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Abstract

As part of our charge from the Virtual Sockets Interface Alliance we search for a notation
in which standards documents can be precisely specified. We approach the specification
for standard problem in the context of the Virtual Component Interface Standard. We pro-
pose six orthogonal axes of specification as guides to creating a cohesive, well-rounded
requirements specification. We then specify the Virtual Component Interface Standard in
the Unified Modeling Language and evaluate that specification based on our six axes.

1 Introduction

The recent excitement over system-on-chip (SoC) systems raises the bar for formal methods
techniques and tools. Not only do we face the usual challenges of keeping development
costs low, keeping time-to-market small and ensuring high quality hardware, but now, we
also face the challenge of integrating externally developed hardware and accompanying
proofs into our overall design and verification strategy.

1This work was supported by National Science Foundation Grants CCR-9987516 and CCR-0081406



The Virtual Sockets Interface Alliance (VSIA), a consortium of SoC-interested compa-
nies, proposes to alleviate those concerns through development and adoption of appropri-
ate SoC-related standards. As part of their ongoing work, the VSIA suggested that we
adopt or create a notation suitable for formal specification of their standards and develop
accompanying technology to enable compliance verification. As a first step toward this
goal, we completed a series of case studies directed at identifying formal specification and
formal verification issues related to one VSIA standard, the Virtual Components Interface
(VCI) [Gro00].

Though the use of formal specifications for standards is generally ignored, standards are
a good target for formalization, for several reasons. First, informal specifications are am-
biguous. One vendor may understand the standard in one way, while another implements
the another alternative, destroying the interoperability the standard was intended to create.
Second, since standards are the fountainheads for many hardware realizations, errors in
the specification are costly. Formal specifications admit to consistency checking and other
debugging techniques, before the errors can propagate to designs. Finally, by specifying
the standard formally, we open the door to formal standard compliance verification.

This paper reports on a case study in specifying the VCI, using the Unified Modeling Lan-
guage (UML) [BRJ99]. We present our key contributions in depth in Section 5, but sum-
marize them here for reader convenience.

� six specification axes: We propose six orthogonal axes of specification representing
a minimal classification of points that must be considered in a standard specification
such as the VCI.

� UML specification of the VCI: We present and explain the specification of the VCI
standard in the Unified Modeling Language.

Furthermore, we consider social hurdles slowing the wide acceptance of formal specifica-
tion. We then evaluate the UML as a potential formal specification language in terms of
the six specification axes and its ability to overcome social problems.

Section 2 discusses other work being done in this area. Section 3 introduces the Virtual
Component Interface Standard. Section 4 briefly describes our previous VCI-to-PCI bus
wrapper verification case study and the lessons learned from it. We define the six specifi-
cation axes and demonstrate our use of the UML as a hardware specification language for
the VCI in Section 5. Finally, analysis and plans for future work make up Sections 6 and 7,
respectively.



2 Related Work

While a large body of previous work exists in the context of using the UML as a formal
specification language, to our knowledge, none considers its suitability as a specification
language for hardware, as ours does. Below, we summarize the work that has been done in
the area of using UML as a formal software specification language.

In [Kri00], Krishnan demonstrates one approach to using the UML as the basis for a formal
specification by translating the diagrammatic notations to PVS state predicates. Once the
diagram is embedded in the theorem prover and a notion of a trace is defined, a consistency
check is equivalent to proving that there is a trace for the system which satisfies all the
axioms generated from the UML diagram. The major advantage that this method promises
is the ease with which it handles partial specification. Because Krishnan uses a past state
temporal logic, it is often the case that previous events can be deduced from their later
effects, even though they have not been explicitly specified.

Other methods similar to Krishnan’s have been reported in the literature [AK99, AK98],
though they use next state temporal logics and require complete information be specified
in message sequence diagrams. We expect that compliance verification strategies built on
this paradigm will be difficult to employ because of their basis in theorem proving and, as
a result, will not gain wide acceptance.

Sendall and Strohmeier suggest translating use cases into operation schemas in [SS00b].
Operation schemas describe the effects of a system declaratively, using pre- and post-
conditions. They also suggest some extensions to the Object Constraint Language, the
first-order assertion language that is a part of the UML standard, to make it easier for de-
signers to read and understand pre- and post-conditions, and presumably schemas, written
in OCL in [SS00a]. Their proposed extensions do not enhance the expressibility of the
language. They merely make the language look more like an imperative programming
language and less like a declarative constraint language. While [SS00a] is a step in the
right direction, we believe the authors do not take aggressive enough action. They only
attempt to move one of the nine available UML diagrams into the realm of formal system
specification.

Lilius and Paltor [LP99] contribute a formalization of the UML state machines that is the
first to include all features available in the statechart diagram notation. Their associated
tool, vUML, translates a UML statechart into the corresponding PROMELA and invokes
SPIN on the model. If the model checker generates an error trace, it is translated into a
sequence diagram for user consumption. While the advantage of their method is that no
knowledge of SPIN or PROMELA is necessary to use the model checker via vUML, the
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Figure 1: Two Virtual Components Connected by VCI Bus Wrappers and a Bus

major short coming of this work is that only statechart diagrams are currently formalized.

Finally, Övergaard and Palmkvist [ÖP98] describe an operational semantics for UML Use
Cases in an object-oriented specification language named Odal. Again, their work is a step
in the right direction, but it does not provide a formal verification engineer with enough
tools for use in the hardware design arena.

3 VCI Overview

The Virtual Sockets Interface Alliance recently released the Virtual Component Interface
standard. The VCI specifies an interface, rather than a bus and is intended to be used to
connect two VCI-compliant virtual components together directly or over a bus, via VCI-
compliant wrappers, as shown in Figure 1. This model allows the integrator to choose
any bus, including proprietary busses, to connect virtual components that may have been
designed by external organizations, by creating only the necessary bus wrapper modules.

The VCI standard describes a family of protocols. The Peripheral VCI (PVCI) is a subset
of the Basic VCI (BVCI) which is a subset of the Advanced VCI (AVCI). The PVCI is
intended for use with simple peripheral busses. It uses a two-signal handshake and is not a
split-transaction protocol. The BVCI is a split transaction protocol which only designates
that responses must return to the initiator in the same order in which matching requests were
generated. The split-transaction AVCI tags requests and their responses so that multiple
streams can be interleaved and transactions can be reordered.



Since we focus attention on the PVCI in this report of the UML case study, we describe
it in more depth. PVCI transactions consist of cells and packets. A cell corresponds to a
single handshake across the interface. A packet combines cells, like a bus burst, and must
be transacted across the bus in a single arbitration cycle.

As the PVCI is not a split-transaction protocol, the request and response that transact a
single cell are transferred simultaneously, on a single handshake. When the VCI initiator
has a request, it raises VAL (valid) to signal this to the VCI target. When the target is able
to respond to the request, it drives the response and raises ACK (acknowledge). All data
is transferred while both signals are asserted. The initiator is required to keep request data
steady while VAL is high and it is not allowed to back out a request once it has signaled
one, except in time-out cases. Likewise, the target is required to keep response data steady
while ACK is asserted. VAL and ACK must both be deasserted in the next clock cycle,
unless another another transaction is being driven on the interface.

A PVCI request consists of address, byte enables, command (read or write), write data and
end of packet marker (EOP). The end of packet field is set only if the current cell is the last
cell in the current packet. Otherwise, the next cell address will be the logical successor of
the current cell address. In the case of a read request, the write data field is don’t-care.

A response consists of read data and response error fields. In the case of a write request,
the read data field is don’t-care. Response error denotes control errors on the interface.

4 VCI-to-PCI Wrapper Case Study

Previously, we formally verified a VCI-to-PCI bus wrapper, similar to the one shown in
Figure 1. The purpose of this earlier case study was to learn the VCI standard thoroughly
and to become familiar with the issues involved in carrying out a verification effort relating
to a design derived from the VCI standard. Our wrapper was designed in Verilog and the
verification was carried out using FormalCheck2. The VCI-complaint half of the wrapper
met the BVCI specification. Detailed verification results are reported elsewhere [BG01]3.
For the purposes of the current report, however, we focus on the lessons learned from this
case study.

2FormalCheck is a trademark of Lucent Technologies and Cadence Design Systems and is licensed to
universities free of charge upon request: ftp.cadence.com/formalcheck.

3Complete design and Verilog code for the bus wrapper is available at
http://www.cs.utah.edu/˜abunker/vci/vlog.



1. English is a poor specification language because of its ambiguity and because items
that are conceptually related are often found in remote portions of the specification.

2. A catalog-of-properties specification style also lacks conceptual cohesion. Further-
more, requirements written in this manner are often difficult to understand and im-
plement.

3. Classes of requirements exist.

4. Grouping those requirements into classes may help alleviate completeness concerns
as well as concept scattering.

Lessons 3 and 4, above, led us to identify six general classes of requirements from the VCI
standard specification. We use these six classes, or specification axes, to guide our choice
of specification notation, as well as our final specification. These axes are discussed in
detail Section 5.1.

5 UML as a Hardware Specification Language

Outside the lessons learned about the technical aspects of the verification case study, we
considered social aspects of specification and verification, as well. While the expressive-
ness of higher order logic is a boon to specifiers, in our experience, designers prefer not
to read or create an implementation from it. Since the VCI specification is to become a
standard from which many operational implementations are expected to spring, a widely
readable specification is a must.

The readability requirement led us to consider graphical notations. We chose the Unified
Modeling Language for its multiple viewpoint paradigm, graphical notation, widespread
acceptance in the software community and growing presence in the hardware arena. The
purpose of the specification case study is to evaluate the UML as a hardware specification
language candidate.

The rest of this section describes, first, the six proposed specification axes and, second, the
UML specification of the Virtual Components Interface Standard.



5.1 Six Axes of Specification

In the spirit of lessons 3 and 4 from the verification case study, we identified six general
areas of interest to the design and verification teams as they approach a standard imple-
mentation project. These six areas are meant to serve as a guide to a specifier attempting
to enumerate all requirements contained in the standard. We do not, however, claim that
they guarantee specification completeness or consistency. We outline the six axes below,
including a definition of each, as well as a few examples of items that fit into each category
from the Peripheral VCI standard.

1. Signaling and Timing: This portion of the specification describes signal timing and
meaning. This information is generally taken from timing diagrams and tables which
define signal semantics in the informal specification. Examples of VCI-related issues
that reside in this category include the VAL-ACK handshake behavior and timing and
EOP=0 means that the next request will access the cell logically following the current
cell.

2. Data Handling: This portion of the specification includes all aspects of the data path.
Examples from the VCI standard include valid combinations of the byte enables and
the property that cell addresses must remain within the address space of a single
target for the entire packet.

3. Transaction Characteristics: This portion of the specification describes more gen-
eral characteristics of the protocol such as split transaction characteristics, bus lock-
ing mechanisms, packetization, etc. In the PVCI, transaction characteristics include
the cell-packet relationship and the coupling of request and response onto a signal
control handshake.

4. Global Properties: Specification items from this category describe high-level in-
variants and algorithmic characteristics of the protocol. In the VCI specification, this
category generally covers characteristics that are determined at component instantia-
tion time, such the handling of VCs that support address widths that are not multiples
of eight bits.

5. Internal State: This portion of the specification describes state maintained by each
participating agent as required by the standard. There is no example of usage of this
category from the VCI standard, however, other widely-used protocols, such as the
Intel Pentium III (R) bus do require that agents complying with the protocol maintain
certain bits of state information.
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Figure 2: User View of the Peripheral Virtual Component Interface

6. Error Handling: This portion of the specification describes agent behavior in the
face of erroneous input. Data errors may be described in either this section or in the
data handling section.

5.2 Specifying the VCI in the UML

We used three types of UML diagrams to specify the PVCI. This subsection presents repre-
sentatives of each type of diagram and discusses its features and specification power. Due
to space limitations, we present elements of the PVCI specification. An analogous dis-
cussion of the BVCI specification would require detail and explanation that is beyond the
scope of the current report, but is similar to the PVCI specification presented.

5.2.1 Use Case Diagrams

Figure 2 shows the use case diagram for the PVCI. Booch, et al define a use case as “a
description of a set of sequences of actions, including variants, that a system performs to
yield an observable result of value to an actor.” [BRJ99] An actor is some user of the sys-
tem, whether that user be human or automated. The purpose of a use case diagram, then,
is to enumerate the scenarios in which the system might be used and which actor(s) will
interact with each scenario. The use case diagram for the Peripheral Virtual Component
Interface shows two actors, representing the initiator virtual component and the target vir-



tual component, respectively. Even though actors may be mechanical in nature, they are
represented as stick figures in the UML and labeled, as shown. We connect actors that may
interact directly with a use case by an association, which is represented as a solid line.

The PVCI only supports reads and writes, as shown in the diagram. The basic read or
write transaction transfers one cell of data between initiator and target. Because read-
ing or writing a packet of data that contains more than one cell across the PVCI essen-
tially does several READ CELL or WRITE CELL operations, we use the UML standard
stereotype “ ��� INCLUDES ��� ” to show this. Because the VCI standard only specifies
that errors be reported on a packet level, we show the error scenario as an extension of
READ PACKET and WRITE PACKET use cases by using the UML standard stereotype
“ ��� EXTENDS ��� .” This variant use case may be read as, “The use case
WRITE PACKET ERROR extends the functionality of the use case WRITE PACKET.”

5.2.2 Class Diagrams

Figure 3 shows the structural view of the PVCI standard. Each rectangle on the diagram
represents a class. The first compartment within the class contains the class name, for
instance PVCI Initiator. The second contains object attributes. For protocol spec-
ification, we use this compartment only for state that the protocol changes. As the VCI
protocol does not require any state of the objects involved, this is blank in this particular
specification. We anticipate, however, that other protocols may make extensive use of this
compartment.

The third compartment contains a description of each method a class contains. User-defined
stereotypes, such as “ ��� REQ Control ��� ,” are used to organize the methods by function
for readability and understandability. In this diagram, we use the notion of “drive” and
“sample” to indicate the directionality of the ports represented by these methods. Methods
beginning with “drive” are outputs while those beginning with “sample” are inputs. The
portion of the method name in uppercase letters corresponds directly to the name of the
signal given in the VCI standard specification.

Between the two classes, we represent an association because the two classes communicate
with one another. The semantics of this association are exactly the same as those assigned
to the association in the use case diagram, above. Notice, however, that this association has
been adorned with multiplicities at each end. These multiplicities, both 1 in our example,
indicate that for each VCI-compliant interface, there must be exactly one initiator and one
target.
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Figure 3: Structural View of the Peripheral Virtual Component Interface

The dog-eared rectangle on the right of the diagram represents a note. Notes are allowed
anywhere in UML diagrams. Usually, notes are attached to the element of the diagram that
they address by a dashed line. We do not do so in this particular diagram, however, as the
noted information applies to both classes in the diagram and the methods and variables in
them.

The first item on the note states that N may range from 1 to 64, inclusive. When coupled
with the information in the class itself, this tells us that a VCI address may be from 1 to 64
bits wide. Similarly, E ranges from 0 to infinity and b may take on the value 4, 2 or 1.

The remaining four items on the note specify invariant conditions on the relationship be-
tween the value of the RD (read) signal, the byte enables the read data bus and the write
data bus. They are written in the first order language, Object Constraint Language (OCL),
whose semantics are as one would expect. For example, the first constraint states that if
a byte enable bit is set and the transaction is a read, then the corresponding byte lane of
RDATA is enabled for read.
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Figure 4: Clock-based Behavioral View of the Peripheral Virtual Component Interface

5.2.3 Statechart Diagrams

Finally, we choose to specify the behavioral aspects of the VCI from two different perspec-
tives. The first looks at the interactions that happen across the interface itself. It describes
what a third-party viewer would see by probing the interconnect between the initiator and
the target. While it is event-driven in nature, all events are clock ticks. The second per-
spective, however, looks at the initiator and the target separately and describes the internal
behavior of each agent. Time granularity is much smaller than a single clock-tick, allowing
us to specify timing requirements precisely.

Figure 4 shows the first behavioral view of the VCI. The interface can be in one of four
states, denoted by the rectangles with rounded corners. Transitions are triggered by the
CLOCK event. The transition guards are noted inside square brackets ([]) and the action
performed along the transition follows the forward slash (/). Note that time granularity is
the clock tick in this diagram, so that precise ordering of request stability and valid need
not be shown. It is sufficient at this level to show that data is being driven while the control
line is asserted.

The pseudo-states at the top of the diagram represent the initial and final states and the
transitions that lead to and from them. The solid, black circle is the initial state of the
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diagram and the only transition that leads out of it is the RESET transition. The white- and
black-banded circle represents the final state to which the only way we can get is by taking
a SHUTDOWN transition.

Studying the English VCI specification and creating this diagram helped us see an issue in
the published standard. In its original form, the standard allowed a transition from IDLE
to the DEF ACK state. While this transition is allowable in the analogous diagram of the
BVCI because of the split transaction nature of the protocol, it is not allowable in the PVCI.
The existence of this transition implies that the target can service a request before it is even
made. In the BVCI, this transition means only that the target can accept the request for
processing before it is made.

Figure 5 details the internals of the PVCI initiator. A diagram similar to Figure 5 exists for
the PVCI target. The main difference between this diagram and the preceding one is the
granularity at which events occur. This temporal spacing may be finer than that of the clock
and events need not occur at regular time intervals. We choose to create a second model at
this level of detail to specify the fine details about event ordering that we could not express
at the clock level. For instance, this diagram requires that the request become stable on the
interface lines before VAL becomes stable. Similarly, the initiator is not allowed to sample
the response before it samples ACK high.



Note the OCL constraint on the VAL stable transition. The constraint is placed inside
curly braces (

���
) as required by the UML. This particular constraint uses the built-in OCL

feature “stopTime” to require that VAL must be stable by Early. Again, we use a note to
elaborate on an item that is not obvious from the picture. This time, we attach the note
directly to the stopTime constraint. The note defines Early in this specification.

6 Analysis

To date, the VCI specification in the UML consists of fifteen diagrams. Five diagrams,
roughly five pages, relate to the PVCI as compared to fifteen pages of English text, tables
and timing diagrams. The remaining diagrams replace and extend the PVCI specification to
create a BVCI specification. In all, eleven diagrams currently make up the BVCI standard
specification, compared to thirty-three pages of informal specification.

The UML specification of the PVCI and BVCI took 6 person-weeks, including time to
learn the UML and OCL. We expect to specify the AVCI in 1-2 person-weeks.

We use three of nine available types of diagrams, use case diagrams, class diagrams and
statechart diagrams, to describe various aspects of the standard. Use case diagrams illus-
trate the user interface to the protocol. Class diagrams illustrate the structural view of the
protocol agents and contain invariants over data structures. Statechart diagrams show the
behavioral view of the system, along with timing constraints and behavioral invariants.
Statecharts are useful for specifying behavior at differing levels of detail.

As stated earlier, we expect to find a specification technique which supports us in specify-
ing the protocol along six axes. Below, we evaluate the use of the UML according to its
practicality along each proposed axis.

1. Signaling and Timing: Statechart notation completely specifies all signaling and
timing requirements. Though some believe that timing diagrams are necessary to
complete this aspect of specification and should be added to the UML [Goe00], we
disagree. OCL adornments can precisely specify timing requirements such as output
deadlines.

2. Data Handling: The combination of class diagrams and state chart diagrams can
fully express all aspects of data handling. Data/data and data/control dependencies
can be demonstrated in the static view of the system, while data-related timing issues
can be shown with the dynamic view of the system.



3. Transaction Characteristics: Because the PVCI is not a split-transaction protocol,
these sorts of issues were minimal in its specification. Issues of this sort remain to
be addressed in the BVCI specification, but we believe that we can do so by using
message sequence charts, accompanied by OCL notations, and model the protocol at
a slightly higher abstraction level than that seen in this discussion.

4. Global Properties: Of the six axes, the handling of global properties is the least
palatable in our UML specification. Global properties are currently scattered through-
out the specification and specified in many different formats. They are sometimes
implicitly described in behavioral diagrams, sometimes explicitly specified (as in the
case of signal stability deadlines) and in some cases, completely separate OCL de-
scription is necessary.

5. Internal State: While the VCI specification case study does not support us, we
believe that required internal state can adequately be represented as attributes in class
diagrams.

6. Error Handling: The current UML specification does not include error handling
at any level of the VCI. However, we believe errors will integrate into the current
behavioral model easily.

Not only should the language chosen to represent a formal specification have expressive-
ness to represent issues in these six areas, it should also be easy to learn and read, it should
be widely accepted and it should integrate seamlessly into the implementation specification
and documentation. Finally, it should enable formal verification of standard compliance.

We prefer the graphical format of the UML to the English as a specification language not
only for its conciseness, but because logically related requirements are physically close
together in the specification and it is less ambiguous than English, even without a fully-
defined formal semantics. We prefer the UML to higher order logic specifications and
catalog-of-properties specifications for its ease of understanding and its growing accep-
tance and tool support. While work must be done in order to make the Unified Modeling
Language a formal solution to all specification issues raised here, it shows strong promise
for use as a formal hardware specification language.

7 Future Work

We intend to continue investigations into the potential use of the UML as a formal hard-
ware specification language. We aim, particularly, to help the VSIA provide its members



with formal solutions to standards compliance problems. Specifically, our goals for this
continuing work include:

� Complete a UML specification of the AVCI.

� Add error-handling and transaction-level requirements to the UML specification of
all levels of the VCI.

� Create a formal semantics for the UML.

� Create a formal consistency-checker for the UML documents.

� Develop a strategy for verifying compliance to protocols specified in the Unified
Modeling Language.
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