computations of 
this approach will be the same as that of the basic 1NNP 
algorithm but the overhead in 1NNP is much less due to 
the single scan as opposed to the multiple scans in the 
serial approach. Thus the 1NNP is faster than the serial 
algorithm and hence a good baseline. 

 9



 
We compare the computation time and the average 
number of distance computations required for various 
improvements of the basic 1NNP algorithm. The 
algorithms that we compare are as follows: 
1NNP, 1NNP_ETD, 1NNP_ETD_EFSP, 1NNP_GNAT 
and 1NNP_GNAT_EFSP 
1NNP_ETD_EFSP uses the early pruning of the most 
frequent shape as discussed in section 3.3.  
 
We conducted two sets of experiments, first with a 50,000 
data point long time-series and the second time series 
with a million data points. We searched for patterns of 
different widths in each of the above time series using all 
the approaches mentioned earlier. The number of shapes 
in Q for this purpose was 15. We ran all the experiments 
in a Pentium-4 (1.6 GHz) machine with 256 MB main 
memory. 
 
From Graph 1 and 2, we can see that the performance of 
1NNP_GNAT is the best at higher width of query shapes. 
1NNP_GNAT performs better over the simple 1NNP 
approach by over 500% for query width=400 for both 
versions of the time-series studied. It can be observed that 
with width ≤ 50, the 1NNP_GNAT_EFSP performs better 
than the one without EFSP. This implies that comparing a 
subsequence with the most frequent shape (see section 
3.3) in Q can help eliminate further search in the GNAT 
structure. Such improvement can also be seen with 
1NNP_ETD_EFSP in comparison to 1NNP_ETD, which 
improves the performance by approximately 33%.  
 
Graph 3 shows the average number of distance 
computations for each subsequence in the time series with 
GNAT and GNAT_EFSP. NOTE that our baseline 
average is 15 which is equal to the number of shapes in Q. 
The GNAT_EFSP performs less number of distance 
computations for query width ≤ 50 while GNAT performs 
fewer average distance computations for greater width. 
For large widths, 1NNP_GNAT's distance computation 
almost never exceeds 2. 
 
 
GNAT also performs much better with higher number of 
shapes in Q. For example, with 20 shapes of width=50, 
GNAT_EFSP takes 20.5 seconds while the second best is 
1NNP_ETD with 24.7 seconds. With 30 shapes, 
GNAT_EFSP is 25% faster than 1NNP_ETD.  
 
Using “early termination” in distance computation (ETD) 
helped reduce the computation time by reducing each 
distance computation by an average of at least 50% the 
width of shapes. But the overhead associated with the 
implementation of “early termination” could not give a 
similar performance improvement in terms of 
computation time. 
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Graph 1 & 2:  Graphs comparing the “width of shapes” 
vs. “computation time” in seconds for various algorithms 
for two different time series of given length 50,000 and 1 
million data points. 
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Graph 3: Avg. Distance Computations per subsequence. 
The no. of shapes in Q is 15. Our baseline is 15 since for 
each subsequence in the time series, 1NNP computes the 
distance between the current subsequence and each of the 
15 shapes in Q.  
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6.3.2. FBGPM for shapes of widely varying width: 
We define a match to be correct if the classifier label for a 
window is same as that labeled by users. An accurate 
match is one whose end points are within ±δ data points 
from the end points of the window containing the actual 
match (as identified by users). Let so and eo be the start 
and end point of a window containing an event as labeled 
by users. Let sf  and ef be the end points of the window 
found by our FBGPM technique. A match is considered 
accurate if |so-sf|= δ and |eo-ef|= δ. For our experiments, 
we set δ=3. 
 
We conducted experiments for FBGPM with various time 
series subsequences of length 10,000 data points and 
50,000 data points. We used a SOC gradient of {+100%, 
+75%, +50%, +25%, 0%, -10%, -20%, -30%, -40%}. The 
width of events in Q was 25. Thus the FBGPM searched 
for all shapes of in windows varying from 50 to 19 data 
points wide. We used a very high threshold for initial 
matches and a comparatively low one for later matches. 
The FBGPM found all the shapes in all the experiments 
with less than 4% false positives and no more than 1% 
false dismissals. A simple implementation of a technique 
using DTW on window width of 25 also found most of 
the matches of less than width 25 correctly. But for all the 
longer subsequences, DTW could not find any match. 
DTW performance in terms of execution time was also 
very high. For example, the FBGPM using simple 
Euclidean distance found most of the matches accurately 
in just 1.2 seconds while the DTW technique took 
approximately 30 seconds. The computation time with 
DTW also increased tremendously for wider queries. 
Graph 4 shows all the shapes of various widths found 
using the FBGPM. Since all these matches were within 
our definition of a correct boundary, it can be seen from 
the graph that patterns are occurring at widely varying 
width and hence the need for FBGPM. 
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Graph 4: Number of matches found for all shapes at 
various scales of the original template of width 25 in two 
different time series of lengths 10,000 and 50,000.  
 

6.4 Complex Pattern Search 
Example of complex patterns with “gap” or “don’t care” 
regions 
An example complex pattern that we searched for was 
“sudden trend reversal” which can be represented by the 
two primitive shapes “upward spike” and “reverse spike”. 
The rule formed was as follows: [“upward spike” → 
“reverse spike” τ=10]. Instances of such rules can be 
found easily using simple string matching techniques 
using the event representation explained in section 5. The 
maximum gap allowed in this case was 10 time units. 
 
7. RELATED WORK 
 
Several techniques for fast retrieval of similar 
subsequences in time series have been proposed. Methods 
vary from simple template matching technique using 
Euclidean Distance to more complex matching techniques 
using distance metrics like Dynamic Time Warping [6]. 
There has been plenty of work on fast searching for a 
particular shape occurring in different scales (amplitudes 
and temporal scales) in a given time series [1, 3, 6, 12, 
16]. In [1] DFT and R-Trees are used to find similar 
sequences while [16] extended it to find similar 
subsequences. Since [1, 16] both use ED, they cannot be 
used for sequences of different lengths as discussed in 
[19]. But this is true only when we try to do a direct 
match. In our paper we show that by stretching or 
compressing the query shapes to a certain range of widths, 
ED can in fact be used for matching sequences of 
different lengths. In [1] they introduced the concept of 
allowing for “don’t care” regions while searching for 
similar sequences. In [9], complex subsequences were 
searched by first finding primitive shapes (using 
clustering) and then looking for complex shapes using 
combination of primitive shapes using certain abstract 
rules. This will allow for “don’t care” regions. Our work 
is similar to this in the sense that we use a similar 
technique for finding complex shapes.  
 
Several researchers have done work on similarity 
matching based on shapes of sequences including [0, 20]. 
A shape definition language is defined [2] and it provides 
index structure for speeding up the search process. In 
[20], the notion of generalized approximate queries is 
introduced that specify the general shapes of data 
histories. Both these approaches can handle some 
deformation in the time axis. Many approaches to find 
similar subsequences of different lengths have been 
proposed in [19, 21, 22]. But none of these approaches 
can take care of very widely varying temporal widths. We 
take advantage of the user knowledge of the average 
width around which most of the shapes occur and use that 
to define the range of widths in which to search for the 
shapes by compressing or stretching the query shapes 
before performing similarity search. 
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In [9] clustering is used to retrieve primitive patterns from 
a time series and then a symbolic representation of the 
time series is formed which is later used for discovery of 
temporal rules. They also propose that primitive shapes 
can be used to find more complex shapes and the abstract 
rules that they provide can be used to allow “don’t care” 
symbols. Our work is similar to this in the sense that we 
also use clustering to find primitive shapes. We also form 
complex shapes by merging primitive shapes of one or 
more types. Our work is different from this one in that in 
our group of query shapes we consider only those shapes 
that the user find interesting. Plus we also allow user 
templates to be added to our set of query shapes. We do 
this since from the clustering results we found that some 
of the shapes obtained were very similar to each other but 
shifted in the time axis. Such redundant shapes should be 
removed from the clustering result. This has been shown 
in [15]. On top of that some of the shapes representing 
certain events were not found automatically using 
clustering. The second way in which our representation is 
different from this one is that they represent each sliding 
window in the time series with a shape symbol. In our 
case, we find labels for only those windows that match 
the set of query /interesting shapes without considering 
any of the trivial matches (see section 2).  All the 
unmatched subsequences are labeled as “don’t care” 
windows. In [28] an event representation of time series is 
formed which is used for the same purpose of temporal 
rule discovery but it doesn’t discuss as to how to label the 
time series with these set of events or primitive patterns. 
 
We use a GNAT structure described in [5] to reduce the 
search space for nearest neighbor search. This is 
particularly suitable for our type of high dimensional 
metric spaces and has been shown to work efficiently in 
various domains like genetics, speech recognition, image 
recognition and data mining for finding approximate time 
series matches. 
 
8. CONCLUSIONS AND FUTURE WORK 
 
In this work, we proposed a simple Nearest Neighbor 
based approach for annotating time series with multiple 
events. It combined parallel search with early termination 
using clustering statistics. We used the GNAT data 
structure to scale up the basic algorithm. We showed an 
improvement of up to 500% in computation time over the 
naïve NN approach. This performance improvement was 
achieved without using dimension reduction of the time 
series and without any type of indexing of subsequences 
in the time-series. We instead indexed the set of shapes to 
be searched, which is a one time process.  
 

We also proposed the Filter Based Gradient Pattern 
Matching technique for finding patterns of widely varying 
temporal width. We demonstrated this approach to be 
very effective in finding events in the boundary layer 
datasets from the Fluid Dynamics research domain. We 
also formed an event representation of the time-series for 
both primitive and complex events.  
 
In future work we plan to investigate the following: 
• Finding techniques to automatically form an efficient 

gradient for the FBGPM algorithm. 
• Performing dimension reduction of the time series by 

using various types of time series representations like 
Piecewise Aggregate Approximation [13], etc to 
further scale-up our algorithms performance.  

• Using the event representation of time-series to 
discover temporal patterns in event occurrences in 
one or more time series in the current dataset and 
forming a prediction model.  
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