
Analysis of Avalanche�s Shared Memory Architecture

Ravindra Kuramkote� John Carter� Alan Davis�

Chen�Chi Kuo� Leigh Stoller� Mark Swanson

UUCS�������

Computer Systems Laboratory

University of Utah

Abstract

In this paper� we describe the design of the Avalanchemultiprocessor�s shared memory subsys�
tem� evaluate its performance� and discuss problems associated with using commodity worksta�
tions and network interconnects as the building blocks of a scalable shared memorymultiprocessor�
Compared to other scalable shared memory architectures� Avalanchehas a number of novel fea�
tures including its support for the Simple COMA memory architecture and its support for multiple
coherency protocols �migratory� delayed write update� and �soon� write invalidate�� We describe
the performance implications of Avalanche�s architecture� the impact of various novel low�level
design options� and describe a number of interesting phenomena we encountered while developing
a scalable multiprocessor built on the HP PA�RISC platform�

�

Analysis of Avalanche�s Shared Memory Architecture

Ravindra Kuramkote� John Carter� Alan Davis�

Chen�Chi Kuo� Leigh Stoller� Mark Swanson

Computer Systems Laboratory

University of Utah

� Introduction

The primary Avalanchedesign goal is to maximize the use of commercial components in the creation
of a scalable parallel cluster of workstation multiprocessor that supports both high performance
message passing and distributed shared memory� In the current prototype� Avalanchenodes are
composed from Hewlett�Packard HP���� or PA����� based symmetric multiprocessing worksta�
tions� a custom device called the Widget� and Myricom�s Myrinet interconnect fabric 	
�� Both
workstations use a main memory bus known as the Runway 	��� a split transaction bus supporting
cache coherent transactions� In the Avalancheprototype a Widget board will plug into a processor
slot in each node and Myrinet cables will connect each card to a Myrinet active crossbar switch
providing connections to the rest of the cluster� The Avalancheprototype will contain
� nodes�
each containing between one and three processors� Sections � and � describe Avalanche�s shared
memory architecture in detail� while its performance implications are described in Section
�

A unique aspect of Avalanche�s architecture is that it is designed to support two scalable shared
memory architectures
 CC�NUMA and Simple COMA �S�COMA�� Each architecture has signi�cant
advantages and disadvantages compared to the other depending on the memory access behavior of
the applications� Supporting both models does not add signi�cant design complexity to the Widget�
but our current prototype design supports only the S�COMA model because the bus controller in
HP workstations generates a bus error when a �remote� physical address is placed on the bus�
even if the Widget signals its willingness to service the request� We are designing a solution to
this problem� but in the interim� we have found that S�COMA�s greater replication signi�cantly
improves performance compared to CC�NUMA in many circumstances due to Avalanche�s relatively
slow interconnect and the direct mapped nature of the HP chips� L� cache�

We are also designing Avalancheto support multiple coherency protocols� which can be selected
by software on a per�page basis� We currently support a migratory and release consistent delayed
write update protocol� and are designing a release consistent write invalidate protocol� Simulation
indicates that the relative performance of the three protocols varies dramatically depending on the
way data is accessed	���� and it turns out that the Widget�s design makes it relatively straightfor�
ward to support multiple protocols� The memory models and protocols are described in Section ��

Finally� the decision to use primarily o� the shelf hardware led to a more cost e�ective design
than a fully custom solution� but doing so required a number of design compromises� In particular�
using commodity hardware means living with mechanisms and protocols that were not designed
with scalable multiprocessing in mind� In particular� Hewlett�Packard�s Runway bus and memory
controller design introduced a number of unexpected challenges that we are being forced to work
around� The details of these quirks and their impact on performance are described in Section � as
a lesson for future designers of scalable shared memory architectures�

�

� Avalanche Design

The AvalancheWidget provides direct hardware support for low�latency message passing and dis�
tributed shared memory �DSM� functions� The board contains a Widget ASIC and ��
 KB of
SRAM called the Shared Bu�er �SB�� A block diagram of the Widget shown in Figure � contains
seven distinct subsystems
 the Runway bus interface �RIM�� the shared bu�er manager �SBM��
the shared memory cache controller �SM�CC�� the directory controller �DC�� the message passing
cache controller �MP�CC�� the protocol processing engine �PPE�� and the network interface �NI��

Department of Computer Science

HPPA
7200

Main
Mem

S
B
MR

un
w

ay

T
ax

iw
ay

80

RIM

NI

~80
64 Shared

Buffer
(SRAM)

PPE

DC

Myrinet

MP-CC

SM-CC

Figure � Widget Subsystem Block Diagram

The RIM�s primary function is Runway bus mastering� In addition� it includes logic to determine
what words of a shared cache line have changed by performing a di� of the dirty version of the
line and a clean version of the line stored in the SB� It also has the logic to splice di�s into existing
cache lines� This logic is used to improve the performance of our coherency protocols� as described
in Section �� The RIM also forwards a version of the Runway called the Taxiway to other Widget
subsystems that must snoop the bus�

The SB is used as a staging area for communications and acts as a cache for incoming message
data� The SB is organized as �K ����byte lines� SB line allocation and deallocation requests can
be made by the SM�CC� DC� MP�CC� or PPE� These requests are served by the SBM�

DSM is supported by the SM�CC� which manages access to shared memory lines that are
referenced locally� and the DC� which manages consistency for all shared memory lines for which
the local node is home� The SM�CC and DC are described in detail in Section ��

The PPE handles most message passing duties� providing direct hardware support for a set
of low�latency message passing protocols known as Direct Deposit 	�
�� Incoming message data
is stored in the SB� these lines are then managed by the MP�CC as an L� communication cache�
When local Runway clients reference this information� the MP�CC snoops resulting transactions
on the Runway and supplies the data directly� This provides a signi�cant reduction in the miss
penalty that would be incurred if the message data were simply placed via the DMA interface into
main memory�

�

The NI provides a direct interface to the Myrinet one�meter protocol� thereby eliminating the
normal Myrinet interface card and its contribution to latency� In addition� like the FLASH Magic
chip 	��� ���� the NI splits and demultiplexes incoming messages� forwarding the data to the SB
and the headers to the appropriate Widget subsystem �MP�CC� PPE� SM�CC� or DC��

The keys to scalability in cluster systems are minimizing communication latency and not de�
grading local node performance� Placing the Widget on the Runway bus rather than between the
processor and its memory system avoids slowing down the local node� Operating the Widget sub�
systems in parallel avoids serialization of message passing and DSM operations� Finally� caching
incoming message data on the Widget board reduces miss latencies seen by the processor�

Our decision to use commodity workstations and network components has several advantages
but also carries some disadvantages� The upsides include commodity pricing� the ability to focus
design time and e�ort on the Widget itself� and the opportunity to incorporate improved compo�
nents as they become available� The downside is that certain pieces of the design space are closed
o� by these choices� as the behavior of commodity components must be viewed as beyond the
Widget designers� control� Section � discusses the more serious impacts of this design choice�

� Memory and Consistency Models in Avalanche

Placing the Widget on the Runway bus without interposing on the processor � cache interface
or modifying HP�s main memory controller �MMC� constrained our design options� We were
free� however� to explore the performance implications of a broad set of memory architectures and
coherency protocols� With the exception of the FLASH multiprocessor 	���� existing scalable shared
memory architectures employ a single memory model and coherency protocol to manage all shared
data� For example� the DASH multiprocessor is a cache�coherence non�uniform access �CC�NUMA�
machine with a release consistent write�invalidate protocol 	��� ���� while the KSR�� is a cache�only
memory architecture �COMA� machine with a sequentially consistent write�invalidate protocol 	���
We are exploring the potential bene�ts and implementation complexity associated with supporting
a suite of memory models and coherency protocols� and allowing software to specify the speci�c
memory model and protocol to use to manage each page of shared data in the machine�

A unique aspect of Avalanche�s architecture is that it is designed to support two fundamentally
di�erent scalable shared memory architectures
 CC�NUMA and Simple COMA �S�COMA�� Each
architecture has signi�cant advantages and disadvantages over the other� depending on the memory
access behavior of the applications� Figure � illustrates both architectures�

Most large scale shared memory multiprocessor designs are CC�NUMA 	��� ��� ��� �� ��� ��� In a
CC�NUMA� the machine�s global physical address space is statically distributed across the nodes in
the machine� but a node can map any page of physical memory �local or remote� to its local virtual
memory� To share data� nodes share a global virtual to global physical mapping table such that
the same physical memory backs a particular global virtual address on all nodes� When a memory
access misses in a node�s local cache� the associated global physical address is used to fetch the
data from either the local memory or a remote node�s memory� CC�NUMA�s primary advantage is
its relative simplicity � a �xed �home� node is responsible for tracking the state of each block of
data� which makes it easy to locate copies of data and keep them consistent� However� the amount
of shared data that can be replicated locally� and thus accessed e�ciently� is limited to the size of a
node�s cache� This leads to poor performance for applications with per�thread working sets larger
than a processor cache� which exacerbates the need for large and expensive processor caches� Also�
the home node for a particular block of data is often unrelated to the set of nodes that access the
data� which turns potentially fast local accesses into slow remote accesses� Finally� changing the

�

Network

Globally
Coherent
L2 Cache

L1 Cache

Processor

CC−NUMA
Controller

Off−chip
 SRAM

On−chip
SRAM

Local
Memory

DRAM

Network

L1 Cache

Processor

SRAM

Local memory
(Page−grained cache

of global memory)

DRAM

Controller
SCOMA

Figure � CC�NUMA and S�COMA Architectures

global physical to virtual address mapping� which is required before one can page memory to disk
or migrate it� is very expensive since it requires a global TLB shootdown�

S�COMA divides the global address space into large chunks� typically pages� and uses a node�s
main memory as a cache for the global virtual address space� Space in this DRAM cache is allocated
by the operating system in pages using the processor�s memory management unit �MMU�� External
hardware maintains coherence at a cache line granularity within pages� When a process accesses a
shared virtual address� a normal MMU check determines if the global virtual page is mapped to a
local physical page� If it is not� the operating system maps a local page and resumes the access� If
the MMU check succeeds� the physical address is placed on the memory bus where the S�COMA
hardware determines if the access can be completed by the local main memory �e�g�� the access is a
read and the line is valid� or must be stalled while the S�COMA hardware performs some operation�
Multiple nodes can have DRAM copies of shared pages� We refer to the primary DRAM copies of
pages as home pages and replicas as S�COMA pages� As in a CC�NUMA� the directory controller
manages the global state of locally homed pages� S�COMA addresses CC�NUMA�s problems by
using all of main memory to replicate shared data and by decoupling global virtual and local
physical addresses� Unfortunately� because memory is allocated in page�sized units� it is possible
to get very poor main memory utilization where only a few cache lines are active in any given page�
As the ratio of an application�s working set size to the size of main memory increases� this leads to
high rates of paging and poor performance 	����

Ideally� we would like to support both CC�NUMA and S�COMA so that we can bene�t from
S�COMA�s greater replication when memory utilization is high or paging rates are low� but fall
back to CC�NUMA mode when page fault rates increase� Supporting both models does not add
signi�cant design complexity to the Widget� Applications and operating systems could tailor the
behavior of the consistency management hardware based on how memory is typically accessed� Our
current simulation model supports only an S�COMA model because of constraints imposed on us
by the Runway bus� This performance bene�ts of S�COMA are discussed in detail in Section
�

Three �avors of memory coherency protocols have been proposed and implemented over the
years
 write�invalidate� write�update� and migratory 	��� Most modern scalable shared memory
machines employ a write�invalidate protocol because it requires the least management overhead�

�

scales well� and handles read sharing e�ciently� However� as with memory architectures� the
performance of applications running under each of the di�erent possible coherency protocols di�ers
dramatically depending on the speci�c access behavior of the application 	���

Write�invalidate protocols perform well when threads frequently read shared data� but only
infrequently modify it or the modi�cations are restricted to pieces of shared data that only the
modifying node accesses frequently� They perform poorly when data is heavily shared and writes
are frequent� because after each write data must be reloaded when next accessed by remote nodes�
Migratory protocols slightly improve performance for applications where memory is concurrently
shared infrequently 	��� ���� Write�update protocols work well when writes are frequent and written
data is typically read by remote nodes prior to being overwritten� exactly those cases handled poorly
by write�invalidate� They generate excessive communication overhead when modi�cations to shared
data are not typically read by remote nodes� Depending on the application� the choice of coherency
protocol can a�ect running time by ��� or more 	�� ���

Because the relative performance of the three protocols varies dramatically depending on the
way data is accessed� the goal of Avalancheis to support all three protocols on a software�speci�able
per�page basis� However� due to problems with the Runway bus described in Section �� we currently
support only a migratory protocol and a release consistent write�update protocol that exploits the
di� ing mechanism provided by the RIM� We present performance using the migratory protocol in
Section
 because it better isolates the bene�ts and imperfections of our design�

� Avalanche Controller Designs

Avalanche divides shared memory into ��kilobyte pages� ����byte Avalanche cache lines� and ���byte
PA�RISC cache lines� The operating system is responsible for allocating� deallocating� mapping� and
unmapping pages� The SM�CC is responsible for managing the ����byte Avalanche cache blocks�
�� per ��kilobyte page� We chose a coherency unit larger than a native cache line to reduce bu�er
fragmentation� network fall�through latency� and the amount of DSM state information storage� A
portion of main memory on each node stores shared data � the size of this region is determined
by a boot parameter� The region is contiguous so that the SM�CC can respond to coherent bus
requests to non�shared memory immediately�

Management of shared data is divided between the SM�CC and DC as follows� The SM�
CC manages the state of the blocks accessed by local processors while the DC maintains global
coherency information for locally homed shared data� For all the shared memory pages mapped on
a node� the local SM�CC maintains two data structures
 �i� page state information� including the
coherency protocol� the identity of its home node� and the page address on that home node� and
�ii� block state information for each block cached on the local node �invalid� shared� or exclusive��
For all the shared memory pages homed on a node� which are all shared pages in CC�NUMA
mode and primary copies of S�COMA pages� the DC maintains two data structures
 �i� page state
information� including the coherency protocol� home node� and virtual address of the page on the
home node� �ii� block state information for each block containing its global state �free� shared� or
exclusive� and a list of nodes that have a copy of the block� Rather than store all of this metadata on
the Widget� which would require a large amount of on�chip memory and thus increase the Widget�s
cost and complexity signi�cantly� the DC and SM�CC store their metadata in main memory� This
metadata is initialized by the kernel when the shared memory page is allocated at or migrated
to the node� As a performance optimization� the DC and SM�CC use the SB to cache recently
accessed metadata� The performance implications of this method of managing DSM metadata are
discussed in Section
�

The SM�CC and DC are implemented as a collection of concurrent �nite state machines� This
design permits maximally concurrent operation and minimizes control induced latency and reduces
resource con�icts that would be present under very high DSM tra�c loads� Both the SM�CC and
the DC can perform up to four concurrent operations to independent cache lines� For example� while
the metadata for one shared memory operation is being loaded from the SB or the data requested
in a read operation is being loaded from main memory� the SM�CC or DC can operate on another
request� In both the SM�CC and DC� separate state machines �i� examine incoming requests to
acquire the necessary metadata� �ii� snoop the internal Taxiway bus to detect the completion of
requested memory operations� �iii� perform the necessary coherency protocol operations� and �iv�
stage outgoing messages to the NI or other local DSM subsystems� The low level design of both
the SM�CC and DC are beyond the scope of this paper� but can be found elsewhere 	�
��

The SM�CC includes a number of unique features designed to exploit the �exibility of release
consistency� It maintains counts of pending invalidate and update acknowledgments similar to
DASH 	��� ��� and an acquire state bu�er to delay updates similar to the way that coherence
update bu�ers delay invalidates 	���� In addition� it maintains a release state bu�er �RSB� to
support the release consistent write update protocol� When a local processor acquires ownership
of a shared block� the SM�CC stores a clean copy of the requested line in the RSB� When the RSB
becomes full or the processor performs a release operation� the RSB uses the RIM�s di� ing function
to compute a mask of the words that have been modi�ed� This mask and the dirty line are used
to send a compressed update message containing the modi�ed words and their positions to remote
nodes caching the block� which use the RIM�s splicing functionality to incorporate the changes�
Thus� the RSB supports a delayed write update protocol similar to Munin� which signi�cantly
improves performance and scalability 	���

� Experiment Setup

The simulation environment developed by the Avalancheproject is based on a simulator for the
HP PA�RISC architecture� including an instruction set interpreter and detailed simulation modules
for the �rst level cache� the system bus� the memory controller� the network interconnect� and
the Widget� This simulator is called Paint �PA�interpreter�	��� ��� and is derived from the Mint
simulator	���� Paint is designed to model multiple nodes and the interactions between nodes� with
emphasis on the e�ects of communication on the memory hierarchies� Paint provides a multipro�
grammed processor model with support for operating system code so that the e�ects of OS�user
code interactions can be modeled� The simulation environment includes a kernel based on ���BSD
that provides scheduling� interrupt handling� memory management� and limited system call capa�
bilities� The VM kernel mechanism was extended to provide the page translation support needed
by distributed shared memory�

Figure � shows the parameters used for various components in the simulation� The processor�
Widget� and Runway are all clocked at ���MHZ and all cycle counts shown are with respect to this�
The cache model is based on the PA������ which can do aggressive out�of�order execution with ��
load�store slots� To simplify discussion of performance data� the model is con�gured� with one
exception� as a blocking cache with one load�store slot� The SM�CC and DC caches are con�gured
as ��way and ��way set associative� respectively� The � cycle hit time to the SM�CC and DC caches
consists of two cycles of arbitration for the SB bus and two cycles for the o��chip read� The Main
Memory Controller �MMC� is modeled on current HP workstations 	���� It contains � banks and
returns the �rst doubleword of data to the Runway �
 cycles after a read appears on the bus� Due
to its interleaving� the MMC can satisfy a ��� byte �four cache line� request from the Widget in

�

�� cycles� The simpli�ed model of the Myrinet network only accounts for input contention� the
latency for a message is computed simply from the distance in switches between the communicating
nodes clocked at �
�MHz�

We used �ve programs from the SPLASH�� benchmark suite 	��� in our study
 radix� fft�
lu�contiguous� lu�non�contiguous� and barnes� Figure � shows the inputs used for each test
program� All the programs were run with the base problem size as suggested in the distribution�
The total pages column in Figure � indicates the number of shared data pages each application
touched� so the shared data space touched by the applications ranged from �MB to ���MB�

� Performance Analysis

Avalanche�s shared memory architecture di�ers from other architectures in �i� its use of S�COMA
as the primary memory model� �ii� the Widget�s position as a peer to the CPU� with no control over
the main memory controller� and �iii� the use of distributed state machines in its controllers� In this
section we analyze issues resulting from these design decisions� including S�COMA�s e�ectiveness
with respect to reducing remote memory misses� the factors most responsible for the latency of
various kinds of misses� and the e�ectiveness of overlapping multiple requests in the SM�CC and
DC�

All of the benchmarks had high L��cache hit rates� between ���
� and ���
�� Figure � shows
the total number of misses on all nodes� The number in parentheses indicates the percentage of the
misses that were to shared memory� The ratio of shared memory misses to local memory misses
declines with increased node count because the problem sizes were kept constant�

To study the e�ect of Avalanche�s large coherency unit and the S�COMA model� shared memory
misses are classi�ed as follows

Cache Location Characteristics

L� cache � MB� direct�mapped� ���byte lines� blocking� two write back bu	ers�
� cycle hits� �� cycle misses �best case�� virtually indexed� physically tagged�

SM�CC Cache �
 KB� ��way set associative� ���byte lines� blocking� no writeback bu	er�
� cycle hits� �
 cycle misses �best case��

DC Cache �
 KB� ��way set associative� ���byte lines� blocking� no writeback bu	er
� cycles on hit� �
 cycles on miss �best case�

Myrinet Propagation delay� � cycle� Fall through delay� �
 cycles� Topology� � Switches ��x���

Figure � Simulation Parameters

Program Input parameters Total Pages

radix ��
K Keys� Radix � ���� ���
FFT
�K Points� line size �� and cache size �MB
��
LU Non�contiguous ���x��� matrix� �
x�
 blocks ���
LU Contiguous ���x��� matrix� �
x�
 blocks ���
barnes input �le with �
K particles

�

Figure � Programs and Problem Sizes Used in Experiments

�

Application Number of Nodes
� � �

radix ����M �
��� ����M ����� ����M �����
fft ���M ����� ����M �

�� ��
�M �����
LU non�contiguous ����M ����� ��
�M ����� ����M �����
LU contiguous ����M ����� ��
�M �

�� ��

M �
���
barnes ���M ��
�� ���
M ����� ����M �����

Figure � Total Number of Misses and Percentage of Shared Miss

� Any processor cache miss that causes the SM�CC to read a block from a remote node is
classi�ed as coherency miss �COM�� Note that due to the use of a migratory protocol� remote
blocks are invalidated even on a read miss� These misses represent accesses that are inherently
remote given the particular coherency protocol�

� A spatial miss �SM� is de�ned as any access to a cache line that misses in the L� cache� but hits
in local memory as a side e�ect of the SM�CC having recently loaded another ���byte cache line
within the same ����byte Avalancheblock� These misses represent potentially remote accesses
that are made local by Avalanche�s large coherency unit�

� A capacity�con�ict miss �CCM� is de�ned as an access to data with a remote home node
that misses in the L� cache due to a cache con�ict or capacity problem� but hits in local
memory� These misses represent potentially remote accesses that are made local by S�COMA
page replication�

� All other misses to shared memory are classi�ed as non�remote misses �NRM�� This category
includes misses to shared data never accessed by a remote processor� cold misses� and capac�
ity�con�ict misses to shared memory whose home node happens to be the local node� These
misses represent accesses that are inherently local�

Figure
 shows the breakdown of misses across each of the above classes� Inherent coherency
misses vary from �� to ��� of all misses� Their number increases as the number of nodes increases
due a combination of the low percentage of migratory data in the benchmarks and false sharing� The
next two categories� spatial misses and capacity�con�ict misses� represent potentially remote misses
that become local misses in Avalanche� Spatial misses vary from ��� to ��� of all misses� The
large number of spatial misses indicates that the large block size results in a high degree of e�ective
prefetching that turns potentially remote SM misses into local memory accesses�� Capacity�con�ict
misses vary from �� to ��� of all misses� The large number of capacity�con�ict misses� caused
primarily by the direct mapped nature of the PA�RISC�s L� cache� indicates that S�COMA�s use
of local memory as a backing store for cache lines forced out of the L� cache is bene�cial� The sum
of SM and CCM misses varies from ��� to ���� which indicates that ��� to ��� of remote misses
can be made local by employing an S�COMA architecture with large coherency units� To be fair�
one can do prefetching in CC�NUMA to handle the spatial misses e�ciently� but most processors
do not support injection directly into their L� cache from an external unit�

�The ratio of spatial misses to coherency misses varies from approximately ��� to ���� which indicates that on the
average one to three of the extra cache lines loaded by the local SM�CC are eventually accessed�

�

0

20

40

60

80

100

4 8
Rdx

16 4 8
FFT

16 4 8
NLU

16 4 8
CLU

16 4 8
Brn

16

Pe
rce

nta
ge

NRM CCM SM COM

Figure � Miss Classi�cations

Recall that the SM�CC and DC store a small amount of their metadata in the SB and the rest in
main memory� The Runway bus protocol requires that the SM�CC provide a �coherency response�
signal for every coherent bus operation� whether or not the associated data is being managed by
the SM�CC or a remote node� Thus� the latency of shared data accesses that miss in the L� cache
is a�ected by the SM�CC�s metadata hit rate� as follows

� If the SM�CC �nds the pertinent state information in the SB and the state information indicates
that the line is valid in local memory� we categorize this miss as a local shared miss with state
information hit �LSMSH�� In this case� the SM�CC can immediately respond and let main
memory supply the data�

� If the pertinent metadata is not present in the SM�CC cache� the SM�CC must provide a
coherency response that promises that it will supply the data to the requesting processor�
After the SM�CC reads its metadata from main memory� if the line is found to be valid in local
memory� we categorize this miss as a local shared miss with state information miss �LSMSM��
In this case� the SM�CC must also read the data from memory and supply it to the processor
through a cache to cache copy�

� If the line is not valid in main memory� the SM�CC sends a message to the DC at the home
node requesting the data�� The DC invalidates the current owner� which forwards the block
directly to the requesting SM�CC� When the home node is the local node� we categorize this
as a local DC miss �LDCM�� which generates two network messages �the invalidation and the
ack�� When the home node is a remote node� we categorize this as a Remote DC miss �RDCM��
which generates either two or three messages depending on whether the home node is also the
current owner�

Figure � shows the percentage of each type of miss� The minimum latency observed in our runs
for each type of miss was ��� ���� ���� and ��� cycles respectively� This shows the importance
of reducing the number of coherent misses in our architecture� The LSMSM category represent

�If the local node happens to be the home node� the SM�CC sends the message to the local DC�

��

misses that could be handled directly by the local memory if not for the cached nature of the
Widget�s metadata� The extra bus transactions add �� to �� cycles of latency to each of these
misses� Happily� for all of the benchmarks except for radix� LSMSM misses represent less than
��� of all shared data misses� which limits the negative impact of this design� Section � provides
more detail on the cause of this overhead�

0

20

40

60

80

100

4 8
Rdx

16 4 8
FFT

16 4 8
NLU

16 4 8
CLU

16 4 8
Brn

16

Pe
rce

nta
ge

LSMSH LSMSM LDCM RDCM

Figure � Miss Types Based on Latency

As described in Section �� the SM�CC and DC are capable of handling up to four independent
requests concurrently� Figure � illustrates how e�ective the SM�CC and the DC were in overlapping
request processing� This study was done with an aggressive non�blocking cache similar to the PA�
����� The active column shows the total cycles during which the SM�CC�DC was handling at least
one request� The cumulative column shows the sum of cycles spent by all requests� The usage
column shows the time between when the SM�CC�DC �rst receives a request until it completes
processing the last request� The overlap column shows the additional penalty that would have
resulted if the controllers were totally sequential� This is signi�cant considering the fact that the
SM�CC was active only for ���� to
� of the time and the DC for ���� to ��� of the time� We
expect to see more overlap with larger problem sizes and multiple processors on the bus�

Application Cumulative Active Usage Overlap

radix DC ����

 �
���� ��
�
SM�CC �
�
��� ���
�
�
� ���

fft DC ������ ���

� ���� ���
SM�CC ��

��
 ������ �� �
�

LU non�contiguous DC �
��
�� ���
��
 ��� ���
SM�CC ����
�
 ������
 �� ���

LU contiguous DC ���
��
 ��
�
� �� ���
SM�CC �
�
��� ������� ��
�
�

barnes DC ������
 ������
 ��
�
�
SM�CC ���
���
 ������

 ��
�

Figure � DC and SM�CC Occupancy in Cycles

The active cycles were spent in one of three ways
 �i� busy performing useful work� �ii� waiting
for the SB to supply metadata� or �iii� waiting for main memory� The percentage of active cycles

��

spent performing useful work varied from ��� to �
�� meaning that between ��� and
�� of
the time when they were active� the SM�CC or DC were waiting for data or metadata� Most of
the waiting time �between ��� to ��� of the total active cycles� was spent waiting for metadata
to be supplied from the SB� which is primarily due to the latency of arbitrating for the shared
SRAM bu�er� This delay could be reduced signi�cantly by providing a separate SRAM bu�er
for metadata� but this option is precluded by the limited pin count available without signi�cantly
increasing the cost and complexity of Widget fabrication� We are considering various other design
options such as caching additional metadata in the Widget�

� Penalty for Using O� the Shelf Hardware

Using a high degree of commercial hardware is more cost e�ective than custom solutions� and it
allows our design to be incorporated into a commercial product line relatively easily� However� it also
forces us to live with mechanisms and protocols that were not designed with scalable multiprocessing
in mind� This section discusses some of the problems that have arisen due to the use of commodity
hardware and their performance impact�

The backbone of a Hewlett�Packard workstation is the Runway bus 	�� and the Main Memory
Controller �MMC� 	���� The split transaction Runway bus allows data to be delivered out of
order� A number of clients are connected to the bus� where a client can be a CPU or intelligent IO
controller� When any client performs a coherent memory operation� all clients are required to issue a
coherency response to the MMC indicating the state of the requested cache line in their respective
caches� The MMC collects the coherency responses from all clients before allowing subsequent
memory requests to be retired� in other words� a client must provide a coherency response to a
pending request before any additional memory operations can be completed�

For this discussion� the relevant coherency responses are �i� COH OK� which indicates that the
responding client has no interest in the line� �ii� COH SHR� which indicates that the responding
client has a read�only copy of the line and wishes to retain it� and �iii� COH CPY� which indicates
that the responding client has a dirty copy of the line and will send the data directly to the
requesting client� If all clients respond with COH OK� then the MMC supplies data from main
memory and the requesting client marks the state of the line as private� If any client responds with
COH SHR� the MMC supplies the data from main memory� but the requesting client marks the
state of the line as shared� No client may write to a shared line without �rst performing a write
request� If a client responds with COH CPY� the MMC discards the request and the requesting
client simply waits for the responding client to perform a cache to cache copy to supply the data�
which� because it is a split transaction bus� may be deferred arbitrarily long� Upon receiving the
data from the responding client� the requesting client marks the state of the line as private� and
the responding client is required to invalidate its copy of the data�

Three problems arose in designing Avalanche
 in�exible memory operation ordering� Runway�s
migratory bus protocol� and out of address range bus exceptions�

In�exible memory operation ordering
 For every coherent read to shared memory� the SM�
CC must determine the state of the line before issuing a coherency response� If any of the nodes
for which it is acting as a proxy have a dirty copy of the data� it must respond with COH CPY� If
any of the nodes have a shared copy of the data� it must respond with COH SHR� If� however� the
state information associated with the line is not present in the SM�CC�s internal cache� the SM�CC
cannot make this determination� Ideally� the SM�CC would simply perform a read operation to
load the necessary state information� and respond appropriately� Unfortunately� such a read would
be blocked by the outstanding coherent operation� so the SM�CC is forced to generate a coherency

��

response without knowing the state of the line� Thus� it must assume the worst case� whereby
a remote node has a dirty copy of the data� and respond with COH CPY� It can then issue the
read for the line�s state information� Having once responded with COH CPY� even if it determines
that the line was valid in memory and that a COH OK would have been appropriate� it is still
required to supply the data to the requester� Thus� it must issue a read to main memory to obtain
the data and supply it to the requesting client via a cache to cache write� wasting bus bandwidth
and increasing latency� Also� because a node that performs a cache to cache write must invalidate
its copy� if it turns out that a remote node �or nodes� had a clean copy of the data� the SM�CC
must still invalidate those copies prior to sending the data to the requester� This is another source
of latency� and can increase the miss rate at the remote nodes if the data is not being used in a
migratory fashion� Note that this is due to the migratory nature of the Runway bus� and is required
for any sequentially consistent Avalancheprotocol�

If the MMC supported non�coherent	 out�of�order reads� the SM�CC could read its state infor�
mation prior to generating a coherency response� In the case where the data was valid in local
memory� the SM�CC would respond with COH OK or COH SHR� the line would be supplied di�
rectly from memory� and remote copies would not be invalidated� The LSMSM portion of misses
in Figure � shows the percentage of shared memory misses where this problem arises� ranging from
�� to ���� This problem is most noticeable when the SM�CC cache is cold or when the local
processor is accessing many shared memory lines� overwhelming the capacity of the SM�CC cache�
Reading the data from memory and supplying it to the local client adds between �� and �� cycles
per miss�

Runway	s migratory bus protocol
 As described above� when a client responds with
COH CPY and later supplies the data with a cache to cache write� the data migrates to the
requesting node� This design makes it impossible to support a sequentially consistent write inval�
idate protocol in a distributed shared memory environment� If a client performs a coherent read
to data that is invalid in local memory� the SM�CC must fetch the line from the remote node and
supply it to the local requester� However� the SM�CC cannot delay the coherency response while
it is requesting the data from the remote node� because doing so can lead to deadlock if two nodes
attempt to invalidate lines in each other�s caches simultaneously� Thus� as above� the SM�CC must
respond with COH CPY� supply the data via a cache to cache write after fetching it� and invalidate
all remote copies of the data� Thus� only a migratory protocol�can be sequentially consistent�

It would be easy to support a weak consistent write invalidate protocol that supports read
sharing� by having the SM�CC read the data back from the processor cache immediately after
supplying it� Should the local processor modify the data before we acquire a clean copy� we can
request ownership of the line and use the RIM�s di�ng hardware to coalesce the local modi�cations
with any remote modi�cations that may have occurred� Figure � shows that �� to ��� of shared
read misses would require the SM�CC to perform these extra bus transactions to change the state of
the cache line in the processor cache back to shared mode� Although these transactions would not
show up directly as latency to read misses� they would increase the Widget and MMC controller
occupancies and bus bandwidth consumption and thus indirectly impacts performance�

Out of address range bus exceptions
 Finally� when a processor generates an address that
lies outside the range of physical addresses supported by the local main memory� the MMC generates
a bus exception� This behavior makes it di�cult to support the CC�NUMA model� because the
processor cannot directly generate remote physical memory addresses without causing the system
to crash� This problem led to the adoption of Simple�COMA as Avalanche�s primary memory
model� notwithstanding S�COMA�s much better caching of remote data� Figure �� illustrates the
potential impact of using an Simple COMA�only design� It shows a snapshot of the page occupancy

��

0

5

10

15

20

25

30

35

4 8
Rdx

16 4 8
FFT

16 4 8
NLU

16 4 8
CLU

16 4 8
Brn

16

Pe
rce

nta
ge

Figure
 Write Invalidate Penalty

on all nodes� The shaded bands represent the percentage of pages for which there are less than
or equal to �� �
� or �� valid blocks �out of a possible �� blocks per page�� The number of pages
with less than � valid blocks� and thus less than ��� utilization� varies from
� to �
�� When
memory pressure is high it is better to use the CC�NUMA model on these underutilized pages�
accepting increased remote misses to avoid page level �thrashing�� To handle this problem we
are attempting to circumvent the MMC�s addressing restriction to support a mixed S�COMA�CC�
NUMA architecture�

0

20

40

60

80

100

4 8
Rdx

16 4 8
FFT

16 4 8
NLU

16 4 8
CLU

16 4 8
Brn

16

Pe
rce

nta
ge

B8 B24 B32

Figure �� SCOMA
 Page Occupancy

In summary� although the bene�ts of commercial components are signi�cant� they are not with�
out drawbacks� In particular� the lack of a facility for out�of�order reads and imposition of a
migratory�only cache coherency protocol result in noticeable performance overhead when building
a scalable shared memory multiprocessor� These constraints also make it impossible to support a
sequentially consistent write�invalidate protocol� Causing a bus exception for out of range addresses
makes it di�cult to support a CC�NUMA architecture� These constraints represent the kinds of

��

things that architects must overcome when using commercial components� We hope that our expe�
rience will help guide future commercial system developers who might impose similar constraints
inadvertently if not made aware of the outcome of their decisions� As scalable SMPs become an
increasingly important market segment� their design needs should be considered�

	 Related Work

The Stanford DASH multiprocessor 	��� ��� used a directory�based cache design to interconnect
a collection of ��processor SGI boards based on the MIPS ���� RISC processor� The Convex
Exemplar employs a similar design based around the HP���� PA RISC 	���

The MIT Alewife machine 	��� ��� was one of the �rst machines to implement directory based
shared memory� It was also the �rst hardware�based SM system to use software for protocol pro�
cessing� Alewife used a directory�based cache design that supports invalidation�based consistency
protocol� Alewife also had support for fast message passing�

The Stanford FLASH 	��� ��� is a second generation DASH multiprocessor that o�oads the
protocol processing to a processor situated on the MAGIC chip� The MAGIC chip�s processor
possesses its own instruction and data caches for holding� respectively� the protocol code and the
protocol metadata� By having a separate processor� the FLASH system is able to provide �exibility
that can be used to support di�erent protocols�

The user level shared memory in the Tempest and Typhoon systems 	��� supports cooperation
between software and hardware to implement both scalable shared memory and message passing
abstractions� Like FLASH� the proposed system uses low level software handlers to provide �ex�
ibility including memory architecture similar to SCOMA called stache that uses the node�s local
memory to replicate remote data�

The SHRIMP Multicomputer 	�� employs a custom designed network interface to provide both
shared memory and low�latency message passing� A virtual memory�mapped interface provides a
constrained form of shared memory in which a process can map in pages that are physically located
on another node� A store to such a shared page is forwarded to the remote node where it is placed
into main memory� Since the network controller is not tightly coupled with the processor� the
cache must be put into write�through rather than write�back mode so that stores to memory can
be snooped by the network interface� this results in an increase in bus tra�c between the cache
and main memory�

The S��mp multiprocessor system 	��� was developed with the goal of using a hardware sup�
ported DSM system in a spatially distributed system connected by a local area network� For the
interconnect it used a new CMOS serial link which supported greater than �Gbit�sec transfer rate�
The shared memory hardware system was tightly coupled to the memory controller and� even used
extra ECC bits to store state information�

 Conclusions

The primary Avalanchedesign goal is to maximize the use of commercial components in the creation
of a scalable parallel cluster of workstation multiprocessor that supports both high performance
message passing and distributed shared memory� We have described a design that accomplishes this
goal by combining a cluster of commercial multiprocessor workstations� a high speed commodity
interconnect� and a small custom VLSI Widget� In our prototype� a Widget board plugs into a
processor slot on each of
� nodes and interfaces with the Runway bus and the Myrinet fabric to
maintain data coherency�

��

A unique aspect of Avalanche�s architecture is that it is designed to support two scalable shared
memory architectures
 CC�NUMA and Simple COMA �S�COMA�� Supporting both models does
not add signi�cant design complexity to the Widget� but our current prototype design supports only
the S�COMA model because of problems associated with the Runway bus controller� Notwithstand�
ing our desire to support both CC�NUMA and S�COMA� we have found that S�COMA�s greater
replication signi�cantly improves performance in many circumstances due to Avalanche�s relatively
slow interconnect and the direct mapped nature of the HP chips� L� cache� We are also designing
Avalancheto support multiple coherency protocols� We currently support a migratory and release
consistent delayed write update protocol� and are designing a release consistent write invalidate
protocol�

Finally� the decision to use primarily o� the shelf hardware led to a number of design com�
promises� Hewlett�Packard�s Runway bus and memory controller design introduced a number of
unexpected challenges involving the bus protocols and memory controller requirements� Despite
these problems� we believe that future scalable shared memory multiprocessors must be based on
commodity components� so it is imperative that architects designing both commodity components
and multiprocessor architectures consider scalability in their base designs� In the �nal analysis�
the Widget is a very minor component of the system cost and can be viewed as a Myrinet to
HP workstation interface card that minimizes latency while supporting DSM and message passing
transactions in the resulting cluster�

References

��� A� Agarwal and D� Chaiken et al� The MIT Alewife Machine� A large�scale distributed�memory multiprocessor�
Technical Report Technical Memp �	�� MIT
LCS� �����

��� J� Archibald and J��L� Baer� Cache coherence protocols� Evaluation using a multiprocessor simulation model�
ACM Transactions on Computer Systems� �
����������� November �����

��� G� Astfalk� T� Breweh� and G� Palmeh� Cache coherency in the convex mpp� Convex Computer Corporation�
February �����

��� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for distributed shared
memory architectures� In Proceedings of the ��th Annual International Symposium on Computer Architecture�
pages ��	����� May �����

�	� M�A� Blumrich� K� Li� R� Alpert� C� Dubnicki� E�W� Felten� and J� Sandberg� Virtual memory mapped net�
work interface for the SHRIMP multicomputer� In Proceedings of the ��st Annual International Symposium on
Computer Architecture� pages �����	�� April �����

��� N�J� Boden� D� Cohen� R�E� Felderman� A�E� Kulawik� C�L� Seitz� J�N� Seizovic� and W��K� Su� Myrinet � A
gigabit�per�second local�area network� IEEE MICRO� �	
��������� February ���	�

��� W�R� Bryg� K�K� Chan� and N�S� Fiduccia� A high�performance� low�cost multiprocessor bus for workstations
and midrange servers� Hewlett�Packard Journal� ��
��������� February �����

��� H� Burkhardt� S� Frank� B� Knobe� and J� Rothnie� Overview of the KSR�� computer system� Technical Report
KSR�TR��������� Kendall Square Research� February �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Techniques for reducing consistency�related communication in
distributed shared memory systems� ACM Transactions on Computer Systems� ��
�����	����� August ���	�

���� J�B� Carter� M� Hibler� and R�R� Kuramkote� Evaluating the potential of programmable multiprocessor cache
controllers� Technical report� University of Utah� �����

���� D� Chaiken and A� Agarwal� Software�extended coherent shared memory� Performance and cost� In Proceedings
of the ��st Annual International Symposium on Computer Architecture� pages �������� April �����

���� D� Chaiken� J� Kubiatowicz� and A� Agarwal� LimitLESS directories� A scalable cache coherence scheme� In
Proceedings of the �th Symposium on Architectural Support for Programming Languages and Operating Systems�
pages �������� April �����

�

���� A�L� Cox and R�J� Fowler� Adaptive cache coherency for detecting migratory shared data� In Proceedings of the
��th Annual International Symposium on Computer Architecture� pages ������� May �����

���� M� Heinrich and J� Kuskin et al� The performance impact of �exibility in the Stanford FLASH multiprocessor� In
Proceedings of the �th Symposium on Architectural Support for Programming Languages and Operating Systems�
pages ������	� October �����

��	� T�R� Hotchkiss� N�D� Marschke� and R�M� McClosky� A new memory system design for commercial and technical
computing products� Hewlett�Packard Journal� ��
������	�� February �����

���� R� Kuramkote� J� Carter� A� Davis� C� Kuo� L� Stoller� and M� Swanson� The design of shared memory cache
and directory controller in avalanche� Technical report� University of Utah � Computer Science Department�
November �����

���� J� Kuskin and D� Ofelt et al� The Stanford FLASH multiprocessor� In Proceedings of the ��st Annual Interna�
tional Symposium on Computer Architecture� pages �������� May �����

���� D� Lenoski� J� Laudon� K� Gharachorloo� A� Gupta� and J� Hennessy� The directory�based cache coherence
protocol for the DASH multiprocessor� In Proceedings of the ��th Annual International Symposium on Computer
Architecture� pages �����	�� May �����

���� D� Lenoski� J� Laudon� K� Gharachorloo� W��D� Weber� A� Gupta� J� Hennessy� M� Horowitz� and M� S� Lam�
The Stanford DASH multiprocessor� IEEE Computer� �	
��������� March �����

���� J� Wang M� Dubois� L� Barroso and Y� Chen� Delayed consistency and its e�ects on the miss rate of parallel
programs� In Proceedings of Supercomputing���� pages �������� �����

���� A� Nowatzyk� G� Aybay� M� Browne� E� Kelly� M� Parkin� B� Radke� and S� Vishin� The S��mp scalable shared
memory multiprocessor� In Proceedings of the ���	 International Conference on Parallel Processing� ���	�

���� S�K� Reinhardt� J�R� Larus� and D�A� Wood� Tempest and Typhoon� User�level shared memory� In Proceedings
of the ��st Annual International Symposium on Computer Architecture� pages ��	����� April �����

���� A� Saulsbury� T� Wilkinson� J� Carter� and A� Landin� An argument for Simple COMA� In Proceedings of the
First Annual Symposium on High Performance Computer Architecture� pages ������	� January ���	�

���� P� Stenstr�om� M� Brorsson� and L� Sandberg� An adaptive cache coherence protocol optimized for migratory
sharing� In Proceedings of the ��th Annual International Symposium on Computer Architecture� pages ��������
May �����

��	� L�B� Stoller� R� Kuramkote� and M�R� Swanson� PAINT� PA instruction set interpreter� Technical Report
UUCS�������� University of Utah � Computer Science Department� September ����� Also available via WWW
under http�

www�cs�utah�edu
projects
avalanche�

���� L�B� Stoller and M�R� Swanson� Direct deposit� A basic user�level protocol for carpet clusters� Technical Report
UUCS��	����� University of Utah � Computer Science Department� March ���	� Also available via WWW under
http�

www�cs�utah�edu
projects
avalanche�

���� M� Swanson and L� Stoller� Shared memory as a basis for conservative distributed architectural simulation� In
Parallel and Distributed Simulation
PADS ����� ����� Submitted for publication�

���� J�E� Veenstra and R�J� Fowler� Mint� A front end for e�cient simulation of shared�memory multiprocessors� In
MASCOTS ����� January �����

���� S�C� Woo� M� Ohara� E� Torrie� J�P� Singh� and A� Gupta� The SPLASH�� programs� Characterization and
methodological considerations� In Proceedings of the ��nd Annual International Symposium on Computer Ar�
chitecture� pages ������ June ���	�

��

