
Reference Manual of Impulse System Calls

Lixin Zhang, Leigh Stoller

UUCS-99-018

Department of Computer Science
University of Utah

Salt Lake City, UT 84112, USA

January 20, 1999

Abstract

This document describes the Impulse system calls. The Impulse system calls allow user applications to
use remapping functionality provided by the Impulse Adaptive Memory System to reorganize their data
structures without actually moving data around the physical memory. Impulse supports several remapping
algorithms. User applications choose the desired remapping algorithms by calling the right Impulse system
calls. This note uses detailed examples to illustrate each Impulse system call.

This effort was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under agreement number F30602-98-1-0101 and DARPA Order Numbers F393/00-01 and F376/00. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official
polices or endorsements, either express or implied, of DARPA, AFRL, or the US Government.

Contents

1 Introduction 2

2 Impulse System Calls 2

2.1 ams mapshadow() . 2

2.1.1 ams mapshadow(AMS TYPE SUPERPAGE, superpage args t *datablock) . . 3

2.1.2 ams mapshadow(AMS TYPE BASESTRIDE, basestride args t *datablock) 4

2.1.3 ams mapshadow(AMS TYPE TRANSPOSE, transpose args t *datablock) . . 7

2.1.4 ams mapshadow(AMS TYPE PAGECOLOR, pagecolor args t *datablock) . . 9

2.1.5 ams mapshadow(AMS TYPE VINDIRECT, vindirect args t *datablock) . . 11

2.1.6 ams mapshadow(AMS TYPE VINDIRECT2, vindirect2 args t *datablock) 13

2.1.7 ams mapshadow(AMS TYPE VINDIRECT3, vindirect3 args t *datablock) 17

2.2 ams remapshadow() . 18

2.3 ams allocvirt() . 20

2.4 ams mapvtov() . 21

1

1 Introduction

This document describes the Impulse system calls. The Impulse system calls and their related data structures
are defined in the following header file.

/nfs/flux/impsrc/dist/simpulse/app-lib/include/amssup.h

User applications should include this header file and link with the following object file to pick up the Impulse
system calls.

/nfs/flux/impsrc/dist/simpulse/app-lib/libkernel.o

Currently, the Impulse memory system supports the following remappings: no-copy superpage forma-
tion, strided remapping, transpose remapping, no-copy page coloring, and scatter/gather through an
indirection vector. Depending on what kind of values are stored in the indirection vector and how the indi-
rection vector is created, scatter/gather through an indirection vector is further split into three sub-types:
scatter/gather through an index vector, if the indirection vector stores indices to an array; scatter/gather
through an offset vector, if the indirection vector stores byte offsets; and dynamic cacheline assembly, if
the indirection vector is dynamically created by the OS.

2 Impulse System Calls

The section describes four Impulse system calls:

� ams mapshadow() sets up remappings and is the primary interface for applications to access Im-
pulse features;

� ams remapshadow()allows users to adjust existing remappings previously set up by ams mapshadow();

� ams allocvirt() allocates virtual memory, used in conjunction with ams mapvtov();

� ams mapvtov() maps a set of virtual addresses to a specified shadow region, used in conjunction
with ams allocvirt() to optimize the layout of shadow data in virtually indexed caches.

2.1 ams mapshadow()

int
2

ams_mapshadow(int type,
void *datablock);

ams mapshadow() is the main Impulse system call. Application programs use this system call to set up
remappings. The argument type specifies which type of remapping to set up. The argument datablock
is the address of a type-specific data structure. The type can be one of the followings:

� AMS TYPE SUPERPAGE: no-copy superpage formation;

� AMS TYPE BASESTRIDE: strided scatter/gather remapping;

� AMS TYPE TRANSPOSE: transpose remapping;

� AMS TYPE PAGECOLOR: no-copy page coloring;

� AMS TYPE VINDIRECT: scatter/gather through an index vector;

� AMS TYPE VINDIRECT2: scatter/gather through an offset vector;

� AMS TYPE VINDIRECT3: dynamic cacheline assembly.

2.1.1 ams mapshadow(AMS TYPE SUPERPAGE, superpage args t *datablock)

ams mapshadow(AMS TYPE SUPERPAGE, datablock) sets up a remapping of no-copy superpage
formation. The argument datablock points to a superpage args t structure defined as the follow-
ing:

typedef struct {
vaddr_t vaddr;
int size;
int prefcount;
int prefinfo;

} superpage_args_t;

This call maps the virtual memory region, starting at address vaddr with size bytes in length, to an
equally-sized contiguous shadow memory region. The Impulse MMC is responsible for translating the
shadow memory region back to the physical pages to which the original virtual memory region maps. Both
vaddr and size must be page-aligned.

prefetch and prefinfo contain information about how to perform prefetching inside the shadow re-
gion: prefcount is the number of blocks to prefetch each time; and prefinfo is the prefetch distance.

3

For example, assuming that prefcount equals
�

and prefinfo equals ��� (a negative value means
prefetching backwards), when the memory controller receives a load request for block A, it will prefetch
two blocks — block (�����) and block (���	�).

Since the remapped region is contiguous in both virtual memory and shadow memory after remapping, it
can use superpages to reduce the number of TLB entries required to map it. This call converts the virtual
memory region to TLB superpages, with the largest possible superpages allocated, based on the alignment
of vaddr. Because superpages must be aligned to their sizes, superpages are allocated by walking the
virtual address region and assigning the largest possible superpage restricted by the current alignment. For
example, if the current address is 16Kbyte aligned, a 16Kbyte superpage can be assigned. The address is
then incremented; and the new address alignment is checked. This procedure proceeds until the end of the
region is reached.

Superpage sizes are powers of 2 multiple of base pages ranging from 8K to 4M bytes in size. The base
page size is 4K bytes. In practice, the first few and last few pages are often base pages, with the pages in
the middle being larger. For example, a virtual memory region at 0x00039000 with 0x100000 bytes will be
converted to 9 pages in size of 4K, 8K, 16K, 256K, 512K, 128K, 64K, 32K, and 4K bytes respectively. This
conversion reduces the number of TLB entries required for this region from 256 to 9.

ams mapshadow() returns 0 on success and -1 otherwise.

ERRORS:

EINVAL Either vaddr or size is not page-aligned.

Figure 1 shows a simple example of using ams mapshadow(AMS TYPE SUPERPAGE, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

2.1.2 ams mapshadow(AMS TYPE BASESTRIDE, basestride args t *datablock)

ams mapshadow(AMS TYPE BASESTRIDE, datablock) sets up a strided scatter/gather remap-
ping. The argument datablock points to a basestride args t structure defined as the following:

typedef struct {
vaddr_t *newaddr;
vaddr_t vaddr;
int count;
int objsize;
int stride;
int offset;

4

/*
* Creates superpages for array A[count]
*/

#define PAGESIZE 0x1000

double foo(double *A, int count)
{

int i;
double sum = 0;
superpage_args_t sp_args;

#ifdef IMPULSE
sp_args.vaddr = (vaddr_t) A;
sp_args.size = count * sizeof(double);
sp_args.prefcount = 0;
sp_args.prefinfo = 0;

if (ams_mapshadow(AMS_TYPE_SUPERPAGE, &sp_args) < 0) {
printf("ams_mapshadow(AMS_TYPE_SUPERPAGE, ...), failed\n");
exit(1);

}
#endif

for (i = 0; i < count; i += PAGESIZE/sizeof(double))
sum += A[i];

return sum;
}

Figure 1: A code fragment using ams mapshadow(AMS TYPE SUPERPAGE, ...).

5

Original data structure Compacted alias array

St
ri

de offset
objsize

Figure 2: Visualize strided remapping.

int prefcount;
int prefinfo;
int salign;
int valign;

} basestride_args_t;

This call compacts data items in strided memory locations into a dense alias array, as shown by Figure 2.

vaddr is the starting address of the data structure being remapped and must be page-aligned. The data
structure has count strides, each of which is stride bytes in length. Each required data element is
objsize bytes in length; and its byte offset from the base of the stride is given by offset. prefcount
is the number of blocks to prefetch each time and prefinfo is the prefetch stride.

The OS first allocates a shadow region for the alias array storing compacted data items. The shadow region
has (count � objsize) bytes. The OS then allocates a new virtual region and map it to the shadow
region. The starting address of the new virtual region is stored at a location in the application address
space pointed to by newaddr. salign specifies the expected alignment of the new shadow region and
determines where the alias array will be mapped to in physically index caches (like most L2 caches in
modern microarchitectures); and valign specifies the expected alignment of the new virtual region and
determines where the alias array will be mapped to in virtually index caches (like most L1 caches in modern
microarchitectures). Both salign and valign must be page-aligned.

ams mapshadow() returns 0 on success, and -1 otherwise. If successful, the virtual address of the alias
array is placed into the memory location pointed to by newaddr.

ERRORS:

EINVAL Either vaddr or salign or valign is not page-aligned.
EFAULT newaddr specifies an invalid address.

6

Figure 3 shows a simple example of using ams mapshadow(AMS TYPE BASESTRIDE, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

2.1.3 ams mapshadow(AMS TYPE TRANSPOSE, transpose args t *datablock)

ams mapshadow(AMS TYPE TRANSPOSE, datablock) sets up a transpose remapping. The argu-
ment datablock points to a transpose args t structure defined as the following:

typedef struct {
vaddr_t *newaddr;
vaddr_t vaddr;
int elemsize;
int rownum;
int rowsize;
int prefcount;
int prefinfo;
int salign;
int valign;

} transpose_args_t;

This system call maps a two-dimensional matrix to its transpose without copying.

newaddr is a pointer to a location in the application address space where the kernel can store the return
value. vaddr is the virtual address of a two-dimensional matrix and must be page-aligned. elemsize
gives the size of matrix element in bytes. rownum gives the number of rows that the two-dimensional matrix
has. rowsize gives the size of each row in bytes. (Thus, the matrix has rowsize/elemsize columns.)
prefcount is the number of blocks to prefetch each time and prefinfo is the prefetch distance, as
described in Section 2.1.1.

The return value of this function is the virtual address of a new matrix – the transpose of the original matrix.
salign specifies the expected alignment of the new matrix’s shadow region; and valign specifies the
expected alignment of the new matrix’s virtual region. They determine where the new matrix will be mapped
to in the caches. Both of them must be page-aligned.

ams mapshadow() returns 0 on success, and -1 otherwise. If successful, the virtual address of the new
matrix is placed into the memory location pointed to by newaddr.

ERRORS:

EINVAL Either vaddr or salign or valign is not page-aligned.
7

/*
* Compute the sum of A[8*i+2], where i is from 0 to (size/8 - 1).
*/

float foo(float *A, int size)
{

basestride_args_t bs_args;
float *Anew;
float sum = 0;
int step = 8;

#ifdef IMPULSE
bs_args.newaddr = (vaddr_t *) &Anew;
bs_args.vaddr = (vaddr_t) A;
bs_args.count = size / step;
bs_args.objsize = sizeof(float);
bs_args.stride = sizeof(float) * step;
bs_args.offset = sizeof(float) * 2;
bs_args.prefcount = 1; /* prefetch one block each time */
bs_args.prefinfo = 1; /* prefetch forward */
bs_args.salign = 0x4000; /* Ai[0] to offset 0x4000 in L2C */
bs_args.valign = 0x2000; /* Ai[0] to offset 0x2000 in L1C */

if (ams_mapshadow(AMS_TYPE_BASESTRIDE, &bs_args) == -1) {
perror("ams_mapshadow(AMS_TYPE_BASESTRIDE, ...) failed.");
exit(1);

}
#endif

for (i = 0; i < size / step; i++) {
#ifdef IMPULSE

sum += Anew[i];
#else

sum += A[i * 8 + 2];
#endif

}

return sum;
}

Figure 3: A code fragment using ams mapshadow(AMS TYPE BASESTRIDE, ...).

8

EFAULT newaddr specifies an invalid address.

Figure 4 shows a simple example of using ams mapshadow(AMS TYPE TRANSPOSE, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

2.1.4 ams mapshadow(AMS TYPE PAGECOLOR, pagecolor args t *datablock)

ams mapshadow(AMS TYPE PAGECOLOR, datablock) sets up a remapping of no-copy page col-
oring. The argument datablock points to a pagecolor args t structure defined as the following:

typedef struct {
vaddr_t vaddr;
int size;
int waysize;
int colorfactor;
int colorid;
int prefcount;
int prefinfo;

} pagecolor_args_t;

This call sets up a remapping for a specified virtual region so that the whole region will be mapped to only
a designated portion of a physically indexed cache. Figure 5 shows how to use page coloring to map a data
structure to the third quadrant of a physically indexed L2 cache.

vaddr points to the virtual region being remapped and must be page-aligned. size gives the size of the
virtual region in bytes. waysize gives the way size of targeted physically indexed cache, which equals
cache size divided by its associativity. colorfactor is number of colors that the cache is split into.
colorid is the index of the color to which the virtual region will solely map. In figure 5, colorfactor
is 4 and colorid is 2. prefcount is the number of blocks to prefetch each time and prefinfo is the
prefetch distance.

ams mapshadow() returns 0 on success, and -1 otherwise.

ERRORS:

EINVAL vaddr is not page-aligned.

Figure 6 shows a simple example of using ams mapshadow(AMS TYPE PAGECOLOR, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

9

/*
* Dense matrix-matrix multiplication: C = A * B.
* A, B, and C are (size x size) matrices.
*/

foo(double *A, double *B, double *C, int size)
{

transpose_args_t tr_args;
double *Bnew, sum;
int i, j, k;

#ifdef IMPULSE
tr_args.newaddr = (vaddr_t *) &Bnew;
tr_args.vaddr = (vaddr_t) x;
tr_args.elemsize = sizeof(double);
tr_args.rownum = size;
tr_args.rowsize = sizeof(double) * size;
tr_args.prefcount = 1;
tr_args.prefinfo = 1;
tr_args.salign = 0; /* don’t care */
tr_args.valign = 0; /* don’t care */

if (ams_mapshadow(AMS_TYPE_TRANSPOSE, &tr_args) == -1) {
perror("ams_mapshadow(AMS_TYPE_TRANSPOSE, ...) failed.");
exit(1);

}
#endif

for (i = 0; i < size; i++)
for (j = 0; j < size; j++) {

for (sum = 0, k = 0; k < size; k++)
#ifdef IMPULSE

sum += A[i][k] * Bnew[j][k];
#else

sum += A[i][k] * B[k][j];
#endif

C[i][j] = sum;
}

}

Figure 4: A code fragment using ams mapshadow(AMS TYPE TRANSPOSE, ...).

10

Shadow Memory:

Virtual Memory:

L2 cache:

color_size

vaddr
size

 waysize

0 1 2 3 0 1 2 0 1 2 0 1 23 3 3
colorid

Figure 5: Mapping a data structure to the third quadrant of a physically indexed L2 cache. In this example, color-
factor is 4; colorid is 2. Note color size is waysize divided by colorfactor.

2.1.5 ams mapshadow(AMS TYPE VINDIRECT, vindirect args t *datablock)

ams mapshadow(AMS TYPE VINDIRECT, datablock) sets up a remapping of scatter/gather through
an index vector, a special case of scatter/gather through an indirection vector when the indirection vector
stores array indices. The argument datablock points to a vindirect args t structure defined as the
following:

typedef struct {
vaddr_t *newaddr;
vaddr_t vaddr;
int count;
int objsize;
vaddr_t iv_vaddr;
int iv_objcount;
int iv_objsize;
int isfortran;
int iv_subtype;
int maxcount;
int prefcount;
int prefinfo;
int salign;
int valign;

} vindirect_args_t;

This call sets up a region of shadow addresses mapped to a one-dimensional array through an indirection
vector. That is, a shadow address at offset soffset in a shadow region is mapped to data item vector[soffset]
in physical memory.

11

/*
* Map A to the second half of L2 cache and B to the first half
* to avoid A[i] and B[i] mapping to the same line of
* a two-way set-associative, 256Kbytes L2 cache.
*/

foo(double *A, double *B, int size)
{

int i;
double sum = 0;

#ifdef IMPULSE
color_array(A, size * sizeof(double), 2, 1);
color_array(B, size * sizeof(double), 2, 0);

#endif

for (i = 0; i < SIZE; i++)
sum += A[i] + B[i];

}

#ifdef IMPULSE
color_array(void *x, int size, int colorfactor, int colorid)
{

pagecolor_args_t args;

args.vaddr = (vaddr_t) x;
args.size = size;
args.waysize = 128 * 1024; /* 256Kbytes/2-way */
args.colorfactor = colorfactor;
args.colorid = colorid;
args.prefcount = 1;
args.prefinfo = 1;

if (ams_mapshadow(AMS_TYPE_PAGECOLOR, &args) == -1) {
printf("ams_mapshadow_pagecolor failed\n");
exit(1);

}
}
#endif

Figure 6: A code fragment using ams mapshadow(AMS TYPE PAGECOLOR, ...).

12

newaddr is be a pointer to a location in the application address space where the kernel can store the return
value. vaddr is the starting virtual address of the original one-dimensional array and must be page-aligned.
The array contains count elements and each element is objsize bytes in length. iv vaddr is the
starting virtual address of the indirection vector. The indirection vector contains iv count elements and
each element is iv objsize bytes in length. isfortran indicates whether or not the indirection vector
stores Fortran-style array subscripts, i.e., subscripts starting from 1, not 0 as C/C++ does. iv subtype
represents subtype of this remapping. In current implementation, iv subtype should be

�
if iv count

equals maxcount or be � if iv count is less than maxcount. prefcount is the number of blocks to
prefetch each time and prefinfo is the prefetch distance.

The return value of this function is the virtual address of a new vector. The new vector has maxcount
elements. When maxcount is larger than iv count, the indirection vector will be reused, in the sense
that the

�
th and iv countth element of the new vector both use the

�
th element of the indirection vector.

salign specifies the expected alignment of the new vector’s shadow region; and valign specifies the
expected alignment of the new vector’s virtual region. They determine where the new vector will be mapped
to in the caches. Both of them must be page-aligned.

ams mapshadow() returns 0 on success, and -1 otherwise. If successful, the virtual address of the new
vector is placed into the memory location pointed to by newaddr.

ERRORS:

EINVAL Either vaddr or iv vaddr or salign or valign is not page-aligned.
EFAULT newaddr specifies an invalid address.

Figure 7 shows a simple example of using ams mapshadow(AMS TYPE VINDIRECT, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

2.1.6 ams mapshadow(AMS TYPE VINDIRECT2, vindirect2 args t *datablock)

ams mapshadow(AMS TYPE VINDIRECT2, datablock) sets up a remapping of scatter/gather
through an offset vector, a special case of scatter/gather through an indirection vector when the indirection
vector stores byte offsets. The argument datablock points to a vindirect2 args t structure defined
as the following:

typedef struct {
vaddr_t offset;
vaddr_t size;

} ATTRIB;
#define MAX_ATTR 8

13

/*
* sum = A x P, where A is a sparse matrix and P is a dense vector.
* The original code is extracted from CG of NPB2.3.
*/

foo(double *A, double *P, int *colidx, int *rows,
int acount, int pcount, int rowcount, double *sum)

{
vindirect_args_t vi_args;
double *pnew;
int i, k;

#ifdef IMPULSE
vi_args.newaddr = (vaddr_t *) &pnew;
vi_args.vaddr = (vaddr_t) P;
vi_args.count = pcount;
vi_args.objsize = sizeof(double);
vi_args.iv_vaddr = colidx;
vi_args.iv_count = acount;
vi_args.iv_objsize = sizeof(int);
vi_args.isfortran = 1; /* CG is Fortran code */
vi_args.maxcount = acount;
vi_args.prefcount = 1;
vi_args.prefinfo = 1;
vi_args.salign = 0; /* don’t care */
vi_args.valign = 0; /* don’t care */

if (ams_mapshadow(AMS_TYPE_VINDIRECT, &vi_args) == -1) {
perror("ams_mapshadow(AMS_TYPE_VINDIRECT, ...) failed.");
exit(1);

}
#endif

for (i = 0; i < rowcount; i++) {
for (k = rows[i]; k < rows[i+1]; k++)

#ifdef IMPULSE
sum[k] = A[k] * pnew[k];

#else /* Non-Impulse version */
sum[k] = A[k] * p[colidx[k]];

#endif
}

}

Figure 7: A code fragment using ams mapshadow(AMS TYPE VINDIRECT, ...).

14

typedef struct {
vaddr_t *newaddr;
vaddr_t vaddr;
int count;
int size;
vaddr_t iv_vaddr;
int iv_objsize;
int prefcount;
int prefinfo;
int attribs_num;
ATTRIB attribs[MAX_ATTR];

} vindirect2_args_t;

This system call was specifically designed for the PostSQL database management program. The main data
structures of PostSQL are active pages. Each active page has the same format: a small header, followed by
an offset vector, followed by database records. The last attribute of a database record varies in length, which
make the database records vary in size too. The offset vector stores each record’s byte offset from the base
of the active page. This call maps the required attributes of database records in an active page into a dense
shadow region.

newaddr is a pointer to a location in the application address space where the kernel can store the return
value. vaddr is the virtual address of an active page and must be page-aligned. size is the number
of bytes in the active page. count is the number of database records in the active page. iv vaddr and
iv objsize are the virtual address and element size of the offset vector in the active page. attribs num
is the number of attributes to be gathered in each database record, with eight as its maximum value. The
offset and size of each required attribute are stored in array attribs[]. prefcount is the number of
blocks to prefetch each time and prefinfo is the prefetch distance.

The return value of this function is the virtual address of a new vector. Each element of this vector contains
all gathered attributes of a database record.

ams mapshadow() returns 0 on success, and -1 otherwise. If successful, the virtual address of the new
vector is placed into the memory location pointed to by newaddr.

ERRORS:

EINVAL vaddr is not page-aligned.
EFAULT newaddr specifies an invalid address.

Figure 8 shows a simple example of using ams mapshadow(AMS TYPE VINDIRECT2, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

15

typedef struct {
int a;
float b;
int c;
float d;

} RECORD;
typedef struct {

int a;
float d;

} OBJECT;
/*
* Sum up attributes ‘‘a’’ and ‘‘d’’ of RECORD
*/

float foo(RECORD *A, int *offsets, int asize, int record_count,
int *suma, float *sumd)

{
vindirect2_args_t vi2_args;
OBJECT *objects;
RECORD *record;

#ifdef IMPULSE
vi2_args.newaddr = (vaddr_t *) &objects;
vi2_args.vaddr = (vaddr_t) A;
vi2_args.count = record_count;
vi2_args.size = asize;
vi2_args.attribs_num = 2;
vi2_args.attribs[0].offset = 0;
vi2_args.attribs[0].size = sizeof(int);
vi2_args.attribs[1].offset = sizeof(int) * 2 + sizeof(float);
vi2_args.attribs[1].size = sizeof(float);
vi2_args.offset_vaddr = (vaddr_t) offsets;
vi2_args.offset_objsize = sizeof(int);
vi2_args.prefcount = 1;
vi2_args.prefinfo = 1;

if (ams_mapshadow(AMS_TYPE_VINDIRECT2, &vi2_args) == -1) {
perror("ams_mapshadow(AMS_TYPE_VINDIRECT2, ...) failed.");
exit(1);

}
for (int i = 0; i < record_count; i++) {

*suma += objects[i].a; *sumd += objects[i].d;
}

#else
for (int i = 0; i < record_count; i++) {

record = (RECORD *) ((vaddr_t) A + (vaddr_t) offsets[i]);
*suma += record->a; *sumd += record->d;

}
#endif
}

Figure 8: A code fragment using ams mapshadow(AMS TYPE VINDIRECT2, ...).

16

2.1.7 ams mapshadow(AMS TYPE VINDIRECT3, vindirect3 args t *datablock)

ams mapshadow(AMS TYPE VINDIRECT3, datablock) sets up dynamic cacheline assembly, a
variation of scatter/gather through an indirection vector when the indirection vector is dynamically cre-
ated by this system call. The argument datablock points to a vindirect3 args t structure defined
as the following:

typedef struct {
vaddr_t *newaddr;
vaddr_t *iv_newaddr;
vaddr_t vaddr;
vaddr_t size;
int objsize;
int objcount;
int iv_objsize;
int iv_subtype;
int prefcount;
int prefinfo;
int salign;
int valign;

} vindirect3_args_t;

This system call creates an indirection vector and an alias array. To access data using the alias array, the
application program must first fill in the indirection vector, then flush it back to the memory.

newaddr and iv newaddr are two pointers to locations in the application address space where the kernel
can store the address of the alias array and indirection vector. vaddr points to the starting place of a
virtual region inside which data will be gathered from. size is the number of bytes in this virtual region.
objsize is the size of data item being gathered. objcount is the number of elements in the alias array
or indirection vector. iv object is the size of each element in the indirection vector. iv subtype
indicates the type of values stored in the indirection vector:

�
means array indices, � means byte offsets in

virtual memory,
�

means virtual addresses, � means shadow addresses, and
�

means real physical addresses1 .
prefcount is the number of blocks to prefetch each time and prefinfo is the prefetch distance.

The return values of this function are the virtual addresses of a new alias array and a new indirection vector.
salign specifies the expected alignment of the new alias array’s shadow region; and valign specifies
the expected alignment of the new alias array’s virtual region. They determine where the alias array will be
mapped to in the caches. Both of them must be page-aligned.

1Note that only subtype � is currently fully supported by the simulator. Other types will be supported if found necessary later.

17

ams mapshadow() returns 0 on success, and -1 otherwise. If successful, the virtual address of the new
alias array is placed into the memory location pointed to by newaddr; the virtual address of the new
indirection vector is placed into the memory location pointed to by iv newaddr;

ERRORS:

EINVAL Either vaddr or salign or valign is not page-aligned.
EFAULT newaddr or iv newaddr specifies an invalid address.

Figure 9 shows a simple example of using ams mapshadow(AMS TYPE VINDIRECT3, ...). The
example contains both the Impulse version and the non-Impulse version. The Impulse version has IMPULSE
defined while the non-Impulse version has not.

2.2 ams remapshadow()

int
ams_remapshadow(int type,

void *datablock,
int flags);

ams remapshadow() allows user applications to adjust the parameters of existing remappings. The
argument type specifies remapping type. The argument datablock should point to a structure associ-
ated with type. The newaddr of datablock must be a virtual address returned by a previous call to
ams mapshadow(). It allows the kernel to find the previous setting of a specific remapping. The argument
flags specifies what kinds of change to make.

Currently, there are only a very limited set of parameters allowed to be reset. More parameters would be
allowed, should the needs arise. By now, type can be one of the followings: AMS TYPE BASESTRIDE or
AMS TYPE VINDIRECT3. For AMS TYPE BASESTRIDE, flags can be one of the followings:

� AMS REMAP PURGE — purges the associated shadow region data out of CPU caches;

� AMS REMAP FLUSH — flushes the associated shadow region data back to main memory;

� AMS REMAP STRIDE — resets the associated remapping with new stride value in datablock;

� AMS REMAP OFFSET — resets the associated remapping with new offset value in datablock.

For AMS TYPE VINDIRECT3, flags can be one of the followings:

� AMS REMAP VADDR — resets the starting address of the original virtual region.
18

/*
* Optimize a random access loop using AMS_TYPE_VINDIRECT3.
* Basic idea: in each iteration, precompute 32 addresses then
* access 32 data items.
*
*/

#define OBJCOUNT 32

float foo(float *array, int size, int itcount)
{

vindirect3_args_t args;
float *alias_array, sum;
int *idx_vector, i, j;

#ifdef IMPULSE
args.newaddr = (vaddr_t *) &alias_array;
args.iv_newaddr = (vaddr_t *) &idx_vector;
args.vaddr = (vaddr_t) array;
args.size = sizeof(float) * size;
args.objsize = sizeof(float);
args.objcount = OBJCOUNT;
args.iv_objsize = sizeof(int);
args.prefcount = 0; args.prefinfo = 0;
args.salign = 0; args.valign = 0;

if (ams_mapshadow(AMS_TYPE_VINDIRECT3, &args) == -1) {
printf("ams_mapshadow(AMS_TYPE_VINDIRECT3, ...) failed.\n");
exit(1);

}

for (sum = 0, i = 0; i < itcount / OBJCOUNT; i++) {
/* Precompute addresses */
for (j = 0; j < OBJCOUNT; j++)

idx_vector[j] = random() % size;
flush_cacheline(0, (vaddr_t) &(idx_vector[0]));

/* Access data */
for (j = 0; j < OBJCOUNT; j++)

sum += alias_array[j];
purge_cacheline(0, (vaddr_t) &(alias_array[0]));

}
#else /* Non-Impulse version */

for (sum = 0, i = 0; i < itcount; i++)
sum += array[random() % size];

#endif
return sum;

}

Figure 9: A code fragment using ams mapshadow(AMS TYPE VINDIRECT3, ...).
19

/*
* Change the "offset" or "stride" of a strided remapping identified by
* "vsaddr" which was returned by a previous call to ams_mapshadow().
*/

foo(double *vsaddr, int value, int flags)
{

basestride_args_t bs_args;

bs_args.newaddr = (unsigned *) &vsaddr;

if (flags & AMS_REMAP_OFFSET)
bs_args.offset = value;

if (flags & AMS_REMAP_STRIDE)
bs_args.stride = value;

if (ams_remapshadow(AMS_TYPE_BASESTRIDE, &bs_args, flags) != 0) {
perror("ams_remapshadow failed.");
exit(1);

}
}

Figure 10: Code fragment illustrating ams remapshadow() usage.

ams remapshadow returns 0 on success, and -1 otherwise.

ERRORS:

EINVAL newaddr does not specify a valid shadow range.

Figure 10 shows a simple code fragment using ams remapshadow().

2.3 ams allocvirt()

unsigned long
ams_allocvirt(int size,

int alignment);

User applications can use this system call and ams mapvtov() (described in Section 2.4) to optimize their
shadow data layout in virtually indexed caches. ams allocvirt() allocates a new virtual region which
will be used by ams mapvtov(). The new virtual region is not mapped to any physical addresses, so it
cannot be used until it has be mapped to a region of shadow addresses by ams mapvtov().

20

ams allocvirt() returns the base of allocated virtual region on success, and -1 otherwise.

ERRORS:

EINVAL Either size or alignment is not page-aligned.

2.4 ams mapvtov()

int
ams_mapvtov(unsigned srcvaddr,

unsigned dstvaddr
int size);

User applications uses ams allocvirt() (described in Section 2.3) and this system call to optimize
shadow data layout in virtually indexed caches (such as most L1 caches in modern microarchitectures).
ams mapvtov() remaps a region of virtual addresses starting at srcvaddr to a region of physical ad-
dresses originally mapped through the virtual region at dstvaddr. The size (in bytes) of remapped region
is given by size. All of srcvaddr, dstvaddr, and size must be page-aligned values. The range of
virtual address space specified by dstvaddr and size must map to a shadow address region previously
allocated through a call to ams mapshadow().

It is worth noting that the application can really screw itself with this call, since the kernel will allow
any region of the process’ virtual address space to be remapped to any region of shadow address space
previously allocated by the process.

ams mapvtov() returns 0 on success, and -1 otherwise.

ERRORS:

EINVAL Either srcvaddr or dstvaddr is not page-aligned.
EINVAL size is not page-aligned.
EINVAL dstvaddr and size do not specify a valid shadow range.

Figure 11 shows a simple example of using ams allocvirt() and ams mapvtov().

21

/*
* This function maps A, B, and C to the first, second, and third
* quadrant of L1 cache respectively.
* Assume A, B, and C have the same size as one-fourth of L1 cache,
* and each of them maps to a shadow region.
*/

foo(void *A, void *B, void *C, int size)
{

void *Av;

if ((Av = ams_allocvirt(3 * size, L1_CACHE_SIZE) == -1) {
perror("ams_allocvirt() failed.");
exit(1);

}

if ((ams_mapvtov(Av, A, size) == -1) ||
(ams_mapvtov(Av+size, B, size) == -1) ||
(ams_mapvtov(Av+2*size, C, size) == -1)) {

perror("ams_mapvtov() failed.");
exit(1);

}
}

Figure 11: Using ams allocvirt() and ams mapvtov() to optimize data layout in virtually indexed
L1 cache.

22

