
AS�COMA� An Adaptive Hybrid Shared Memory Architecture �

Chen�Chi Kuo� John B� Carter� Ravindra Kuramkote� Mark Swanson

fchenchi� retrac� kuramkot� swansong�cs�utah�edu
WWW� http���www�cs�utah�edu�projects�avalanche

UUCS�������

Department of Computer Science

University of Utah� Salt Lake City� UT �����

March �	� ����

Abstract

Scalable shared memory multiprocessors traditionally use either a cache coherent non�

uniform memory access �CC�NUMA� or simple cache�only memory architecture �S�
COMA� memory architecture� Recently� hybrid architectures that combine aspects of
both CC�NUMA and S�COMA have emerged� In this paper� we present two improvements
over other hybrid architectures� The �rst improvement is a page allocation algorithm that
prefers S�COMA pages at low memory pressures� Once the local free page pool is drained�
additional pages are mapped in CC�NUMA mode until they su�er su�cient remote misses
to warrant upgrading to S�COMA mode� The second improvement is a page replacement
algorithm that dynamically backs o� the rate of page remappings from CC�NUMA to S�
COMA mode at high memory pressure� This design dramatically reduces the amount of
kernel overhead and the number of induced cold misses caused by needless thrashing of the
page cache� The resulting hybrid architecture is called adaptive S�COMA �AS�COMA��
AS�COMA exploits the best of S�COMA and CC�NUMA� performing like an S�COMA
machine at low memory pressure and like a CC�NUMA machine at high memory pressure�
AS�COMA outperforms CC�NUMA under almost all conditions� and outperforms other
hybrid architectures by up to �	
 at low memory pressure and up to ��
 at high memory
pressure�

Keywords� Distributed shared memory� multiprocessor computer architecture� memory
architecture� CC�NUMA� S�COMA� hybrid�

Technical Areas� Architecture�

�This work was supported by the Space and Naval Warfare Systems Command �SPAWAR� and Advanced Research
Projects Agency �ARPA�� Communication and Memory Architectures for Scalable Parallel Computing� ARPA order
�B��� under SPAWAR contract �N���������C���	

�

� Introduction

Scalable hardware distributed shared memory �DSM� architectures have become increasingly pop�

ular as high�end compute servers� One of the purported advantages of shared memory multipro�

cessors compared to message passing multiprocessors is that they are easier to program� because

programmers are not forced to track the location of every piece of data that might be needed�

However� naive exploitation of the shared memory abstraction can cause performance problems�

because the performance of DSM multiprocessors is often limited by the amount of time spent

waiting for remote memory accesses to be satis�ed� When the overhead associated with accessing

remote memory impacts performance� programmers are forced to spend signi�cant e�ort managing

data placement� migration� and replication the very problem that shared memory is designed to

eliminate� Thus� the value of DSM architectures is directly related to the extent to which observable

remote memory latency can be reduced to an acceptable level�

The two basic approaches for addressing the memory latency problem are building latency�

tolerating features into the microprocessor and reducing the average memory latency� Because of

the growing gap between microprocessor cycle times and main memory latencies� modern micro�

processors incorporate a variety of latency�tolerating features such as �ne�grained multithreading�

lockup free caches� split transaction memory busses� and out�of�order execution ��� ��� ���� These

features reduce the performance bottleneck of both local and remote memory latencies by allow�

ing the processor to perform useful work while memory is being accessed� However� other than

the �ne�grained multithreading support of the Tera machine ���� which requires a large amount

of parallelism and an expensive and proprietary microprocessor� these techniques can hide only a

fraction of the total memory latency� Therefore� it is important to develop memory architectures

that reduce the overhead of remote memory access�

Remote memory overhead is governed by three issues� �i� the number of cycles required to satisfy

each remote memory request� �ii� the frequency with which remote memory accesses occur� and �iii�

the software overhead of managing the memory hierarchy� The designers of high�end commercial

DSM systems such as the SUN UE����� ���� and SGI Origin ���� ��� have put considerable e�ort

into reducing the remote memory latency by developing specialized high speed interconnects� These

e�orts can reduce the ratio of remote to local memory latency to as low as ���� but they require

expensive hardware available only on high�end servers costing hundreds of thousands of dollars� In

this paper� we concentrate on the second and third issues� namely reducing the frequency of remote

memory accesses while ensuring that the software overhead required to do this remains modest�

�

Previous studies have tended to ignore the impact of software overhead ��� ��� ���� but our �ndings

indicate that the e�ect of this factor can be dramatic�

Scalable shared memory multiprocessors traditionally use either a cache coherent non�

uniform memory access �CC�NUMA� architecture or a simple cache�only memory architecture

�S�COMA� ����� Each architecture performs well under di�erent conditions� as follows�

CC�NUMA is the most common DSM memory architecture� It is embodied by such machines

as the Stanford DASH �	�� SUN UE����� ����� and SGI Origin ���� ���� In a CC�NUMA� shared

physical memory is evenly distributed amongst the nodes in the machine� and each page of shared

memory has a home location� The home node of data can be determined from its global physical

address� Processors can access any piece of global data by mapping a virtual address to the

appropriate global physical address� but the amount of remote shared data that can be replicated

on a node is limited by the size of a node�s processor cache�s� and remote access cache �RAC� ����

Thus� CC�NUMA machines generally perform poorly when the rate of con�ict or capacity misses

is high� such as when a node�s caches are too small to hold the entire remote working set or when

the data access patterns and cache organization cause cached remote data to be purged frequently�

S�COMA architectures employ any unused DRAM on a node as a cache for remote data �����

which signi�cantly increases the amount of storage available on each node for caching remote

data� The performance of pure S�COMA machines is heavily dependent on the memory pressure

of a particular application� Put simply� memory pressure is a measure of the amount of physical

memory in a machine required to hold an application�s instructions and data� A ��
 memory

pressure indicates that ��
 of a machine�s pages must be used to hold the initial �home� copy of

the application�s instructions and data� At this low memory pressure� on average ��
 of a node�s

physical memory is available to be used as a page�grained cache of remote data� Although this

ability to cache remote data in local memory can dramatically reduce the number of remote memory

operations� pure S�COMA has a number of drawbacks� Page management can be expensive� The

page�grained allocation of the remote data cache can lead to large amount of internal fragmentation�

and the requirement that all shared data accessed by a node must be backed by a local DRAM

page can lead to thrashing at high memory pressures�

Recently� hybrid architectures that combine aspects of both CC�NUMA and S�COMA have

emerged� such as the Wisconsin reactive CC�NUMA �R�NUMA� ��� and the USC victim cache

NUMA �VC�NUMA� ����� Intuitively� these hybrid systems attempt to map the remote pages for

which there are the highest number of con�ict misses to local S�COMA pages� thereby eliminating

the greatest number of expensive remote operations� All other remote pages are mapped in CC�

�

NUMA mode� Ideally� such systems would exploit unused available DRAM for caching without

penalty but the proposed implementations fail to achieve this goal under certain conditions�

In this paper� we present two improvements over R�NUMA and VC�NUMA� The �rst improve�

ment is a page allocation algorithm the prefers S�COMA pages at low memory pressures� Once the

local free page pool is drained� additional pages are initially mapped in CC�NUMA mode until they

su�er su�cient remote misses to warrant upgrading to S�COMA mode� The second improvement

is a page replacement algorithm that dynamically backs o� the rate of page remappings between

CC�NUMA and S�COMA mode at high memory pressure� This design dramatically reduces the

amount of kernel overhead and the number of induced cold misses caused by needless thrashing of

the page cache� The resulting hybrid architecture is called adaptive S�COMA �AS�COMA��

R�NUMA ��� and VC�NUMA ���� initially map all pages in CC�NUMA mode� and then identify

remote pages that are su�ering inordinate numbers of con�ict misses to remote node� so�called

hot pages� Unfortunately� under heavy memory pressure� there are not enough local pages to

accommodate all hot remote pages and thrashing occurs� which severely degrades performance�

In addition to the interrupt handling and �ushing overheads induced by a remap request� page

remapping also increases the cold miss rate� because the contents of both the hot page and any

victim page that was downgraded to make room for it must be �ushed from the processor cache�s��

AS�COMA initially maps pages in S�COMA mode to exploit S�COMA�s superior performance

at low memory pressures� Doing so eliminates remote con�ict misses and remapping overhead when

there is enough free memory to cache all of a node�s working set in its local memory� To combat

page thrashing under heavy memory pressures� which occurs in S�COMA and to a lesser degree in

R�NUMA and VC�NUMA� AS�COMA uses a page replication backo� algorithm to detect thrashing

and aggressively reduce its rate of page remapping� Under extreme circumstances� AS�COMA goes

so far as to disable CC�NUMA � S�COMA remappings entirely�

We used detailed execution�driven simulation to evaluate a number of AS�COMA design trade�

o�s and then compared the resulting AS�COMA design against CC�NUMA� pure S�COMA� R�

NUMA� and VC�NUMA� We found that AS�COMA�s hybrid design provides the best behavior of

both CC�NUMA and S�COMA� At low memory pressures� AS�COMA acts like S�COMA and out�

performs other hybrid architectures by up to �	
� At high memory pressures� AS�COMA avoids the

performance dropo� induced by thrashing and aggressively converges to CC�NUMA performance�

thereby outperforming the other hybrid architectures by up to ��
� In addition� AS�COMA out�

performs CC�NUMA under almost all conditions� and at its worst only underperforms CC�NUMA

by �
�

�

The remainder of this paper is organized as follows� In Section � we describe the basics of

all scalable shared memory architectures� followed by an in�depth description of existing DSM

models� Section � presents the design of our proposed AS�COMA architecture� We describe our

simulation environment� test applications� and experiments in Section �� and present the results of

these experiments in Section �� Finally� we draw conclusions and discuss future work in Section ��

� Background

In this section� we discuss organization of the existing DSM architectures� CC�NUMA� S�COMA�

R�NUMA� and VC�NUMA�

��� Directory�based DSM Architectures

All of the shared memory architectures that we consider share a common basic design� illustrated

in Figure �� Individual nodes are composed of one or more commodity microprocessors with private

caches connected to a coherent split�transaction memory bus� Also on the memory bus is a main

memory controller with shared main memory and a distributed shared memory controller connected

to a node interconnect� The aggregate main memory of the machine is distributed across all nodes�

The processor� main memory controller� and DSM controller all snoop the coherent memory bus�

looking for memory transactions to which they must respond�

The internals of a typical DSM controller also are illustrated in Figure �� It consists of a memory

bus snooper� a control unit that manages locally cached shared memory �cache controller�� a control

unit that retains state associated with shared memory whose �home� is the local main memory

�directory controller�� a network interface� and some local storage� In all of the design alternatives

that we explore� the local storage contains DRAM that is used to store directory state�

When a local processor makes an access to shared data that is not satis�ed by its cache� a

memory request is put on the coherent memory bus where it is observed by the DSM controller�

The bus snooper detects that the request was made to shared memory and forwards the request

to the DSM cache controller� The DSM cache controller will then take one of the following two

actions� If the data is in main memory� e�g�� this node is the memory�s �home� or the data is cached

in a local S�COMA page� a coherency response is given that allows the main memory controller to

satisfy the request� Otherwise the request is forwarded to the appropriate remote node� Once a

response has been received� the DSM cache controller supplies the requested data to the processor

and potentially also stores it to main memory�

�

Processor

Network

Cache

Coherent Bus

DSM
Controller

Cache
Controller Directory

Controller

Network
Interface

Snooper

S
t
a
g
i
n
g

B
u
f
f
e
r

D
i
r
e
c
t
o
r
y

S
t
a
t
e

Page Cache
State

RAC

Local Storage

Main
Memory

Memory
Controller

Figure � Typical Scalable Shared Memory Architecture

A request for data that is received from a remote node is forwarded to the directory controller�

which tracks the status of each line of shared data for which it is the home node� If the remote

request can be supplied using the contents of local memory� the directory controller simply responds

with the requested data and updates its directory state� If the directory controller is unable to

respond directly� e�g�� because a remote node has a dirty copy of the requested cache line� it forwards

the request to the appropriate node�s� and updates its directory state�

The remote access overhead of these architectures can be represented as�

�Npagecache � Tpagecache� � �Nremote � Tremote� � �Ncold � Tremote� � Toverhead�

Npagecache and Nremote represent the number of con�ict misses that were satis�ed by the page

cache or remote memory� respectively� Ncold represents the number of cold misses induced by

�ushing and remapping pages� and thus is zero only in CC�NUMA model� Tpagecache and Tremote

represent the latency of fetching the line from the local page cache or remote memory� respectively�

Toverhead represents the software overheads of the S�COMA and the hybrid models to support page

remapping� e�g�� �ushing�

Table � summarizes the remote memory overhead for each architecture and the critical factors

determining performance� assuming a �xed amount of memory� Table � provides the cost in terms

�

Model Remote Overhead Performance Factors

CC�NUMA �Nremote � Tremote� Network speed
S�COMA �Npagecache � Tpagecache�� �� Network speed

�Ncold � Tremote�� �� Software overhead
Toverhead

Hybrid �Npagecache � Tpagecache�� �� Network speed
Architectures �Nremote � Tremote�� �� Software overhead

�Ncold � Tremote� � Toverhead

Table � Remote Memory Overhead of Various Models

Model Storage Cost Complexity

CC�NUMA None None
S�COMA Page cache state� ��Page cache state lookup

�� � bits per block �� local � remote page map
�� �� bits per page 	� Page�daemon and VM kernel

Hybrid Page cache state� ��Page cache state controller
Architectures �� � bits per block �� local � remote page map

�� �� bits per page 	� Page�daemon and VM kernel
Refetch Count� �� Refetch counter
 comparator
� bits per page per node and interrupt generator

Table � Cost and Complexity of Various Models

of the storage and complexity for each of the models� These issues will be explained in the following

sections along with how each model works�

��� CC�NUMA

In CC�NUMA� the �rst page access on each node to a particular page causes a page fault� at which

time the local TLB and page table are loaded with a page translation to the appropriate global

physical page� The home node of each page can be determined from its physical address� When

the local processor su�ers a cache miss to a line in a remote page� the DSM controller forwards the

memory request to the memory�s home node� incurring a signi�cant access delay� Remote data can

only be cached in the processor cache�s� or an optional remote access cache �RAC� on the DSM

controller� Applications that su�er a large number of con�ict misses to remote data� e�g�� due to

the limited amount of caching of remote data� perform poorly on CC�NUMAs ���� Unfortunately�

these applications are fairly common ��� ��� ���� Careful page allocation ��� ��� migration ����� or

replication ���� can alleviate this problem by carefully selecting or modifying the choice of home

node for a given page of data� but these techniques have to date only been successful for read�only

or non�shared pages�

	

The con�ict miss cost in the CC�NUMA model is represented by �Nremote � Tremote�� that is�

all misses to shared memory with a remote home must be remote misses� To reduce this overhead�

designers of some such systems have adopted high speed interconnect to reduce �Tremote� ��� ���

����

��� S�COMA

In the S�COMA model ����� the DSM controller and operating system cooperate to provide access

to remotely homed data� In S�COMA� a mapping from a global virtual address to a local physical

address is created at the �rst page fault to that shared memory page� The page fault handler selects

an available page from the local DRAM page cache� At this time� the cache state information is

updated in the local DSM controller to indicate which global page this local page is caching� In

addition� the valid bit associated with each cache line in the page is set to invalid to indicate that�

while the page mapping is valid� no remote data is actually cached in the local page yet� If there

are no free pages in the page cache when a page fault occurs� the page fault handler selects another

S�COMA page to replace� �ushes this page�s cache lines from the local processor cache� and then

maps the faulting page�

When a local processor su�ers a cache miss to remote data� the DSM cache controller examines

the valid bit for the line� If the valid bit is set� the page cache contains valid data for that line� so

it can be supplied directly from main memory� thereby avoiding an expensive remote operation� If�

however� the requested line is invalid � the DSM cache controller must perform a remote request to

acquire a copy of the desired data� When the remote node responds with the data� it is written to

the page cache� supplied to the processor� and the valid bit is set�

S�COMA�s aggressive use of local memory to replicate remote shared data can completely elim�

inate Nremote when the memory pressure on a node is low� However� pure S�COMA�s performance

degrades rapidly for some applications as memory pressure increases� Because all remote data

must be mapped to a local physical page before it can be accessed� there can be heavy contention

if the number of local physical pages available for S�COMA page replication is small� Under these

circumstances� thrashing occurs� not unlike thrashing in a conventional VM system� Given the high

cost of page replacement� this can lead to dismal performance�

In the S�COMA model� the con�ict miss cost is represented by �Npagecache �Tpagecache���Ncold �

Tremote��Toverhead� When memory pressure is low enough that all of the remote data a node needs

can be cached locally� page remapping does not occur and both Ncold and Toverhead are zero� As the

memory pressure increases� and thus more remote pages are accessed by a node than can be cached

locally� Ncold and Toverhead increase due to remapping� Ncold increases because the contents of any

�

pages that are replaced from the local page cache must be �ushed from the processor cache�s��

Subsequent accesses to these pages will su�er cold misses in addition to the cost of remapping�

An even worse problem is that as memory pressure approaches ���
� the time spent in the kernel

�ushing and remapping pages �Toverhead� skyrockets� Sources of this overhead include the time

spent context switching between the user application and the pageout daemon� �ushing blocks

from the victim page�s�� and remapping pages�

��� Hybrid DSM Architectures

Two hybrid CC�NUMA�S�COMA architectures have been proposed� R�NUMA ��� and VC�NUMA

����� We describe these architectures in this section�

The basic architecture of an R�NUMA machine ��� is that of a CC�NUMA machine� However�

unlike CC�NUMA� which �wastes� local physical memory not required to hold home pages� R�

NUMA uses this otherwise unused storage to cache frequently accessed remote pages� as in S�

COMA� This mechanism requires a number of modest modi�cations to a conventional CC�NUMA�s

DSM engine and operating system� as described below�

In addition to its normal CC�NUMA operation� the directory controller in an R�NUMA machine

maintains an array of counters that tracks for each page the number of times that each processor

has refetched a line from that page� as follows� Whenever a directory controller receives a request

for a cache line from a node� it checks to see if that node is already in the copyset of nodes for

that line� If it is� this request is a refetch caused by a con�ict miss� and not a coherence or cold

miss� and the node�s refetch counter for this page is incremented� The per�page�per�node counter

is used to determine which CC�NUMA pages are generating frequent remote refetches� and thus are

good candidates to be mapped to an S�COMA page on the accessing node� When a refetch counter

crosses a con�gurable threshold �e�g� ���� the directory controller piggybacks an indication of this

event with the data response� This causes the DSM engine on the requesting node to interrupt the

processor with an indication that a particular page should be remapped to a local S�COMA page�

Pages are remapped from CC�NUMA mode to S�COMA mode using essentially the same mech�

anism as is used by S�COMA to remap pages� First� all lines of the page being upgraded must be

�ushed from the local processor cache�s� and RAC� Then� if a free page already exists� the global

virtual address is mapped to the selected local physical address� and the DSM engine is informed of

the new mapping� If no free page exists� the fault handler �rst must select a victim page to replace�

the victim�s data must be �ushed from the page cache� and its corresponding global virtual address

must be remapped back to its home global physical address�

�

By supporting both CC�NUMA and S�COMA access modes in the same machine� an R�NUMA

machine is able to exploit available local memory as a large page cache for CC�NUMA pages� By

tracking refetch counts� it is able to select dynamically which CC�NUMA pages should populate

the S�COMA cache based on access behavior� In a recent study ���� R�NUMA�s �exibility and

intelligent selection of pages to map in S�COMA mode caused it to outperform the best of pure

CC�NUMA and pure S�COMA by up to �	
 on some applications�

However� although R�NUMA frequently outperforms both CC�NUMA and S�COMA� it was also

observed to perform as much as �	
 worse on some applications ���� This poor performance can be

attributed to two problems� First� R�NUMA initially maps all pages in CC�NUMA mode� and only

upgrades them to S�COMA mode after some number of remote refetches occur� which introduces

needless remote refetches when memory pressure is low� Second� R�NUMA always upgrades pages

to S�COMA mode when their refetch threshold is exceeded� even if it must evict another hot page

to do so� When memory pressure is high� and the number of hot pages exceeds the number of free

pages available for caching them� this behavior results in frequent expensive page remappings for

little value� This leads to performance worse than CC�NUMA� which never remaps pages�

VC�NUMA ���� treats its RAC as a victim cache for the processor cache�s�� i�e�� only remote

data evicted from the processor cache�s� is placed in its RAC� VC�NUMA reduces memory overhead

by using the victim cache tags and page indices to identify the relocation candidates� instead of

maintaining multiple refetch counters per page in the directory controller as in R�NUMA� However�

this solution requires signi�cant modi�cations to the processor cache controller and bus protocol�

changes that are not feasible in systems built from commodity nodes� The designers of VC�NUMA

noticed the tendency of hybrid models to thrash at high memory pressure and suggested a thrashing

detection scheme to address the problem� Their scheme requires a local refetch counter per S�COMA

page� a programmable break even number that depends on the network latency and overhead of

relocating pages� and an evaluation threshold that depends on the total number of free S�COMA

pages in the page cache� Although VC�NUMA frequently outperforms R�NUMA� the study did not

isolate the bene�t of the thrashing detection scheme from that of the integrated victim cache� Thus�

the e�ectiveness of their thrashing detection scheme under di�erent architecture con�gurations was

not measured and thus the necessity of the extra hardware support was not clearly justi�ed�

In these hybrid models� the con�ict miss cost is represented by �Npagecache�Tpagecache���Nremote�

Tremote� � �Ncold � Tremote� � Toverhead� Npagecache and Nremote closely depend on the relocation

mechanisms� Remappings between CC�NUMA and S�COMA modes account for the increased cold

miss rate �Ncold�� as described earlier� Toverhead is the software overhead required for the kernel to

handle interrupts� �ush pages� and remap pages�

��

When there are plentiful free local pages� the di�erence between the hybrid models and S�

COMA is that S�COMA does not su�er from as many initial con�ict misses� nor does it pay for

page remapping� In such a case� the relative costs between the two models can be represented as�

Nremote�hybrid �Ncold�hybrid � Ncold�scoma � �� ���

Toverhead�hybrid � Toverhead�scoma � �� ���

Npagecache�scoma � Npagecache�hybrid ���

As the memory pressure increases� R�NUMA and VC�NUMA su�er from the same problems

as pure S�COMA� although to a lesser degree� Even hot pages already in the page cache begin to

be remapped� When this occurs� the local page cache becomes less e�ective at satisfying con�ict

misses� and Nremote�hybrid�Ncold�hybrid increases� As before� the extra cold misses are induced by the

cache �ushes performed during remapping� Also as in S�COMA� as memory pressure approaches

���
� thrashing causes kernel overhead �Toverhead�hybrid� to become signi�cant� As a result� the

performance of the hybrid models drops dramatically under high memory pressure� albeit not as

dramatically as pure S�COMA� The primary reason that the hybrids� performance dropo� is less

dramatic is that remappings occur only every N �e�g�� ��� remote refetches� not on every remote

access as in S�COMA� In a worst case� the relative cost between the hybrid models and CC�NUMA

under high memory pressure can be represented as�

Nremote�hybrid �Ncold�hybrid � Nremote�ccnuma� ���

Toverhead�hybrid � Toverhead�ccnuma � �� ���

Relations ���� ��� and ��� suggest that one way to improve the hybrid models at low memory

pressure is to accelerate their convergence to S�COMA� Likewise� relations ��� and ��� suggest that

performance can be improved by throttling CC�NUMA � S�COMA transitions at high memory

pressure� Unlike S�COMA� in which remapping is required for the architecture to operate correctly�

the hybrid architectures can choose to stop remapping and leave pages in CC�NUMA mode�

In summary� the performance of hybrid S�COMA�CC�NUMA architectures is signi�cantly in�

�uenced by the memory pressure induced by a particular application� Since it is common for users

to run the largest applications they can on their hardware� the performance of an architecture at

high memory pressures is particularly important� Therefore� it is crucial to conduct performance

studies of S�COMA or hybrid architectures across a broad spectrum of memory pressures� An

improved hybrid architecture� motivated by the analysis above� that performs well regardless of

memory pressure is discussed in the following section�

��

� Adaptive S�COMA

At low memory pressure� S�COMA outperforms CC�NUMA� but the converse is true at high mem�

ory pressure ����� Thus� our goal when designing AS�COMA was to develop a memory architecture

that performed like pure S�COMA when memory for page caching was plentiful� and like CC�NUMA

when it is not�

To exploit S�COMA�s superior performance at low memory pressures� AS�COMA initially maps

pages in S�COMA mode� Thus� when memory pressure is low� AS�COMA will su�er no remote

con�ict or capacity misses� nor will it pay the high cost of remapping �i�e�� cache �ushing� page

table remapping� TLB re�ll� and induced cold misses�� Only when the page cache becomes empty

does AS�COMA begin remapping�

Like the previous hybrid architectures� AS�COMA reacts to increasing memory pressure by

evicting �cold� pages from� and remapping �hot� pages to� the local page cache� However� what

sets AS�COMA apart from the other hybrid architectures is its ability to adapt to di�ering memory

pressures to fully utilize the large page cache at low memory pressures and to avoid thrashing at

high memory pressures� It does so by dynamically adjusting the refetch threshold that triggers

remapping� increasing it when it notices that memory pressure is high� If the refetch threshold is

too low� remappings will occur too frequently� which leads to thrashing� If it is too high� remappings

that could be usefully made will be delayed� By dynamically adjusting the refetch threshold based

on both static information �e�g�� the cost of relocating a page� and dynamic information �e�g�� the

rate of page remappings�� AS�COMA is able to adapt smoothly to di�ering memory pressures�

AS�COMA uses the kernel�s VM system to detect thrashing� as follows� The kernel maintains

a pool of free local pages that it can use to satisfy allocation or relocation requests� The pageout

daemon attempts to keep the size of this pool between free target and free min pages� Whenever

the size of the free page pool falls below free min pages� the pageout daemon attempts to evict

enough �cold� pages to re�ll the free page pool to free target pages� Only S�COMA pages are

considered for replacement� To replace a page� its valid blocks are �ushed from the processor

cache� and then its corresponding global virtual address is remapped to its home physical address�

Cold pages are detected using a second chance algorithm� the TLB reference bit associated with

each S�COMA page is reset each time it is considered for eviction by the pageout daemon� If the

reference bit is zero when the pageout daemon next runs� the page is considered cold�

Under low to moderate memory pressure� allocation or relocation requests can be performed

immediately because there will be pages in the free page pool� However� at heavy memory pressure�

the pageout daemon will be unable to �nd su�cient cold pages to re�ll the free page pool� Whenever

��

the pageout daemon is unable to reclaim at least free target free pages� AS�COMA begins allocating

pages in CC�NUMA mode under the assumption that local memory can not accommodate the

application�s entire working set� In addition� it raises the refetch threshold by a �xed amount to

reduce the rate at which �equally�hot� pages in the page cache replace each other� It also increases

the time between successive invocations of the pageout daemon� Should the number of hot pages

drop� e�g�� because of a phase change in the program that causes a number of hot pages to grow

cold� the pageout daemon will detect it by detecting an increase in the number of cold pages� At

this point� it can reduce the refetch threshold�

Using this backo� scheme� the rate at which destructive �ushing and remapping occurs is

decreased� as is the number of cold misses induced by remapping� In addition� the frequency at

which the pageout daemon is invoked is reduced� which eliminates context switches and pageout

daemon execution time� Overall� we found this back pressure on the replacement mechanism to

be extremely important� As will be shown in Section �� it alleviates the performance slowdowns

experienced by R�NUMA or VC�NUMA when memory pressure is high�

AS�COMA�s con�ict miss cost is identical to SCOMA�s when there are enough local free pages

to accommodate the application�s working set� In such cases� the remote refetch cost of AS�

COMA will be close to �Npagecache � Tpagecache�� Until memory pressure gets high� Nrem will grow

slowly� Eventually the page cache will no longer be large enough to hold all hot pages� Ideally

AS�COMA�s performance would simply degrade smoothly to that of CC�NUMA� �Nrem �Trem�� as

memory pressure approaches ���
� Realizable AS�COMA models will fare somewhat worse due to

the extra kernel overhead incurred before the system stabilizes� Nevertheless� AS�COMA is able to

converge rapidly to either S�COMA or CC�NUMA mode� depending on the memory pressure�

� Performance Evaluation

��� Experimental Setup

All experiments were performed using an execution�driven simulation of the HP PA�RISC archi�

tecture called Paint �PA�interpreter���	� ���� Paint was derived from the Mint simulator����� Our

simulation environment includes detailed simulation modules for a �rst level cache� system bus�

memory controller� network interconnect� and DSM engine� It provides a multiprogrammed pro�

cess model with support for operating system code� so the e�ects of OS�user code interactions are

modeled� The simulation environment includes a kernel based on ���BSD that provides schedul�

ing� interrupt handling� memory management� and limited system call capabilities� The modeled

physical page size is � kilobytes� The VM system was modi�ed to provide the page translation�

��

allocation� and replacement support needed by the various distributed shared memory models� All

three hybrid architectures we study adopt BSD����s page allocation mechanism and paging pol�

icy ���� with minor modi�cations� Free min and free target �see Section �� were set to �
 and 	

of total memory� respectively� We extended the �rst touch allocation algorithm ��� to distribute

home pages equally to nodes by limiting the number of home pages that are allocated at each node

to a proportional share of the total number of pages� Once this limit is reached� remaining pages

are allocated in a round robin fashion to nodes that have not reached the limit�

The modeled processor and DSM engine are clocked at ���MHz� The system bus modeled is

HP�s Runway bus� which is also clocked at ���MHz� All cycle counts reported herein are with

respect to this clock� The characteristics of the L� cache� RACs� and network that we modeled are

shown in Table ��

For most of the SPLASH� applications we studied� the data sets provided have a primary

working set that �ts in an ��kbyte cache����� We� therefore� model a single ��kilobyte direct�

mapped processor cache to compensate for the small size of the data sets� which is consistent with

previous studies of hybrid architectures��� ����

We model a ��bank main memory controller that can supply data from local memory in ��

cycles� The size of main memory and the amount of free memory used for page caching was varied

to test the di�erent models under varying memory pressures�

We modeled a sequentially�consistent write�invalidate consistency protocol� DSM data is moved

in ����byte ���line� chunks to amortize the cost of remote communication and reduce the memory

overhead of directory state information� As part of a remote memory access� the DSM engine writes

the received data back to the RAC or main memory as appropriate� Our CC�NUMA and hybrid

models are not �pure�� as we employ a ����byte RAC containing the last remote data received as

part of performing a ��line fetch� This minor optimization had a larger impact on performance

than we had anticipated� as is described in the next section� We do not consider di�erent RAC

con�gurations in the hybrid architectures for this study� An initial relocation threshold of ���

Component Characteristics

L� Cache Size� ��kilobytes� 	� byte lines
 direct�mapped
 virtually indexed
 physically tagged

non�blocking
 up to one outstanding miss
 write back
 ��cycle hit latency

RAC ��� byte lines
 direct�mapped
 non�inclusive
 non�blocking
 up to one outstanding miss�
Networks � cycle propagation
 �X� switch topology
 port contention �only� modeled

Fall through delay� � cycles �ratio between remote to local memory access latencies � 	���

Table � Cache and Network Characteristics

��

the number of remote refetches required to initiate a page remapping� is used in all three hybrid

architectures� The relocation thresholds were incremented by � whenever thrashing is detected by

AS�COMA�s software scheme or by VC�NUMA�s hardware scheme� R�NUMA does not employ a

backo� scheme� VC�NUMA uses a breakeven number of �� for its thrashing detection mechanism�

We did not simulate VC�NUMA�s victim�cache behavior� because we considered the use of non�

commodity processors or busses to be beyond the scope of this study� Thus� the results reported

for VC�NUMA are only relevant for evaluating its relocation strategy� and not the value of treating

the page cache as a victim cache�����

Finally� Table � shows the minimum latency required to satisfy a load or store from various

locations in the global memory hierarchy� The average latency in our simulation is considerably

higher than this minimum because of contention for various resources �bus� memory banks� net�

works� etc��� which we accurately model� The remote to local memory access ratio is about ����

Note that our network model only accounts for input port contention�

��� Benchmark Programs

We used six programs to conduct our study� barnes� fft� lu� ocean� and radix from the SPLASH��

benchmark suite ���� and em�d from a shared memory implementation of the Split�C benchmark ���

��� Table � shows the inputs used for each test program� The column labeled Home pages indicates

the number of shared data pages initially allocated at each node� These numbers indicate that

each node manages from ��� megabytes �barnes� to � megabytes �lu� em�d� and ocean� of home

data�

The Maximum remote pages column indicates the maximum number of remote pages that are

accessed by a node for each application� which gives an indication of the size of the application�s

global working set� The Ideal pressure column is the memory pressure below which S�COMA

and AS�COMA machines act like a �perfect� S�COMA� meaning that every node has enough free

memory to cache all remote pages that it will ever access� Below this memory pressure� S�COMA

Data Location Latency

L� Cache � cycle
Local Memory � cycles
RAC �	 cycles
Remote Memory ��� cycles

Table � Minimum Access Latency

��

and AS�COMA never experience a con�ict miss to remote data� nor will they su�er any kernel or

page daemon overhead to remap pages�

Due to its small default problem size and long execution time� lu was run on just � nodes � all

other applications were run on � nodes�

� Results

Figures � and � show the performance of CC�NUMA� S�COMA� and three hybrid CC�NUMA�S�

COMA architectures �AS�COMA� VC�NUMA� R�NUMA� on the six applications� The left column

in each �gure displays the execution time of the various architectures relative to CC�NUMA� and

indicates where this time was spent by each program�� The right column in each �gure displays

where cache misses to shared data were satis�ed�� Note that for readability� these graphs are

adjusted to focus on the remote data accesses� and thus the origin of the Y�axis is non�zero� We

simulated the applications across a range of memory pressures between ��
 and ��
� Only one

result is shown for CC�NUMA� since it is not a�ected by memory pressure� As can be seen in the

graphs� the relative performance of the di�erent architectures can vary dramatically as memory

pressures change� All results include only the parallel phase of the various programs�

Program Input parameters Home Pages Maximum Ideal
�per node� Remote Pages Pressure

barnes ��K particles ��� � ��
em�d ��K nodes
��remote
 ��� ��� 	�

�� iters
FFT ��K Points
 	�� ��� ��

tuned for cache sizes
LU ����x���� matrix
 �� �� �

��x�� blocks
 contiguous
ocean ��x�� ocean ��	 	� �
radix �M Keys
 Radix � ���� �� �	�� ��

Table � Programs and Problem Sizes Used in Experiments

�U�SH�MEM� stalled on shared memory� K�BASE � performing essential kernel operations �i�e�� those required by
all architectures�� K�OVERHD� performing architecture�specic kernel operations� such as remapping pages and
handling relocation interrupts� U�INSTR and U�LC�MEM � performing user�level instructions or non�shared memory
operations� SYNC � performing synchronization operations�
�HOME� the local node is the data�s home� so it is supplied from local DRAM� S�COMA� misses satised from
the local page cache� RAC � misses satised from the local RAC� COLD� cold misses satised on a remote node�
including both essential cold misses and cold misses induced by remapping� CONF�CAPC� con�ict�capacity misses
not satised locally but that instead result in remote accesses�

��

BARNES1.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(3

0%
)

S
C

O
M

A
(5

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(5
0%

)

A
S

C
O

M
A

(7
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(5
0%

)

V
C

N
U

M
A

(7
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(5

0%
)

R
N

U
M

A
(7

0%
)

SYNC
U-LC-MEM
U-INSTR
K-OVERHD
K-BASE
U-SH-MEM

BARNES

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

5.00E+07

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(3

0%
)

S
C

O
M

A
(5

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(5
0%

)

A
S

C
O

M
A

(7
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(5
0%

)

V
C

N
U

M
A

(7
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(5

0%
)

R
N

U
M

A
(7

0%
)

CONF/CAPC
COLD
RAC
SCOMA
HOME

EM3D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

SYNC
U-LC-MEM
U-INSTR
K-OVERHD
K-BASE
U-SH-MEM

EM3D

2.40E+07

2.50E+07

2.60E+07

2.70E+07

2.80E+07

2.90E+07

3.00E+07

3.10E+07

3.20E+07

3.30E+07

3.40E+07

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

CONF/CAPC

COLD

RAC

SCOMA

HOME

FFT3.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

S
C

O
M

A
(9

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

SYNC

U-LC-MEM

U-INSTR

K-OVERHD

K-BASE

U-SH-MEM

FFT

2.00E+06

2.20E+06

2.40E+06

2.60E+06

2.80E+06

3.00E+06

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

S
C

O
M

A
(9

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

CONF/CAPC

COLD

RAC

SCOMA

HOME

Figure � Performance Charts for barnes� em�d and fft� �Left� Relative Execution
Time� Right� Where Misses Were Satis�ed�

�	

LU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

S
C

O
M

A
(9

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

SYNC

U-LC-MEM

U-INSTR

K-OVERHD

K-BASE

U-SH-MEM

LU

5.50E+07

6.00E+07

6.50E+07

7.00E+07

7.50E+07

8.00E+07

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

S
C

O
M

A
(9

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

CONF/CAPC

COLD

RAC

SCOMA

HOME

OCEAN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(7

0%
)

S
C

O
M

A
(9

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

SYNC

U-LC-MEM

U-INSTR

K-OVERHD

K-BASE

U-SH-MEM

OCEAN

4.90E+07

4.95E+07

5.00E+07

5.05E+07

5.10E+07

5.15E+07
C

C
N

U
M

A
3

S
C

O
M

A
3(

10
%

)

S
C

O
M

A
3(

70
%

)

S
C

O
M

A
3(

90
%

)

A
S

C
O

M
A

3(
10

%
)

A
S

C
O

M
A

3(
70

%
)

A
S

C
O

M
A

3(
90

%
)

V
C

N
U

M
A

3(
10

%
)

V
C

N
U

M
A

3(
70

%
)

V
C

N
U

M
A

3(
90

%
)

R
N

U
M

A
3(

10
%

)

R
N

U
M

A
3(

70
%

)

R
N

U
M

A
3(

90
%

)

CONF/CAPC

COLD

RAC

SCOMA

HOME

RADIX6.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
C

N
U

M
A

S
C

O
M

A
(1

0%
)

S
C

O
M

A
(3

0%
)

A
S

C
O

M
A

(1
0%

)

A
S

C
O

M
A

(7
0%

)

A
S

C
O

M
A

(9
0%

)

V
C

N
U

M
A

(1
0%

)

V
C

N
U

M
A

(7
0%

)

V
C

N
U

M
A

(9
0%

)

R
N

U
M

A
(1

0%
)

R
N

U
M

A
(7

0%
)

R
N

U
M

A
(9

0%
)

SYNC

U-LC-MEM

U-INSTR

K-OVERHD

K-BASE

U-SH-MEM

RADIX

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

C
C

N
U

M
A

3

S
C

O
M

A
3(

10
%

)

S
C

O
M

A
3(

30
%

)

A
S

C
O

M
A

3(
10

%
)

A
S

C
O

M
A

3(
70

%
)

A
S

C
O

M
A

3(
90

%
)

V
C

N
U

M
A

3(
10

%
)

V
C

N
U

M
A

3(
70

%
)

V
C

N
U

M
A

3(
90

%
)

R
N

U
M

A
3(

10
%

)

R
N

U
M

A
3(

70
%

)

R
N

U
M

A
3(

90
%

)

CONF/CAPC

COLD

RAC

SCOMA

HOME

Figure � Performance Charts for lu� ocean� and radix� �Left� Relative Execution
Time� Right� Where Misses Were Satis�ed�

��

��� Initial Allocation Schemes

We will �rst focus on the e�ect of the initial allocation policies� Recall from Table � that the �ideal�

memory pressure for the six applications ranged from ��
 to �	
� Below this memory pressure�

the local page cache is large enough to store the entire working set of a node� To isolate the impact

of initially allocating pages in S�COMA� we simulated S�COMA and the hybrid architectures at

a memory pressure of ��
� when no page remappings beyond any initial ones will occur� Table �

shows the percentage of remote pages that are refetched at least �� times� and thus will be remapped

from CC�NUMA to S�COMA mode in R�NUMA or VC�NUMA� versus of the total number of remote

pages accessed� This percentage exhibits a broad range from under �
 in fft to over ��
 in lu

and radix�

First� to illustrate the importance of employing a hybrid memory architecture over a vanilla

CC�NUMA architecture� examine their relative results at ��
 memory pressures� in Figures � and

�� Under these circumstances� AS�COMA� like S�COMA� outperforms CC�NUMA by �����
 for

four of the applications �lu� radix� barnes� and em�d�� Looking at the hybrid architectures in

isolation� we can see that for radix� AS�COMA outperforms R�NUMA and VC�NUMA by �	
�

In radix� the percentage and total number of remote pages that need to be remapped are both

quite high� ��
 and ����� respectively� In the other applications� the initial page allocation policy

had little impact on performance� There is no strong correlation between the number of pages that

need to be remapped and performance� We can observe a �
 performance bene�t in lu� where

the percentage of relocated remote pages is very high ���
�� but the total number is fairly small

�������

There are two primary reasons why the initial allocation policy did not have a stronger impact

on performance� First� our interrupt and relocation operations are highly optimized� requiring only

���� and ���� cycles� respectively� to perform� Thus� the impact of the unnecessary remappings

and �ushes is overwhelmed by other factors� Second� as an artifact of our experimental setup�

Program Total Remote Pages Relocated Pages � of Relocated Pages

barnes ���� 	��� ���
em�d ���� ���� ���
FFT ���	� ����
LU ���� ���� ���
ocean ���� �� ���
radix ����� ���	� ���

Table � Number of Remote Pages Ever Accessed versus Con�icted Frequently

��

the initial remappings for several applications were not included in the performance results� as

they took place before the parallel phase when our measurements are taken� This was the case

for barnes and em�d� The �nal two applications� fft and ocean� only access a small number of

remote pages enough times to warrant remapping� and thus the impact of initially mapping pages

in S�COMA mode is negligible�

In summary� if memory pressure is low and local pages for replication are abundant� an S�COMA�

preferred initial allocation policy can improve the performance hybrid architectures moderately by

accelerating their convergence to pure S�COMA behavior� However� the performance boost is

modest�

��� Thrashing Detection and Backo� Schemes

The performance of hybrid DSM architectures depends heavily on the memory pressure� Perfor�

mance seriously degrades when the page cache cannot hold all �hot� pages and those pages start

to evict one another� Intuitively� when this begins to occur� the memory system should simply

treat the page cache as a place to store a reasonable set of hot pages� and stop trying to �ne tune

its contents since this tuning adds signi�cant overhead� Previous studies have not considered the

kernel overhead �Toverhead�� but we found it to be very signi�cant at high memory pressures� Once

the page cache holds only hot pages� further attempts to re�ne its contents lead to thrashing� which

involves unnecessary �ushing of hot data� cache �ushes� and induced cold misses� Since one hot

page is replacing another� the bene�t of this remapping is likely to be minimal compared to the

cost of the remapping itself� As a result� the performance of a hybrid architecture will quickly drop

below that of CC�NUMA if a mechanism is not put in place to avoid thrashing� As described in

Section �� the pageout daemon in AS�COMA detects thrashing when it cannot �nd cold pages to

replace� at which point it reduces the rate of page remappings� going so far as to stop it completely if

necessary� As can be seen in Figures � and �� this can lead to signi�cant performance improvements

compared to R�NUMA and VC�NUMA under heavy memory pressure�

We can divide the six applications into two groups� �i� applications where there are su�cient re�

mote con�ict misses that handling thrashing e�ectively can lead to large performance gains �barnes�

em�d� and radix�� and �ii� applications in which minimal e�orts to avoid thrashing are su�cient

for handling high memory pressure �fft� ocean� and lu��

The behavior of em�d shows the danger of focusing solely on reducing remote con�ict misses

when designing a memory architecture� As shown in Figure �� the performance of em�d on the

hybrid architectures is quite sensitive to memory pressure� R�NUMA outperforms CC�NUMA

until memory pressure approaches 	�
� after which time its performance drops quickly� CC�NUMA

��

outperforms R�NUMA by �
 at 	�
 memory pressure and by ��
 at ��
� Looking at the detailed

breakdown of where time is spent� we can see that increasing kernel overhead is the culprit� In em�d�

approximately ��
 of remote pages� i�e�� ��� pages� are eligible for relocation �see Table ��� but at

	�
 memory pressure there are only ��� free local pages� It turns out that for em�d� most of the

remote pages ever accessed are in the node�s working set� i�e�� they are �hot� pages� Thus� above

	�
 memory pressure� R�NUMA begins to thrash and its performance degrades badly� Looking at

the right column of Figure �� we can see that this performance dropo� occurs even though there

are signi�cantly fewer remote con�ict misses �CONF�CAPC� in R�NUMA than in CC�NUMA or

AS�COMA� The cost of constantly remapping pages between CC�NUMA and S�COMA mode and

the increase in remote cold misses overwhelms the bene�t of the reduced number of remote con�ict

misses� This behavior emphasizes the importance of detecting thrashing and reducing the rate of

remappings when it occurs�

Recognizing this problem� VC�NUMA uses extra hardware to detect thrashing� However� its

mechanism is not as e�ective as AS�COMA�s� VC�NUMA starts to underperform CC�NUMA at

the same memory pressure that R�NUMA does� 	�
� While VC�NUMA outperforms R�NUMA by

��
 at ��
 memory pressure� it underperforms CC�NUMA by �	
 and AS�COMA by ��
� In

contrast� AS�COMA outperforms CC�NUMA even at ��
 memory pressure� when the other hybrid

architectures are thrashing� It does so by dynamically turning o� relocation as it determines that

this relocation has no bene�ts because it is simply replacing hot pages with other hot pages� This

results in more remote con�ict�capacity misses than the other hybrid architectures� but it reduces

the number of cold misses caused by �ushing pages during remapping and the kernel overhead

associated with handling interrupts and remapping� As a result� AS�COMA outperforms VC�

NUMA by ��
 and R�NUMA by ��
 at ��
 memory pressure� Moreover� despite having only

a small page cache available to it and a remote working set larger than this cache� AS�COMA

outperforms CC�NUMA�

Barnes exhibits very high spatial locality� It accesses large dense regions of remote memory� and

thus can make good use of a local S�COMA page cache�� As shown in in Table �� barnes�s ideal

memory pressure is ��
� Like em�d� most of the remote pages that are accessed are part of the

working set and �hot� for long periods of execution� We observed that thrashing begins to occur

at ��
 memory pressure� As in em�d� R�NUMA reduces the number of remote con�ict�capacity

misses at high memory pressures� at the cost of increasing kernel overhead and remote cold misses�

�Note that barnes is very compute�intensive� and a problem size that can be simulated in a reasonable amount of
time requires only approximately 	�� home pages per node of data� Since there are only about �� free pages per
node available for page replication at ��� memory pressure� we did not simulate barnes at higher memory pressures
since the results would be heavily skewed by small sample size e�ects�

��

As a result� it is able to outperform CC�NUMA at low memory pressure� but is only able to break

even by the time memory pressure reaches 	�
� Similarly� VC�NUMA�s backo� mechanism is not

su�ciently aggressive at moderate memory pressures to stop the increase in kernel overhead or cold

misses� In particular� VC�NUMA only checks its backo� indicator when an average of two replace�

ments per cached page have occurred� which is not su�ciently often to avoid thrashing� As shown

in the previous study ����� VC�NUMA does not signi�cantly outperform R�NUMA until memory

pressure exceeds �	��
� Once again� AS�COMA�s adaptive replacement algorithm detects thrash�

ing as soon as it starts to occur� and the resulting backo� mechanism causes performance to degrade

only slightly as memory pressure increases� As a result� it consistently outperforms CC�NUMA by

��
 across all ranges of memory pressures� and outperforms the other hybrid architectures by a

similar margin at high memory pressures�

Unlike barnes� radix exhibits almost no spatial locality� Every node accesses every page of

shared data at some time during execution� As such� it is an extreme example of an application

where �ne tuning of the S�COMA page cache will back�re � each page is roughly as �hot� as any

other� so the page cache should simply be loaded with some reasonable set of �hot� pages and

left alone� With an ideal memory pressure of �	
 and low spatial locality� the performance of

pure S�COMA is ��	 times worse than CC�NUMA�s at memory pressures as low as ��
� Although

the performance of both R�NUMA and VC�NUMA are signi�cantly more stable than that of S�

COMA� they too su�er from thrashing by the time memory pressure reaches 	�
� The source of

this performance degradation is the same as in em�d and barnes � increasing kernel overhead and

�to a lesser degree� induced cold misses� Once again� R�NUMA induces fewer remote accesses than

CC�NUMA� but the kernel overhead required to support page relocation is such that R�NUMA

underperforms CC�NUMA by 	�
 at 	�
 memory pressure and by almost a factor of two at ��

memory pressure� Once again� VC�NUMA�s backo� algorithm proves to be more e�ective than

R�NUMA�s� but it still underperforms CC�NUMA by roughly ��
 at high memory pressures� AS�

COMA� on the other hand� deposits a reasonable subset of �hot� pages into the page cache and then

backs o� from replacing further pages once it detects thrashing� As a result� even for a program

with almost no spatial locality� AS�COMA is able to converge to CC�NUMA�like performance �or

better� across all memory pressures� At ��
 memory pressure� AS�COMA outperforms VC�NUMA

by ��
 and R�NUMA by ��
 at high memory pressures� and it remains within �
 of CC�NUMA�s

performance� The slight degradation compared to CC�NUMA is due to the short period of thrashing

that occurs before AS�COMA can detect it and completely stop relocations�

Applications in the second category �fft� ocean� and lu� exhibit good page�grained locality�

All three applications only have a small set of �hot� pages� which can be easily replicated using

��

a small page cache� or references to remote pages are so localized that the small �����byte� RAC

in our simulation was able to satisfy a high percentage of remote accesses� As a result� thrashing

never occurs and the various backo� schemes are not invoked� Thus� the performance of the three

hybrid algorithms is almost identical�

The performance results for fft and ocean are almost identical� albeit for di�erent reasons�

For these applications� all of the architectures performed equally well� except for pure S�COMA�

which performs poorly at high memory pressures� As can be seen in Table �� only a tiny fraction

of pages in fft are accessed enough to be eligible for relocation� so all of the hybrid architectures

e�ectively become CC�NUMAs� S�COMA must maintain inclusion between the processor cache

and the page cache� so kernel overhead due to thrashing occurs at ��
 memory pressure� which

causes performance to drop signi�cantly� Somewhat surprisingly� fft has such high spatial locality

in its references to remote memory that the ����byte RAC plays a major role in satisfying remote

accesses locally� The reason that performance is stable across all memory pressures in ocean can

be seen in the right hand graph of Figure �� Even at ��
 memory pressure� only �
 of cache

misses are to remote data� and most such accesses can be supplied from a local S�COMA page or

the RAC� As a result� all of the architectures other than pure S�COMA� which su�ers the same

problem as in fft� perform within �
 of one another�

Finally� in lu� each process accesses every remote page enough times to warrant remapping �see

Table ��� similar to radix� However� every process uses each set of shared pages in the problem

set for only a short time before moving to another set of pages� Thus� unlike radix� only a small

set of remote pages are active at any time� and a small page cache can hold each process�s active

working set completely� So� while 	
 of CC�NUMA�s cache misses must be satis�ed by remote

nodes� practically all cache misses are satis�ed locally in the other architectures� As a result�

all of the hybrid architectures outperform CC�NUMA by approximately ��
 across all memory

pressures� Even pure S�COMA outperforms CC�NUMA at a ��
 memory pressure� although its

overall performance is ��
 worse than the hybrid architectures because of load imbalance�

In summary� for applications that do not su�er frequent remote cache misses or for which the

active working set of remote pages is small at any given time� all of the hybrid architectures perform

quite well� often outperforming CC�NUMA� However� for applications with less spatial locality or

larger working sets� the more aggressive remapping backo� mechanism used by AS�COMA is crucial

to achieving good performance� In such applications� AS�COMA outperformed the other hybrid

architectures by ��
 to ��
� and either outperformed or broke even with CC�NUMA even at

extreme memory pressures� Given programmers� desire to run the largest problem size that they

��

can on their machines� this stability of AS�COMA at high memory pressures could prove to be an

important factor in getting hybrid architectures adopted�

� Conclusions

The performance of hardware distributed shared memory is governed by three factors� �i� remote

memory latency� �ii� the number of remote misses� and �iii� the software overhead of managing

the memory hierarchy� In this paper� we evaluated the performance of �ve DSM architectures

�CC�NUMA� S�COMA� R�NUMA� VC�NUMA� and AS�COMA� with special attention to the third

factor� system software overhead� Furthermore� since users of SMPs tend to run the largest applica�

tions possible on their hardware� we paid special attention to how well each architecture performed

under high memory pressure�

We found that at low memory pressure� architectures that were most aggressive about mapping

remote pages into the local page cache �S�COMA and AS�COMA� performed best� In our study� S�

COMA and AS�COMA outperformed the other architectures by up to �	
 at low memory pressures�

As memory pressure increased� however� it became increasingly important to reduce the rate at

which remote pages were remapped into the local page cache� S�COMA�s performance usually

dropped dramatically at high memory pressures� The performance of VC�NUMA and R�NUMA

also dropped at high memory pressures� albeit not as severely as S�COMA� due to thrashing� This

thrashing phenomenom has been largely ignored in previous studies� but we found that it had a

signi�cant impact on performance� especially at the high memory pressures likely to be preferred

by power users�

In contrast� AS�COMA�s software�based scheme to detect thrashing and reduce the rate of page

remappings caused it to outperform VC�NUMA and R�NUMA by up to ��
 at high memory

pressures� AS�COMA is able to fully utilize even a small page cache by mapping a subset of

�hot� pages locally� and then backing o� further remapping� This mechanism caused AS�COMA to

outperform even CC�NUMA in �ve out of the six applications we studied� and only underperform

CC�NUMA by �
 in the sixth�

Consequently� we believe that hybrid CC�NUMA�S�COMA architectures can be made to per�

form e�ectively at all ranges of memory pressures� At low memory pressures� aggressive use of

available DRAM can eliminate most remote con�ict misses� At high memory pressures� reducing

the rate of page remappings and keeping only a subset of �hot� pages in the small local page cache

can lead to performance close to or better than CC�NUMA� To achieve this level of performance�

��

the overhead of system software must be carefully considered� and careful attention must given to

avoiding needless system overhead� AS�COMA achieves these goals�

References

��� R� Alverson
 D� Callahan
 D� Cummings
 B� Koblenz
 A� Porter�eld
 and B� Smith� The Tera computer
system� In Proceedings of the ���� International Conference on Supercomputing
 pages ���
 September
�����

��� W�J� Bolosky
 R�P� Fitzgerald
 and M�L� Scott� Simple but e�ective techniques for NUMA memory
management� In Proceedings of the ��th ACM Symposium on Operating Systems Principles
 pages
���	�
 December �����

�	� S� Chandra
 J�R� Larus
 and A� Rogers� Where is time spent in message�passing and shared�memory
programs� In Proceedings of the �th Symposium on Architectural Support for Programming Languages
and Operating Systems
 pages ����	
 October �����

��� D� E� Culler
 A� Dusseau
 S� C� Goldstein
 A� Krishnamurthy
 S� Lumetta
 T� von Eicken
 and K� Yelick�
Parallel programming in spit�c� In Proceedings of Supercomputing ���
 pages ������	
 November ���	�

�� B� Falsa� and D�A� Wood� Reactive NUMA� A design for unifying S�COMA and CC�NUMA� In
Proceedings of the ��th Annual International Symposium on Computer Architecture
 pages �������

June �����

��� J� Laudon and D� Lenoski� The SGI Origin� A ccNUMA highly scalable server� In SIGARCH��
 pages
������
 June �����

��� D� Lenoski
 J� Laudon
 K� Gharachorloo
 A� Gupta
 and J� Hennessy� The directory�based cache
coherence protocol for the DASH multiprocessor� In Proceedings of the ��th Annual International
Symposium on Computer Architecture
 pages ������
 May �����

��� D� Lenoski
 J� Laudon
 K� Gharachorloo
 W��D� Weber
 A� Gupta
 J� Hennessy
 M� Horowitz
 and M� S�
Lam� The Stanford DASH multiprocessor� IEEE Computer
 ��	���	���
 March �����

��� M� Marchetti
 L� Kontothonassis
 R� Bianchini
 and M�L� Scott� Using simple page placement policies
to reduce the code of cache �lls in coherent shared�memory systems� In Proceedings of the Ninth
ACM	IEEE International Parallel Processing Symposium
IPPS�
 April ����

���� M�K� Mckusick
 K� Bostic
 M�J� Karels
 and J�S� Quarterman� The Design and Implementation of the
���BSD operating system
 chapter Memory Management
 pages �������� Addison�Wesley Publishing
Company Inc
 �����

���� MIPS Technologies Inc� MIPS R����� Microprocessor User�s Manual Version ���
 December �����

���� A� Moga and M� Dubois� The e�ectiveness of SRAM network caches in clustered DSMs� In Proceedings
of the Fourth Annual Symposium on High Performance Computer Architecture
 �����

��	� A� Nowatzyk
 G� Aybay
 M� Browne
 E� Kelly
 M� Parkin
 B� Radke
 and S� Vishin� The S	�mp
scalable shared memory multiprocessor� In Proceedings of the ���� International Conference on Parallel
Processing
 ����

���� S� E� Perl and R�L� Sites� Studies of Windows NT performance using dynamic execution traces� In
Proceedings of the Second Symposium on Operating System Design and Implementation
 pages �������

October �����

��� V� Santhanam
 E�H� Fornish
 and W��C� Hsu� Data prefetching on the HP PA������ In Proceedings of
the ��th Annual International Symposium on Computer Architecture
 pages ������	
 June �����

���� A� Saulsbury
 T� Wilkinson
 J� Carter
 and A� Landin� An argument for Simple COMA� In Proceedings
of the First Annual Symposium on High Performance Computer Architecture
 pages ������
 January
����

��

���� L�B� Stoller
 R� Kuramkote
 and M�R� Swanson� PAINT� PA instruction set interpreter� Technical
Report UUCS�������
 University of Utah � Computer Science Department
 September �����

���� Sun Microsystems� Ultra Enterprise ����� System Overview� http���www�sun�com�servers�datacenter�products�starfire�

���� M� Swanson and L� Stoller� Shared memory as a basis for conservative distributed architectural simu�
lation� In Parallel and Distributed Simulation
PADS ����
 ����� Submitted for publication�

���� J�E� Veenstra and R�J� Fowler� Mint� A front end for e�cient simulation of shared�memory multipro�
cessors� In MASCOTS ����
 January �����

���� B� Verghese
 S� Devine
 A� Gupta
 and M� Rosenblum� Operating system support for improving data
locality on CC�NUMA compute servers� In Proceedings of the �th Symposium on Architectural Support
for Programming Languages and Operating Systems
 October �����

���� S�C� Woo
 M� Ohara
 E� Torrie
 J�P� Singh
 and A� Gupta� The SPLASH�� programs� Characterization
and methodological considerations� In Proceedings of the ��nd Annual International Symposium on
Computer Architecture
 pages ���	�
 June ����

��

