
A Comparison of Online Superpage Promotion Mechanisms

Zhen Fang and Lixin Zhang

fzfang lizhangg@cs.utah.edu
http://www.cs.utah.edu/impulse 1

UUCS-99-021

Department of Computer Science

3190 Merrill Engineering Building

University of Utah

Salt Lake City, UT 84112

December 2, 1999

Abstract

The amount of data that a typical translation lookaside bu�er (TLB) can map has not kept pace with

the growth in cache sizes and application footprints. As a result, the cost of handling TLB misses limits

the performance of an increasing number of applications. The use of superpages, multiple adjacent virtual

memory pages that can be mapped with a single TLB entry, extends a TLB's reach without signi�cantly

increasing its size or cost. The diÆculty of identifying what sets of pages should be promoted to superpages

combined with the overhead of performing these promotions restricts superpage use almost exclusively to

wired system data structures. Previous studies have shown that simple online policies that decide to create

superpages dynamically can be e�ective in reducing TLB penalties.

In this paper we analyze the performance of online superpage promotion for nine benchmarks on a

simulated HP PA-RISC system running a BSD Unix kernel. We extend previous work in two ways. First,

we study the impact of creating superpages dynamically by remapping pages at the memory controller

instead of copying pages to make them contiguous. The use of such a hardware mechanism a�ects the choice

between two previously described superpage promotion policies. Previous work has shown that an online

approximation to a competitive policy is the best choice. Our results show that having hardware support

makes a greedy policy perform equally well. Second, we use execution-driven simulation, whereas previous

studies have used trace-driven simulation. Our results show that the di�erences in accuracy are signi�cant,

especially when studying complex interactions between operating systems and modern architectures.

Keywords: memory architecture, TLB performance, competitive algorithms, simulation

Technical Areas: architecture, memory systems, operating systems

1This e�ort was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research

Laboratory (AFRL) under agreement number F30602-98-1-0101 and DARPA Order Numbers F393/00-01 and F376/00. The

views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the

oÆcial polices or endorsements, either express or implied, of DARPA, AFRL, or the US Government.



1 Introduction

The translation lookaside bu�ers (TLBs) on most modern processors support superpages: groups of contigu-

ous virtual memory pages that can be mapped with a single TLB entry [8, 16, 27]. Using superpages makes

more eÆcient use of the TLB, but the physical pages that back a superpage must be contiguous and properly

aligned. Dynamically coalescing smaller pages into a superpage thus requires that all the pages be reserved

a priori, be coincidentally adjacent and aligned, or be copied so that they become contiguous. The overhead

costs of promoting superpages by copying include the direct costs of copying the pages and changing the

mappings. Other indirect costs are also important, such as the increased number of instructions executed

on each TLB miss (due to the new decision-making code in the miss handler) and the increased contention

in the cache hierarchy (due to the code and data used in the promotion process). When deciding whether

to create superpages, these costs must be balanced against the improvement in TLB performance.

Romer et al. [22] study several di�erent policies for dynamically creating superpages. Their trace-driven

simulations and analysis show how a policy that balances potential performance bene�ts and promotion

overheads can improve performance in some TLB-bound applications by about 50%. Our work extends

theirs by measuring the added performance bene�t, as well as the e�ect on the choice of policy, of using

hardware support at the memory system to make creating superpages cheaper.

The hardware that we model is the Impulse Memory Controller [28], which helps create superpages

without copying by adding another level in the memory hierarchy at the memory controller. In Impulse,

superpages are built through reampping.

Our research shows that combining the work of Romer et al. and the Impulse technology changes the

tradeo�s in designing an online superpage promotion policy. Romer et al. �nd that a competitive promotion

policy that tries to balance the overheads of creating superpages with their bene�ts achieves the best average

performance. Our experiments con�rm this result when promotion is accomplished via copying, but we �nd

that the use of a more aggressive promotion policy that promotes superpages as soon all of their constituent

sub-pages have been touched performs best when coupled with a remapping-based promotion mechanism.

We further �nd that the performance of Romer's competitive promotion policy can be improved by tuning

it to create superpages more aggressively, even when copying is employed to promote pages. In addition,

2



by using a detailed execution-driven simulator, we identify the impact of several performance factors not

covered by Romer et al.'s trace-based study, such as the detrimental e�ects of the cache pollution induced

by copying. Finally, we �nd that online superpage promotion achieves performance comparable to the

hand-coded superpage promotion mechanism employed by Swanson et al. [28]

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 explains the

two methods used to create superpages, along with the two policies investigated for promoting superpages

at run time. Section 4 describes our simulation environment and benchmark suite, and Section 5 gives the

experimental methodology and the results of our study. Section 6 summarizes our conclusions and discusses

future work.

2 Related Work

Competitive algorithms perform cost/bene�t analyses dynamically to make online decisions that guarantee

performance within a constant factor of an optimal o�ine algorithm. Romer et al. [22] adapt this approach

to TLB management, employing a competitive strategy to decide when to perform dynamic superpage

promotion. They also investigate online software policies for dynamically remapping pages to improve cache

performance [3, 21]. Competitive algorithms have been used to help increase the eÆciency of other operating

system functions and resources, including paging [24], synchronization [14], and �le cache management [5].

Chen et al. [7] report on the performance e�ects of various TLB organizations and sizes. Their results

indicate that the most important factor for minimizing the overhead induced by TLB misses is reach, the

amount of address space that the TLB can map at any instant in time. Even though the SPEC benchmarks

they study have relatively small memory requirements, they �nd that TLB misses increase the e�ective

CPI (cycles per instruction) by up to a factor of �ve. Jacob and Mudge [13] compare �ve virtual memory

designs, including combinations of hierarchical and inverted page tables for both hardware-managed and

software-managed TLBs. They �nd that large TLBs are necessary for good performance, and that TLB

miss handling overhead accounts for much of the memory-management overhead. They also project that the

individual cost of TLB miss traps will increase in future microprocessors.

3



Proposed solutions to this growing TLB performance bottleneck range from changing the TLB structure

to retain more of the working set (e.g., multi-level TLB hierarchies [1, 9]), to implementing better manage-

ment policies (in software [12] or hardware [11]), to masking TLB miss latency by prefetching entries (in

software [2] or hardware [23]).

All of these approaches can be improved by exploiting superpages. Most TLBs now support superpages,

and have for several years [16, 27], but more research is needed into how best to make general use of this

capability. Chen et al. [7] suggest the possibility of using variable page sizes to improve TLB reach, but

do not explore the implications of their use. Khalidi et al [15] and Mogul [17] discuss bene�ts of systems

that support superpages, advocating static allocation via compiler or programmer hints. Talluri et al. [18]

report many of the diÆculties attendant upon general utilization of superpages, most of which result from

the requirement that superpages map physical memory regions that are contiguous and aligned.

On a system with four-kilobyte base pages, Talluri et al. [19] �nd that judicious use of 32-kilobyte

superpages can reduce the impact of TLB misses on CPI by as much as a factor of eight. Exclusive use

of the larger pages increases application working sets by as much as 60%, which can lead to ineÆcient use

of main memory. However, mixing both page sizes limits this bloat to around 10%, and allowing the TLB

to map superpages without requiring that all the underlying base pages be present (partial superpages)

eliminates the problem altogether.

Swanson et al. [28] build superpages through a remapping approach with the Impulse hardware support.

They statically modify applications to create superpages via system calls. Their simulation results demon-

strate a two-fold increase in TLB reach and a 5%-20% improvement in the performance of some SPECint95

and Splash2 applications with medium to high TLB miss rates. Our work is based on the same hardware as

theirs, while with di�erent kernel modi�cations.

3 Research Background

We measure the impact of combining no-copy superpage promotion with the two online promotion algorithms

proposed by Romer et al. [22]. The methodological di�erences between this study and Romer et al.'s are

4



described in Section 4. In this section we describe the promotion policies we study, and then we brie
y

discuss the hardware used by Swanson et al. to support no-copy superpage promotion.

3.1 Promotion Algorithms

We evaluate two of the online superpage promotion policies developed by Romer et al. [22], asap and

approx-online. asap is a greedy policy that promotes a superpage as soon as all of its component pages

have been referenced. The algorithm does not consider reference frequency for the potential superpages,

which minimizes bookkeeping overhead. The price for this simplicity is that the asap policy may build

superpages that are rarely referenced later, in which case the bene�ts of these superpages would not o�set

the costs of building them.

approx-online uses a competitive strategy to determine when superpages should be coalesced. If a

superpage P accrues many misses, we expect that it will be referenced again in the future, and that promoting

it will prevent many future TLB misses. Such promotions e�ectively prefetch the translations for the non-

resident base pages in the new superpage. To track this reference information, the approx-online algorithm

maintains a counter P.prefetch for each potential superpage P . On a TLB miss, the policy increments the

counters for all potential superpages that would have prevented the miss. In other words, on a miss to base

page p, P.prefetch is incremented for each potential superpage P that contains the referenced page p and

at least one current TLB entry. When the miss charges for a superpage P0 reach a pre-set threshold for

superpages of size P0.size , the pages that constitute P0 are promoted into a superpage.

The miss charges of a potential superpage should re
ect the number of misses that earlier promotion would

have eliminated. So, when page P0 is created, the prefetch counters of all larger superpages containing it

must be adjusted to re
ect the now-diminished bene�ts of their promotion. For all superpages P that contain

P0, P.prefetch is decremented by P0.prefetch , since whenever P0.prefetch was incremented, P.prefetch was,

too.

Consider a system for which the base page size is 4096 bytes, superpages are built using powers of two

base pages, and the largest superpage contains 64 base pages. approx-online behaves as follows. Let

(va; n) denote a superpage starting at virtual page number va and composed of 2n base pages. Assume

5



that the application incurs a TLB miss at virtual address 0x60005023 and the TLB contains a translation

for virtual base page 0x60006 but has no translation for 0x60004. The prefetch counters for potential

superpages containing the virtual page 0x60005 and the TLB entry 0x60006 are incremented by one. These

superpages are (0x60004; 2), (0x60000; 3), (0x60000; 4), (0x60000; 5), and (0x60000; 6). approx-online then

�nds the largest potential superpage that has reached its promotion threshold and creates it. For example,

if (0x60004; 2).prefetch has reached the threshold for superpages of size four, the operating system promotes

the superpage and decrements the prefetch counters for the containing superpages (i.e., (0x60000; 3) through

(0x60000; 6)) by the value of (0x60004; 2).prefetch.

A simple but ineÆcient way to compute prefetch charges is to scan the TLB on a miss to page p, and

check whether some potential superpage contains both p and at least one current TLB entry. To avoid the

overhead of scanning the contents of the TLB on each miss, Romer et al. propose tracking an additional

value, P.tlbcount , for each superpage P . This counter indicates how many of the superpage's component

subpages (one power of two smaller in size) are currently in the TLB or contain TLB entries. P.tlbcount

takes on one of four values: -1, 0, 1, or 2. If P is a superpage or part of a larger superpage that has been

promoted, then P.tlbcount = �1. Otherwise, let P1 and P2 be the two component subpages of P . P.tlbcount

is 0, 1, or 2, depending on how many of its component subpages are in the TLB. This strategy allows the

prefetch charges to be updated eÆciently on a TLB miss. 2

Note that approx-online is a simpli�cation of the more complex online policy [22], which not only

charges a TLB miss to the potential superpages containing p, but also blames the eviction of p on the fact

that unrelated pages were not coalesced into superpages. online thus tries to coalesce other superpages

(those that do not contain p. Romer [21] shows that approx-online is as e�ective as online, but has much

lower bookkeeping overhead.

2The kernel on HP PA-RISC only decides which pagetable entry to insert to TLB. It has no control over which TLB entry

is going to be evicted upon a TLB insert instruction, nor does it have knowledge of which TLB entry has become the victim.

To maintain tlbcount, however, the TLB miss handler needs information about the evicted virtual address and the size of the

victim page. In our implementation, we massaged HP PA-RISC instruction idtlba so that it returns the victim TLB entry

information in a particular control register, which is accessible from the kernel. Though this causes a modi�cation of instruction

idtlba, we believe it is appropriate in a research circumstance.

6



The choice of threshold value used to decide when to promote a set of pages to a superpage is critical

to the e�ectiveness of approx-online. The ideal threshold is small enough for useful superpages to be

promoted early, thereby eliminating future TLB misses, but large enough so that the cost of promotion does

not dominate TLB overhead. We quantify this tradeo� in Section 5.1.

Romer et al. choose an appropriate threshold value by using a competitive strategy | a collection of

pages is promoted to a superpage as soon as it has su�ered enough TLB misses to pay for the cost of

the promotion. Theoretically, the promotion threshold should be the promotion cost divided by the TLB

miss penalty. For example, if the average TLB miss penalty is 40 cycles and copying two base pages to

a contiguous two-page superpage costs 16,000 cycles, the threshold for superpage promotion would be 400

(16,000 divided by 40). Romer [21] proves that a system employing approx-online can su�er no more

than twice the combined TLB miss and superpage promotion overheads that would be incurred by a system

employing an optimal o�ine promotion algorithm. Although the theoretical threshold bounds worst-case

behavior to an acceptable level, smaller thresholds tend to work better in practice. In our experiments, we

therefore run approx-online with a range of di�erent threshold values.

3.2 Promotion via Remapping

No-copy superpage creation relies on hardware support provided by the Impulse memory controller [28].

Such hardware provides an extra level of address remapping at the memory: unused physical addresses are

remapped into \real" physical addresses. In keeping with Impulse terminology, we refer to these remapped

addresses as shadow addresses, or the shadow address space. From the point of view of the processor and

OS memory management system, shadow addresses are used in place of real physical addresses. Shadow

addresses will be inserted into the TLB as mappings for virtual addresses, they will appear as physical tags

on cache lines, and they will appear on the memory bus when cache misses occur. The existence of shadow

memory is completely transparent to user programs and the processor. It is the Impulse memory controller

that identi�es a shadow address and translates it to physical address through the shadow-to-physical memory

controller pagetable. The operating system is responsible for managing this new level of address translation,

but the memory controller maintains its own page tables for shadow memory mappings. Building superpages

7



0x00006000

0x80241000

0x80242000

0x80240000 0x04012000

Physical Addresses

0x06155000

0x40138000

0x20285000

0x80243000

0x00005000

0x00004000

Virtual Addresses Shadow Addresses

0x00007000

00004 00480240

physical size

Processor TLB

virtual

Memory
controller

Figure 1: Detailed Example of Using Shadow Physical Regions

from base pages that are not physically contiguous can be accomplished by simply remapping the virtual

pages to contiguous, aligned shadow pages. The memory controller then maps the shadow pages to the

original physical pages. There is a much larger TLB in the memory controller which we call MTLB. MTLB

works in the same way as the processor TLB except that it translates shadow addresses to real physical

addresses. MTLB translation is not on the virtual address resolution critical path, which means it can be

built to a fairly large size.

Our HPCA99 paper [6] describes the hardware design of Impulse memory controller. The shadow address

space is divided into seven contiguous regions. A hardware shadow descriptor register is introduced for each

shadow region to speed up backend memory access request. The shadow descriptor contains the start

addresses of the shadow region and of the shadow-to-physical memory controller pagetable, and the size of

the pagetable.

Figure 1 illustrates how superpage mapping works on Impulse. For simplicity, internal details of Impulse

memory controller are not shown. Interested readers can refer to Carter et al. [6] Suppose 2G bytes are

reserved for real physical memory space. Physical address starting from 0x8000000, therefore, is unused and

are interpreted as shadow address space. In this example, the OS has mapped a contiguous 16KB virtual

address range to a single shadow superpage at \physical" page frame 0x80240. Upon a reference to a virtual

address within this superpage range, virtual to physical address translation is executed in the usual way

at the processor TLB. The processor places the obtained \physical" address onto the system memory bus

8



to get the data from memory controller. This \physical" address is in fact in the shadow address space.

The memory controller detects that this \physical" address needs to be retranslated using its local shadow-

to-physical translation MTLB/pagetable. The seven shadow descriptors are searched for a match, and the

selected descriptor provides the needed information. In the example in Figure 1, the processor translates

an access to virtual address 0x00004080 to shadow physical address 0x80240080, which the controller, in

turn, translates to real physical address 0x40138080. In this case, the memory controller can determine if

an address on the system memory bus is a real physical address or a shadow address by simply checking the

highest bit, and proceed accordingly.

Impulse has shown its e�ectiveness in improving TLB performance with superpages built through system

calls. For this part of work the readers can refer to our ISCA paper [28]. That's kind of static approach,

which in fact requires compiler support to be applied to existant applications, or the programmer has to insert

hard coded system calls. The work described in this paper does not recompile or massage the programmes

with system calls. Instead, superpages are built dynamically as the programs go no.

Currently we do not implement superpage tear-down for the online superpage promotion research. Con-

sequently there is one potential limit to Impulse based superpage promotion, i.e., the limit on the number of

shadow descriptors. It is possible that at some time the kernel wants to promote more superpages but there

is not new shadow descriptor available. Since the size of shadow address range that a shadow descriptor can

map is decided by the size of the corresponding shadow-to-physical pagetable, we could make this pagetable

arbitrarily large, which in fact makes this potential restriction moot.

4 Simulation Environment

Our studies use the execution-driven simulator Paint [26], which models a variation of a 240 MHz, single-

issue, HP PA-RISC 1.1 processor running a BSD-based microkernel, and a 120 MHz HP Runway bus.

The 64-kilobyte L1 data cache is non-blocking, single-cycle, write-back, write-around, virtually indexed,

physically tagged, and direct-mapped with 32-byte lines. The 512-kilobyte L2 data cache is non-blocking,

write-allocate, write-back, physically indexed and tagged, and 2-way set-associative with 128-byte lines.

Instruction caching is assumed to be perfect. The split-transaction bus multiplexes addresses and data. The

9



memory system has a total memory latency of 60 cycles. The simulated remapping memory controller is

based on the HP controller [10] used in servers and high-end workstations. The MTLB is con�gured at 1024

entries.

The TLB holds both instruction and data translations. It is fully associative, employs a not-recently-

used replacement policy, and returns a translation in one cycle. In addition to the main TLB, a single-entry

micro-ITLB holds the most recent instruction translation. The base page size is 4096 bytes. Superpages

are built in power-of-two multiples of the base page size, and the biggest superpage that the TLB can map

contains 1024 base pages. Kernel code and data structures are mapped using a single block-TLB entry that

is not subject to replacement. Our results include measurements for two TLBs, a small one with only 32

entries, and a larger one with 128 entries, which lets us examine how scaling the TLB a�ects the applications

that we study. The smaller TLB size also is close to the TLB size that Romer et al. used in their study.

They generate their traces using ATOM [25] on a DEC Alpha 3000/700 running DEC OSF/1 2.1, a system

that contains a 225 MHz Alpha 21064 processor with a 32-entry DTLB and an 8 entry ITLB, a 2-megabyte

o�chip cache, and 160 megabytes of main memory.

4.1 Microbenchmark

When comparing online superpage promotion schemes, an important performance factor is the number of

TLB misses that must be eliminated per promotion to amortize the cost of implementing the promotion

algorithm. This cost includes the extra time spent in the TLB miss handler determining when to coalesce

pages, plus the time spent performing the actual promotions (via either copying or remapping). To explore

the cost/performance tradeo�s for each approach, we run a synthetic microbenchark consisting of a loop

that touches 4096 di�erent base pages for a con�gurable number of iterations:

char A[4096][4096];

for (j = 0; j < test_iterations; j++)

for (i = 0; i < 4096; i++)

sum += A[i][j];

Without superpages, each memory access in the synthetic microbenchmark su�ers a TLB miss. However,

since every page is touched repeatedly, superpages can be used to reduce the aggregate cost of these TLB

10



misses. This experiment determines the break-even point for each approach, i.e., the number of iterations

at which the bene�t of creating superpages exceeds the cost of doing so.

4.2 Benchmark Suite

To evaluate the di�erent superpage promotion approaches on real-world problems, we use nine programs from

a mix of sources. Our benchmark suite includes three SPEC95 benchmarks (compress, gcc, and vortex),

three image processing benchmarks (raytrace, rotate, and filter), two scienti�c benchmarks (cga and

matmul), and one SPLASH-2 benchmark (radix) [29]. All benchmarks were compiled with gcc 2.7.2 and

optimization level \-O2".

Compress is the SPEC95 data compression program run on an input of one million characters. Note that

the default SPEC95 implementation of compress executes the compression algorithm 25 times, whereas the

version of compress employed by Romer et al. appears to have executed the algorithm only once. Running

a di�erent number of iterations does not a�ect the relative performance of the various superpage promotion

algorithms, but it does make the raw numbers (e.g., the number of TLB misses) incomparable. Gcc is

the cc1 pass of the version 2.5.3 gcc compiler (for SPARC architectures) used to compile the 306-kilobyte

�le \1cp-dec1.c". Vortex is an object-oriented database program measured with the SPEC95 \test" input.

Radix is an integer radix sort program (based on the method of Blelloch et al. [4]) run with the SPLASH-

2 default arguments. Cga is the NPB2.3 benchmark suite's class A conjugate gradient benchmark, which

performs a sparse matrix-vector product. Matmul is the conventional, tiled version of dense matrix-matrix

multiplication run on 1024�1024 matrices with 32�32 tiles. Raytrace is an interactive isosurfacing volume

renderer whose input is a 1024�1024�1024 volume; its implementation is based on work done by Parker et

al. [20] Filter performs an order-129 binomial �lter on a 32�1024 color image. Rotate turns a 1024�1024

color image clockwise through one radian.

Two of these benchmarks, gcc and compress, are also included in Romer et al.'s benchmark suite,

although we use SPEC95 versions, whereas they use SPEC92 versions. We do not use the other SPEC92

applications from that study, due to the benchmarks' obsolescence. Several of Romer et al.'s remaining

11



1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

iterations

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p

copy+asap
copy+aol2
copy+aol8
copy+aol32
copy+aol64
copy+aol128

(a) copying

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

iterations

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p remap+asap

remap+aol2
remap+aol8
remap+aol32

(b) remapping

Figure 2: Microbenchmark performance for 4096 base pages. aolxx: approx-online with threshold xx

benchmarks are based on tools used in the research environment at the University of Washington, and are

not readily available to us.

5 Results

The performance results presented here are obtained through complete simulation of the benchmarks, in-

cluding both kernel and application time, the direct overhead of implementing the superpage promotion

algorithms, and the resulting e�ects on memory system. We �rst present the results of our microbenchmark

experiments exploring the break-even points for each of the superpage promotion policies and mechanisms,

then we present comparative performance results for our application benchmark suite.

5.1 Microbenchmark Results

Figure 2(a) and Figure 2(b) illustrate our microbenchmark results for online superpage promotion via copying

and remapping, respectively. The microbenchmark's working set is suÆciently large that performance is the

same for both a 32-entry and a 128-entry TLB. The x axes indicate the number of times the microbenchmark's

main loop is repeated, i.e., the number of times each page is referenced. The execution times include kernel

startup times. These graphs emphasize the performance di�erences among the asap and approx-online

policies.

For instance, copying-based asap only becomes pro�table after each page is touched more than one

thousand times, whereas the same policy breaks even after only sixteen references per page when remapping

12



is used. Copying performs much worse when pages are seldom referenced: execution time is 94 times slower

than the baseline when the asap policy is employed but each page is touched only once. This causes all of

the pages to be promoted (copied), even though they are never accessed again. In contrast, the remapping

promotion mechanism delivers more robust performance, and both remap+asap and remap+aol2 result in

a slowdown of less than a factor of two when the microbenchmark touches each page between one and eight

times. The cost of a TLB miss increases from around 30 cycles in the baseline to 700 cycles for remapping

asap, and to 88,000 cycles for copying asap. In this example, asap su�ers only one TLB miss per subpage

before promoting the set of pages to a superpage, so this average TLB miss time includes the cost promotion.

Performances for all the approx-online con�gurations su�er when the threshold is larger than the

number of references to each page. The additional overheads in the TLB miss handler dominate the mi-

crobenchmark execution time. The number of references required for this policy to be pro�table increases

with the threshold. For copying-based promotion and thresholds of two and eight, the number of references

per page must be 64 and 16 times the threshold, respectively. For remapping and for copying with thresholds

of 32 or more, approx-online improves performance when the number of references per page is at least

eight times the threshold. The TLB miss penalty goes from about 30 cycles in the baseline to 800 cycles for

remapping approx-online and 5800 cycles for copying approx-online.

In general, the remapping-based policies deliver performance bene�ts at much lower thresholds, and all

policies and mechanisms perform well when pages are referenced at least 2048 times. asap exhibits the

largest variation in performance, delivering the best speedups when superpages are built via remapping, and

the worst slowdowns when superpages are built via copying.

5.2 Full-Application Results

Table 1 lists the characteristics of the baseline run of each benchmark, where no superpage promotion

occurs. These benchmarks demonstrate varying sensitivity to TLB performance: on the system with the

smaller TLB, between 14% and 77% of their execution time is spent in the data TLB miss handler. The

percentage of time spent handling TLB misses falls to between less than 1% and 58% on the system with a

128-entry TLB.

13



Total Cache DTLB DTLBmiss
Benchmark cycles Loads Stores misses misses time

(millions) (thousands) (thousands) (thousands) (thousands)

32-entry TLB
compress 7369 928492 434950 7117 63878 60.06%
gcc 1196 248426 126507 545 3305 15.66%
vortex 1372 274983 186154 740 5699 23.01%
radix 544 35541 10722 544 1960 20.00%
cga 3059 432698 7514 18572 7384 14.97%
matmul 9609 824743 144160 13136 138585 77.01%
raytrace 1311 86628 9894 2290 8459 33.98%
�lter 603 131340 67961 537 4227 37.46%
rotate 483 32358 26149 3016 3617 53.64%

128-entryTLB
compress 3983 672041 370687 6846 22 0.06%
gcc 883 220213 120795 508 170 1.20%
vortex 912 236734 177643 684 616 4.05%
radix 520 33706 10261 543 1502 16.28%
cga 2704 431972 7332 18525 786 3.72%
matmul 2386 269850 4839 12147 136 0.33%
raytrace 1303 86042 9776 2283 8399 33.89%
�lter 578 129410 67476 538 3745 34.70%
rotate 483 32354 26148 3016 3617 53.65%

Table 1: Characteristics of each baseline run.

Figures 3 and 4 show the normalized speedups of the di�erent combinations of promotion policies (asap

and approx-online) and mechanisms (remapping and copying) compared to the baseline instance of each

benchmark. We can make two orthogonal comparisons from these �gures: remapping versus copying, and

asap versus approx-online. The two dark bars on the left of the �gure for each benchmark illustrate

results for remapping-based asap (remap+asap) and copying-based asap (copy+asap). The two light bars on

the right represent the best results from remapping-based approx-online (remap+aol) and copying-based

approx-online (copy+asap). The numbers appended to the approx-online labels indicate the optimal

thresholds for initiating the promotion of two 4-kilobyte base pages to one 8-kilobyte superpage. When

the base threshold is eight (e.g., for copy+aol8), the corresponding threshold for promoting two 8-kilobyte

superpages to a 16-kilobyte superpage is 2� 8 = 16, and so forth. Online superpage promotion can improve

performance by up to a factor of 4.5 (on matmul, our tiled matrix multiply routine). However, it also can

decrease performance by up to 35% (when using the copying version of asap on rotate).

We �rst compare the two promotion algorithms, asap and approx-online, using the results from Fig-

ures 3 and 4. The relative performance of the two algorithms is strongly in
uenced by the choice of promo-

tion mechanism, remapping or copying. Using a remapping promotion mechanism, asap slightly outperforms

approx-online in the average case. It exceeds the performance of approx-online in thirteen of the eighteen

14



re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol3

2

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol8

co
py

+a
ol1

6

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol3

2

0

1

2

3

sp
ee

du
p

asap
approx-online

compress

1.
84

1.
82

1.
83

1.
69

gcc

1.
37

1.
31

1.
24

1.
16

vortex

1.
53

1.
30 1.

44
1.

02

radix
1.

24
0.

91
1.

23
1.

19

cga

1.
13

0.
82

1.
11

1.
10

matmul

4.
56

4.
26

4.
57

4.
61

raytrace

1.
59

1.
20

1.
58

1.
56

filter

1.
69

1.
64

1.
66

1.
64

rotate

1.
30

0.
64

1.
47

0.
86

Figure 3: Normalized speedups for our two superpage promotion mechanisms for each of two promotion policies on

a system with a 32-entry TLB. This graph shows the best performance for any policy con�guration in each category.

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol3

2

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol3

2

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol1

6

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol1
6

co
py

+a
ol1

6

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

0

1

2

3

sp
ee

du
p

asap
approx-online

compress

0.
99

0.
99

0.
95

0.
91

gcc

1.
02

0.
98

1.
01

0.
98

vortex

1.
07

0.
91 1.

04
0.

89

radix

1.
19

0.
87

1.
18

1.
14

cga

1.
00

0.
72

1.
03

0.
98

matmul

1.
13

1.
06 1.
13

1.
09

raytrace

1.
58

1.
20

1.
55

1.
38

filter

1.
62

1.
57

1.
53

1.
57

rotate

1.
34

0.
64

1.
47

1.
13

Figure 4: Normalized speedups for our two superpage promotion mechanisms for each of two promotion policies on a

system with a 128-entry TLB. These results give the best performance for any policy con�guration in each category.

15



experiments, and trails the performance of approx-online in only four cases. The di�erences in performance

range from asap+remap outperforming aol+remap by 13% for gcc with a 32-entry TLB, to aol+remap out-

performing asap+remap by 17% for rotate with a 32-entry TLB. In general, however, the performance

di�erences between the two policies are small. Considering that the results we present for approx-online

are for the optimal threshold in each case (rather than some �xed system-wide threshold) and that asap is

a much simpler policy to implement, we believe that the asap policy is the best choice when remapping is

an option.

The results change noticeably when we employ a copying promotion mechanism. In this case, approx-online

outperforms asap in ten of the eighteen experiments, while the policies performs identically in three of the

other eight cases. The magnitude of the disparity between approx-online and asap results is also dramat-

ically larger. The di�erences in performance range from asap outperforming approx-online by 28% for

vortex with a 32-entry TLB, to approx-online outperforming asap by 36% for raytrace with a 32-entry

TLB. Overall, our results con�rm those of Romer et al.: the best promotion policy to use when creating

superpages via copying is approx-online.

The relative performance of the asap and approx-online promotion policies changes when we em-

ploy di�erent remapping mechanisms because asap tends to create superpages more aggressively than

approx-online. The design assumption underlying the approx-online algorithm (and the reason that

it performs better than asap when copying is used) is that superpages should not be created until the op-

portunity cost of TLB misses equals the cost of creating the superpages. Given that remapping has a much

lower cost for creating superpages than copying, it is not surprising that the more aggressive asap policy

performs relatively better than approx-online when combined with the remapping mechanism (and vice

versa).

Note that we present numbers for an optimal approx-online policy for each benchmark | one that

uses the promotion threshold that we observe to deliver the best performance for that benchmark. This

optimal threshold ranges from four (for remap+aol on most applications) to 32 (for copy+aol on two of the

applications). The wrong choice of threshold can hurt performance, as demonstrated by Figures 5 and 6.

For a 32-entry TLB, the di�erence between the performances of copy+aol with the best and worst threshold

16



re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

total cycles
cache misses

0.
54

0.
94

0.
55

1.
06

0.
55

0.
96

0.
55

0.
96

0.
55

0.
98

0.
62

2.
09

0.
63

2.
33

0.
59

1.
86

(a) compress

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

0.
66

0.
65 0.

77
3.

39

0.
69 0.

89

0.
72

1.
08

0.
78

1.
28

0.
98

7.
42

1.
01

6.
09

1.
13

5.
87

(b) vortex

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

0.
77 0.

90

1.
56

2.
87

0.
68 0.
78

0.
71 0.
79

0.
76 0.
82

1.
32

2.
17

1.
26

1.
78

1.
17 1.

37

(c) rotate

Figure 5: Performance details for selected benchmarks on the system with a 32-entry TLB.

choices between eight and 32 is as large as 23% for cga (1.14 versus 0.91). The performance spread with a

128-entry TLB is as large as 45% for matmul. The magnitude of the impact of proper threshold selection

is atypically large for these two programs, however. The choice of a �xed compromise threshold, e.g., 16,

reduces the average performance of approx-online by roughly 4%. In their earlier study, Romer et al.

employ a �xed threshold of 100, which we �nd to be far too large. This issue will be discussed in more detail

in Section 5.3.

When we compare the two superpage creation mechanisms, remapping and copying, remapping is the clear

winner, but by highly varying margins. The di�erences in performance between the best overall remapping-

based algorithm (asap+remap) and the best copying-based algorithm (aonline+copying) is as large as 51%

in the case of vortex on a 32-entry TLB. Overall, asap+remap outperforms aonline+copying by more than

15% in seven of the eighteen experiments, although the margin is less than 5% in all but one of the other

tests.

Figure 5 and Figure 6 illustrate one of the secondary reasons that the remapping mechanism outperforms

the copying mechanism | cache pollution. These �gures show the relative numbers of cache misses su�ered

by the benchmarks when superpage promotion is enabled (versus the baseline execution) for three of our

benchmarks. The dark gray bars indicate the relative execution time of the benchmarks with superpage

promotion enabled, while the medium gray bars indicate the relative number of cache misses. A shorter bar

thus indicates improved performance or a reduction in the number of cache misses. For both con�gurations

17



re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

total cycles
cache misses

1.
01

0.
98

1.
01 1.
11

1.
05

1.
58

1.
06

1.
58

1.
07

1.
70

1.
10

1.
79

1.
12

2.
14

1.
10

1.
97

(a) compress

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

0.
94

0.
65

1.
10

3.
59

0.
96

0.
82 0.

98
0.

91 1.
03 1.

15

1.
13

3.
18

1.
15

2.
80

1.
22

2.
71

(b) vortex

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

re
m

ap
+a

ol8

re
m

ap
+a

ol1
6

co
py

+a
ol8

co
py

+a
ol1

6

co
py

+a
ol3

2

0

1

2

3

no
rm

al
iz

ed
 c

ou
nt

s

0.
75 0.

88

1.
56

2.
87

0.
68 0.
78

0.
70 0.
79

0.
75 0.
81 0.
88

1.
21

0.
95 1.

21

1.
00 1.
10

(c) rotate

Figure 6: Performance details for selected benchmarks on the system with a 128-entry TLB.

of TLBs, the number of cache misses is big for copying based promotion for each of the three benchmarks.

Take compress for an example. For 32-entry TLBs, superpage promotion improves the performance of all

policies and both approaches. However, the number of cache misses grows substantially for the copying

variant of approx-online on compress. A closer examination of compress reveals that the high DTLB

miss rate (60%) and resulting large number of superpage promotions leads to signi�cant cache pollution as

the superpages are created. Nevertheless, due to the dramatic reduction in TLB misses, the performance of

compress improves by roughly 40%, despite the large increase in L1 cache misses. For vortex and rotate,

the cost of page copying and cache pollution is not amortized enough so that almost all copying based

promotions fail to bene�t at 32-entry TLBs.

5.3 Discussion

Romer et al. show that approx-online is generally superior to asap when copying is used. When remapping

is used to build superpages, though, we �nd that the reverse is true. Using Impulse-style remapping results

in larger speedups and consumes much less physical memory. Since superpage promotion is cheaper with a

remapping mechanism, policies are much less likely to promote pages too aggressively.

Romer et al.'s traced-based simulation models no cache interference between the application and the

TLB miss handler; instead, that study assumes that each superpage promotion costs a total of 3000 cycles

per kilobyte copied [22]. Table 2 shows our measured lower bounds of the per-kilobyte cost (in CPU cycles)

18



cycles per average baseline
benchmark 1KByte promoted cache hit ratio cache hit ratio

rotation 16,316 82.12% 87.47%
compress 5,969 98.88% 99.41%
raytrace 5,186 96.18% 97.61%
radix 5,503 97.67% 98.81%

Table 2: Comparison of cache performances with average costs in cycles for approx-online superpage promotion

via copying.

to promote pages by copying for four representative benchmarks. We measure this bound by subtracting

the execution time of aol+remap from that of aol+copy and dividing by the number of kilobytes copied.

For our simulation platform and benchmark suite, superpage promotion costs vary with an application's

cache performance. For compress, raytrace, and radix, all of which have cache hit ratios in excess of 96%,

superpage promotion is about twice as expensive as Romer et al. assumed. For rotate, which has a cache

hit ratio of only 82%, superpage promotion costs more than �ve times the cost charged in the trace-driven

study.

We also �nd that even when copying is used to promote pages, approx-online performs better with a

more aggressive (lower) threshold than is used by Romer et al. Speci�cally, the optimal threshold in our

experiments varies from 8 to 32, while their study uses a �xed threshold of 100. This di�erence in thresholds

has a signi�cant impact on performance. For example, when we run the gcc benchmark using a threshold

of 128, approx-online with copying slowed performance by 4.3% with a 32-entry TLB, which is close to

the 0.9% slowdown reported in Romer et al.'s study { the di�erence is likely to be caused by the higher

per-kilobyte promotion costs we measured. In contrast, when we run approx-online with copying using

the optimal threshold of 8, performance is improved by 16%. Given that our measured cost of promoting

pages is much higher than the 3000 cycles estimated in their study, we expected our optimal thresholds to

be higher, not lower than theirs. In general, we �nd that to achieve their maximum potential, even the

copying-based promotion algorithms need to be much more aggressive about creating superpages than was

suggested by the earlier study.

Finally, we can compare the results of our experiments using online superpage promotion against those

reported by Swanson et al. using a static promotion policy and a remapping mechanism. For their study [28],

the authors hand annotate their benchmarks to insert system calls at the start of execution or during

19



re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol3

2

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol8

co
py

+a
ol1

6

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol1

6

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol4

co
py

+a
ol8

re
m

ap
+a

sa
p

co
py

+a
sa

p

re
m

ap
+a

ol1
6

co
py

+a
ol8

0

1

2

3

sp
ee

du
p

asap
approx-online

compress

1.
51

1.
55

1.
55

1.
42

gcc

1.
25

1.
22

1.
17

1.
12

vortex
1.

36
1.

33
1.

31
1.

07

radix

1.
43

0.
77

1.
43

0.
94

cga

1.
07

0.
87 1.

06
0.

40

matmul

3.
04

2.
96

3.
04

2.
46

raytrace

1.
59

1.
21

1.
53

0.
80

filter

1.
43

1.
40

1.
43

1.
42

rotate

1.
17

0.
64

1.
29

0.
72

Figure 7: Normalized speedups as tlbcount checking is taken o�. This graph shows the best performance for any

policy con�guration in each category with a 32-entry TLB.

malloc() operations to request that a particular region of virtual memory be made into a superpage. They

�nd that static superpage promotion coupled with remapping improves the performance of compress by

approximately 5%, gcc by approximately 2%, radix by approximately 20%, and vortex by approximately

10% for a 128-entry processor TLB. Using a dynamic superpage promotion algorithm that automatically

selects pages for promotion without user input (asap+remap), the performance of compress drops by 1%,

while the performances of gcc, radix, and vortex improve by 2%, 19%, and 7%, respectively. Thus, we �nd

that in most cases, the algorithmic overhead of running an online superpage promotion does not mask the

potential bene�ts of promotion even when coupled with a low-overhead promotion mechanism. This result

con�rms the basic premise of Romer et al.'s study, that online promotion algorithms are a potentially valuable

operating system technique for improving memory system performance on a wide variety of platforms.

Remember that in approx-online algorithm, P.prefetch is not incremented unless potential superpage

P contains a current TLB entry as one of its component pages. To evaluate the importance of tlbcount

checking, we take it o� to see what happens. That is, P.prefetch is incremented as long as any of its

component pages causes a TLB miss. Figure 7 shows the normalized speedups obtained on a 32-entry TLB

without tlbcount checking. Compare Figure 7 with Figure 3 and we can see that performance drops noticeably

for almost all the con�gurations. This experiment proves the e�ectiveness of tlbcount checking, which makes

approx-online superpage promotion less speculative.

20



6 Conclusions and Future Work

To summarize our results, we �nd that when creating superpages dynamically:

� Remapping-based promotion outperforms copying-based promotion by up to 30%.

� Remapping-based superpage promotion has better cache performance than copying-based promotion.

Depending on the application, the di�erence in cache performance can signi�cantly a�ect the speedup

of superpage promotion.

� Remapping-based asap superpage promotion is the most promising approach (because the cost of

promotion is relatively low).

Although our results for copying-based promotion are qualitatively similar to Romer et al.'s, they di�er

quantitatively. Romer et al. use trace-driven simulation, thus their cost model for promotion is quite simple.

Based on our measurements, the costs for copying-based promotion are signi�cantly higher in a real system,

largely due to cache e�ects. In addition, we �nd that the promotion thresholds used in Romer et al.'s

approx-online simulations tend to be too high.

As applications continue to consume larger amounts of memory, the necessity of using superpages will

grow. Our most signi�cant result is that, given relatively simple hardware at the memory controller, a

straightforward greedy policy for constructing superpages works well.

Further work in this area should look at how the di�erent promotion mechanisms and policies interact

with multiprogramming. When multiple programs compete for TLB space, it is possible that the choice

of which mechanism and policy is best will change. In particular, the penalty for being too aggressive in

creating superpages increases when the memory subsystem might be forced to tear down superpages to

support demand paging. Our intuition is that remapping-based asap will likely remain the best choice,

because it combines the lowest overhead promotion policy with the lowest overhead promotion mechanism.

References

[1] Advanced Micro Devices. AMD Athlon processor technical brief. http://www.amd.com/products/cpg/athlon/-

techdocs/pdf/22054.pdf, 1999.

[2] K. Bala, F. Kaashoek, and W. Weihl. Software prefetching and caching for translation bu�ers. In Proc. of the

First OSDI, pp. 243{254, Nov. 1994.

21



[3] B. Bershad, D. Lee, T. Romer, and J. Chen. Avoiding con
ict misses dynamically in large direct-mapped caches.

In Proc. of the 6th ASPLOS, pp. 158{170, Oct. 1994.

[4] G. Blelloch, C. Leiserson, B. Maggs, C. Plaxton, S. Smith, and M. Zagha. A comparison of sorting algorithms

for the connection machine cm-2. In Proc. of the 3rd Annual ACM Symposium on Parallel Algorithms and

Architectures, pp. 3{16, July 1991.

[5] P. Cao, E. Felten, and K. Li. Implementation and performance of application-controlled �le caching. In Proc.

of the First OSDI, pp. 165{177, Nov. 1994.

[6] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,

M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a smarter memory controller. In Proc. of the

Fifth HPCA, pp. 70{79, Jan. 1999.

[7] J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based study of TLB performance. In Proc. of the 19th

ISCA, pp. 114{123, May 1992.

[8] Compaq Computer Corporation. Alpha 21164 Microprocessor Hardware Reference Manual, July 1999.

[9] HAL Computer Systems Inc. SPARC64-GP processor. http://mpd.hal.com/products/SPARC64-GP.html, 1999.

[10] T. Hotchkiss, N. Marschke, and R. McClosky. A new memory system design for commercial and technical

computing products. Hewlett-Packard Journal, 47(1):44{51, Feb. 1996.

[11] Intel Corporation. Pentium Pro Family Developer's Manual, Jan. 1996.

[12] B. Jacob and T. Mudge. Software-managed address translation. In Proc. of the Third HPCA, pp. 156{167, Feb.

1997.

[13] B. Jacob and T. Mudge. A look at several memory management units, tlb-re�ll mechanisms, and page table

organizations. In Proc. of the 8th ASPLOS, pp. 295{306, Oct. 1998.

[14] A. Karlin, K. Li, M. Manasse, and S. Owicki. Empirical studies of competitive spinning for shared memory

multiprocessors. In Proc. of the 13th SOSP, pp. 41{55, Oct. 1991.

[15] Y. Khalidi, M. Talluri, M. Nelson, and D. Williams. Virtual memory support for multiple page sizes. In Proc.

of the 4th WWOS, pp. 104{109, Oct. 1993.

[16] MIPS Technologies, Inc. MIPS R10000 Microprocessor User's Manual, Version 2.0, Dec. 1996.

[17] J. Mogul. Big memories on the desktop. In Proc. 4th WWOS, pp. 110{115, Oct. 1993.

[18] M.Talluri and M. Hill. Surpassing the TLB performance of superpages with less operating system support. In

Proc. of the 6th ASPLOS, pp. 171{182, Oct. 1994.

[19] M.Talluri, S. Kong, M. Hill, and D. Patterson. Tradeo�s in supporting two page sizes. In Proc. of the 19th

ISCA, pp. 415{424, May 1992.

[20] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing for isosurface rendering. In

Proc. of the Visualization '98 Conference, Oct. 1998.

[21] T. Romer. Using Virtual Memory to Improve Cache and TLB Performance. PhD thesis, University of Wash-

ington, May 1998.

[22] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reducing TLB and memory overhead using online superpage

promotion. In Proc. of the 22nd ISCA, pp. 176{187, June 1995.

[23] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-based TLB preloading. http://www.ce.chalmers.se/-

ash/recency-preloading.pdf, 1999.

[24] D. Sleator and R. Tarjan. Amortized eÆciency of list update and paging rules. CACM, 28:202{208, 1985.

[25] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. In Proc. of the

1994 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 196{205, June

1994.

[26] L. Stoller, R. Kuramkote, and M. Swanson. PAINT: PA instruction set interpreter. TR UUCS-96-009, University

of Utah Department of Computer Science, Sept. 1996.

[27] SUN Microsystems, Inc. UltraSPARC User's Manual, July 1997.

[28] M. Swanson, L. Stoller, and J. Carter. Increasing TLB reach using superpages backed by shadow memory. In

Proc. of the 25th ISCA, pp. 204{213, June 1998.

[29] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs: Characterization and method-

ological considerations. In Proc. of the 22nd ISCA, pp. 24{36, June 1995.

22


