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ABSTRACT

A new algorithm for isosurface extraction is proposed and implemented� The

algorithm is based on the new mathematical understanding of the theory of the

quasi�Monte Carlo methods� Di�erent from the general isosurface extracting meth�

ods� which work on the whole data set� this algorithm works on a subset of the orig�

inal large three�dimensional data set� which is generated by the quasi�Monte Carlo

method� The isosurface is generated on this subset data as an approximation to the

isosurface generated from the whole data set� Hammersley� Halton and Hyperbolic

Cross points are used as the quasi�Monte Carlo points in the implementation�

The results show that the QMC techniques enjoy a linear speedup with the

number of QMC points� For large data sets� we usually can reduce the data

size remarkbaly and still get a good representation of the original isosurface� The

advantage of the techniques becomes more prominent when the data size gets larger�

The QMC points generally generate visually better and smoother isosurfaces and

these isosurfaces represent the overall shape of the original isosurfaces better than

a regular subset of the original data�

The preprocessing of the QMC isosurface extraction might be time consuming�

But this is a one�time process� After it is done� the postisosurface extraction is

very fast�



To my family



CONTENTS

ABSTRACT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � iv

LIST OF FIGURES � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � viii

ACKNOWLEDGEMENTS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � x

CHAPTERS

�� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Problem of Isosurface Extraction � � � � � � � � � � � � � � � � � � � � � � � � �
��� Isosurface Extracting Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Geometric Space Decomposition Methods � � � � � � � � � � � � � � � � � 	
������� Marching Cubes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
������� Octrees � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

������	 Extrema Graphs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


����� Value Space Decomposition Methods � � � � � � � � � � � � � � � � � � � � �
������� The Active List � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
������� The Span Filter � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
������	 Sweeping Simplices � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
������
 NOISE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	 Data Reduction Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	�� Geometry Extraction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	�� Thresholding � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	�	 Probing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	�
 Decimation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Quasi�Monte Carlo Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Isosurface Extraction Using Quasi�Monte Carlo Methods � � � � � � � � � �	

�� QUASI�MONTE CARLO POINTS GENERATION � � � � � � � � � � � ��

��� Hammersley and Halton Points � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Hyperbolic Cross Points � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� QUASI�MONTE CARLO ISOSURFACE EXTRACTION FOR

STRUCTURED GRIDS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Data Sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
	�� Interpolation on the Structured Grids � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Search in Structured Grids � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	���� Linear Interpolation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	���	 Cubic Polynomial Interpolation � � � � � � � � � � � � � � � � � � � � � � � � � ��



	���
 Numerical Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	�	 QMC and Regular Points Comparisons � � � � � � � � � � � � � � � � � � � � � � � 	�

	�	�� QMC and Regular Points Comparisons � � � � � � � � � � � � � � � � � � � 	�
	�	�� Subsampling Vs� Interpolation for Hyperbolic Cross

Points � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

	�
 Data Reduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
	�� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

�� QUASI�MONTE CARLO ISOSURFACE EXTRACTION FOR

UNSTRUCTURED GRIDS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


�� Data Sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	

�� Local Natural Coordinate � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	

�	 Search on Unstructured Grids � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


�	�� Kd�Trees � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


�	�� Searching Using Kd�Trees � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


�	���� Kd�Tree Construction � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

�	���� Traversing the Kd�Tree � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

�	���	 Point Inside a Cell � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�
 Interpolation on the Unstructured Grids � � � � � � � � � � � � � � � � � � � � � � ��

�
�� Linear Interpolation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
�� Quadratic Interpolation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
�	 Numerical Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� QMC and Regular Points Comparisons � � � � � � � � � � � � � � � � � � � � � � � �

�� Data Reduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Discussion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� DISCUSSION AND CONCLUSIONS � � � � � � � � � � � � � � � � � � � � � � � �

REFERENCES � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

vii



LIST OF FIGURES

��� Three�dimensional Hammersley points� The total number of points is
���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Three�dimensional Halton points� The total number of points is ���� � ��

��	 Three�dimensional Hyperbolic Cross points for m � � and rj � �� j �
�� �� 	� The total number of points is 
��� � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Isosurfaces of some structured data sets� � � � � � � � � � � � � � � � � � � � � � � � �


	�� Comparisons between linear and cubic polynomial interpolations� One�
fourth of the original data size is used for both data sets� � � � � � � � � � ��

	�	 Comparisons between linear and cubic polynomial interpolations� One�
sixteenth ������ of the original data size is used for both data sets� � ��

	�
 Comparison between QMC and regular points for SPHERE� One�
eighth of the original data is used� which is ����� points� � � � � � � � � � 	�

	�� Comparison between QMC and regular points for SEIS� One�eighth
of the original data is used� which ����� points� � � � � � � � � � � � � � � � � 		

	�� Comparison between subsampling �for Hyperbolic Cross points� and
interpolation �for Hammersley and Halton points� for SPHERE� The
number of points is ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	� Comparison between subsampling �for Hyperbolic Cross points� and
interpolation �for Hammersley and Halton points� for SEIS� The num�
ber of points is ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	�� Data reduction comparisons for SPHERE� � � � � � � � � � � � � � � � � � � � � � 	�

	�� Data reduction comparisons for SEIS� � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	��� Data reduction perfomance on data sets SPHERE and SEIS� � � � � � � � 
�


�� Isosurfaces of some unstructured data sets� � � � � � � � � � � � � � � � � � � � � 




�� Volume coordinate for a point inside a tedrahedron� � � � � � � � � � � � � � � 
�


�	 Ten points used in quadratic interpolation� � � � � � � � � � � � � � � � � � � � � � ��


�
 Comparisons between linear and quadratic interpolation� Half of the
original data size is used for each data set� � � � � � � � � � � � � � � � � � � � � � �	


�� Comparisons between linear and quadratic interpolation� One�sixteenth
������ of the original data size is used for each data set� � � � � � � � � � � �





�� Time spent in linear interpolation and NOISE isosurface extraction
for di�erent number of QMC points� � � � � � � � � � � � � � � � � � � � � � � � � � ��


� Comparison between QMC and regular points for HEART� One�eighth
of the original data size is used ��
	� points�� � � � � � � � � � � � � � � � � � � ��


�� Comparison between QMC and regular points for TORSO� One�eighth
of the original data size is used �
	� points�� � � � � � � � � � � � � � � � � � � ��


�� Comparison between QMC and regular points for HEAD� One�eighth
of the original data size is used ���
� points�� � � � � � � � � � � � � � � � � � ��


��� Data reduction comparisons for HEART� � � � � � � � � � � � � � � � � � � � � � � ��


��� Data reduction comparisons for TORSO� � � � � � � � � � � � � � � � � � � � � � � �	


��� Data reduction comparisons for HEAD� � � � � � � � � � � � � � � � � � � � � � � � �



��	 Data reduction performance� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

ix



ACKNOWLEDGEMENTS

I would like to thank my supervisor� Dr� Kris Sikorski� for his guidance and

encouragement in my thesis research� He is always patient and always gives me

valuable suggestions� I would also like to thank my committee member Dr� Chris

Johnson� who allowed me to use the NOISE program and a program to generate 	D

tedrahetrons from discrete points� I am in debt to my committee member Professor

Frank Stenger for his review of my thesis�

Dr� Yarden Livnat helped me with a lot of questions� especially he explained

many details of the NOISE algorithm that he designed�

I would like to specially thank Professor Gerard T� Schuster for letting me use

his codes to generate the Hammersley and Halton points�



CHAPTER �

INTRODUCTION

Scienti�c visualization has played an important role in investigating and under�

standing large data sets� and isosurface extraction and visualization is one of the

most e�ective and powerful techniques for the investigation of three�dimensional

scalar data sets� General isosurface extraction methods use the whole data set�

which might be very large� Signi�cant e�orts have been undertaken in organizing

data structures in order to speed up the process�

Recently� a mathematical breakthrough was achieved in understanding the tract�

ability of multidimensional integrations using nearly�optimal quasi�Monte Carlo

methods� These new methods have been successfully applied to exploration geo�

physics� �nancial integrals and computer graphics� Inspired by the new mathemat�

ical insights and its successful applications� we apply this method for extracting

isosurface from large three�dimensional data sets�

In this chapter� we review the general isosurface extracting methods� data reduc�

tion methods� the quasi�Monte Carlo theory� and propose our procedure of using

the quasi�Monte Carlo �QMC� methods for extracting isosurfaces�

��� The Problem of Isosurface Extraction

The problem of isosurface extraction from a volumetric data set can be formally

stated as follows �Cignoni et al�� ������

A volumetric scalar data set is de�ned as a pair �V�W �� where V � fvi �
R�� i � �� ����mg is a �nite set of points in the three�dimensional real

space� and W � fwi � R� i � �� ����mg is a corresponding set of scalar



�

values� Elements of V are sampling points in a domain � � R�� for a

tri�variate scalar �eld W � f�x� y� z�� i�e�� wi � f�vi�� i � �� ����m�

A discrete model for volume data sets �V�W � is a pair ������ where � is

a subdivision of � into cells ��� ���� �n� and � is a corresponding family of

real tri�variate functions �j � �j � R� j � �� ���� n� which interpolate the

values of W at all points of V �

�i � ����m��j � ����n� �vi � �j�� ��j�vi� � wi��

If functions of � are coincident at the common boundary of adjacent cells

of �� then a continuous function � is de�ned piecewise by � on ��

��p� � �j�p� if p � �j��j � �� ���� n�

Function � is in practice an estimate of the measured function f over ��

Given q � R� the set S�q� � fp � � j ��p� � qg is called an isosurface of

� at value q� If � is continuous� and q is not an extreme value of �� then

S�q� is a ��manifold embedded in R�� possibly with a one�dimensional

boundary contained in the boundary of �� S�q� is de�ned piecewise on

the cells of �� each cell �j � � such that min�j�j � q � max�j�j� �j is

called active at q� and it contributes to S�q� for a patch corresponding to

the locus of points

Sj�q� � fp � �j j �j�p� � qg�

The isosurface extraction problem consists in approximating all patches

Sj�q� that correspond to active cells� given ����� and q�

The data set is often generated from three�dimensional images or simulation

techniques� such as from �nite di�erence or �nite element methods� When the data

set is very large� extracting an isosurface can be a large computational task� Rather

than �nding a global solution one can seek a local approximation within each cell

in �� Hence� isosurface extraction becomes a two�stage process� locating the cells



	

that intersect the isosurface� and then locally approximating the isosurface inside

each such cell�

Traditional methods for isosurface extraction� such as the Marching Cube� an�

alyze in turn every cell of �� and for each active cell compute the corresponding

isosurface patch� More recent techniques are aimed at avoiding analyzing non�active

cells�

��� Isosurface Extracting Methods

Early techniques for generating isosurfaces began as three�dimensional exten�

sions to the image processing problem of �nding two�dimensional contours� These

approaches required substantial computational logic� and not all of them were fool�

proof� More recent approaches are more algorithmic� and can generally guarantee

a correct solution�

We review di�erent approaches to the general isosurface extraction problem�

����� Geometric Space Decomposition Methods

Originally� only structured grids were available as an underlying geometry� Struc�

tured grids impose order on the given cell set� This fact helps to keep the geometric

complexity of the entire cell set in the geometry domain� By utilizing this or�

der� methods based on the geometry of the data set could take advantage of the

coherence between adjacent cells� Isosurface can be generated by searching over

the geometric space� The isosurface extraction problem can be de�ned as follows

�Livnat et al�� ������

Geometric Search� Given a point q � �min�W ��max�W �� and a set of

cells � in �� where each cell is associated with a set of values fqjg � W �

�nd the subset of � which an isosurface of value q intersects�

������� Marching Cubes

Marching cubes algorithm� which was proposed by Lorensen and Cline ������

was one of the �rst constructive algorithms� It processes one cell �i at a time�

and generates its isosurface geometry immediately before moving to the next cell�






Its basic approach involves taking an l�vertex cube� looking at the scalar value at

each vertex� and determining if and how an isosurface would pass through it� This

algorithm has a complexity of O�n�� where n is the number of cells�

������� Octrees

Wilhems and Van Gelder ������ proposed the use of a branch�on�need octree� a

hierachical spatial decomposition data structure� to purge subvolumes while �tting

isosurfaces� The hierarchical nature of the octree enables searching to only the

lowest level nodes of the original data set containing at least one active cell� The

method adopts a geometric approach� The domain is limited to the case of regular

data sets or to curvilinear data sets de�ned on a warped regular grid�

Wilhelms and Gelder did not analyze the time complexity of the search phase

of their algorithm� However� octree decompositions are known to be sensitive to

the underlying data� If the underlying data contains some �uctuations or noise�

most of the octree will have to be traversed� The octree algorithm has a worst case

complexity of O�k � k log�n�k��� where n is the total number of cells in the scalar

�eld� and k is the number of active cells�

������� Extrema Graphs

Another geometric approach� based on the use of extrema graph� is proposed

by Itoh and Koyamada ����
�� The nodes of the graph are the cells of the volume

which hold local extrema of the data values �local minima or maxima�� Each

edge of the graph keeps a list of the cells connecting its two end nodes� Given an

isovalue� an active edge is searched for in the extrema graph� The cells connected

to this edge are then sequentially scanned until an active one is found and� �nally� a

propagation method is activated on this cell� Knowing how the isosurface intersects

the current cell enables the algorithm to move only to those neighbouring cells that

are guaranteed to intersect the isosurface� At the end of the process� boundary

cells need to be tested because of possibly isolated local extrema� The propagation

algorithm adopted uses a FIFO queue to store the identi�ers of the adjacent active

cells to be visited� and marks those cells to avoid enqueuing them again� The
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algorithm can be applied both to regular and irregular data sets� The complexity

of the algorithm is at best the size of the boundary list� which Itoh and Koyamada

estimate as O�n�����

Storage requirements for the extrema graph method can be high� since the

propagation search requires four links from each cell to its neighbors in addition to

the maximum and minimum values of its vertices� In addtion� the algorithm uses a

queue during the propagation search� yet the maximum required size of the queue

is unknown in advance�

����� Value Space Decomposition Methods

Another class of algorithms is based on interval search� The search is carried

out on the interval set and� for each active interval� on the corresponding active

cell� All such techniques apply to both regular and irregular data sets� but waste of

memory due to the loss of implicit spatial information makes them more suitable

for irregular data sets�

E�cient isosurface extraction for unstructured data set is more di�cult� as no

explicit order� i�e�� position and shape� is imposed on the cells� only an implicit one

that is di�cult to utilize� Methods designed to work in this domain have to use

additional explicit information or revert to search over the value space� W � The

advantage of the latter approach is that one needs only to examine the minimum

and maximum values of a cell to determine if an isosurface intersects that cell�

Hence� the dimensionality of the problem reduces to two for scalar �elds� For linear

tetrahedron cells we are working with� the minimum and maximum values of a cell

are located at the vertices�

These algorithms based on interval search can be stated formally as follows

�Livnat et al�� ������

Interval Search� Given a number q � �min�W ��max�W �� and given a

set of cells represented as intervals�

I � f�ai� bi�g such that� ai� bi � W
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�nd Iq � I such that�

�ai� bi� � Iq i� ai � q � bi

Posing the search problem over intervals introduces some di�culties� If the

intervals are of the same length or are mutually exclusive they can be organized

in an e�cient way suitable for quick queries� However� it is much less obvious

how to organize an arbitrary set of intervals� Indeed� what distinguishes these

methods from one another is the way they organize the intervals rather than how

they perform searches�

Decomposing the value space� rather than the geometric space� has two ad�

vantages� First� the underlying geometric structure is of no importance� so this

decomposition works well with unstructured grids� Second� for a scalar �eld in 	�D�

the dimensionality of the search is reduced from three to only two�

������� The Active List

Giles and Haimes ������ report an approach in which two sorted interval lists are

constructed in a preprocessing phase by sorting the cells� minimum and maximum

values� The global maximumrange of each cell is also computed� Given an isovalue�

and active list containing all the active intervals is created by referring to the two

sorted lists� If the speci�ed isovalue is changed by less than the global maximum

range with respect to the previous one� then the active list is augmented with the

intervals lying between the two isovalues� Only one of the original lists is used

in this process� depending on the sign of the isovalue�s change� The active list

is then purged of all the cells that do not intersect the new isosurface� Only the

cells corresponding to the intervals of the �nal active list are visited to extract the

isosurface� Livnat et al� showed that the complexity of this algorithm is O�n� in

time�

������� The Span Filter

A key issue in isosurface extraction is the size of the data set� Gallagher

������ addressed this issue by scanning the data set and generating a compressed





representation suitable for isosurface extraction� The range of data values is divided

into subranges� termed buckets� Each cell is then classi�ed based on the bucket its

minimum value resides in and on how many buckets the cells range spans i�e� the

span of the cell� Cells are then grouped according to their span� and within each

such group the cells are further grouped according to their starting bucket� In

each such internal group� the representation is compressed according to a unique

id assigned to each cell� Rather than requiring a span list for every possible span

length� the method uses one span list to catch all the cells that span more than a

prede�ned number of buckets�

The use of this perspective stresses the importance of the �rst division into buck�

ets� The entire organization of the domain is controlled by only set of parameters�

the position of the original buckets� While this may help to ensure even distribution

in the �rst span� it does not provide control over the distribution of the cells in the

other spans� Furthermore� this division is not automated and has to be crafted by

trial and error for each new data set� Finally� the search algorithm has a complexity

of O�n� in time�

������� Sweeping Simplices

Shen and Johnson ������ tried to overcome the limitations of span �lter and

active list� by de�ning the sweeping simplices algorithm in which both sorted

lists of the active list algorithm� and the spatial decomposition into buckets of the

intervals of the span �lter algorithm are present�

Sweeping simplices uses two ordered cell lists� a sweep list and a min list� Each

element in the sweep list contains a pointer to a cell� the cell�s maximum value�

and a �ag� The sweep list is then sorted according the cell�s maximum value�

The min list contains the minimum value for each cell as well as a pointer to the

corresponding element in the sweep list and is ordered by the minimumvalues� The

initialization step requires a time of O�n log�n���

Given an isovalue� the sweeping simplices algorithm marks all the cells that

have a minimum value less than the given isovalue using the min list by setting

the corresponding �ag in the sweep list� If an isovalue was previously given� then
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the min list is traversed between the previous isovalue and the new one� The

corresponding �ags in the sweep list are then set or reset based on whether the new

isovalue is greater or smaller than the previous isovalue�

Once the �ags are changed� the sweep list is traversed starting at the �rst cell

with a maximum value greater than the new isovalue� The cells that intersect the

isosurface are those cells for which their corresponding �ag is set� The complexity

of the algorithm is O�n� in both time and space�

The sweeping simplices algorithm uses a hierarchical data decomposition� At the

lowest level� the range of data values is subdivided into several subgroups� Other

levels are created recursively by grouping consecutive pairs from the previous level�

At the top level there exists a single subgroup with the range as the entire data set�

The cells are then associated with the smallest subgroup that contains the cell� Each

subgroup is then associated with a minimum and sweep list as described before�

Isosurface extraction is accomplished by selecting for each level the subgroup that

contains the given isovalue and performing the search using its minimum and sweep

lists�

������� NOISE

A common obstacle for all the interval methods was that the intervals were

ordered according to either their maximum or their minimum value� Both the

sweep algorithm and the minimum�maximum attempted to tackle this issue by

maintaining two lists of the intervals� ordered by the maximum and minimum

values� What was missing� however� was a way to combine these two lists into

a single list�

Livnat et al� ������ proposed a new algorithm� which uses span space as the

underlying domain� and employs a kd�tree as a means for simultaneous ordering

the cells according to their maximum and minimum values�

This algorithm views the isosurface extraction problem not as a search over

intervals in W but rather as a search over points in W �� Livnat et al� ������ de�ne

the span space as follows�
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The Span Space� Let � be a given set of cells� de�ne a set of points

P � fpig over W � such that�

�ci � � associate� pi � �ai� bi��

where ai � minjfqjgi� bi � maxjfqjgi and fqjg are the values of the scalar
�eld f at vertices of cell ci�

Using this augmented de�nition� the isosurface extraction problem can be stated

as follows �Livnat et al�� ������

The Span Search� Given a set of cells �� and its associated set of points

P � in the span space� and given a value q � �min�W ��max�W ��� �nd the

subset Pq � P � such that

��xi� yi� � Pq� xi � q and yi � q�

This algorithm has a worst case complexity of O�
p
n�k� to locate the cells that

are intersected by the isosurface� where n is the total number of cells in the scalar

�eld� and k is the number of isosurface cells� This algorithm is nearly optimal in

the sense that for the typical case� k �
p
n� it�s asymptotic cost is O�k�� and every

algorithm has to cost at least O�k�� The algorithm performs well for large and

small data sets and for any size of isosurface� The number of cells that intersect an

isosurface can also be found in O�
p
n� time� which enables fast rough estimates of

the surface area and the corresponding volume encompassed by the isosurface�

��� Data Reduction Methods

For the problems of isosurface extraction� when the data set is very large� the cost

of computation might be huge� and the isosurface extraction becomes intractable�

Traditional isosurface extracting methods like Marching cubes search every cell in

the scalar �eld� more recent methods put e�orts in reorganizing the data structures�

either in the geometric space or in the value space� so only those active cells are

veri�ed� But all of these approaches work on the whole data set� the di�erence is

in using di�erent ways for extracting those active cells�
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Reducing data set size with preserved information content is an important

research problem� By reducing data size� reduction in computation and memory

requirement can be realized� which results in better interactive response� It is

important to be able to reduce the data size in order to visualize important features

of a large data set� Such techniques can be used to reduce image clutter and improve

the e�ectiveness of the visualization�

Various methods have been developed to reduce large data sets� In this section

we review some of these methods�

����� Geometry Extraction

Geometry extraction selects data based on geometric or topological characteris�

tics� A common extraction technique selects a set of points and cells that lie within

a speci�ed range� This method has been used frequently in �nite element analysis

to isolate the visualization to just a few key regions�

Another useful technique called spatial extraction� selects data set structure and

associated data attributes lying within a speci�ed region in space� For example�

data may be selected within a given sphere�

Subsampling is a method that reduces data size by selecting a subset of the

original data� The subset is speci�ed by choosing a parameter k� specifying that

every kth data point is to be extracted� Subsampling is not typically performed on

unstructured data because of its inherent complexity� A related technique is called

data masking� which selects every kth cell instead of every kth point�

����� Thresholding

Data thresholding selects data based on the values of data set attributes� For

example� one can select all points with a velocity magnitude greater than ����

����� Probing

Probing is a method that obtains data set attributes by sampling one data set

�the input� with a set of points �the probe�� Probing is also called resampling�

The result of the probing is a new data set �the output� with the topological and
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geometric structure of the probed data set� and point attributes interpolated from

the input data set� Once the probing operation is completed� the output data set

can be visualized with any of the appropriate techniques�

One important application of probing converts irregular or unstructured data

to structured from using a volume of appropriate resolution as a probe to sample

the unstructured data� This is useful if we use volume rendering or other volume

visualization techniques to view the data�

����� Decimation

A decimation algorithm can be used after the isosurface has been extracted� The

goal of decimation algorithm is to reduce the total number of triangles in a trian�

gular mesh� preserving the original topology and forming a good approximation to

the original geometry� It is related to the subsampling techniques for unstructured

meshes� The di�erences are that decimation treats only triangular meshes� and

the choice of which point to delete is a function of a decimation criterion� also the

triangulation of the hole created by deleting the point is carried out in a way as to

preserve edges or other important features�

One of the decimation algorithms is polygon reduction technique� This technique

reduces the number of polygons required to model an object�

��� Quasi�Monte Carlo Methods

In general terms� the Monte Carlo method may be described as a numerical

method based on random sampling� A polish mathematician� Stanislaw Ulam� was

the �rst to develop and apply this method in large scale nuclear simulations �S�

Ulam� ���� ������ Since the ��
�s� the Monte Carlo methods have been widely

used for solving multidimensional problems in various branches of science�

It is well known that� for a given error tolerance� the computational work re�

quired to numerically evaluate a d�dimensional integral for integrands with bounded

derivatives is on the order �����d with using of a regular grid discretization� The

integral becomes practically intractable when the dimension d is large� In the

classical Monte Carlo methods� the discretization points are randomly selected�
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and the computational work is of the order ������� which is independent of d� This

makes multivariate integration for large d tractable� However The Monte Carlo

method has some disadvantages� For numerical integration� �rst� it yields only a

probabilistic bound on the integration error� second� it is not so much the true

randomness of the samples that is relevant� but rather that the samples should be

spread in a uniform manner over the integration domain� A determinisitic error

bound can be established if deterministic nodes are used�

Quasi�Monte Carlo methods can be succinctly described as deterministic versions

of Monte Carlo methods� The basic idea of it is to replace random samples in a

Monte Carlo method by well�chosen deterministic points� The main aim is to

select deterministic points for which the deterministic error bound is smaller than

or comparable to the probabilistic Monte Carlo error bound� It is proved that

quasi�Monte Carlo method with judiciously chosen deterministic points usually

leads to a faster rate of convergence than a corresponding Monte Carlo method�

Recently� a theoretical breakthrough was achieved in the understanding of the

computational complexity of several quasi�Monte Carlo methods for multivariate

integration� Wozniakowski ������ proved that some of the intractable problems

can be made tractable by a quasi�Monte Carlo approach� One of such problems is

integration� another is surface reconstruction� in which discrete information is used

to approximate a multivariate function� a technique that is the basis for medical

imaging and many other applications�

Wozniakowski ������ showed that the discretization based on the shifted Ham�

mersley points is nearly�optimal for the integration problem in the average case

setting� with the computational work H��� � O��
�
�log��

�
��q�� where q � �d��� �� This

means that to guarantee the expected error of the integration to be at most �

�with respect to a large class of probability measures� one must use at least H���

evaluations� no matter what discretization points are chosen� It has also been shown

that for the Hammersley points and for the related Halton points the exponent q

is respectively d	 � and d�

Temlyakov ����� ����� ���	� introduced the hyperbolic cross points� He proved



�	

that hyperbolic cross points are nearly optimal sampling points for multivariate

function approximation in the average case setting�

��	 Isosurface Extraction Using Quasi�Monte Carlo
Methods

G� Schuster and K� Sikorski ������ ���� applied the quasi�Monte Carlo method

for the three�dimensional migration in their geophysical research� and the results

showed great advantage of this approach� The quasi�Monte Carlo methods have

also been applied to �nancial integrals �S� Paskov and J� Traub� ����� computer

graphics �A� Keller� ���� and other research areas� Niederreiter ������ discusses

the quasi�Monte Carlo methods and their applications� Inspired by the new insight

and understanding of the quasi�Monte Carlo method� we apply this method in the

three�dimensional isosurface extraction�

As we discussed in previous sections� isosurface extraction becomes di�cult when

data sizes get very large� Various algorithms have been developed to reduce the data

size for fast isosurface extraction� In this thesis� we propose and implement a new

isosurface extracting method� which takes a di�erent approach from all previous

methods� The idea is similar to some of the data reduction algorithms� instead of

working on the whole data set� we choose a subset of data from the original large

data set� and then use this subset to construct an approximation of the original

isosurface�

The new algorithm uses the quasi�Monte Carlo methods to generate a set of

quasi�Monte Carlo points as our resampling points� Then the original large data

sets are interpolated or directly subsampled to these quasi�Monte Carlo data sets�

This new subset is then used in the isosurface extraction�

The new algorithm takes the following steps�

�� Preprocessing�

�a� Decide on how many quasi random points we want to use� and generate

them by a speci�c quasi�Monte Carlo method�
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�b� Interpolate or directly subsample the scalar value into the three�dimensional

quasi�Monte Carlo points�

�c� Generate a new geometric representation based on these three�dimensional

points�

�� Isosurface extraction�


 Use either of the previous methods to extract the desired isosurface from

the new data set�

This algorithm is applicable for both structured and unstructured data� and also

for time dependant data� In this thesis� three types of quasi�Monte Carlo points�

Hammersley� Halton and Hyperbolic cross points are used to verify the performance

of the algorithm�

As only a subset of the original large data set is used� the cost of the isosurface

extraction can be reduced remarkably� Reducing the large data sets into smaller

ones by using quasi�Monte Carlo methods allows us to interactively render the

approximate isosurface� Though the preprocessing might not be trivial� but once

it is completed� the isosurface construction becomes much less costly as compared

to the original data set�

The results show that the QMC techniques enjoy a linear speedup with the

decreasing number of QMC points� For large data sets� we usually can reduce the

data size remarkbaly and still get a good representation of the original isosurface�

The advantage of the techniques becomes more prominent when the data size gets

larger� The QMC points generally generate visually better and smoother isosurfaces

and these isosurfaces represent the overall shape of the original isosurfaces better

than a regular subset of the original data� The di�erences among di�erent QMC

points are not prominent and depend on the data sets�

This thesis is organized into �ve chapters� Chapter � discusses the quasi�Monte

Carlo points generations� Chapter 	 applies the quasi�Monte Carlo isosurface

extraction techniques to some structured data sets� Chapter 
 presents the ap�
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plication of the techniques to unstructured data sets� Finally� Chapter � contains

the conclusions�



CHAPTER �

QUASI�MONTE CARLO POINTS

GENERATION

Three types of quasi�Monte Carlo points are used in this thesis � Hammersley�

Halton and Hyperbolic Cross points� This chapter discusses the algorithms for

generating these points�

��� Hammersley and Halton Points

The Hammersley and Halton points can be generated in a similar way� Let

p�� p�� ���� pd be the �rst d prime numbers� where d is the dimension� Any integer

k � � can uniquely be represented by�

k �
dlogkeX
i��

aip
i
j

with ai � ��� pj 	 ���

The radical inverse function �pj is given by

�pj�k� �
dlogkeX
i��

aip
��i���
j �

We then de�ne the sequence of vectors uk for k � �� �� ���� M 	 � as

ud��k � ��p��k���p��k�� �����pd��
�k��

with M � �p�p����pd���dlogde�

It is proved �Wozniakowski� ����� that there exists a real number t� such that

the optimal on the average n sampling points in the unit cube ��� ��d are given by

xk � ��	 zk
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where �� � ��� ���� ��T and

zk � ��k � t���n� ud��k �� k � �� �� ���� n�

For t� � � the zk�s are the classical Hammersley points�

The Halton points zk�s are de�ned as

zk � �udk�� k � �� �� ���� n�

Figure ��� shows an example of the three�dimensional Hammersley points� and

Figure ��� shows an example of the three�dimensional Halton points�

��� Hyperbolic Cross Points

Hyperbolic Cross points were introduced by Temlyakov ����� ����� for periodic

functions� These points are de�ned as a subset of grid points whose indices satisfy a

hyperbolic inequality� Temlyakov proved that the hyperbolic cross points are nearly

optimal sampling points for multivariate function approximation in the average case

setting� Wozniakowski ������ extended it to the nonperiodic functions� He proved

that optimal or nearly optimal sampling points for the approximation problem

can be derived from Hyperbolic Cross points� He also exhibited nearly optimal

algorithms for multivariate function approximation�

Let us de�ne a vector

�r � �r�� ���� rd�

for j � �� ���� d� where d is the number of dimensions and rj is the regularity of the

sampled function in jth dimension�

For given integer m� the hyperbolic cross Xn of sample points is given by

Xn � f� l�
�s���

� �����
ld

�sd��
�g� �����

where lj � �� �� ���� �sj�� 	 �� j � �� �� ���� d� and �s � A� where A is the set of all

nonnegative integers �s for which the following condition is satis�ed�

dX
j��

�rj � ��sj � m�rmin � ���

where rmin � min�rj�� j � �� ���� d�
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3−D Hammersley Points: X−Y (Z=0)

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

X

Y

3−D Hammersley Points: Y−Z (X=0)
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3−D Hammersley Points: Z−X (Y=0)
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Figure ���� Three�dimensional Hammersley points� The total number of points is
����
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3−D Halton Points: X−Y (Z=0)
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3−D Halton Points: Y−Z (X=0)
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3−D Halton Points: Z−X (Y=0)
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Figure ���� Three�dimensional Halton points� The total number of points is ����
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Here n � card�Xn�� For the three�dimensional case�

n � ���mm��

Choice for m depends on the size of the original data set� For smaller size �say

� ��� cells�� a suitable choice formmay be � � m � �� Whenever for large sizes ���

and more� we could select m in the range ���� ��� or even larger� We stress that the

total number of Hyperbolic Cross points can not be arbitrarily chosen� To generate

more  �exible! set of points� we slightly modi�ed the generation algorithm� In

Equation ���� when choosing lj � �� �� ���� �sj��	�� the same pattern repeats � times

in each dimension� Now we change it to lj � �� �� ���� �sj�k 	 �� where � � k � ��

This change allows the same pattern to repeat 
 to 	� times as needed�

Figure ��	 shows an example of the 	�D Hyperbolic Cross points for m � � and

rj � �� j � �� �� 	�
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3−D Hyperbolic Cross Points: X−Y (Z=0)
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3−D Hyperbolic Cross Points: Y−Z (X=0)
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3−D Hyperbolic Cross Points: Z−X (Y=0)

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

Z

X

Figure ���� Three�dimensional Hyperbolic Cross points for m � � and
rj � �� j � �� �� 	� The total number of points is 
���



CHAPTER �

QUASI�MONTE CARLO ISOSURFACE

EXTRACTION FOR STRUCTURED

GRIDS

Structured data is one of the main types in scienti�c visualization� Such data

sets are usually generated by �nite�di�erence or other numerical techniques� In this

chapter� we apply the quasi�Monte Carlo �QMC� isosurface extraction technique

to structured data sets� We assume the data sets are in the Cartesian coordinates�

For structured data sets in other coordinates� a coordinate transformation can be

utilized �rst� and then the same technique can be applied�

The QMC isosurface extraction comprises of the following steps �


 QMC points generation� generate speci�ed number of quasi�Monte Carlo points�

which will be used as the subdata set to extract the isosurfaces�


 Mesh generation� generate new geometry representation �tetrahedrons� based

on the QMC points�


 Interpolation�subsampling� interpolate or subsample function values from the

original data set into the QMC points�


 Isosurface extraction� extract the isosurfaces from the QMC data sets�

After the QMC data reduction� the original structured data becomes unstructured�

We use three types of QMC points in our implementation� Hammersley� Halton

and Hyperbolic Cross points� The algorithms generating these points are presented

in Chapter �� The isosurface extraction algorithm used �NOISE algorithm� is

presented in Chapter �� The Delauny algorithm is used in the mesh generation�



�	

To test the new QMC isosurface extraction technique� we apply it to two struc�

tured data sets� Speci�caly� we investigate the following questions�


 How essential is the interpolation technique"


 How e�cient are di�erent QMC point sets"


 How e�ective is this data reduction technique"

This chapter is intended to answer these questions� Speci�cally� we apply the

QMC technique to various structured data sets by using di�erent interpolation

techniques� di�erent QMC points� and di�erent data reduction scales� We then

compare the results and draw conclusions�

��� Data Sets

Two structured data sets are used for testing� Some information about these

data sets is shown in Table 	���

The SPHERE is a synthetic data set of size �� � �� � ��� The function values

are calculated by the following quadratic function�

f�x� y� z� � x� � y� � z� 	 ��
�

The second data set SEIS is from 	�D �nite�di�erence seismic simulation� The

model used is a real model for the Salt Lake Basin� The data recorded are the

particle velocity� and the data size is �� � �� � ��� Both data sets contain ����


tetrahedron cells�

The isosurfaces of the two data sets are shown in Figure 	���

Table 	�� Data sets�

Name Source Type SIZE Cells
SPHERE SYN S�grid �� � �� � �� ����

SEIS FD S�grid �� � �� � �� ����




�


SPHERE : isovalue = 0

SEIS : isovalue = 0.49

Figure ���� Isosurfaces of some structured data sets�
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��� Interpolation on the Structured Grids

After the QMC points are generated� the function values need to be interpolated

into these QMC points before extracting the isosurfaces� The interpolation tech�

niques might be crucial� If a low precision interpolation is used� the errors of the

interpolated function value are large� then the extracted isosurfaces are not smooth�

and might also lose some information� But usually higher order interpolation is

more costly� A lower order interpolation that provides enough precision� and hence

saves computation time� would be most useful�

The interpolation for structured grids is relatively simple� It includes the fol�

lowing two steps�


 Search for the cube in which the QMC point is located�


 Interpolate function value to the QMC point inside the cube�

In the second step� two types of interpolation techniques are tested�


 Linear interpolation�


 Cubic polynomial interpolation�

����� Search in Structured Grids

For structured data� each point can be referenced by the indices �i� j� k�� Simil�

iarly� we can reference a cube in the structured grids by the indices of the vertex

that has the minimum x� y and z coordinates�

The search for a cube in which the QMC point is located is straightforward for the

structured grids� The indices of a cube which contains a QMC point q � �qx� qy� qz�

can be calculated as follows�

i � bqx�hxc�
j � bqy�hyc�
k � bqz�hzc�



��

where �i� j� k� are the indices of the cube� and hx� hy� hz are the grid spacing in

each dimension�

����� Linear Interpolation

The tri�linear interpolation in three dimensions is the simplest interpolation

technique� To illustrate� we �rst give the formula of linear interpolation in one

dimension�

The linear interpolation in one dimension �say X� can be calculated as follows�

� �
x	 xi

xi�� 	 xi
s��x� � ��x�fi � �� 	 ��x��fi���

where xi and fi are the X�coordinate and the function value of the data point� x

and s��x� are the X�coordinate and the interpolated function value at the QMC

point� Apparently we should have xi � x � xi���

The tri�linear interpolation is simply by applying the above formula to each of

the X�� Y� and Z�directions�

����� Cubic Polynomial Interpolation

The cubic polynomial interpolation uses a third order piece�wise polynomial

to interpolate the function values� This interpolation technique is widely used in

various applications�

Consider a ��D tabulated function yi � y�xi�� i � �� ���� n� and concentrate on

one particular interval xi � x � xi��� The cubic polynomial interpolation is given

by

s��x� � a�x�yi � b�x�yi�� � c�x�y
��

i � d�x�y
��

i���

where y
��

i is the second derivative of the function y�x� at xi� and can be calculated

by

y
��

i �
y
�

i�� � y
�

i�� 	 �y
�

i

�h



�

�
yi�� 	 
yi�� � �yi 	 
yi�� � yi��


h�
�

The coe�cients a�x�� b�x�� c�x� and d�x� are de�ned as

a�x� �
xi�� 	 x

xi�� 	 xi
�

b�x� � �	 a �
x	 xi

xi�� 	 xi
�

c�x� �
�

�
�a� 	 a�h��

d�x� �
�

�
�b� 	 b�h��

where h � xi�� 	 xi is the grid spacing�

The cubic polynomial interpolation in three dimensions is simply applying the

above formula to each of the X�� Y� and Z�dimensions�

����� Numerical Results

In this section� we apply the above two interpolation techniques to two data sets�

and compare the results� The Hammersley points are used in the computation�

Figures 	�� and 	�	 show the results by applying linear and cubic polynomial

interpolation to two structured data sets� The number of QMC points is ��
 that of

the original data size for both data sets for Figure 	��� and ���� for Figure 	�	� The

left columns are for the linear interpolation� and the right columns are for the cubic

polynomial interpolation� Table 	�� shows the performance of the two interpolation

techniques on two data sets for using ��
 of the original data� The numbers shown

in the table are the running time in seconds as implemented on IBM RS���� with

��� MB of virtual memory�

Table 	�� Interpolation performance

�Running time in seconds��

SPHERE SEIS
Linear Interpolation 	���	 	����
Cubic Spline Interpolation 
���
 
����
Mesh Generation �DELAUNY� ��		�	 �������
Isosurface Extraction �NOISE� ���� �
���



��

SPHERE : linear SPHERE : polynomial

SEIS : linear SEIS : polynomial

Figure ���� Comparisons between linear and cubic polynomial interpolations�
One�fourth of the original data size is used for both data sets�



��

SPHERE : linear SPHERE : polynomial

SEIS : linear SEIS : polynomial

Figure ���� Comparisons between linear and cubic polynomial interpolations�
One�sixteenth ������ of the original data size is used for both data sets�
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The cubic polynomial interpolation is more accurate interpolation� which gives

more smooth isosurfaces� But the di�erence between the appearances of the images

is very small for both data sets� The explanation for this is that we are working

with linear tetrahedral cells� In this case the function values can be approximated

by using the linear formula�

f�x� y� z� � ax� by � cz � d�

where a� b� c� and d are the coe�cients of the polynomial� and x� y and z are the

global coordinates� The coe�cients a� b� c� and d can be calculated by plugging in

the function value and coordinates of the four tetrahedron vertices into the above

formula and solving the four linear equations� For linear tetrahedral cells� linear

interpolation reaches the precision given in the original data�

In Table 	��� we listed the running time needed for the interpolations� The

interpolation time in the table included the cube searching time� As expected� the

cubic polynomial interpolation takes a little more time than the linear interpola�

tion� Because the cube searching almost costs no time� the running time for the

interpolation increases linearly with the number of QMC points� These results will

also be seen in the following sections�

Also shown in Table 	��� the time spent in interpolation is just a little more than

that spent in the isosurface extration� but the mesh generation takes a lot more

time�

Comparing the results� we draw the conclusion that linear interpolation is good

enough for the case of linear tetrahedral cells� and higher order cubic polynomial

interpolation does not yield much improvement �though it might be better for

larger compression ratios�� Therefore� the rest of the computations in this chapter

are employing linear interpolation� unless mentioned otherwise�

��� QMC and Regular Points Comparisons

We use three types of QMC points in our computation� Hammersley� Halton and

Hyperbolic Cross points� Also as discussed in Chapter �� some of the data reduction

techniques reduce the data by taking a regular subset of the original data� For the
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structured data sets� this might be done� for example� by taking every other point

in each dimension� As discussed in Chapter �� the Hyperbolic Cross points are a

subset of the regular grid points� We can also take advantage of this property to

subsample the original data instead of doing interpolations�

This section describes the QMC and regular points comparisons� and also com�

pares the subsamping with interpolation for the Hyperbolic Cross points�

����� QMC and Regular Points Comparisons

To see the di�erence among di�erent QMC points and regular grid points in

isosurface extraction� we apply the QMC isosurface extration to two data sets using

these three di�erent QMC points and regular grid points�

Figures 	�
 and 	�� show the results from di�erent QMC points and regular

grid points for the data sets SPHERE and SEIS respectively� One�eighth of the

original data for each data set is used� which is ����� points� Table 	�	 shows some

performance statistics on IBM RS�����

We see that for data set SPHERE� the Hammersley points generate the smoothest

image� The iamge generated by Halton points is similar to that generated by Ham�

mersley points� but probably less smooth� The Hyperbolic cross points generate

an isosurface that is similar to the regular grid points� For data set SEIS� the

Hammersley� Halton and Hyperbolic Cross points all give smoother images than

the regular grid points�

Table 	�	 indicates that generally interpolation just takes slightly more time

than the isosurface extraction� but generating the mesh takes a lot more time than

Table 	�	 Performance of QMC points

�Running time in seconds��
Interpolation Mesh Generation Isosurface Extraction

SPHERE SEIS SPHERE SEIS SPHERE SEIS
Hammersley ����� ����
 ������ ������ ���� �����
Halton ���
� ����� 
���
� ����
� ����� ���

Hyperbolic ����� ����� ����� 	���� ��� ���	�
Regular �	���� ���� ���� ��	

Original 
��	 ��
��
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SPHERE : hammersley SPHERE : halton

SPHERE : hyperbolic SPHERE : regular

Figure ���� Comparison between QMC and regular points for SPHERE�
One�eighth of the original data is used� which is ����� points�



		

SEIS : hammersley SEIS : halton

SEIS : hyperbolic SEIS : regular

Figure ���� Comparison between QMC and regular points for SEIS� One�eighth
of the original data is used� which ����� points�



	


interpolation and isosurface extraction� So for the QMC isosurface extraction� most

of the time in the preprocessing step is spent in the mesh generation� For every

single category� the times used for the three sets of QMC points are about the

same� Compared to the time spent in isosurface extraction with the full data set�

on average only one�eighth of the original time is used when using one�eighth of the

original data � �� for SPHERE and ���� for SEIS��

����� Subsampling Vs� Interpolation for Hyperbolic
Cross Points

As discussed in Chapter �� the Hyperbolic Cross points are a subset of the regular

grid points� By carefully arranging the data� we can generate the Hyperbolic Cross

points in such a way that they subsample the original data� By doing this� we take

advantage of the property of the Hyperbolic Cross points and avoid interpolations�

This section shows some comparisons between subsampling and interpolation�

Figures 	�� and 	� show the results from the subsampling �Hyperbolic Cross

points� and interpolation �Hammersley and Halton points� for the data sets SPHERE

and SEIS respectively� The number of points used is ����� for both data sets� Table

	�
 shows some performance statistics on IBM RS�����

We see from the �gures that for SPHERE� the images produced from all the

QMC points are in the same quality� For SEIS� the Hyperbolic Cross points give a

better image which repproduce the original image better� Seen from Table 	�
� the

time spent in isosurface extraction for the Hyperbolic Cross points is a lot less than

than those for the Hammersley and Halton points� For Hyperbolic Cross points�

because subsampling is used� no time is spent in the interpolation step�

Table 	�
 Performance of subsampling and interpolation

�Running time in seconds��
Interpolation Mesh Generation Isosurface Extraction

SPHERE SEIS SPHERE SEIS SPHERE SEIS
Hammersley ����	 ���� ��
�
� ����� ��� ����
Halton ���� ���� 	���� 	�� �
� ���
Hyperbolic � � 	���� �
���� 	�
� 
���
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SPHERE : hyperbolic
(subsampling)

SPHERE : hammersley
(interpolation)

SPHERE : halton
(interpolation)

Figure ���� Comparison between subsampling �for Hyperbolic Cross points� and
interpolation �for Hammersley and Halton points� for SPHERE� The number of
points is ������
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SEIS : hyperbolic
(subsampling)

SEIS : hammersley
(interpolation)

SEIS : halton
(interpolation)

Figure ��	� Comparison between subsampling �for Hyperbolic Cross points� and
interpolation �for Hammersley and Halton points� for SEIS� The number of points
is ������



	

The Hyperbolic Cross points have the advantage over other QMC points because

they are a subset of the regular grids� As we can directly subsample the original

data� no interpolation is needed� This makes the preprocessing step faster for

the Hyperbolic Cross points than other QMC points� One disadvantage of the

Hyperbolic Cross points is that the number of points cannot be arbitrarily chosen�

��� Data Reduction

The key idea of the QMC isosurface extraction is data reduction� Instead of

using the whole data set� which is generally very large� we use QMC points to

generate a smaller data set to do the isosurface extraction� By wisely choosing

the QMC points and data reduction scale� we can extract the isosurfaces fast and

accurate enough�

In this section� we aim to test this data reduction technique by reducing the data

sets to di�erent scales� and use the reduced data sets to extract the same isosurface�

By doing this� we check the e�ectiveness of this data reduction technique�

We use the two data sets as mentioned before� and reduce them to ���� ��
� ���

and ���� of the original size� The Hammersley points are used in the computation�

Figures 	�� and 	�� show the results for data sets SPHERE and SEIS� respec�

tively�

Figure 	�� indicates that for the same number of points as in the original data

set� the QMC points give a smoother isosurface than the original one� When we

use ��� and ��
 of the original data� the extracted isosurfaces are still very smooth�

When the data are reduced to ��� or ����� the extracted isosurfaces still represent

the overall shape of the original one� though they are not as smooth as the original

one� especially when we use ���� of the original data�

In Figure 	�� for SEIS� when the data are reduced to ��� and ��
� the isosurfaces

almost reproduce the original one� When reduced to ��� and ����� the isosurfaces

still represent the overall shape of the original� though there are slight distorsions

in some part of the isosurfaces�

Figure 	��� depicts the running time for the interpolation and the isosurface

extraction for di�erent data reduction scales� We conclude that the time spent
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SPHERE : original
SPHERE : hammersley (same)

SPHERE : hammersley (1/2) SPHERE : hammersley (1/4)

SPHERE : hammersley (1/8) SPHERE : hammersley (1/16)

Figure ��
� Data reduction comparisons for SPHERE�
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SEIS : original SEIS : hammersley (same)

SEIS : hammersley (1/2) SEIS : hammersley (1/4)

SEIS : hammersley (1/8) SEIS : hammersley (1/16)

Figure ���� Data reduction comparisons for SEIS�




�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Reduction Scale

R
u

n
n

in
g

 T
im

e
 (

S
e

co
n

d
s)

SPHERE

− − − : interpolation

−.−.− : isosurface extraction

−−−− : interpolation +  isosurface extraction

O  : original isosurface extraction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

Reduction Scale

R
u

n
n

in
g

 T
im

e
 (

S
e

co
n

d
s)

SEIS

− − − : interpolation

−.−.− : isosurface extraction

−−−− : interpolation +  isosurface extraction

O  : original isosurface extraction

Figure ����� Data reduction perfomance on data sets SPHERE and SEIS�
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in both interpolation and isosurface extraction are reduced linearly with the data

reduction scale� In addition� the time spent in interpolation and isosurface extrac�

tion are about at the same level� So the QMC isosurface extraction demonstrates

a linear speed up with decreasing the number of points�

��	 Discussion

We can draw the following conclusions from the numerical tests�


 The linear interpolation provides accurate results for linear tetrahedral cells�

Higher order interpolation does not yield much improvement �though it might

be better for larger compression ratios��


 The QMC points generally generate a smooth isosurface that represents the

global shape of the original surface� The di�erences among di�erent QMC

points are not prominent and depend on the data sets� Generally the QMC

points produce better images than sub regular grid points�


 For large data sets� we usually can reduce the data size remarkbly and still

get a good representation of the original isosurface� The advantage of the

techniques becomes more prominent when the data size gets larger�


 The preprocessing of the QMC isosurface extraction might be time consuming�

but after it is done� the post isosurface extraction is very fast� Most of the

time spent in the preprocessing is used for mesh generation�



CHAPTER �

QUASI�MONTE CARLO ISOSURFACE

EXTRACTION FOR UNSTRUCTURED

GRIDS

In the previous chapter� we applied the QMC isosurface extraction technique to

the structured data sets� Another main type of data in scienti�c visualization is

unstructured data� The unstructured data are usually generated by �nite element

method� Visualization of unstructured data is particularly important because many

large applications provide only such data� In this chapter� we apply the QMC

technique to some unstructured data sets�

Similar to the visualization of structured data� the QMC isosurface extraction

for unstructured data contains the following steps�


 QMC points generation� generate speci�ed number of quasi�Monte Carlo points�

which will be used as the subdata set to extract the isosurfaces�


 Mesh generation� generate new geometry representation �tedrahetrons� based

on the QMC points�


 Interpolation� interpolate function values from the original data set into the

QMC points�


 Isosurface extraction� extract the isosurfaces from the QMC data sets�

Same as in Chapter 	� we use Hammersley� Halton and Hyperbolic Cross points

in our computation� The algorithms generating these points are presented in

Chapter �� The isosurface extraction algorithm used is the NOISE algorithm

presented in Chapter �� The Delauny algorithm is used in the mesh generation�




	

Unlike structured data� the unstructured data are more di�cult to deal with�

because we cannot directly reference particular points� The whole volume and all

the points are related by the mesh provided� This chapter intends to present the

algorithm of applying the QMC isosurface extraction technique to unstructured

data� Speci�cly� we investigate the following questions�


 How essential is the interpolation technique"


 How e�cient are di�erent QMC point sets"


 How e�ective is this data reduction technique"

This chapter is intended to answer these questions� We apply the QMC technique

to various unstructured data sets by using di�erent interpolation techniques� dif�

ferent QMC points� and di�erent data reduction scales� We then draw conclusions�

��� Data Sets

We �rst present the data sets to be used in this chapter� Basicly� three unstruc�

tured data sets will be used in this chapter� These are also shown in the Table


���

All of these sets consist of bio�electric �eld problems solved using the �nite

element method on unstructured tetrahedral grids�

An isosurface of each data set is shown in Figure 
���

��� Local Natural Coordinate

In the searching and interpolation algorithms for unstructured grids� we utilize

the local natural coordinate system� In this section� we introduce this system�

Table 
�� Data sets�

Name Source Type Vertices Cells
HEART FEM U�grid ����
 ��
�
TORSO FEM U�grid 	
�	 �����
HEAD FEM U�grid �	��	 ��
	
	







HEART : isovalue = 0.15

TORSO : isovalue = 27.45 HEAD : isovalue = -5

Figure ���� Isosurfaces of some unstructured data sets�
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Let Pi �i � �� �� 	� 
� be the vertices of a tedrahedron� Then we can de�ne the

volume coordidate for any point P inside the tedrahedron as �Figure 
����

�i �
Vi
V

�
hi
Hi

� i � �� �� 	� 
�

where V� is the volume of the tedrhedron de�ned by nodes PP�P�P	� V is the

volume of the original tedradedron de�ned by the nodes P�P�P�P	� h� and H� are

the distances from P and Pi to the bottom triangle �P�P�P	�� Apparently �i � �

for Pi� and �i � � for other vertices� and

	X
i��

�i � �� �
���

The �is �i � �� �� 	� 
� are also known as the local natural coordinates of the

point P � The global Cartesian coordinates and the local natural coordinates are

related by�

x �
	X

i��

�ixi� �
���

P

P1

P2

P3

P4

H1

h1

Figure ���� Volume coordinate for a point inside a tedrahedron�
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By solving equations 
�� to 
�
� we get
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where the constants can be de�ned as

Vijk �

�
B�

xi xj xk
yi yj yk
zi zj zk

�
CA �

X� �

�
B�
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y� y� y	
z� z� z	

�
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�
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z� z� z	
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�
CA � Z� �

�
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x� x� x	
y� y� y	

�
CA �

The other constants can be obtained through a cyclic permutation of the subscripts

�� �� 	 and 
�

The volume V of the tedrhedron can be calculated by

V � 	�

�

�
����

� � � �
x� x� x� x	
y� y� y� y	
z� z� z� z	

�
���� �

��� Search on Unstructured Grids

After the QMC points are generated� the function values need to be interpolated

into these QMC points� This process contains two steps�


 Find the cell �tedrahetron� in which the QMC point is located�


 Interpolate the function values�

In this section� we describe the searching algorithm� Next section will explain

interpolation algorithms�






As discussed in Chapter 	� the searching process is simple for structured data

sets because of the regularity of data� However� for unstructured data� the searching

operation is more complex�

To �nd a cell containing point P in unstructured grids� the simplest way is to

traverse all the cells in the data set� This is a naive method� and very ine�cient�

To speedup the process� people have employed various data structures to help fast

searching�

Livnat et al� ������ employeed a Kd�tree structure in the NOISE isosurface

extraction algorithm� The Kd�tree was used to search the active cells that intersect

the isosurfaces� We utilize the Kd�tree structure in our searching process as well�

The following sections introduce the Kd�tree structure and present the algorithm

of using Kd�tree in the searching process�

����� Kd�Trees

Kd�trees were designed by Bentley ����� as a data structure for e�cient associa�

tive searching� In essence� kd�trees are a multidimensional version of binary search

trees� Each node in the tree holds one of the data values and has two subtrees as

children� The subtrees are constructed so that all the nodes in one subtree� the left

one for example� hold values that are less than the parent node�s value� while the

values in the right subtree are greater than the parent node�s value�

Binary trees partition data according to only one dimension� Kd�trees� on the

other hand� utilize multidimensional data and partition the data by alternating

between each of the dimensions of the data at each level of the tree�

A traditional kd�tree maintains links to its two subtrees� This introduces a high

cost in terms of memory requirements� To overcome this� Livnat et al� ������

represented a pointerless kd�tree as a one�dimensional array of the nodes� The root

node is placed at the middle of the array� while the �rst n�� nodes represent the

left subtree and the last �n	 ���� nodes the right subtree�
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����� Searching Using Kd�Trees

Given a data set� a kd�tree that contains pointers to the data cells is constructed�

Using this kd�tree as an index to the data set� we can rapidly locate the cell that

contains the given point� The searching using kd�trees contains the following steps�


 Kd�tree construction�


 Traversing the Kd�tree�


 Determination if a point is inside a tedrahetron cell�

In the following sections we talk about these three steps�

������� Kd�Tree Construction

As shown by Livnat et al� ������� the construction of the kd�trees can be done

recursively in optimal time O�nlog�n��� The approach is to �nd the median of the

data values along one dimension and store it at the root node� The data are then

partitioned according to the median and recursively stored in the two subtrees� The

partition at each level alternates between the minimum and maximum coordinates�

Our Kd�tree is constructed in a similar way as that of Livnat et al� �������

However� the Kd�tree that Livnat et al� used is two�dimensional� which means

the partition and query at each level alternates between minimum and maximum

coordinates in value space� The Kd�tree we used is six�dimensional� the partition

and query at each level alternates among x�minimum� x�maximum� y�minimum�

y�maximum� z�minimum and z�maximum� This six�dimensional Kd�tree is also

constructed recursively�

������� Traversing the Kd�Tree

The traversing of the Kd�tree is to �nd the tetrahedron cell that contains a cer�

tain point P �xp� yp� zp�� This task can be done by searching the kd�tree recursively�

At each level the coordinates of the point are compared to the value stored at the

current node� If the coordinates of the point are within the bounding box of the

current cell� then we step further to check if the point is inside the tetrahedron cell




�

�the algorithm for this step will be presented in next section�� If the point is not

inside the current cell� and if the node is to the left of the current coordinate of

the current point� then only the left subtree should be traversed� Otherwise� both

subtrees should be traversed recursively�

For e�ciency� similar to what Livnat et al� ������ have done in the NOISE

algorithm� we de�ne two search routines� search	min	max and search	max	
min� The dimension that we are currently checking is named the �rst� and the

dimension we still need to search is named the second�

The pseudo�codes for the search	min	max and search	max	min routines

are as following�

search�min�max� P�coord� node� index �

�

if � node�extrema���index	 
 P�coord�index	 � �

if � point P is inside node �

interpolate the function value

search�max�min� P�coord� node�right� index ��

�

search�max�min� P�coord� node�left� index ��

�

search�max�min� P�coord� node� index �

�

if � node�extrema���index�	 
 P�coord�index	 � �

if � point P is inside node �

interpolate the function value

search�max�min� P�coord� node�right� �index�� � � ��

�

search�max�min� P�coord� node�left� �index�� � � ��
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�

In the above pseudo�codes� we used a parameter index to help searching among

x�min� x�max� y�min� y�max� z�min and z�max at each level�

������� Point Inside a Cell

As shown in the pseudo�codes in the previous section� we need to utilize an

algorithm to determine if a point P �xp� yp� zp� is inside a tetrahedral cell� Actually

this can be done very easily if we work in the local natural coordinates�

Suppose �i� i � �� �� 	� 
 are the natural coordinates of the point P �xp� yp� zp�

corresponding to a certain tetrahedral cell� We know only three of the four �i are

independant� because they are constrained by the following equation�

�� � �� � �� � �	 � ��

The following creteria can be used to determine if the point P �xp� yp� zp� is inside

the tetrahedron cell�

�i � ��� ��� i � �� �� 	� 
�

The calculation of the natural coordinates �i is discussed in Section 
���

��� Interpolation on the Unstructured Grids

Once we know the tetrahedral cell in which a QMC point P �xp� yp� zp� is located�

we can interpolate the function value to this QMC point by utilizing the local

natural coordinates� In this section� we describe the interpolation algorithms� Two

interpolation algorithms are tested for unstructured grids�


 Linear interpolation�


 Quadratic interpolation�

The following sections explain each of them�
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����� Linear Interpolation

The linear interpolation uses the function values at the four vertices to interpo�

late the function value of the point P inside a tedrahedron�

fp �
	X

i��

�ifi�

where �i is the interpolation function that can be de�ned in the terms of the local

natural coordinates� For linear interpolation� we have

�i � �i� i � �� �� 	� 
�

The fi�i � �� �� 	� 
� are the function values at the four vertices of a tetrahedral

cell�

����� Quadratic Interpolation

The quadratic interpolation uses �� points to interpolate the function value

inside a tedrahedron� The �� points used in the interpolation include the four

vertices and the midpoints of the six edges of the tedrahedron� which are shown in

Figure 
�	�
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Figure ���� Ten points used in quadratic interpolation�
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The qrardratic interpolation function �Kenneth� ����� can be de�ned in terms

of the local natural coordinates as�

�i � ��i��i 	 �

�
� i � �� �� 	� 
�

�
ij � 
�i�j � i �� j�

The interpolation formula is

fp �
	X

i��

�ifi �
	X

i���j���i��j

�ijfij

If the function values at those midpoints are not de�ned� we can simply use a

linear interpolation to get the function values at those points�

fij �
fi � fj

�
� i� j � �� �� 	� 
� i �� j�

Then the interpolation formula can be rewritten as�

fp �
	X

i��

�ifi �
	X

i���j���i��j

�ij
fi � fj

�
�

����� Numerical Results

In this section� we apply the above two interpolation algorithms to three un�

structured data sets and compare the results� Hammersley points are used in the

computation�

Figures 
�
 and 
�� show the results by applying linear and quadratic inter�

polations to three unstructured data sets� The number of points used is half of

the original size of each data set for Figure 
�
 and ���� for Figure 
��� The left

columns are for the linear interpolation� and the right columns are for the quadratic

interpolation� Table 
�� shows the performance of the two interpolation techniques

on three data sets for using half of the original data� The numbers shown in the

table are the running time in seconds as implemented on IBM RS���� with ���

MB virtual memory�



�	

HEART : linear HEART : quadratic

TORSO : linear TORSO : quadratic

HEAD : linear HEAD : quadratic

Figure ���� Comparisons between linear and quadratic interpolation� Half of the
original data size is used for each data set�
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HEART : linear HEART : quadratic

TORSO : linear TORSO : quadratic

HEAD : linear HEAD : quadratic

Figure ���� Comparisons between linear and quadratic interpolation�
One�sixteenth ������ of the original data size is used for each data set�
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Table 
�� Interpolation performance

�Running time in seconds��

HEART TORSO HEAD
Linear Interpolation 
���� ������ ������
Quadratic Interpolation 
���� ������ ��	���
Mesh Generation �DELAUNY� ���� �����	� 
�����
Isosurface Extraction �NOISE� 	��	 ����
 ����

The quadratic interpolation is more accurate� which gives a smoother isosurface�

But the di�erence among the appearances of the images is very small� Table 
��

lists the time spent in the interpolations� which also include the searching time�

Unlike in case of the structured grids� the quadratic interpolation takes about the

same time as the linear interpolation� This is because most of the time spent in

the interpolation is in searching and the local natural coordinates transformation�

The quadratic interpolation does not yield much improvements� The reason is as

we discussed in Chapter 	 and because we are working on linear tetrahedral cells�

In this case linear interpolation is supposed to give enough precision�

Figure 
�� shows the time spent in linear interpolation and NOISE isosurface

extraction� Unlike in the case of the structured grids� interpolation takes more time

than NOISE isosurface extraction� especially for the large number of QMC points�

This is because seaching the cell and performing the coordinate transformation take

more time� Tabe 
�� also shows that mesh generation takes a lot more time than

interpolation and isosurface extraction� So in the preprocessing step� most of the

time is spent in generating the tetrahedral cells�

We draw the conclusions that linear interpolation generally povides enough

precision for the linear tetrahedral cells� and quadratic interpolation does not yield

much improvement� Therefore� the rest of the computations in this chapter are

employing linear interpolation� unless otherwise mentioned�
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Figure ���� Time spent in linear interpolation and NOISE isosurface extraction
for di�erent number of QMC points�
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��	 QMC and Regular Points Comparisons

We use three types of QMC points in our computation� Hammersley� Halton and

Hyperbolic Cross points� Also as discussed in Chapter �� some of the data reduction

techniques reduces the data by taking a regular subset of the original data� For

the unstructured data sets� this might be done� for example� by interpolating the

function values from the unstructured grids into the selected structured grids�

To see the di�erence among di�erent QMC points and regular grid points in

isosurface extraction� we apply the QMC isosurface extraction to three data sets

using these three di�erent QMC points and regular grid points�

Figures 
�� 
��� and 
�� show the results for data sets HEART� TORSO and

HEAD respectively� One�eighth of the original data size is used for each data set

��
	� points for HEART� 
	� points for TORSO� and ��
� points for HEAD��

Table 
�	 shows some performance statistics on IBM �����

For data set HEART� the di�erences among di�erent grids are not prominent�

This is because the HEART data set is small� Using ��� of the original data does

not give a satisfactory image for all the grids� For data set TORSO� Hammersley

and Halton points give better image� This can be seen even better for data set

HEAD� When using ��� of the original data� the regular grids greatly distorted the

isosurface for data set HEAD�

Table 
�	 Performance of QMC points

�Running time in seconds��

Hammersley Halton Hyperbolic Regular
HEART 	��
� 	���� 	���� 	��
�

Interpolation TORSO ��
�
 ��
��
 ������ ������
HEAD �	��	
 �	��� ��
�
� �		���
HEART �
��
 
��	� ���
� 
���

Mesh Generation TORSO ��	��� �	
� ��	��� �	����
HEAD ������ �	���� �
��� �	���	
HEART ���� ��� ���� ���

Isosurface Extraction TORSO ��
� ���� ���� ���

HEAD �	�	� �	�		 ��
� �	�	�
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HEART : hammersley HEART : halton

HEART : hyperbolic HEART : regular

Figure ��	� Comparison between QMC and regular points for HEART� One�eighth
of the original data size is used ��
	� points��
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TORSO : hammersley TORSO : halton

TORSO : hyperbolic TORSO : regular

Figure ��
� Comparison between QMC and regular points for TORSO� One�eighth
of the original data size is used �
	� points��
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HEAD : hammersley HEAD : halton

HEAD : hyperbolic HEAD : regular

Figure ���� Comparison between QMC and regular points for HEAD� One�eighth
of the original data size is used ���
� points��
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Table 
�	 indicates that generally interpolation takes more time than isosurface

extraction� Generating the mesh takes more time than interpolation and isosurface

extraction� So for the QMC isosurface extraction� most of the time in the prepro�

cessing step is spent in the mesh generation� For every single category� the times

used for the three sets of QMC points and regular grid points are about the same�

��
 Data Reduction

The key idea of the QMC isosurface extraction is data reduction� Instead of using

the whole data set� which is generally very large� we use QMC points to generate

a smaller data sets to extract the isosurfaces� By wisely choosing the QMC points

and data reduction scale� we can extract the isosurfaces fast and accurate enough�

In this section� we aim to test this data reduction technique by reducing the

data sets to di�erent scales� and use the reduced data sets to extract the same

isosurface� By doing this� we check the e�ectiveness of this data reduction technique

on unstructured data�

We use the three data sets as mentioned before� and reduce them to ���� ��
� ���

and ���� of the original size� The Hammersley points are used in the computation�

Figures 
���� 
��� 
��� show the results for data sets HEART� TORSO and

HEAD� respectively�

From Figures 
��� and 
���� we see that for data sets HEART and TORSO�

when using the same number of points as the original data set� the QMC points

give an isosurface of the same quality as the original one� Sometimes the QMC

points might not represent the boundaries very well� When we use ��� and ��
 of

the original data� the extracted isosurfaces are still very smooth� When the data is

reduced to ��� or ����� the extracted isosurfaces still represent the overall shape

of the original one� though they are not as smooth as the original one� especially

when we use ���� of the original data�

For data set HEAD� when using the same number of points� the QMC points

gives a better image than the original one� The reduction by ��� and ��
 gives a very

smooth isosurface� When reduced to ��� and ����� the isosurface still represents

the overall shape of the original one�
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HEART : original HEART : hammersley (same)

HEART : hammersley (1/2) HEART : hammersley (1/4)

HEART : hammersley (1/8) HEART : hammersley (1/16)

Figure ����� Data reduction comparisons for HEART�
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TORSO : original TORSO : hammersley (same)

TORSO : hammersley (1/2) TORSO : hammersley (1/4)

TORSO : hammersley (1/8) TORSO : hammersley (1/16)

Figure ����� Data reduction comparisons for TORSO�
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HEAD : isovalue = -5 HEAD : hammersley (same)

HEAD : hammersley (1/2) HEAD : hammersley (1/4)

HEAD : hammersley (1/8) HEAD : hammersley (1/16)

Figure ����� Data reduction comparisons for HEAD�
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Figure 
��	 shows the running time for the interpolation and the isosurface

extraction for di�erent data reduction scales for three data sets� The time spent

in both interpolation and isosurface extraction is reduced linearly with the data

reduction scale� Interpolation takes more time than isosurface extraction� especially

when the number of QMC points is large� So the QMC isosurface extraction has a

linear speed up with decreasing the number of points�

When the data size gets larger� the QMC data reduction technique gets more

e�ective� We can reduce the data by a very large scale and still can reproduce a

good isosurface�

��� Discussion

We can draw the following conclusions from the numerical tests performed in

this chapter�


 The linear interpolation provides accurate results for linear tetrahedral cells

for unstructured grids� Higher order interpolation does not yield much im�

provement �though it might be better for large compression ratios��


 The QMC points generally generate a smooth isosurface that represents the

global shape of the original surface� The di�erences among di�erent QMC

points are not prominent and depend on the data sets� Generally the QMC

points produce better images than subregular grid points�


 For large data sets� we usually can reduce the data size remarkbly and still

get a good representation of the original isosurface� The advantage of the

techniques can be seen more clearly when the data size gets larger�


 The preprocessing of the QMC isosurface extraction might be time consuming�

but after it is done� the postisosurface extraction is very fast� Most of the time

spent in the preprocessing is used for mesh generation�
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Figure ����� Data reduction performance�



CHAPTER 	

DISCUSSION AND CONCLUSIONS

Isosurface extraction and visualization is one of the most e�ective and powerful

techniques for the investigation of three�dimensional scalar �elds� However� for

large three�dimensional data� this process is computationally slow� In this thesis�

a new data reduction algorithm is presented with the use of Quasi�Monte Carlo

points� The new algorithm is tested on some structured and unstructured data

sets� The new algorithm �rst generates requested number of QMC points� and

then interpolates the function values into these QMC points� Then this subset of

the original data is used for the fast isosurface extraction�

The following conclusions can be drawn from the numerical tests performed in

this thesis�


 For linear tetrahedral cells� linear interpolation provides accurate results� Higher

order interpolations do not yield much improvement �though it might be better

for large compression ratios��


 The QMC points generally generate a smooth isosurface that represents the

global shape of the original surface� The di�erences among di�erent QMC

points are not prominent and depend on the data sets� Generally the QMC

points produce better images than subregular grid points�


 For large data sets� we usually can reduce the data size remarkbly and still

get a good representation of the original isosurface� The advantage of the

techniques can be seen more clearly when the data size gets larger�


 Most of the time spent in the preprocessing is used for mesh generation�



��


 The QMC isosurface extraction has a linear speedup with decreasing the

number of QMC points used�

The preprocessing of the QMC isosurface extraction might be time consuming�

However� this is a one�time process� After it is done� the postisosurface extraction

is very fast�

Generally the QMC isosurface extraction technique does not require preknowl�

edge about the data� Sometimes this technique may distort the boundaries of

the original isosurface� if there is not enough QMC points generated along the

boundaries� Some preknowledge about the data set can improve the precision of

the isosurface extracted by QMC method�

Future work should apply this technique to large time�dependant data� Also�

more QMC points should be generated in some crucial regions �such as boundaries�

to yield more precise representation of such regions�
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