Formal Aspects of Anonymity

Robert Morelli

UUCS-02-006

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

January 15, 2002

Abstract

We present a formal definition of anonymity in the context of concurrent processes. The definition
is given in category theoretic terms. Moreover, the concept of a split cofibration is shown to both
simplify the analysis of anonymity as well as to increase the framework’s expressiveness. Because
of its categorical nature, our definition is largely independent of any specific model of concurrency.
We instantiate the theory to two specific models, Hoare trace languages and probabilistic transition
systems. By providing a semantics for CSP, the former model endows CSP with a definition of
anonymity that applies to every CSP process simulation. The latter model, probabilistic transition
systems, provides a definition of anonymity applicable to probabilistic processes. This seems to be
the first general such definition.

I. INTRODUCTION

Anonymity is a desirable feature for many
kinds of transactions, including voting, pay-
ments, communications, and publishing. The
existing research on anonymity is roughly clus-
tered along two axes. On the one hand, there
is an extensive literature on security, including
formal analyses of aspects of security such as
integrity and secrecy. On the other, there is
much work specific to anonymity, including in-
formal descriptions of useful anonymous systems
and practical techniques for implementing them.
However, the literature is relatively sparse at
the intersection, leaving a gap where one would
hope to have a richer body of theory specific to
anonymity. In this report we present a contribu-
tion to filling this gap by giving a formal defini-
tion of anonymity applicable to a broad class of
systems.

Most existing anonymous systems provide ser-
vices over computer networks. In the prototyp-
ical example, a system allows Alice to transmit
a message to Bob across a network without it
being apparent that she has done so, even to an
attacker who monitors all network traffic. How-
ever, it is useful to view the concept of anonymity
in a broader context. For instance, a local voting
system, without any networked communication,
may still require a form of anonymity, namely un-
linkability between voter and vote. Indeed, even
in a network communications system, there are
a number of distinct senses of anonymity; Pfitz-
mann and Waidner [PW87] distinguish sender
anonymity, receiver anonymity, and unlinkability
between sender and receiver. On a deeper level,
any concept of anonymity confined to a network-
ing model will inevitably run up against artificial
limitations.

In this report, we consider anonymity within
the general context of concurrency. Accordingly,
we view an anonymous system as a process, a
system built out of concurrently interacting en-
tities. In casting our definition in terms of pro-
cesses, we are able to reap the rewards of several
decades of research on concurrency. For example,
process algebras such as CSP and the w-calculus
are Turing complete, so they are able to model
any computationally meaningful system, and are
amenable to formal analysis. At the same time,

these algebras are well suited to intuitive, high-
level specifications of real systems and directly
model fundamental concepts such as nondeter-
minism and concurrency. Moreover, extensions
of these traditional process algebras can express
behavior such as probabilistic choice, priority,
time, traffic patterns, etc., opening the way to
increasingly expressive definitions of anonymity.
For instance, we show in section V how to apply
our definition to a probabilistic model of concur-
rency. In fact, ours seems to be the first defini-
tion of anonymity capable of handling probabil-
ity.

A large number of models of concurrency have
been proposed. Our approach is largely indepen-
dent of any specific model and seems to apply to
many of the models in common use. This gener-
ality is achieved by formulating the definition in
category theoretic terms. At this level of abstrac-
tion, the idea of anonymity becomes very simple;
it is simply the set of symmetries of a simulation
between processes: k : System — Screen. The
two related processes are the anonymous system
itself, System, and an attacker’s knowledge of it,
Screen. This latter knowledge is modeled as a
second system that evolves in parallel with the
original system (but which usually has a coarser
set of states). Intuitively, the simulation k drives
Screen.

In conformity with Kerckhoffs’ principle, the
attacker is assumed to have full knowledge of
the specification and implementation of System,
Screen, and k, but is only granted direct knowl-
edge of the state of Screen, not that of System.
Because all deductions the attacker makes about
the state of System are dependent on k, con-
straints on k place constraints on the attacker’s
knowledge, regardless of the attacker’s inference
system. In particular, the requirement of sym-
metry guarantees that it is only possible for an
attacker to make general deductions about all in-
dividuals equated by symmetries. It is impossi-
ble to make any deduction that singles out one
such individual from others. This is the essence
of anonymity.

The set of symmetries of the knowledge simu-
lation k is called the anonymity monoid. (In con-
trast to most contexts in which symmetry is used,
we do not require our symmetries to be invertible
because there are some contexts in which nonin-

vertible symmetries are meaningful.) Depending
on the desired anonymity requirements of a sys-
tem, the structure demanded may vary. Roughly
speaking, the larger the anonymity monoid, the
greater the guaranteed anonymity of the system,
but the structure of the anonymity monoid car-
ries finer information. For instance, a voting sys-
tem might demand symmetry between all vot-
ers. In other words the anonymity monoid is re-
quired to contain the full symmetric group on
the set of voting events. However, suppose that
the voters are divided into parties P; and P, and
we demand symmetry between members within
a party but not between parties. In other words,
an attacker may be able to distinguish votes orig-
inating in P; from those originating in P», but
cannot distinguish individual votes within those
groups. This requirement demands a certain sub-
set of the full symmetric group. Suppose, for
another example, that a voting system only ex-
hibits symmetry with respect to a cyclic group of
permutations around a cyclic ordering. This pro-
vides a much weaker notion of anonymity, since
it allows for an attacker to deduce the distance
between the positions of two voters in the cyclic
ordering. Evidently, these are only two of many
possible variations, corresponding to the many
kinds of anonymity which a voting system may
require.

We are aware of two prior contributions! to
the problem of formalizing anonymity, [SS96]
and [SS99]. Of these, the paper by Schneider
and Sidiropoulos [SS96] is more directly relevant
to our approach and was in fact one of our in-
spirations. However, that work had a number of
limitations. First, being set within the language
of Hoare’s CSP process algebra [Hoa85], it was
bound to a single process algebra and inherited
that algebra’s expressive limitations. In particu-
lar, CSP cannot express probabilistic behavior, a
serious limitation in modeling anonymity. For in-
stance, the analysis in [SS96] will count as anony-
mous a system in which, say, the publisher of a
document can always be determined with a prob-
ability of 99%, but never with absolute certainty.

YA third paper has recently come to our
attention: Vitaly = Shmatikov, Dominic J.D.
Hughes, Defining Anonymity and Privacy. See

http://www.dsi.unive.it/IFIPWG1_.7/
WITS2002/prog/annotated_program.html

Another limitation is that their system cannot
handle the anonymity of dependent events, such
as the voting events in a system in which each
voter can vote at most once. Another formal
approach to anonymity, based on logic, was pro-
posed in [SS99]. It is largely complementary to
our own approach. However, like [SS96], it is
possibilistic rather than probabilistic.

II. A GENERAL FRAMEWORK FOR
ANONYMITY

Our formalization of anonymity is set in the
general context of concurrent processes. We will
first describe its ingredients in broad terms. As
was indicated in the introduction, anonymity
is a function of both a system and an at-
tacker’s knowledge of that system. The sys-
tem is modeled as a process System and the at-
tacker’s knowledge is modeled as a simulation
k : System — Screen. For this we require a model
‘P of concurrent processes which includes a notion
of simulation. Many such models have been stud-
ied: Petri nets, labelled transition systems, pom-
sets, etc. We also require a notion of the elements
of a process. Roughly speaking, the elements of a
process are the individuals or, more precisely, the
specific actions, whose anonymity is under con-
sideration. In order to bring elements into our
framework we need both a model M for them as
well as a function a : P — M which associates
elements a(P) to each process P. For example, if
we base our model P of processes on CCS [Mil89],
then we could take the elements of a process to be
its alphabet of actions. Technically, the study of
anonymity is greatly simplified when « is a split
cofibration. Very roughly, this means that any
simulation of processes S — T induces a map-
ping a(S) — a(T) on underlying elements, and
conversely transforming the underlying elements
of a process induces a new process simulating the
original process. For instance, transforming the
alphabet of a CCS process induces a new process
by renaming.

Because of the proliferation of models of con-
currency, it is advantageous to work at a higher
level of abstraction. Following a line of research
expounded in [WN95], we will view a model of
concurrency as a category. In this framework,
the objects of the category correspond to pro-
cesses, the morphisms to simulations, and the ba-

sic constructions of concurrency theory appear as
basic category theoretic structures appropriately
interpreted. Further, the relationships between
different models of concurrency typically appear
as adjunctions.

Let us introduce some basic category theoretic
notation and terminology. Let C be a category,
which for convenience we will assume is locally
small. If A and B are objects of C, denote by
Hom(A, B) the hom set of morphisms from A to
B. If f € Hom(A, B), then we say that A is the
source of f and B is the target of f. For any
object A, the hom set Hom(A, A) is a monoid
which we denote End(A).

Let P be a category corresponding to some
notion of process. We will call P the process
category. Let k : S — N be a morphism in P.
We will call S the system, N the screen, and k
the knowledge morphism.

Definition I1.1 A symmetry of k : S — N is
an element r € End(S) satisfying kor = k.

A symmetry of k is a transformation of the sys-
tem S that leaves k unchanged. Intuitively, it
is a transformation that k& cannot detect, hence
it is an anonymous transformation. Because we
haven’t yet introduced the elements of a process
into the framework, this definition is more ab-
stract than we’ll typically want to apply in prac-
tice. We therefore defer further discussion until
after fleshing out the framework with a fibering
over a category of elements.

A. Anonymity in Cofibrations

In the category theoretic interpretation of con-
currency, fibrations and cofibrations play an in-
teresting role related to what we called above the
elements of a process. Depending on the specific
model, the elements of a process represent vari-
ously events, actions, names, ports, communica-
tion channels, locations, etc. On a simple level,
extracting the elements of a process just amounts
to a forgetful functor a : P — B, where B is typ-
ically a category of relatively unstructured ob-
jects, such as sets. However, in many interest-
ing models, cocartesian liftings of morphisms in
B correspond to relabelling operations for pro-
cesses, while cartesian liftings correspond to re-
striction operations. In many models of concur-

rency, such liftings generally exist, supplying the
functor o with fibration and cofibration struc-
tures. Only relabelling operations will play a role
in this paper, so we will only need cocartesian
liftings and cofibrations. What we need of these
concepts is very briefly recalled in appendix A.

Let P be a category corresponding to some no-
tion of process, with a split cofibrationa : P — B
with splitting k. We call B the category of ele-
ments.

Before stating the main definition, we need a
bit of notation. Let S be an object of P as above
and let E = a(S). Denote by End, (E) the sub-
monoid of End(E) consisting of all h € End(E)
for which h.(S) = S. Denote by End,(S)
the submonoid of End(S) consisting of all r €
End(S) for which a(r) € End,(E). Note that
we have a pair of monoid homomorphisms

End, (E) = End,(S) - End,(F) (I1.1)
The first is given by h — x(h,S), while the sec-
ond is given by 7 — a(r). Because their compos-
ite is the identity, it follows that the first is an
injection and the second is a surjection. In par-
ticular, End, (E) is identified with a submonoid
of End(S).

Definition I1.2 Let E = «(S) be the elements
of S. The anonymity monoid Anon(k) =
Anong (k) of k : S — N is the submonoid of
End, (E) consisting of all h € End,(E) satisfy-
ing ko k(h,S) =k.

Remarks:

1. The intuitive justification for this definition
is as follows. By Kerckhoffs’ assumption, an
attacker has complete knowledge of S, N, and
k. This knowledge together with observations of
the state of IV is the basis for anything the
attacker may deduce about the state of S. If

k = ko k(h,S), then the same deductions must
apply after the system has been transformed by
h, so these deductions cannot discriminate
among elements equated by hA. One may even
think of the deduction itself as transforming by
h. For instance, if an anonymous
transformation h exchanges elements a and b,
then any deduction about a available to the
attacker must equally well apply to b and wvice

versa. All elements thus equated have
“dissolved into a crowd.”

It should be emphasized that anonymity and
secrecy are distinct notions. Anonymity within
a group does not preclude deductions about its
members. Indeed, this would defy common
sense. What it does preclude is making
deductions about individuals that do not apply
to all members of the group equally. For
example, suppose that it is apparent in a voting
system that a vote has been unanimous. In this
case, an attacker can obviously deduce every
voter’s choice (the same choice). From a
non-unanimous vote, the attacker can deduce
nothing about the vote of any individual voter.
While the two concepts have an affinity, it is an
advantage to be able both to isolate them and
to experiment with their interactions, as is
possible in our framework.

2. Anonymity in the context of split
cofibrations admits a great simplification from
the general case. First, by lemma A .4, the
knowledge morphism k factors uniquely as
k=u'ok(f,S) where f = a(k). Now suppose
that h € End,(E). Then h € Anon(k) exactly
when the following sequence of equivalent
equations hold:

k=kox(h,P)
u' ok(f,S) =u' ok(f,S)ok(h,P)
u' ok(f,S) =u ok(foh,S)
f=Ffoh

It follows that the vertical part u' of k has no
bearing on anonymity, so only relabelling
operations are relevant to anonymity in split
cofibrations. Moreover, the symmetry equation
k = k o k(h, P) collapses to the equation

f = f o h in the base category B, which can be
expected to be much simpler than the process
category. We summarize these facts in the
following proposition.

Proposition I1.3Let f = a(k). Then
Anon(k) = Anon(k(f,S)). Moreover, if

h € End,(E), then h € Anon(k) ezactly when
f=7foh.

3. For any category P, the identity functor
id : P — P is a split cofibration. In this

situation, the anonymity monoid Anomq (k) is
the submonoid of End(S) consisting of those

h € End(S) for which ko h = k. This is the
universal situation, in the sense that every other
cofibration factors through this one trivially,
and there are natural monoid homomorphisms

Anong (k) = Anoniq(k) - Anong (k) (I1.2)

obtained from II.1.

4. Suppose k is the identity morphism

k: S — S. This amounts to saying that the
attacker has complete knowledge of the system.
In this case, Anon(k) is the trivial monoid.
Indeed, this is clear if @ =id and from this the
general case follows by II1.2. The same
conclusion holds if k is a monomorphism.
Consequently, there is no anonymity if the
attacker has complete knowledge.

5. Suppose t is a terminal object of P (roughly
speaking, a process that does nothing), and & is
the unique morphism k : § — ¢. This amounts
to saying that the attacker has no knowledge at
all. In this situation, every transformation of S
is anonymous: k o k(h,S) = k is automatic,
there being only one morphism to ¢.
Consequently, there is complete anonymity if
the attacker has no knowledge.

6. It is intuitively clear that the greater the
attacker’s knowledge, the less the anonymity.
The previous two remarks illustrate the extreme
positions on this spectrum. Suppose now that
k:S — N factors as

k

ST N ——>N

This amounts to saying that k' carries more
information than k. Here, we view S as fixed,
but the attacker’s knowledge as varying. In this
case, we have an injection Anon(k') — Anon(k),
so the anonymity does indeed decrease with k'.
7. Suppose again that k : S — N factors, but
now view the attacker’s knowledge as fixed. We
write the factorization

k
S—u>SIT>N

to emphasize this viewpoint. Here, the attacker
can deduce more information about S’ than

about S. However, a comparison between
Anon(k") and Anon(k) is complicated by the
fact that these two live in different places,
namely End, (E') and End,(E). In general,
there is no natural map between these in either
direction, but there is a relation

R =End,(f) C Endy(E) x End, (E") defined
as follows. Write E = a(S) and E' = a(S’) and
let f: E— E'be f=afu). Then R =

{(h,h") € Endy(E) x End,(E") : h' o f = foh}.

E—f>E’

hl f l”'

E——F'

This relation is in fact a monoid relation, which
means by definition that

1.(1,1)e R

2.(h1,h’1), (hz,hé) €ER = (hlhg,hllhlz) €ER

If f is monomorphic, this relation is a partial
function from End,(E') to End, (E) while if it
is an epimorphism it is a partial function from
End, (F) to End, (E").

By proposition I1.3, there is no loss of generality
in assuming that u = k(f, S), from which it
follows that S’ = f.(S). For instance, if P is
some semantics of a process algebra such as
CCS, then S’ could be the result of renaming or
hiding events in S.

Lemma I1.4Suppose u = k(f,S). Then

R(Anon(k')) C Anon(k).

Proof: Let h € R(Anon(k')). Then there
is some h' € Anon(k') for which (h,h') € R. By

definition, h' o f = f o h, and h.(S) = S. We
have
kok(h,S) =k or(f,S)or(h,S)
=k ok(foh,»S)
=k ow(h o f,S)
=k ok(l',8") o s(£,S5)
=k ok(f,5)
=k
|

Corollary I1.5Suppose u = k(f, S) with f
epitmorphic. If (h,h') € End,(f) then
h € Anon(k) if and only if h' € Anon(k').

Proof: This follows from the lemma,
because if f is epimorphic, then R is a partial
function from End, (E) to End,(E"). |
By the above lemma, identifying an anonymous
transformation in the narrowed system S’ can
determine anonymous transformations in the
system S. This can be useful for simplifying
computations. A typical use would be in
analyzing a process with an alphabet X for
which we are primarily concerned about
anonymity among a subset A C ¥. Rather than
directly studying the anonymity of k, which
may involve unwanted complications, we could
study that of the k' corresponding to an f
which hides all events of X \ A.

8. In the context of anonymity, the distinction
between cofibration and the dual notion of
fibration is significant. While cocartesian
liftings express relabellings, which relate to
observation of a system, cartesian liftings
express restrictions, which relate to controlling a
system. We hope to incorporate fibrations into
a more comprehensive theory of active attacks,
involving both knowledge and interactions.

I1I. HOARE TRACE LANGUAGES AS A
COFIBERED CATEGORY

In this section we will recall a simple and fa-
miliar model of concurrency called Hoare trace
languages. In order to fit it into our frame-
work, we review how it can be given the struc-
ture of a cofibered category. This model can
provide semantics for Hoare’s CSP process alge-
bra. This section therefore provides definitions of
anonymity applicable to every system specified in
CSP. In the following section, we will illustrate
this with explicit CSP examples.

If Ais a set, denote by A* the set of all fi-
nite strings of elements of 4. If s and ¢ are two
strings, denote their concatenation by st. A pre-
fix of a string u is a string s for which u = st
for some string ¢t. A set of strings is called pre-
fix closed if it contains every prefix of each of its
elements.

Definition III.1 A Hoare trace language (HTL)

is a pair (S, A) in which A is a set called the al-
phabet and S is a prefix closed subset S C A*.

HTLs can serve as a model concurrency. The al-
phabet consists of the actions or events in which
a process can participate, and the set S of strings
is the set of possible initial sequences of events
encountered as the process executes.

The set of HTLs with a fixed alphabet A is
partially ordered by inclusion. We may view
this partial order as a category. This structure
is meaningful in terms of process behavior. If
S CT C A, then (T, .A) is capable of simulating
(S, A) — in other words, (T,.A) can do anything
(S, A) can do.

There is a more general notion of simulation
for HTLs. Note that a function f : 4 — B in-
duces a function f* : A* — B* by substitution:
f*lar---ay) = flay) -~ f(a,). Henceforth, we
will drop the superscript and write f for f*. De-
fine a simulation of an HTL (S, A) by (T, B) to
be a function f : A — B for which f(S) CT.

We can define a category HTL in which the
objects are HTLs and the morphisms are simu-
lations. This category admits a split cofibration
(a, k) over the category Sets of sets. Here « is the
forgetful functor a : HTL — Sets which maps an
object (S,.A) to its underlying alphabet .4, and
maps a morphism (S, A) — (T, B) to its under-
lying function f : A — B. The splitting & is
given as follows. If f : A — B is a function, and
(S, A) is an HTL, then &(f,(S,.A)) is the simu-
lation given by f from (S, .A) to (f(S5), B).

We can now state a definition of anonymity for
processes modeled by HTL.

Definition IIL.2 (Anonymity for HTLs) Let
k: (S, A) — (T,B) be the morphism of HTL de-
termined by a function K : A — B. Then a
function H : A — A is in Anon(k) when

1. H(S)=S

2. KoH=K

Of course, this definition is nothing but defini-
tion II.2 stated explicitly for HTL.

Here, the fibration is over Sets, but we have
freedom to use other base categories. One possi-
bility is the category of partial functions, i.e. the
category whose objects are sets and whose mor-
phisms are partial functions. It is also sometimes
convenient to allow arbitrary relations between

sets. Note that while partial functions may be
considered as relations, they do not behave as
relations in models of concurrency. The cate-
gory HTL can be enlarged so that it fibers over
relations, or over partial functions, but these en-
compass distinct kinds of expressiveness. If f is
a partial function, and f(a) is undefined, then
f(s) erases occurrences of a. On the other hand,
if the partial function were interpreted as a rela-
tion, and f(a) is undefined, then f(s) is empty
whenever a occurs in s. We can interpret the
partial function behavior to mean that f is re-
ally a monoid homomorphism A* — B* specified
on the generators A. Hence, f(a) undefined re-
ally means f(a) = 1.

To generalize both partial functions and rela-
tions at once, we can use the category of monoid
relations. To be precise, this is the category
whose objects are sets and in which a morphism
A — B is specified by giving a monoid relation
(see section II, remark 7) R C A* x B*. A rela-
tion R is considered to be a monoid relation by
equating it with the monoid relation R* it gener-
ates under the inclusion R C AxB C A*xB*. A
partial function f is considered to be the monoid
relation generated by {(a, f(a)) : f(a) defined}U
{(a,1) : f(a) undefined}. Then HTL can be en-
larged in a way that it admits a split cofibration
over the category of monoid relations. For this,
we take a morphism (S,.4) — (T, B) to be spec-
ified by a monoid relation R C A* x B* satisfy-
ing the same condition as for functions, namely
R(S) C T. The splitting is also described exactly
as before: if R C A* x B* is a monoid relation
and (S,A) is an HTL, then k(f,(S,.A)) is the
simulation given by R from (S, A) to (R(S), B).

The expressiveness of the category of monoid
relations comes at a price. In computational
terms, some morphisms in this category are un-
wieldy to specify, even for small label sets. In
terms of our view of processes, monoid relations
‘violate’ the granularity of actions by relating se-
quences of actions of different lengths, which may
or may not be appropriate for a given applica-
tion. The question of which category to fiber
over is a matter of context and judgment.

To restate the definition for anonymity for
HTLs for the enlarged category fibered over
monoid relations requires only that we replace
the word ‘function’ with the phrase ‘monoid re-

lation’ in definition III.2.

IV. A SimMPLE VOTING EXAMPLE IN CSP

In this section we present a simple vot-
ing example as a CSP process and analyze it
for anonymity. The basic reference for CSP
is [Hoa85], while [R0s98] also covers many sub-
sequent developments. The reader may wish to
compare the analysis in this section with [SS96].

The voting system will have N voters, Vi, Vs,
..., VN, each of whom casts either a yes or a no
vote, and then stops. In this example, we treat
the yes or no choice as nondeterminism. If we
denote by wvote.k.yes the event of Vj casting a
vote of yes, and similarly for a vote of no, the
definition of Vj is

Vi = (vote.k.yes — STOP)(vote.k.no — STOP)

Recall that in CSP the symbol M denotes nonde-
terministic choice. The ensemble Votersy of all
the voters is simply the V; acting concurrently.
Recalling that in CSP the symbol || denotes con-
currency, we have

Votersy = V1 || Va |-+ || Vv
The alphabet of events for this process is the set
VY ={votekw: k€ {1,2,...,N},v € {yes, no}}

We will represent a tally of y yes votes and n
no votes as Tally, ,. We view Tally, , as a de-
terministic process that first announces its tally
with an event tally.y.n and thereafter responds
to any voting event vote.k.v by becoming a new
tally, appropriately incremented. More precisely,

Tally, ,, = tally.y.n — Tally, ,,

where Tally;m responds to vote.k.yes for any k by
becoming Tally, , ,, and responds to vote.k.no
by becoming Tally, ... In CSP, this may be
denoted

Tally, , =z :V — P(x)
where

Tally,, , ifv=yes

Tally, ,, 1 if v=mo

P(vote.k.w) = {

Finally, the entire voting system is
Votingy = Votersy || Tally, o

Let us pause to be more precise about the al-
phabets of these processes. The tally events that
are required by Voting, are all the tally.y.n for
which y and n are nonnegative integers satisfying
y +n < N. Denote the set of such events

T ={tallyyn:y,neNy+n< N}

Then we take Votingy and all the Tally, ,, pro-
cesses to have alphabet V U 7. Note that be-
cause the alphabet of Votersy is disjoint from
T, Votersy does not synchronize on tally events.

We now define the attacker’s knowledge as a
CSP process. Clearly, if the attacker can see the
events vote.k.v, there can be no anonymity. On
the other hand, it is intuitively clear that if these
events are not visible, the voters are anonymous.
Thus, we define

Screeny = Votingy \ V

Recall that in CSP the symbol \ denotes con-
cealment, so Screeny indeed represents Votingy
with all voting events removed.

A more liberal choice for the attacker’s knowl-
edge would be to replace each voting event
vote.k.v with an event wvote.w stripped of the
reference to the voter. This can be indicated
in CSP using change of symbols. Let V' =
{vote.yes, vote.no} and define the function f :
VY = V' by f(vote.k.v) = votew. Then we set

Screeny = f(Votingy)

Now, to analyze the anonymity of this system,
we employ the traces semantics of CSP, with
target in the Hoare trace languages. Thus, in-
terpreting definition I1.2 and applying proposi-
tion I1.3, anonymity in CSP can be summarized
as follows.

Definition IV.1 Given a CSP process System
with alphabet A, and a simulation k : System —
Screen, the anonymity monoid is the set of rela-
tions R : A — A for which R(System) = System
and koR =k.

When we apply this definition to the sim-
ulation Votingy — Screeny we find that the

transposition of every pair of voters is in the
anonymity monoid. More precisely, for ev-
ery i,j € {1,2,...,N}, the transpositions of
vote.i.yes with wote.j.yes and wote.i.no with
vote.j.no are in the anonymity monoid. Rather
than present the easy proof, we will merely
illustrate how one particular trace is trans-
formed by a transposition. Take N = 4 and
let R be the transposition of voters 1 and
2. For example, tally.0.0, vote.4d.no, tally.0.1,
vote.l.yes, tally.1.1, vote.2.yes, tally.2.1 is a valid
trace of Voting,. Applying R to it yields:
tally.0.0, vote.4.no, tally.0.1, vote.2.yes, tally.1.1,
vote.l.yes, tally.2.1. Now, this is certainly differ-
ent from the original trace, but after we apply the
simulation by Screeny, the difference disappears;
both traces become tally.0.0, tally.0.1, tally.1.1,
tally.2.1. Similarly, if we apply the simulation by
Screen)y, both traces become tally.0.0, vote.no,
tally.0.1, vote.yes, tally.1.1, vote.yes, tally.2.1.
Moreover, since every permutation can be ob-
tained as a succession of transpositions, this im-
plies that every permutation of the voters is also
in the anonymity monoid. This confirms our ex-
pectation that in the voting, all voters are dis-
tinct, but indistinguishable, to the attacker.

Remark IV.2 The definition of anonymity
in [SS96] fits into our framework as follows.
The abstraction of events in that paper plays
the role of the knowledge relation k. There
are three basic kinds of abstraction: hiding, re-
naming, and masking. Within the category of
monotid relations, all three can be represented
as k(f, P) for some suitable monoid relation f.
Let P denote a CSP process and let ABS de-
note some composition of abstractions. Let A
be a set of events and let ha be the hiding re-
lation on A, that maps all elements of A to 1
and leaves other elements unchanged. Then the
definition of Schneider-Sidiropoulos anonymity
of P with respect to the set of events A is
ha~'(ha(ABS(P))) = ABS(P).

Proposition IV.3 With notation as above, P
satisfies Schneider-Sidiropoulos anonymity if and
only if the anonymity monoid of ha on ABS(P)
contains hA_l ohy.

V. A PROBABILISTIC MODEL OF
CONCURRENCY

In order to show that probability is within the
scope of our framework, we need an appropri-
ate category theoretic account of a probabilistic
model of concurrency. An important such model
is probabilistic transition systems. This model is
a probabilistic generalization of the familiar la-
belled transition systems, but where an action
leads from a given state to a probability distri-
bution of states. This model also incorporates
pure nondeterminism, in that multiple distribu-
tions may be associated with the same action at
the same state.

Probabilistic transition systems are very con-
venient as a target of the semantics of proba-
bilistic process algebras. For instance, [JLYO01]
presents an elegant procedure for extending es-
sentially any non-probabilistic process algebra by
introducing a probabilistic internal choice opera-
tor. The semantics of this extended algebra is in
terms of probabilistic transition systems. In view
of this, the account we give here of probabilistic
transition systems automatically endows a large
class of probabilistic process algebras with a def-
inition of anonymity.

For the sake of simplicity, we will assume that
all probability spaces X are countable and dis-
crete, so that probability distributions can be
represented as functions p : X — [0,1] satisfy-
ing > x p(z). Denote by Dist(X) the set of all
probability distributions on X.

Definition V.1 A probabilistic transition sys-
tem (PTS) is a quadruple (X, L,T,1I) where

1. ¥ is a nonempty finite set of states

2. L is a set of actions

3. T C ¥ x L x Dist(X) is the transition relation
4. mo € Dist(X) 4s the initial distribution

We have adopted this definition from [JLYO1].
Numerous variants of this definition have ap-
peared in the literature, dating all the way back
to Rabin’s probabilistic automata [Rab63], a de-
terministic variant which specifies a set of final
states.

The interpretation of the PTS structure is as
follows. The system initially assumes a state
probabilistically based on the initial distribution.
Suppose (s,a,71) € T. Then the action a can

cause a transition from state s to another state
of ¥ according to the probability distribution 7.
A suggestive notation for the transition relation
is to write s %} 7, or simply s = m, when

(s,a,m) €T.

There may be multiple transitions (s,a,m),
(s,a,m2),... € T emanating from the same state
s for the same action a. In this case, when
the system is in state s, and action a is per-
formed, the choice among the transition distri-
butions 71, w2, ... is nondeterministic.

A simulation [between PTSs S =
(%,L,T,m) and S' = (¥',L',T',7()) is a pair
B = (f,h) where h: L - L' and f : ¥ — X/ are
functions satisfying

'
f* o = Ty
and

= f(5) " for.

sw
T
We can generalize f to be a general relation
from ¥ to ¥'. In [LS91], a definition is given of
probabilistic bisimulation between deterministic
probabilistic transition systems involving a rela-
tion on states. This definition has been widely
adopted and it carries over to the case at hand.
For this we need to recall a definition which first
appeared in [JL91], indicating how a relation be-
tween sets induces a relation between probability
distributions on those sets.

Definition V.2 Let R C X x Y be a relation.
Define the induced relation R* C Dist(X) x
Dist(Y) as follows. A pair (p,q) is in R* ex-
actly when there is a distribution W (xz,y) on
X XY for which p(z) = > cp) W(z,y) and
q(x) = X ery) W(,y) and W(z,y) = 0 unless
(z,y) € R.

Definition V.3 A simulation § between PTS’s
S = (%,LT,m) and 8" = (X', L', T',m) is a
pair B = (f,h) where h : L' — L is a function
and f : ¥ — X' is a relation on states such that
1. 7y € fumo

2. Whenever s — = is a transition in S and s' €
f(s), then there is a transition s' MOyt in g,

It is straight forward to define a category PTS
in which the objects are PTS’s and the mor-
phisms are simulations. For instance, composi-
tion is defined (f1, h1)o(fa2, ha) = (fiof2, hiohs).
We omit the verification that this composition
determines a simulation and satisfies the condi-
tions required of the morphisms of a category.

There is a forgetful functor a : PTS — Sets
defined:

1. for an object S = (3, L, T, mg) of PTS, a(S) =
L
2. for a morphism 8 = (f,h), a(8) = h.

Let S = (X,L,T,m) be a PTS and let h :
L' — L be a function. Then we define the push-
forward PTS to be h,S = (X,L',T',m) where
T' is defined to be the collection of all transitions
(s, h(a),n) for which (s,a,n) € T.

There is a natural simulation S — h,S given
by 8 = (1, h), lifting the morphism A in Sets.

Proposition V.4 The morphism 3 : S — h.S
18 cocartesian.

Proof: Suppose S" = (X", L",T",n{j) and
B" : S — S"is amorphism with 8" = (f", h'oh).
We must show that there is a unique morphism
8 : h,S — S" for which 8" = ' o and
a(B') = h'. By the second condition, 8’ = (g, h')
for some relation g. The first condition states
that (f",h' o h) = (g,h') o (1,h) = (g,h' o h).
Therefore, ' = (f", ') is the only possible mor-
phism satisfying the conditions. To check that it
is indeed a morphism, note first that n§ € f'mg

because this same condition is required of 3".

h .
Next, suppose that s ﬂ) 7 in h,S correspond-

ing to a transition s % min S, and let s € f"(s).
Then because 8" is a morphism, there is some

h'(h
transition s” Py 11 in 1 with ' € flr.
This verifies the second condition. |

Proposition V.5 For o function h : L' — L
of sets, and a PTS S with set of actions L, set
k(h,S) = (1,h) : S = hiS. Then (a, k) is a split
cofibration of PTS over Sets.

ACKNOWLEDGMENTS

The problem of formalizing anonymity was
suggested to the author by Jay Lepreau, who pro-
vided support through the Flux Research Group.

Funding was largely provided by the Defense Ad-
vanced Research Projects Agency, monitored by
the Air Force Research Laboratory, Rome Re-
search Site, USAF, under agreement F30602-99-
1-0503.

APPENDIX
I. COFIBRATIONS

Let a: P — B be a functor. We will say that
an object S of P lies over an object A of B if
a(S) = A. Similarly, a morphism u of P lies over
a morphism f of B if a(u) = f. If A is an object
of B, the fiber (of a) over A is the subcategory
of P consisting of all objects of P lying over A
and all morphisms of P lying over id4. Clearly,
every object S of P is in a unique fiber, namely
the fiber over a(S). Denote the fiber over A by
a"1(A).

Definition A.1 Let f : A — A’ be a morphism
in B. A cocartesian lifting of f is a morphism u :
P — P! of P lying over f and satisfying the fol-
lowing universal condition: for every morphism
u" : P — P" for which a(u") = f' o f for some
f', there is a unique morphism u' : P' — P" for
which u" = u' o u.

Definition A.2 The functor a is an cofibration
if for every morphism f : A — A’ in B and for
every object P lying over A, there is a cocartesian
lifting uw : P — P’ of f.

We now recall the more rigid concept of a split
cofibration, which is all that we use in the paper.

A lifting for a functor a : P — B is a func-
tion that specifies a morphism «(f,S) of P lying
over a given morphism f of B and with specified
source S (necessarily lying over the source of f).
In other words, for each morphism f: A — A’ of
B, and each object P lying over A, there is given
a morphism &(f, P) of P satistying a(k(f, P)) =
f. Let us say that a lifting « is a splitting if it
satisfies the following properties:
1. k(ida,P) = idp for all objects A of B and
objects P lying over A
2. k(g o f,P) = k(g, P'") o k(f, P), where P’ is
the target of k(f, P).

Definition A.3 The pair (a,k) is a split cofi-
bration if and only if each morphism k(f, P) is a
cocartesian lifting of f.

Lemma A.4 Let k be a splitting of a. The pair
(a, k) is a split cofibration if every morphism u :
P — P' of P factors uniquely as

u=1u'o k(a(u),P)
for some morphism u' in the same fiber as P’.

We omit the proof.

If (o, k) is a split cofibration, then every mor-
phism f : A — A’ in B induces a functor
fe a7 (4) = a71(4') as follows. On ob-
jects, f«(P) is the target of k(f, P). Now sup-
pose u : P — P' is a morphism in o 1(4).
Then the morphism (f, P') o u lies over f. By
the lemma, this morphism can be uniquely ex-
pressed as k(f, P') ocu = u' o k(f, P). We define

fe(u) = ',

K(1,P)
—— [«(P)

ul lu':f*(u)

pr 20D (pr)

The above rather streamlined account suffices
for our purposes. See [Bén85] for more details.

REFERENCES

[Bén85] Jean Bénabou, Fibered categories and the foun-
dations of naive category theory, Journal of
Symbolic Logic 50 (1985), no. 1, 10-37.

C. A. R. Hoare, Communicating sequential pro-
cesses, Prentice-Hall, Englewood Cliffs, NJ,
1985, & 0-13-153289-8.

Bengt Jonsson and Kim Guldstrand Larsen,
Specification and refinement of probabilistic pro-
cesses, Proceedings, Sixth Annual IEEE Sym-
posium on Logic in Computer Science (Amster-
dam, The Netherlands) (Albert R. Meyer, ed.),
IEEE Computer Society Press, IEEE Computer
Society Press, 15-18 July 1991, pp. 266-277.
Bengt Jonsson, Kim G. Larsen, and Wang
Yi, Probabilistic extensions of process algebras,
Handbook of Process Algebras (J.A. Bergstra,
A. Ponse, and S.A. Smolka, eds.), Elsevier,
North Holland, 2001.

Kim G. Larsen and Arne Skou, Bisimulation
through probabilistic testing, Information and
Computation 94 (1991), no. 1, 1-28.

R. Milner, Communication and concurrency, In-
ternational Series in Computer Science, Prentice
Hall, 1989, SU Fisher Research 511/24.
Andreas Pfitzmann and Michael Waidner, Net-
works without user observability, Computers &
Security 6 (1987), no. 2, 158-166.

M. O. Rabin, Probabilistic automata, Informa-
tion and Control 6 (1963), 230-245.

[Hoa85]

[JL91]

[JTY01)

[LS91]

[Mil89]

[PW87]

[Rab63)]

[Ros98]

[S596]

[$599]

[WN95]

W. A. Roscoe, Theory and Practice of Concur-
rency, first ed., Prentice-Hall Europe, Hertford-
shire, 1998.

Schneider and Sidiropoulos, CSP and
anonymity, ESORICS: European Sympo-
sium on Research in Computer Security, LNCS,
Springer-Verlag, 1996.

Paul F. Syverson and Stuart G. Stubblebine,
Group principals and the formalization of
anonymity, FM’99—Formal Methods, Volume I
(Berlin) (Jeanette M. Wing, Jim Woodcock,
and Jim Davies, eds.), Lecture Notes in Com-
puter Science, vol. 1708, Springer-Verlag, 1999,
pp. 814-833.

G. Winsgkel and M. Nielsen, Models for concur-
rency, Handbook of Logic and the Foundations
of Computer Science (S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, eds.), vol. 4, Oxford Uni-
versity Press, 1995, pp. 1-148.

