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Abstract

Model checking techniques suffer from the state space explosion problem: as the
size of the system being verified increases, the total state space of the system
increases exponentially. Some of the methods that have been devised to tackle
this problem are partial order reduction, symmetry reduction, hash compaction,
selective state caching, etc. One approach to the problem that has gained interest
in recent years is the parallelization of model checking algorithms.

A random walk on the state space has some nice properties, the most important of
which is the fact that it lends itself to being parallelized in a natural way. Random
walk is a low overhead and a partial search method. Breadth first search, on the
other hand, is a high overhead and a full search technique. In this article, we
propose various heuristic algorithms that combine random walks on the state space
with bounded breadth first search in a parallel context. These algorithms are in the
process of being incorporated into a distributed memory model checker.
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Abstract

Model checking techniques suffer from the state space explosion problem: as the size of
the system being verified increases, the total state space of the system increases exponentially.
Some of the methods that have been devised to tackle this problem are partial order reduction,
symmetry reduction, hash compaction, selective state caching, etc. One approach to the prob-
lem that has gained interest in recent years is the parallelization of model checking algorithms.

A random walk on the state space has some nice properties, the most important of which is
the fact that it lends itself to being parallelized in a natural way. Random walk is a low overhead
and a partial search method. Breadth first search, on the other hand, is a high overhead and
a full search technique. In this article, we propose various heuristic algorithms that combine
random walks on the state space with bounded breadth first search in a parallel context. These
algorithms are in the process of being incorporated into a distributed memory model checker.

1 Introduction

Model checking [CGP99] is a method for formally verifying finite-state concurrent
systems. Usually, the method exhaustively searches the state space of the concurrent
system to prove that a particular property holds. This is guaranteed to terminate since
the model is finite. This search can be done in two different ways:

• The states can be explicitly enumerated and stored separately in a table. This
method is called explicit state model checking.

∗This work was supported in part by the Semiconductor Research Corporation (SRC) under contract no. 1031.001,
and by the National Science Foundation (NSF) under grant no. CCR-0081406 (ITR Program) and CCR-0219805 (ITR
Program). The authors wish to thank Ulrich Stern and Prof. David Dill for making available the source code of Parallel
Murphi on which our tool is based.
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• The states can be symbolically represented, such as representing states using a
Binary Decision Diagram (BDD) [BCMD90]. This is called symbolic model
checking.

Both methods have domains where they outperform each other. The properties that
are verified can also be classified into two categories:

• Safety properties. In plain English, these are properties that say that “something
bad never happens”.

• Liveness properties. These are properties that say that “something good eventu-
ally happens”.

When verifying concurrent systems, all possible interleavings of concurrent tran-
sitions in the system must be considered for exploration. This gives rise to the state
space explosion problem: as the size of the system increases, the total state space of the
system increases exponentially. This is the main obstacle in employing model check-
ing on a large scale. There have primarily been two approaches to combat this problem.
The first approach is to devise techniques to reduce the state space size to be explored
while still ensuring that errors are detected. Examples of this approach are symme-
try reduction techniques [IP96], partial order reduction techniques [HP94, NG02], etc.
The second approach aims at reducing the amount of memory needed to perform the
reachability analysis. Examples of this approach are bitstate hashing [Holz87], hash
compaction [WL93, SD95], etc.

The use of distributed processing to combat the state explosion problem had gained
interest in recent years. For large models, the state space doesn’t fit into the main
memory of a processor and hence the model checking run becomes very slow due to
disk accesses. By using the combined main memory of the processors in a distributed
memory machine, we will be able to verify bigger models. In model checkers like
Murphi [Dill96] where the next state generation takes a considerable fraction of the
total run time, we can use the combined processing power of the distributed machine
to speed up the process. We will talk more about the parallel version of Murphi in
Section 2.

1.1 Background on random walk

A random walk on the state space is a sequence of states s0, s1, · · · , sn such that si

is a state that is chosen uniformly at random from among the next states of the state
si−1, for i = 1, 2, · · · , n. Two properties of the random walk make it attractive to be
used for finding bugs. Firstly, it uses much less space since it doesn’t need to maintain
any table to detect previously visited states. The downside is that it visits duplicate
states. Secondly, and more importantly, it is inherently suitable for being parallelized.
n random walks started in parallel on the same state space from the same start state
will explore more states than one random walk. This is because the probability of all
n random walks taking the same path decreases exponentially as the length of the path
increases.
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There are some drawbacks to using random walks as opposed to using full state
search methods like breadth first search. Estimating the coverage of a random walk is
difficult. The theoretical bounds for achieving full coverage of a graph using random
walk are too prohibitive and are not practical. Hence it is difficult to quantify the
effectiveness of random walks. Another problem concerns the structure of the state
space on which the random walk is used. Consider a state space structure in which
a densely connected region of states is linked to another densely connected region by
a very sparse region (maybe a few transitions). If a random walk is in the first dense
region, it has a very low probability of reaching the second dense region. Of course,
the probability increases if we have multiple random walks exploring the state space
simultaneously, but the problem is alleviated and not eliminated.

1.2 Motivation

Nowadays, the designs to be verified are extremely large and push the envelope of ver-
ification tools. Even with state space reduction techniques like symmetry reduction,
partial order reduction, etc., exhaustive verification of even small models of current
systems is not being possible. For example, in the case of cache coherence protocols,
we are only able to fully verify models with 1-2 addresses, 1-2 processors, etc. If we
increase the parameters to 3-4 processors, 3-4 addresses, etc., the state space explodes
tremendously and full explicit state exploration is not possible with the current tech-
niques and resources. How do we tackle designs of this magnitude? What if bugs lurk
in such larger models? It is not immediately obvious that verification of models with
small values for the parameters implies verification of the models with larger values
for the parameters. We think random walks can help in such situations.

Random walks have been shown [West89] to perform well in situations in which
the number of states that can be visited is only a small fraction of the total number
of states in the model to be verified. Such large models are easy to come by both in
hardware and software model checking. While all the investigation to push exhaustive
model checking is going on, such large models can be currently subjected to random
walk based exploration and some bugs can be caught.

In parallel and distributed model checking, so far almost all effort has been devoted
to full state space exploration. With the ever increasing size and complexity of the
models to be verified, model checking is being increasingly viewed as more of a bug-
hunting tool than as a tool that can do full state space search. After the initial testing
phase to remove the “easy” bugs, model checking is used to weed out the remaining
few “hard-to-find” bugs. Clarke and Wing [CW96] say that a model checking tool
must be error detection oriented. That is, they must be optimized for finding errors
and not for certifying correctness. Not much work [JS02] has been done to develop a
parallel model checker tuned to finding bugs. The suitability of current parallel model
checkers for finding bugs fast is not yet demonstrated.

We propose to build a distributed model checking tool that is geared towards find-
ing safety violations faster on very large state spaces. We concentrate only on verifying
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safety properties for various reasons. Firstly, safety property verification translates to
simple reachability analysis for which breadth first search can be used and breadth first
search is highly parallelizable. Secondly, safety properties form a large fraction of the
properties that are usually checked. Finally, many of the liveness properties can be ap-
proximated and written in the form of bounded safety properties. [BAS02] describes
a method for exactly translating finite state liveness checking problems into finite state
safety checking problems.

Random walk and breadth first search can be considered to be two ends of a spec-
trum. They differ in the state space coverage and the overhead associated with them.
While random walk is a low overhead and partial search method, breadth first search
is a high overhead and full search method. We propose heuristics that combine mul-
tiple random walks on the state space with bounded breadth first searches (breadth
first searches of fixed height). While the random walks take us deeper into the state
space faster, the breadth first searches are used to do localized full state search to find
bugs that the walks1 may have missed. These heuristics are being incorporated into
our tool. The heuristics we propose are different from standard random simulation in
that simulation is usually done for production models while these heuristics are to be
applied to models created for model checking.

1.3 Roadmap

Section 2 discusses prior work that has been done in the area of distributed and parallel
model checking as well as on the use of random walks to do model checking. To
demonstrate the feasibility of model checking large models using distributed memory
algorithms, we have previously built a parallel full state exploration model checker. It
was developed by porting the distributed memory version of Murphi [SD01] created
at Stanford to use the MPI [Pach96] message passing library. Section 3 talks in more
detail about this tool. We are currently building a second distributed model checking
prototype by incorporating various random walk based heuristics into the tool. The
purpose of this article is to explain the algorithms behind this prototype. We will
evaluate these heuristics on various metrics, to wit, time taken to find bugs, fraction
of bugs found, memory consumption, network bandwidth consumption, etc. Section 4
talks about all this in detail. Section 5 summarizes the article.

2 Related Work

Work in parallel and distributed model checking can be divided into the categories of
explicit state representation based and symbolic state representation based. We discuss
the related works in Sections 2.1 and 2.2, respectively.

1In this document, we use “walks” and “random walks” interchangeably
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2.1 Explicit state representation based

Work on explicit state model checking can be further classified into safety property
checking and liveness property checking. We proceed to survey previous work in both
categories below.

Safety property model checking. One of the initial works in the area of parallel
and distributed model checking is by Aggarwal, Alonso and Courcoubetis [AAC87].
They presented a distributed reachability algorithm. The algorithm was not imple-
mented and it’s termination detection depended on timing assumptions. Kumar and
Vemuri [KV92] proposed and implemented a distributed version of a reachability anal-
ysis algorithm. Their algorithm synchronizes after each breadth-first level and does not
overlap communication and computation.

Stern and Dill [SD01] report the study of parallelizing the Murphi verifier [Dill96].
Parallel Murphi is a safety-only model checker. Whenever a state on the breadth first
search queue is expanded, a uniform hashing function is applied to each successor
state s to determine its “owner” - the node2 that records the fact that s has been visited,
and pursues the expansion of s. In [SD01], speedups of about 20 and 50 are reported
for runs on 32 processors (Berkeley NOW) and 64 processors (IBM SP2), respectively.

In [LS99], a distributed implementation of the SPIN [Holz97] model checker, re-
stricted to perform safety only model checking is described. They exploit the structure
of SPIN’s state representation and reduce the number of messages exchanged between
the processors. Their algorithm is also compatible with partial order reduction, al-
though the reported results do not include the effects of this optimization. They report
results on examples like Bakery and Dining Philosophers running on up to four nodes
on 300MHz machines with 64M memory.

Liveness property model checking. In [BBS01], the authors build on the safety
model checking work of [LS99] to create a distributed memory version of SPIN that
does LTL-x model checking. They have loss of parallelism when they parallelize the
standard nested depth first search [CVWY92, HPY96] algorithm employed to detect
accepting (violating) Büchi automaton cycles. This is to be expected because depth
first search has been proved to be inherently sequential [Reif85]. Their paper reports
feasibility (without actual examples) on a nine node 366MHz Pentium cluster.

In [BCKP01], Büchi acceptance is reduced to detecting negative cycles (those that
have a negative sum of edge weights) in a weighted directed graph. This reduction is
achieved by attaching an edge weight of −1 to all outgoing edges out of an accepting
state, and a weight of 0 to all other edges. Despite the worst theoretical complexity, the
authors report better performance. They treat examples such as Dining Philosophers
on an eight node 366MHz Pentium cluster.

2In this document, we use “node” and “processor” interchangeably
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2.2 Symbolic state representation based

The system presented in [HGGS00] carries out BDD based reachability analysis on
a distributed platform. Their primary objective is to obtain the benefits of the large
combined amounts of memory in a distributed context. They study various slicing
heuristics for load balancing. The experiments are performed on up to 32 266MHz
RS6000 machines, each with 256MB memory, connected by a 16Mb/s token ring
network. Their distributed implementation could reasonably well utilize the available
memory (the overhead being close to a factor of 3), and in one case reached 35 steps in
the fixed-point iteration, compared to 18 steps on a uniprocessor with 768MB memory.

[Stor95, SB96, RSBS96] describe implementations of parallel BDD packages de-
veloped for a distributed environment such as a network of workstations (NOW). In
[GHS01], a distributed symbolic model checking algorithm for the µ-calculus, its cor-
rectness proof, as well as sources of scalability are presented.

2.3 Random walk in model checking

In [West89], the author gives one of the first evidence that random walk method yields
useful results when the size of the reachable state space is such that only a small
fraction of the reachable states can be visited given the constraints on computational
resources. The study yielded two encouraging results for using random walk. Firstly,
the frequency of detecting errors was such that repeating the random walk runs using
different random seeds will detect the majority of errors again, although the sequences
exercised will be different. This shows that the results are reproducible which is not
obvious from the probabilistic nature of the process. Secondly, the size of the sample
required for a given coverage is related to the complexity of the errors we wish to find,
and not to the overall complexity of the system, as measured by the total number of
system states.

In [JS02], the authors present a parallel algorithm based on honeybee forager al-
location techniques for finding violations of LTL properties. Their parallel algorithm
uses idle CPU cycles of workstations and can tolerate workstations joining and leaving
the group. The algorithm is geared towards finding errors and does not certify correct-
ness. Tests conducted on a set of simple parametrized models indicate that a parallel
implementation of this algorithm finds errors more quickly than uncoordinated parallel
random walks.

In [MP94], the authors make the case that random walk could be used for effec-
tive testing by sampling accurately the state space of a family of protocols called the
“symmetric dyadic flip-flops”. [Has99] presents an algorithm that is based on random
walk to decide certain safety properties. It assumes that the reachable state space con-
sidered as a graph is Eulerian and also assumes knowledge of the number of vertices
and edges in the graph. The algorithm is demonstrated on two simple examples.
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3 MPI port of Parallel Murphi

The parallel version of Murphi written in Stanford used the Active Messages library
for communication between the processing nodes. We ported the parallel Murphi to
the MPI message passing library [Pach96]. This is for various reasons. Firstly, the
parallel Murphi developed at Stanford was designed to run on a Myrinet network and
we did not have access to such a network on our campus. MPI is a very widely used
and highly portable message passing library. Since Murphi is also widely used both
in the research and in the academic community, porting parallel Murphi to MPI would
make it more usable. We also used this tool to show the feasibility of model checking
very large models using distributed model checking algorithms.

Active message is thought of as a fast message passing library in that the time to
handle an incoming message at a node is very small. That is not the case with MPI.
Hence, when we ported the application to MPI, we had to build into it some flow
control features (MPI does not provide flow control). Since in our model checking
algorithm, any node can send a message to any other node (as determined by the uni-
form hashing partition function), it is possible that at any one time a node may receive
messages from all the other nodes. In that case, its input message queue may get full
and may cause it to crash. This may in turn lead to the crashing of the other nodes in
a chain-like fashion. Flow control is needed to avoid this. So we stipulate that each
node can have a fixed maximum number of outstanding messages destined to another
node. It can send more messages to that destination only after some messages from
the outstanding list have been received by the destination node. After implementing
this heuristic, the number of crashes of the system reduced, confirming the need for
flow control.

Using our parallel model checker, we were able to run industry level cache-coherence
protocol examples. Table 1 gives the results of running some of our larger models,
taken from our paper [CSG02]. The examples are implementations of the cache co-
herence protocols of the Alpha processor and the Itanium processor. We used sixteen
800MHz machines, each with 512MB RAM and connected by a 100 Mbps LAN to
do the experiments. The MPICH [GLDS96] implementation of the MPI standard was
used for message passing between the nodes. From the table we can see that we were
able to verify models of size up to 1 billion states and about 3 billion transitions. To
better understand these numbers, we compare them with the highest numbers reported
in [SD01], namely for the Stanford FLASH and the SCI protocols, where only 1 mil-
lion states were explored.

4 Heuristic Algorithms

In this section, we give the algorithms for the various random walk based heuristics
that are being incorporated into our model checker.

These algorithms are designed to run on a cluster of workstations, each node having
its own memory and processing unit. All the nodes run the same algorithm. At the start
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Alpha Implementation Itanium Implementation
Cache Coherent
Protocol

States
(×10

6)
Transitions
(×10

6)
Time
(hrs)

States
(×10

6)
Transitions
(×10

6)
Time
(hrs)

Split Trans. Bus 64.16 470.52 0.95 111.59 985.43 1.75
Split Trans. Bus with
Scheurich’s Opt. 251.92 1794.96 3.42 325.66 2769.77 4.80
Multiple Interleaved
Buses 255.93 1820.38 3.65 773.27 2686.89 10.97

Multiple Interleaved
Buses with Scheurich’s Opt. 278.02 1946.67 3.90 927.31 3402.41 12.07

Table 1: Experimental results obtained with MPI port of Parallel Murphi

of the run, one of the nodes is selected as the master node and the other nodes become
the slave nodes. The pseudocodes given below contain only the core of the heuristic
algorithms. The parts like the safety property violation checking, normalization of
states, etc., are not shown here.

In the algorithms, each node maintains a hash table of states to record the fact
that a state has been visited. This is needed to measure the total number of unique
states visited by the algorithm. We want to measure this to get an estimate of the state
space coverage of the heuristic which is one of the metrics of evaluation. Maintaining
this hash table will lead to a lot of overhead since states have to transferred between
the nodes to be added to the hash table. This results in a large number of message
transfer. It may seem misleading to the reader when we say that random walks are
a low overhead technique since we don’t need to store the states already visited. It
is to be noted that the hash tables are there only for getting empirical results and for
benchmarking. In the final version of the tool the hash tables will not be used, hence
cutting down on most of the message transfer.

Since by nature it is difficult to determine the stopping condition and the coverage
estimate for random walks, we would like to give the user a lot of control over the
model checker’s execution. This means that the user has many configurable options
for each heuristic. Most of the configurable parameters are entered as command line
arguments. For some others, the program stops after a particular phase of the algorithm
has been completed and asks the user to specify more values that will guide the next
phase of the algorithm. There are options to control the resource consumption of the
tool and also the amount of communication between the processing nodes. For each
heuristic we give the algorithm and the various configurable options. The user will
also be able to select the heuristic he wants to use as a command line argument. These
parameters are in addition to what is provided by the standard Parallel Murphi.

We want to explore heuristics to better combine random walk and breadth first
search in order to find hard-to-find bugs faster. We believe that any measure of effec-
tiveness will have to take into consideration at least two things: the time taken to find
“deep” bugs, and the memory used by the algorithm. Since this is a distributed mem-
ory application where the nodes communicate through message passing, we are also
interested in the communication complexity of the algorithms. The tool will report on
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these results after each run.

4.1 Heuristic 1

Label: Pure multiple random walks

Just running n random walks in parallel is in itself a good debugging tool as com-
pared to a single random walk. This is because n walks reach more states than one
walk and hence will be able to catch bugs faster. Each node also maintains a hash table
which is used to record the total number of unique states visited. Once a random walk
reaches a particular state, it is hashed using a uniform hashing function and its owning
node (the node that records the fact that the state has been visited) is calculated. The
state is then sent to the owning node where it is stored in the hash table. At the end
of the run, the sum of all the states in all the hash tables gives us the total number
of unique states visited. This communication is configurable through parameters as
explained below.

Configurable Parameters

• Send rw. Boolean that specifies if the nodes are to send the states visited to
the owning nodes. Setting this to false eliminates all communication in which
states are transferred and hence the algorithm completes much faster.

• Send rw interval. Used only if Send rw is true. If this is n, then send
every nth state visited by the random walk to its owning processor. By config-
uring this, the user can control the amount of communication during the run. Of
course, this will affect the ’total unique states visited’ statistic. Only if it is set to
1 will the user get an accurate value for the ’total unique states visited’. The user
can configure this to get the desired tradeoff between the communication and the
accuracy of the ’total unique states visited’ statistic.

• Total initial rw steps. Specifies the total number of steps to be taken
by each random walk. A random walk is said to take one step if it chooses a next
state uniformly at random from among the set of next states. Since each node
does only one random walk, this gives the total number of random walk steps
for each node. Increasing this obviously increases the computation time, but also
increases the possibility of finding more new states and bugs. Of course that also
depends on the state space size and the “density” of the state space.

The pseudocode for the heuristic is shown in Figure 1.

In this heuristic the walks may get stuck in a dense region of the state space without
moving to other regions connected by a sparse region i.e. few number of transitions.
It is also possible that a walk may pass “close” to a bug but may not catch it. The next
heuristic tries to remove this drawback.
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heuristic1:
steps_so_far = 0;
start a random walk from a randomly selected start state;
while (steps_so_far < Total_initial_rw_step)
do

generate next state; // do one step of the random walk
if (Send_rw == true)

if (this is the Send_rw_interval’th state generated)
Send state to owning node to be added
to the owning node’s hash table;

endif
endif
steps_so_far++;

end do
master node marshalls results from other nodes and
prints final result;

Figure 1: Pseudocode for heuristic 1: Pure multiple random walks

4.2 Heuristic 2

Label: random walks + bounded breadth first search from states visited by the
random walks

In this heuristic, the master node does a breadth first search of a small depth from
the start states to get a good spread of states across the state graph and also to minimize
the probability that some random walks have the same initial path. The master then
equally distributes the frontier states thus generated to the processing nodes. One
random walk is started from each frontier node. The total number of steps for each
random walk is calculated from the number of random walks for each node and the
parameter Total initial rw steps.

Each random walk, after visiting a state, calculates its owner by applying the uni-
form hashing function and sends that state to the owner (as an optimization, we main-
tain a cache of sent states so that we don’t do a lot of redundant message transfer).
Each node maintains a hash table and a queue of states. Upon receiving a state from
another node, the node adds the state to the hash table and if it has not already been
visited, the state is also added to the queue. We also do bounded breadth first search
from select states from this queue.

The intuitive notion behind this idea is that the n random walks take us “closer” to
the bug but may fail to detect them. But the bounded breadth first searches from the
states visited by these random walks will be able to detect the bug.

Configurable Parameters

• Fracqsize. Each node maintains a hash table (HT) and a queue (Q) of states.
This parameter gives the ratio of memory allocated for the Q to the memory
allocated for the HT.
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• Init bfs depth. This parameter specifies the depth of the initial breadth first
search. Increasing this value will give us a larger set of frontier nodes, which
will increase the number of random walks to be performed but decrease the total
steps for each of those random walks.

• Send rw. Same as in previous heuristic.

• Send rw interval. Same as in previous heuristic.

• Total initial rw steps. This specifies the total number of random walk
steps for each processor. If each node does n random walks, the total steps for
each of those random walk is Total initial rw steps/n.

• Bounded mem. The bounded breadth first search needs its own hash table
(BHT) and queue (BQ), separate from HT and Q maintained by the node. This
parameter specifies the memory to be allocated for BHT. The ratio of the memory
allocated for BQ to the memory allocated for BHT is Fracqsize.

• Bounded bfs depth. This parameter specifies the depth of the bounded breadth
first search. Increasing this will increase the number of states visited by the
bounded breadth first search and hence increase the possibility of finding bugs.
But it will also increase computation cost. Decreasing this has the obvious op-
posite effect. The user can use this to effect the desired tradeoff.

• Bounded bfs interval. If a lot of states are being exchanged between the
nodes (determined by the Send rw interval option), then we might not want
to start bounded breadth first search for every state in Q. If this parameter is n,
then bounded breadth first search is done only for every nth state in the Q. So
this parameter also influences the number of bounded breadth first search to be
performed.

The pseudocode for the heuristic is shown in Figure 2.

4.3 Heuristic 3

Label: Initial random walks + bounded breadth first search from the states vis-
ited by the initial random walks, followed by random walks from the states visited
by bounded breadth first search

In the previous heuristic, the walks may not be able to get out of a region if they get
stuck there. This is because even if a bounded breadth first search from a state manages
to get out of such a region, it just stops there and we don’t have a search proceeding
thereafter. In the previous algorithm, once we start the initial random walks from the
frontier states of the initial breadth first search, we don’t start new random walks. Here,
we propose that we should start new random walks from some of the states visited by
the bounded breadth first searches. These bounded breadth first searches are in turn
started from some of the states visited by the initial random walks. In this case, if the
initial random walks get stuck in a region and a bounded breadth first search gets out

11



heuristic2:
if (this node is the master node)

do initial BFS of depth Init_bfs_depth;
distribute the BFS frontier states among the nodes;

endif
every node receives its share of the frontier nodes;
// one RW is to be started from every frontier node received
n = number of frontier states received;
total steps for each random walk = Total_initial_rw_steps/n;
while (there are more steps of random walk to perform)
do

// Here, we alternate between one step of the RW and
// one bounded breadth first search, if that is possible
do one step of random walk;
if (Send_rw == true)

if (this is the Send_rw_interval’th state generated)
send state generated to its owning node
to be added to the owning node’s hash table;

endif
endif
if (QueueTop(Q) is Bounded_bfs_interval’th state)

do bounded BFS of depth Bounded_bfs_depth from QueueTop(Q);
// The bounded BFS is done locally,
// i.e., the states generated are not sent
// to the owning nodes, since that would lead to a lot
// of communication overhead.

endif
Dequeue(Q);

end do
master node marshalls results from other nodes and
prints final result;

Figure 2: Pseudocode for heuristic 2: random walks + bounded breadth first search
from states visited by the random walks
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of the region, then another random walk started from one of the states visited by that
breadth first search (which is “outside” the region) will take the exploration out of the
dense region.

The algorithm is similar to the previous algorithm except that the frontier states
generated by each of the bounded breadth first search is stored in an array. After the
initial set of random walks and bounded breadth first searches is over, we show the
user the total number of frontier states generated. We only record the frontier states
because we want to start the final set of random walks only from the frontier states.
The user is then asked to enter the values for the total number of final random walks
and the total steps for the final random walks for each processor.

Configurable Parameters

• Fracqsize. Same as in previous heuristic.

• Fracfrontsize. The frontier states of the bounded breadth first search are
stored in an array. We let the size of that array be a configurable fraction of the
size of the HT. So this parameter is the ratio of the frontier states array size to
HT size.

• Init bfs depth. Same as in previous heuristic

• Send rw. Same as in previous heuristic.

• Send rw interval. Same as in previous heuristic.

• Total initial rw steps. Same as in previous heuristic.

• Bounded mem. Same as in previous heuristic.

• Bounded bfs depth. Same as in previous heuristic.

• Bounded bfs interval. Same as in previous heuristic.

• Num final random walks. This parameter is requested from the user af-
ter the initial phase of the algorithm. Once the initial set of random walks and
bounded breadth first searches are done, the tool displays the total number of
frontier states that have been generated by the bounded breadth first searches.
The user is then asked to enter the number of final random walks he wants the
tool to perform. This will usually be a fraction of the total number of frontier
states. The user can determine the fraction and enter an appropriate value.

• Total final rw steps. This parameter is also requested from the user after
the initial phase of the algorithm. This is the total steps of the final set of random
walks for each processor. From this and the previous parameter, the total steps
for each random walk can be calculated.

The pseudocode for the heuristic is shown in Figure 3.
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heuristic3:
if (this node is the master node)

do initial BFS of depth Init_bfs_depth;
distribute the BFS frontier states among the nodes;

endif
every node receives its share of the frontier nodes;
// one RW is to be started from every frontier node received
n = number of frontier states received;
total steps for each RW = Total_initial_rw_steps/n;
while (there are more steps of RW to perform)
do

// Here, we alternate between one step of the RW and
// one bounded BFS, if that is possible
do one step of RW;
if (Send_rw == true)

if (this is the Send_rw_interval’th state generated)
send state generated to its owning node
to be added to the owning node’s hash table;

endif
endif
if (QueueTop(Q) is Bounded_bfs_interval’th state)

do bounded BFS of depth Bounded_bfs_depth from QueueTop(Q);
store the frontier states in the frontier states array;

endif
Dequeue(Q);

end do
output total no. of frontier states;
input Num_final_random_walks and Total_final_rw_steps;
// from the above two values got from the user,
// we can calculate the total no. of steps for each final RW
do final set of RWs;
master node marshalls results from other nodes and
prints final result;

Figure 3: Initial random walks + bounded breadth first search from the states
visited by the initial random walks, followed by random walks from the states visited
by bounded breadth first search
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4.4 Heuristic 4

Label: Initial random walks followed by second set of random walks from states
visited by initial random walks

This heuristic is a special case of the previous heuristic in which we do a bounded
breadth first search of depth 0, i.e. we start the final set of random walks from states
already visited by the initial set of random walks (instead of from the frontier states as
happens in the previous heuristic). This is more space efficient than the previous ap-
proach. A comparison of the effectiveness of this method against the previous method
will tell us about the importance of bounded breadth first search. It would also be in-
teresting to compare the state space coverage of this method with that of just running n
random walks for the same number of steps (equivalent to Heuristic 2 with a bounded
breadth first search depth of 0).

Like the previous algorithm, here also the user is asked to enter the values for the
total number of final random walks and the total steps for the random walks for each
processor. The difference is that since the final random walks are started from some
of the states visited by the initial random walks, the user is shown the total number of
states in the queue and not the total number of frontier states.

Configurable Parameters

• Fracqsize. Same as in previous heuristic.

• Init bfs depth. Same as in previous heuristic

• Send rw. Same as in previous heuristic.

• Send rw interval. Same as in previous heuristic.

• Total initial rw steps. Same as in previous heuristic.

• Num final random walks. This parameter is requested from the user after
the initial phase of the algorithm. Once the initial set of random walks are done,
the tool displays the total number of states in the queue. The user is then asked
to enter the number of final random walks he wants the tool to perform. This
will usually be a fraction of the total number of states in the queue. The user can
determine the fraction and enter an appropriate value.

• Total final rw steps. This parameter is also requested from the user after
the initial phase of the algorithm. This is the total steps of the final set of random
walks for each processor. From this and the previous parameter, the total steps
for each random walk can be calculated.

The pseudocode for the heuristic is shown in Figure 4.

4.5 Experimental evaluation of heuristics

In order to evaluate our heuristics, we need examples with bugs seeded deep in the
state graph such that finding them through full state exploration will be expensive or
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heuristic4:
if (this node is the master node)

do initial BFS of depth Init_bfs_depth;
distribute the BFS frontier states among the nodes;

endif
every node receives its share of the frontier nodes;
// one RW is to be started from every frontier node received
n = number of frontier states received;
total steps for each RW = Total_initial_rw_steps/n;
while (there are more steps of RW to perform)
do

do one step of RW;
if (Send_rw == true)

if (this is the Send_rw_interval’th state generated)
send state generated to its owning node
to be added to the owning node’s hash table;

endif
endif

end do
output total no. of states in the queue;
input Num_final_random_walks and Total_final_rw_steps;
// from the above two values got from the user, we can calculate
// the total no. of steps for each final RW
do final set of RWs;
master node marshalls results from other nodes and
prints final result;

Figure 4: Initial random walks followed by second set of random walks from states visited
by initial random walks

16



not possible, necessitating the use of partial state space exploration techniques like the
ones we are suggesting. Since such examples are difficult to come by in an academic
setting, we propose to engineer such examples. These examples will have bugs seeded
deep in them such that finding them by normal full state space exploration techniques
will be expensive. These set of examples may serve as a good benchmark for evalu-
ating any approximate search method. We will also evaluate our approaches on some
real life examples taken from the standard Murphi distribution. The metrics of eval-
uation will be: bug hunting efficacy (time to find bug, fraction of bugs found, etc.),
memory resource consumption, communication overhead, and state space coverage.

In full parallel searches, each node maintains a hash table to record the fact that a
state has been visited. As a result, messages containing states are exchanged among
the processors and this results in a lot of communication overhead. In the random
walk based approach we don’t maintain hash tables. This relieves us of the cost of
maintaining hash tables and also significantly reduces the communication cost. Due to
this it is not immediately obvious how the state generation rate of parallel full searches
compares to that of parallel random walk based approaches. We propose to investigate
this for large models. Empirical results will be added once the heuristics have been
incorporated into the distributed model checker.

5 Summary

We have shown that parallel and distributed model checking can be used to alleviate
the state explosion problem and that they can model check problems that are much
larger than those that can be done using a single processor. We have also explained the
use of multiple random walks as a useful debugging aid. We have described various
heuristics that combine random walks with bounded breadth first searches to try to find
deep-seeded bugs more efficiently. We are currently working towards incorporating
these heuristics inside our distributed model checking prototype.
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