Towards a Formal Model of Shared Memory Consistency for Intel ltanium

T™

Prosenjit Chatterjee and Ganesh Gopalakrishnan *
School of Computing, University of Utah
Technical Report UUCS-01-003
http://www.cs.utah.edu/formal verification/

Abstract

We provide a simple formal model for Itanium™
shared memory consistency [1, 2] covering a core set
of instructions. Existing descriptions of Itanium shared
memory consistency are based on an informal collection
of ordering rules as well as several examples. Qur op-
erational model employs widely understood data struc-
tures such as buffers and memories, and expresses or-
dering constraints precisely using a collection of mon-
deterministic rules. This can enable the construction of
reliable prototype implementations, formal verification
against implementations, formal verification against
other formal models, as well as verification of synchro-
nization routines. Our model covers all published or-
dering constraints, and also sheds light on tricky con-
cepts such as causality.

1 Introduction

The Itanium”™ shared memory consistency model
[1, 2] is described in terms of a collection of ordering
rules, constraints stated in English, and examples of
legal and illegal executions. While good for initial un-
derstanding, such descriptions often leave many details
unanswered. This can make it difficult for program-
mers to write reliable MP libraries. As far as we know,
a formal specification (operational or otherwise) has
not yet been published for Itanium.

In this paper, we provide a simple execution oriented
(operational) model for the Itanium shared memory
consistency reverse-engineered from [1, 2]. We believe
that it accurately (and more completely) describes al-
ternative descriptions publicly available. The availabil-
ity of an operational model can help designers build ex-
ecutable prototypes to gain deeper understanding. In
addition, they can use model-checkers to gain a deeper

*This work was supported by National Science Foundation
Grants CCR-9987516 and CCR-0081406

understanding with respect to synchronization routines
as well as specific ordering issues [3, 4]. Like any for-
mal specification, an operational model runs the risk of
being over- or under-specified. In this paper we point
out, as space permits‘how we have strived to avoid
these risks.

Our model deals with cacheable memory instruc-
tions consisting of acquire loads (written ld.acq), or-
dinary loads (ld), release stores (st.rel), and ordi-
nary stores (st), as well as memory fences. It does
not currently handle atomic read-modify-writes, non-
cacheable memory, or special rules pertaining to data
dependencies involving registers [1, Section 13.2]. De-
spite its simplicity, our model captures all published
ordering properties of the instructions we consider, and
also sheds more light on corner cases pertaining to
causality. While operational models have been pro-
posed for commercial shared memory systems (notably
for Sparc V9 [5]), a notable feature of our operational
model is its use of a few explicit devices such as vector
timestamps [6] to clearly describe the tricky notion of
causality.

2 Overview of the Itanium Memory
Model

The Itanium memory model can be understood in
terms of program and global visibility (“visibility”) or-
ders. For memory operations of type ‘store’, visibility
refers to when the effects of the store become appar-
ent to all processors. For memory operations of type
‘load,’ visibility refers to when the execution of load
appears to have been carried out for the processor car-
rying out the load. (All other processors do not directly
observe the load happening.) As in [1], for two differ-
ent memory operations X and Y, XY specifies that
X is before Y in program order, X — Y indicates that
Y must be visible only after X is visible. Further, if

1Details appear in our webpage.

X —=>YandY — Z,then X - Z. Now, if X and Y
are two memory operations in the same program, and
XY, Itanium requires the following;:

1. If X is a load (store) and Y is a store (load) to
the same location, WAR (RAW) hazards must be
avoided.

2. If X and Y are stores to the same location, WAW
hazards must be avoided. In addition, X — Y.

3. If X and Y are memory operations to any location,
and have a fence between them, then X — Y.

4. If X is an Acquire load and Y is any other memory
operation to any location, then X — Y.

5. If X is any memory operation to any location and
Y is a Release store, then X — Y.

Under all other circumstances, X and Y can get exe-
cuted in any order. [1] also asserts the following con-
straints on executions:

Coherence: There is a single visibility order (which
is also a total order) of all stores per memory location
observed by all the processors. Further, this total or-
der is consistent with the program order for memory
operations on that location in each processor,
RC_tso: Intuitively, ld.acq and st.rel are used to
“bracket” instruction sequences, to permit more lib-
eral execution orders for instructions in-between. To a
crude approximation, [d.acq and st.rel are strongly or-
dered as in sequential consistency [7]. However, more
precisely viewed, RC_tso [2] captures the orderings in-
volving ld.acq and st.rel as per Release Consistency [7],
with [d.acq and st.rel obeying TSO [5]. Under RC_tso,
there is a single global visibility order of all Release
Stores, with the exception that each processor may see
(via ordinary or acquire loads) its own updates earlier
than when other processors see it. Further, this global
visibility order is a total order consistent with program
order of all release stores in each processor.
Causality: When a st.rel instruction X in some pro-
cessor P1 is read by an [d.acq instruction Y in another
processor P2, then no store instruction following Y in
program order must be visible to any processor before
X is visible.

2.1 Examples

The following examples (some from [1]) illustrate
the Itanium ordering rules (assume that each memory
location has value 0 in the beginning).

e The following execution is invalid due to Rule 2 per-
taining to WAW, Rule 4 pertaining to Acquire, and the
requirement of Coherence,

P Q
st(A,1) 1d.acq(4,2)
st(A,2) 1d(A,1)

e Fence (Rule 3) is illustrated by the following invalid
execution. Here, 1d(B,0) and 1d(A,0) are seen after
a fence, while the stores that supply new values into A
and B are not getting flushed as is required by fences:

P Q
st(A,1) st(B,1)
Fence Fence
1d(B,0) 1d(A,0)

e Acquire and Release (Rules 4 and 5) are illus-
trated by the following invalid execution. Here,
st(A,1) precedes st.rel(B,1), while 1d.acq(B) pre-
cedes 1d(A). However, we see 1d(A,0) happening in-
stead of 1d(A,1).

P Q
st(A,1) 1d.acq(B,1)
st.rel(B,1) 1d4(A,0)

o Coherence is illustrated by the following invalid ex-
ecution. This is because the Acquire semantics forces
the 1d instructions to occur after the 1d.acq instruc-
tions. However, processors R and S are observing the
updates to A in different orders:

P Q R S
st(A,1) st(A,2) ld.acq(A,1) 1d.acq(A,2)
1d(A,2) 1d(A,1)

e RC_tso is illustrated by the following valid execution.
The store of P into A is locally visible to P (say, via

a cache or store buffer) before it becomes visible to all

other processors (and similarly for Q and variable B):
that

P Q
st.rel(A,1) st.rel(B,1)
1d.acq(4,1) 1d.acq(B,1)
1d(B,0) 1d(A,0)

e Another aspect of release stores is that all the st.rel
of all the processors taken together forms a single global
visibility order that is also a total order. Considering
this, the following outcome is not valid, because Q and
R are observing st.rel(A,1) and st.rel(B,1) in dif-
ferent orders.

P Q R S
st.rel(A,1) 1ld.acq(A,1) 1ld.acq(B,1) st.rel(B,1)
1d(B,0) 14(A,0)

e The following example violates the causality rule.
The st.rel(A,1) of P is observed by Q via a 1d.acq.
Further, st(B,1) of Q is observed by 1d.acq of R.
Causality now requires that st (B,1) must be visible
to R only after st.rel(A,1). However, in this exam-
ple, R sees a different order.

P Q R
st.rel(A,1) 1ld.acq(A,1) 1d.acq(B,1)
st(B,1) 1d(A,0)

acq. acq.ld

M1 Mo

Figure 1. An Operational Model of Itanium

2.2 The Operational Model

Each instruction issued by a processor is modeled
by a tuple ¢ = (p,l,0,a,d,v). The field p of tuple ¢ is
selected by p(t), and so on. Here,

e p(t) is the processor issuing the instruction.

e [(t) is the ordinal position (“label”) of the instruc-
tion in the sequential program running on p(¢).

e o(t) is the operation type which can be ld, ld.acq,
st, st.rel, or Fence.

e a(t) is the memory location to be written into (if
o(t) € {st,st.rel}), or to be loaded from (if o(t) €
{ld,ld.acq}).

e d(t) is the data value to be written into a (for
stores), or to be loaded from a (for loads).

e v(t) is a vector of labels, whose purpose is to model
causality, as will be explained shortly.

Some of the fields of a tuple ¢ may be undefined for
certain instructions, as will be apparent from the tran-
sition system. The operational semantics is now de-
scribed in terms of five data structures held by each
processor p; (see Figure 1), and how each instruction
tuple ¢ that is issued updates these data structures

rel.st*

and/or returns the read value, as per Table 1. By
‘buffer’ we mean an unbounded structure in which the
entries maintain their arrival order as in a FIFO, but
entries may be removed from anywhere provided a re-
moval condition is satisfied. The oldest entry is always
at the head and the youngest at the tail. Initially, all
buffers are empty. The data structure elements are:

Event Guard Actions
3t € WOB,y :
a(t') = a(t) Ad(t') = d(1)
At youngest
ld.acq(t) for address a(t)
else
My [a(t)] = d(t)
A
-3t € WIB,)
a(t) =a(t) Ap(t) =p(t) none
3t € WOB,) :
a(t') = a(t) Ad(t') = d(t)
At youngest
1d(t) for address a(t)
else
True Issue(RBp4), t)
st.rel(t) True Issue(WOBy, (1), t)
t <+ t[Lp(t) v };
st(t) True Issue(WOBy, (1), t)
Fence(t) True Flush(t)
M, la(®)] « d(1);
t € WIB, Delete(WIBy), t);
A if(o(t) = st.rel)
MW (t) Allowed(W 1By 4),t) then L[p(t)] = I(¢)
t€ RBpt)
Mp)[a(t)] = d(t)
A -3t € WIByy :
MR(t) a(t’) =a(t) Ap(t) = p(t) Delete(RB,), t)
Del(t) true ProcWOB(W OB, 1), t)

Table 1. Transition System

1. a memory M; that spans the entire address-space
of Itanium and holds word-sized data in each lo-
cation. M; is updated when the MW (t) event of
Table 1 fires, which removes an entry from WIB;
writes into M;. Initially, each location of M; car-
ries data 0.

2. a write-out buffer WOB; into which st and st.rel
are enqueued. When the Del(t) event of Table 1
fires, an entry is removed from WOB; and atomi-
cally copied into all WIB;.

3. a load buffer RB; into which [d instructions (but
not ld.acq) are enqueued when event [d(t) of Ta-
ble 1 fires. Later, when an M R(t) event fires, a

tuple ¢ is removed from RB;, and data d(¢) corre-
sponding to this tuple gets returned.

4. a write-in buffer WI1B;, and

5. a label-vector L; held by each processor p;. This
is a vector of natural numbers, with each entry
initialized to 0. Specifically, L;[j] holds the label
of the last st.rel instruction of p; that has already
been written into M;. In other words, L;[j] in-
dicates the (release-store) instruction of p; upto
which M; has “caught up.” To maintain this in-
variant, whenever any memory location in M; gets
updated by a release store operation represented
by the tuple ¢, L, [p(t)] gets set to the value [(t),
which is the label of the release instruction repre-
sented by ¢t. Before an st instruction is enqueued
into WO B;, the v(t) field of this instruction is set
to the current L; value.

2.3 State Transition Rules

Table 1 defines the operational semantics of the Ita-
nium shared memory model. The first column shows
Events that happen if the guard condition in the sec-
ond column is true, performing the actions shown in
the third column. At any time, any one of the eligible
events may be picked in a fair manner. Each event
happens when the next instruction ¢ is issued by pro-
cessor p(t) (for events ld.acq(t) through Fence(t)), or
when an instruction is removed from one of the internal
buffers and is carried out (for events MW (t), M R(t),
and Del(t)). Notice that in case of events ld.acq(t),
ld(t), as well as M R(t), tuple ¢t carries the data d(t)
being returned (following the convention used in [8]).
When these events fire, a constraint expressed in the
Guard field shows what this data is. We use = for
equality testing, and < for assignment.
ld.acq(t): If the next instruction tuple ¢ of processor
p(t) is a ld.acq, we perform the Id.acq(t) event. We seek
an entry ¢ in W OB,y such that a(t') = a(t),and t is
the youngest such entry, if multiple entries exist. If t
exists, the returned data d(t) is the same as d(¢). If no
such entry exists (“else”), ld.acq must get serviced from
the memory M,,;), and that too, only when there is no
tuple ¢ in the WIB;) buffer such that p(t) = p(t)
and a(t') = a(t). The condition p(t) = p(t) prevents a
ld.acq from bypassing an earlier issued st or st.rel on
the same address.

ld(t): As with ld.acq(t), the ld(t) event is serviced di-
rectly by WOB upon a ‘hit’; otherwise, ¢ is en-
queued into RB,;) via Issue(RBy),t).

st.rel(t): results in t being enqueued into WO B, via
procedure Issue.

st(t) first updates the v field of tuple t with the la-
bel vector Ly (shown by t < t[L, /v]), and then
enqueues the resulting tuple ¢ into WO B,,(;) via proce-
dure Issue.

Fence(t) is carried out by procedure Flush, which
flushes every pending RB,,) entry, every WOB,,; en-
try, and every WIB; entry for all j, where the entry
comes from p(t) and occurs earlier than ¢ in program
order.

MW (t) updates the memory array Myy from
WIB,). Its guard ‘Allowed’ captures when tuple t,
which is present in WIB,), can be processed ahead
of all the other tuples within WIB, ;. This is precisely

when there isn’t an older W1B,,; entry t and one of

the following four conditions hold: (i) a(t) = a(t),
(ii) both ¢ and ¢ are st.rel, (iii) both come from
p(t) with o(t) = st.rel, (iv) the label of ¢ matches
v(t)[p(t)], which is the label of the last st.rel from
p(t') seen by p(t), o(t') = st.rel, and o(t) = st. Condi-
tion (iv) blocks the st from happening until after M,
also has assimilated ¢ , ensuring causality. When event
MW (t) fires, My, is first updated, and tuple ¢ is then
deleted from W 1B, by procedure Delete. Also, if the
operation of tuple ¢ is st.rel, the label-vector Ly is
updated to the label v(¢) carried by tuple ¢ to record
the release-store upto which M,,;) has caught up.

MR(t) represents when a tuple ¢ buffered in RB,
(corresponding to an Id instruction) gets serviced. This
event is allowed when memory array My holds d(t)

at address a(t), and there is no ¢ in WIBy ;) with a
matching address from the same processor.
Del(t) calls procedure ProcWOB which first checks if

o(t)=st and there is an entry ¢ in RB,+) with address

a(t), or if o(t) = st.rel and there is an entry ¢ in
either RB,,;) or WOB,,(;) with a lower label. If neither,
ProcWOB deletes t from WOB, copying it atomically
into every WIB. The functions used in the transition
system are now described.

Flush(t):
WHILE V (len(WOB_p(t)) > 0)
V (len(RB_p(t)) > 0)
vV (34, t'eWIBZ : p(t)=p(t") A I(t")<l(t))
DO FOR ¢" € RB_p(t) DO an MR(t") event
FOR ¢ € WOB_p(t) DO ProcW0B(WOB p(t), t)
FOR t"” €ésome WIB_i where p(t)=p(¢") A [(¢")<(¢)
DO MW (")
END WHILE

ProcWOB(WOB _p(t),t):
IF V(o(t) = st A =3 t'e{RB_p(t), WOB_p(t)}:
a(t) =a(t') A U({t') <I(t))
V(o(t) = st.rel A =3 t'e{RB_p(t), WOB_p(t)}:

1(t")<i(t))
THEN
Delete t from WOB_p(t);
FOR all 4 DO Issue(WIB_i,t)
END IF

Allowed(WIB_p(t),t):
-3 t'e WIB.p(t):
t' older than t

A
V(a(t) = alt)
V(o(t) = o(t') = st.rel)
V(p(t) = p(t') A o(t) = strel)
V() = o@®)[p(t)]
A
(o(t") = st.rel N ot) = st)
)

Issue(Buf fer,t): Add ¢ to the tail of Buffer as in a
FIFO queue.

Delete(Buf fer,t): Here, Buffer is either RB or WIB.
This procedure deletes ¢ wherever it may be in Buffer.

3 Analysis of our Operational Model

We now show how our operational model meets the
requirements laid out in Section 2.

1. RAW for load operation r and store operation w
earlier in program order: (i) If r is satisfied when
it hits a w in WOB (Table 1, event ld.acq(t) or
ld(t)), RAW is satisfied. (ii) If r is satisfied from
memory, in case w has already been written into
memory, the RAW hazard is avoided. If however
w is in WIB hence blocks r (which is in RB) from
issuing, we freeze r till w is written into the mem-
ory (Table 1, event M R(t)). Thus, here also the
RAW hazard is avoided.

2. WAR for load r and store w from the same pro-
cessor: Note that w cannot move from WOB to
WIB until the load is drained from WIB (see
ProcWOB). Hence, WAR hazards are avoided.

3. WAW, as well as visibility order for stores to the
same location are guaranteed as follows. If there
are two stores to the same address in WOB, event
Del(t) removes them in the oldest-first order. If
the second store comes while the first has gone
into WIB, then the “t' issued before t” check in
function Allowed prevents a younger write from
overtaking an older one.

4. Fence: Procedure Flush carries out all “preceding”
instructions before allowing instruction issuing to
resume. Hence Rule 3 is obeyed.

5. Acq: Hazard aspects of Acq have already been
covered. Since Acq blocks further instruction is-
suing till it gets carried out (see event ld.acq(t)),
Rule 4 pertaining to visibility is satisfied.

6. Rel: Loads that come before st.rel are handled by
ProcWOB that checks for loads with lower labels.
Stores before st.rel are also checked in a similar
manner. A st.rel that enters WIB when there
is another store in W IB from the same processor
is prevented from reordering by function Allowed.
This meets Rule 5.

7. Coherence: The rules for handling WOB and
W IB ensure Coherence.

8. RC_tso: Handling of WOB and WIB ensure a
total global visibility order of release stores. The
“TSO” aspect of RC_tso comes naturally because

each processor may see its own update early via
the WOB, exactly as in classical TSO [5].

All rules except for causality have been discussed.
We now discuss causality in some detail. Causality
can be summarized at a high level as follows: “Before
any st operation o is posted into any M;, ensure that
every st.rel operation r that o is “causally dependent
upon” has already been updated into M;. “Causally
dependent on” means o was issued by some p; after it
had updated its own store M; with the value provided
by r.

Causality is obeyed to a certain extent. Specifically,
if a st.rel satisfies a ld.acq instruction then all subse-
quent store operations following that [d.acq instruction
in program order will be visible to all processors after
that st.rel operation. It suffices to prove this condi-
tion by proving that if X is a st.rel from any processor
p(X) satisfying Y which is a ld.acq in processor p(Y),
Z is a st to any memory address in p(Z) where Y, Z
(hence p(Y) =p(Z)), and X — Y in p(Y), then X —
Z for any processor p. Since X — Y,

¢ X must have been updated in My by the time Y
is carried out,

e the label vector v(Z) must reflect the update of
X, i.e o(Z)[p(X)] > 1(X), and

e for any other processor py, either X is updated in
Mj, or else it resides in WIBj,. When Z gets issued
to all WIB buffers, and in particular WIBy, it
cannot participate in the MW (t) event before X
can do so, due to the behavior of function Allowed.

As an example, consider the earlier discussed example,
now with labels:

P Q R
1:st.rel(A,1) 1:1d.acq(A,1) 1:1d.acq(B,1)
2:st(B,1) 2:1d(A,0)

The label vector carried by instruction st(B,1)
would be [1,0,0] because Q would have seen the
st.rel(A,1) instruction of P situated at label 1 when
it issues st(B,1). If st.rel(A,1) still resides in the
W IBpg buffer when st (B,1) also enters WIBpg, func-
tion Allowed ensures that the former is posted into Mg
before the latter. Thus, 1d(A,0) is impossible in R.

3.1 Ordering Relaxations

We now discuss a few examples of ordering relaz-

ations correctly supported by our model.

Releases can be bypassed by subsequent operations.
Moreover, these operations may bypass operations pre-
ceding release. In the following program,

st(a,1)
st.rel(b,1)
st(c,1)

st(c,1) can bypass both st.rel(b,1) and st(a,1).
This is supported by our operational model as fol-
lows. Suppose these instructions are in WOB. Proc-
WOB will consider st(c,1) as well as st (a, 1) eligible
for movement into W 1B, because, for st instructions,
the label comparisons are done address-wise. How-
ever, ProcWOB will not be able to move st.rel(b,1)
into WIB before it moves st (a,1), because for release

stores, label comparisons are across all addresses.
Itanium is not required to provide any global total
order for st instructions. In this example,

P1 P2 P3 P4
st(a,1) st(b,2) 1ld.acq(a,1) 1ld.acq(b,2)
1d(b,0) 1d(a,0)

it allows P3 to see st(a,1) before st(b,2) and vice
versa in P4. This relaxation is supported by function
Allowed. Suppose st(a,1) and st(b,2) are both in
WIBp3 and WIBp, in some order. Function Allowed
can pick st (a,1) to post first in Mp3, while it can pick
st(b,2) to post first in Mpy.

3.2 How R))R may impact causality

It is unclear by reading [1] whether the following
execution is legal or not:

P1 P2 P3 P4
1d(A,1) st.rel(A,1) st(A,2) 1ld.acq(B,1)
1d.acq(4,2) 1d(A,0)
st(B,1)

If the instructions 1d(A,1) and ld.acq(A,2) are
ordered because they are loads on the same loca-
tion, then the following consequences of causality

emerge. We have st.rel(A,1) being ordered be-
fore 1d.acq(A,2) in the visibility order of P1. Due
to the acquire semantics, st(B,1) is performed af-
ter 1d.acq(A,2). The situation is quite analogous to
the Causality example on Page 2, except the causal
chain forms through a load-to-load order. Now, since
st(B,1) is observed by 1d.acq(B,1), we cannot have
1d(A,0) in P4 due to causality. It is unknown to
us whether load-to-load orderings such as between
1d(A,1) and 1d.acq(A,2) are to be obeyed, and if
so must cause causal chains in this fashion.

4 Concluding Remarks

In this paper, we provided a simple operational
model for Itanium” shared memory consistency. OQur
operational model is based on three buffers, a mem-
ory array, a label-array, and a collection of non-
deterministic rules to process loads, stores, and fences
with respect to these data structures. We point out as-
pects of this memory model, including causality rules.
We believe that our model can form a concrete point
of discussion for understanding the Itanium”™ proces-
sor. We also anticipate usage in formal verification, as
well as easy adaptation through changes to the rules to
other memory models.

References

[1] Intel, The IA-64 Architecture Software Developer’s
Manual Vol. 2 rev. 1.1: Itanium (TM); System Archi-
tecture, Intel, 2000, Volume 2, Chapter 13, “Coherence
and MP Ordering.” http://developer.intel.com/design/
ia-64/downloads/24531802.htm.

[2] Gil Neiger, 2001, http://www.cs.utah.edu/mpv/papers
/neiger/fmcad2001.pdf.

[3] David L. Dill, Seungjoon Park and Andreas Nowatzyk,
“Formal Specification of Abstract Memory Models”, in
Gaetano Borriello and Carl Ebeling, editors, Research
on Integrated Systems, pp. 38-52. MIT Press, 1993.

[4] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokke-
dem and Ganesh Gopalakrishnan, “The ‘Test Model-
Checking’ Approach to the Verification of Formal Mem-
ory Models of Multiprocessors”, in Alan J. Hu and
Moshe Y. Vardi, editors, Computer Aided Verification,
volume 1427 of Lecture Notes in Computer Science, pp.
464-476, Vancouver, BC, Canada, June 1998, Springer-
Verlag.

[6] David L. Weaver and Tom Germond, The SPARC Ar-
chitecture Manual — Version 9, P T R Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1994.

[6] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince
Kohli and Phillip W. Hutto, “Causal Memory: Defini-
tions, Implementation and Programming”, Distributed
Computing, vol. 9, n. 1, pp. 3749, 1995.

[7] Sarita V. Adve and Kourosh Gharachorloo, “Shared
memory consistency models: A tutorial”, Computer,
vol. 29, n. 12, pp. 66-76, December 1996.

[8] Rob Gerth, “Sequential Consistency and the Lazy
Caching Algorithm”, Distributed Computing, vol. ?,
n. 12, pp. 57-59, 1999.

A Details of function Allowed

Why I(¢) = o(t)[p(t)] and not U(t') < v(®)[p(t)] is
used in function Allowed: Suppose I(t') < v(t)[p(t)].
Then the value L = v(t)[p(¢)] corresponds to some
instruction, say ¢ . There are two cases: (i) ¢ is in
WIB,(t). In this case, function Allowed ensures that
¢ gets posted into M) before ¢ Then, we will be
back to the = test. (ii) ¢" has already posted into M, in
which case it isn’t in WIB,;. This is a contradiction
because ¢ is still in WIB, violating Allowed.

