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ABSTRACT

Representing data after it has undergone a fundamental topological change�

such as cracking� ripping� or folding� or after the introduction of arbitrary feature

curves� as happens during the creation of darts� corners� or fractures� continues to

be a signi�cant challenge� Ideally� the representation is modi�ed without having

to reformulate the representation entirely� If the original model is composed of

faceted polyhedra� it is possible to do this� However� many models today are being

represented by smooth parametric tensor product surfaces such as B�splines� which

do not easily support arbitrary discontinuities� During the design process� when

discontinuities are introduced� such models are often tesselated into triangles� which

would henceforth be the model�s representation� In this case� the resulting model

is often not useful for further design� This thesis introduces an extension of the

B�spline surface representation� called the torn B�spline surface� The torn B�spline

representation provides �exibility not previously found in similar parametric sur�

faces by incorporating tear curves� crease curves� and other arbitrary C���� feature

curves into the representation itself� Simulation events or other design processes

which result in discontinuities in the representation do not necessitate a change in

representation� and it is possible to use B�spline design methods on the resulting

torn surface model� This makes design with discontinuities more viable� The

representation and associated algorithms used to support it are introduced� as well

as some higher�order design operators which take advantage of this representation

and some example applications�
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CHAPTER �

INTRODUCTION

In the �eld of computer�aided geometric design �CAGD�� use of an appropriate

representation is the key to e�ectively conveying a structure�s geometry� There

are many tradeo�s among the representations� based on factors such as whether or

not the data accurately represents the original model� which will be referred to as

�delity� and the number of common operations under which the set of representable

models is closed which measures the completeness of the representation� Other

factors to be weighed include ease of use� size� speed� and �exibility� The �exibility

of a representation is measured in terms of the number of its supporting operations

in the same way a mathematician may evaluate an algebra in terms of the number

of common operators that can be applied� Consider the tradeo�s between polygonal

representations� various parametric tensor product surface representations� and

constructive solid geometric �CSG� representations� In the ideal world� all shapes

would be represented exactly and the particular representation would not be an

issue� However� the real world usually has more complexity than we are able to

represent� so we approximate� As a rule� the more complexity a model has� the more

it is approximated� The triangle or otherwise faceted representation is �exible and

closed under most operations at the expense of larger size and decreased �delity�

The tensor product B�spline representation is compact and easy to manage at the

expense of being slower and more incapable of representing the results of some

operations� A CSG representation is even more compact and easier to understand

and use while being even less �exible� However� technological advances in computer

speed and memory have reduced the impact of the size and speed requirements of

a representation� The crucial factors have become �delity� completeness� �exibility�






and ease of use�

The driving force behind this research is the need to provide a representation for

which operations that introduce discontinuities into tensor parametric surfaces are

closed� Operations in which discontinuities are introduced as a result of a simulation

or other automatic process are particularly di�cult since the designer often has

little control over the outcome and the results are not easily representable by current

parametric tensor product surface representations� Consider the following examples

where parametric tensor product surfaces are likely to be used�

The �rst example is the much studied area of thin plate deformations����� Thin

plate deformations are used for modeling the behavior of everything from cloth����

to steel� Thin plate dynamics can be modeled with simple springs and dashpots

in a linear constraint�feedback system or in a complex nonlinear �nite element

optimization system� In either case the physical characteristics of the plate may

cause the plate to tear or fracture under stress� causing a change that is proba�

bly not supported by the model�s representation� The simulation results may be

translated into a di�erent representation which may be capable of representing the

discontinuity but fails to retain the smoothness information within the rest of the

model� Sometimes the model is reconstructed with explicit constraints holding

together the new edges with the old smoothness information� All cases result in

additional work for the designer� particularly if the results will be used in the

context of further design operations or analysis� Ultimately� information about the

model is lost during this process�

Another related example is stamping�
�� � ��� In this process� a thin malleable

material is forced under pressure to assume a particular shape by compressing the

material between two forms� The simulation of this process is extremely di�cult

since there is high pressure and heat� both of which may alter the state and the

dynamics of the original material� Fractures� tears� and creases are common and

cause di�culty in both the simulation and the representation of the model itself�

In the �eld of geology we see another example of physical simulation resulting

in unrepresentable complex shapes� Here the discontinuities are three�dimensional





as earthquakes and other natural forces cause rock layers to fracture and slide past

one another creating complex systems of slips and folds� An initial representation

may be parametric tensor product surfaces that form the boundaries of the rock

layers� stacked on each other to make a nonmanifold three�dimensionalmodel� Once

the rock layers separate� indication of the three�dimensional nature of the crack is

virtually impossible with current parametric tensor product representations�

In the medical �eld� physicians can simulate procedures such as plastic and re�

constructive surgery��
� allowing them to make better planning decisions� Current

representations in this area are polygonal although actual skin is rarely faceted�

The ability to support arbitrary continuity features in parametric boundary repre�

sentation models could be well used by this �eld�

Finally� a designer using a CAD system may want to include continuity features

within a surface� such as creases or tears� These features may drive a particular

functional aspect� such as aerodynamics� or an aesthetic aspect of the design�

Currently� triangles are the most common representation in these cases� because

they are �exible and easy to use and they support the arbitrary topologies and

continuity features which may result� However� design with parametric surfaces�

and in particular� tensor product B�splines� is becoming more prevalent� Current

design techniques need to provide adequate support for these surfaces and the

by�products of their design processes� Ideally� a design operation that introduces

discontinuities should result in models that are members of the original represen�

tational set� Currently this is not the case�

In these cases� �exibility and �delity appear to be the two most critical factors�

To produce an accurate model� the initial representation must be accurate and all

prior operations must retain that information as well as reliably incorporate new

information during the process� Of particular concern are the continuity features

contained in the representation� Flexibility is the key to obtaining an accurate

initial representation� whereas �delity is the key to retaining the accuracy through

modi�cations� The faceted representations usually consist of many small facets

that together approximate the continuity information present in the large model�
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Usually continuity information is maintained by an equation which measures the

energy present between adjacent facets and so determines a smoothness measure of

the model� Continuity features in the larger model are usually identi�ed along the

boundaries between facets and the energy equation is suitably modi�ed to re�ect the

change in continuity� Higher�order tensor product surfaces provide a more accurate

initial model but are unable to represent all the continuity features which may be

introduced� A feature curve cannot be introduced into a tensor product surface

without signi�cantly altering the representation� This� in many cases� prevents the

use of some available design techniques since this type of smoothness information

cannot be represented by a single tensor product surface�

The torn B�spline surface representation� initially presented in �
��� is designed to

bridge the gap between the faceted representations and the higher�order parametric

representations� It provides the geometric �exibility of the faceted representations

while providing the �delity and size of the parametric representations� The key

elements of the torn B�spline representation are the arbitrary C���� feature curves

known as tear curves� The basis for this representation� the representation itself�

and several of the more common evaluation routines applicable to this class of

surfaces will be introduced� as well as some higher�order design operators which

demonstrate the �exibility of the representation within a design system� Finally

this representation will be applied to the problems in the examples introduced�

demonstrating the e�ectiveness of the representation�



CHAPTER �

BACKGROUND

The foremost consideration when assessing a representational need is determin�

ing the best representation class for the job in terms of �exibility and �delity�

��� Representation Classes

Within a representation class� a given representation has the power to represent

a particular set of models� The representation usually consists of a basic element�

such as a triangle or surface� and its set of representable models can be classi�ed by

whether or not collections of these basic elements are used� In addition� represen�

tations vary in how closely they can approximate a given object� providing further

classi�cation�

A given representation also supports design operations� calledmethods� which are

particular to that representation� For example� re�nement is usually identi�ed with

parametric surfaces� in particular� those which have basis functions� such as tensor

product B�splines� Other representations within this same class attempt to provide

similar operations� The resulting models of these representation�linked operations

generally stay within the same representation� Thus the set of representable models

is closed with respect to these operations�

In addition to being used with their methods� representations can be used in a

variety of design processes �often called operations as well� which can be modi�ed

to support a variety of representations� even those in other classes� For example� the

tensor product B�spline and triangular�faceted representations can both be used in

a physically based modeling process� The results of this set of operations may fall

outside of the original representation�s set of representable models� sometimes even
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outside the set of representable models for the class� Therefore� the representation

or the representational class may not be closed with respect to these operations�

During the course of a design session� a designer constructs a model� modi�es

the model� possibly simulates some aspect of the model�s function using the model

itself� or makes modi�cations to the model through some automatic process� Then

he may make changes to the model in response to feedback or examination of the

resulting model�s structure� which starts the process over again� If� at some point�

the representation changes as a result of a particular operation� the feedback loop is

altered� Design operations� in particular� methods� previously used for construction

and modi�cation may no longer be available and the designer may be incapable of

making the necessary modi�cations without starting over� This is particularly true

when the resulting model contains characteristics necessary for the �nal model�

Changing the representation class of the model during the modeling process

can cause signi�cant problems and force designers into using more cumbersome

representations� dealing with less accuracy� choosing less intuitive design procedures

or ultimately settling for less than what is required by the design speci�cations�

��� To Facet or Not to Facet����

Within a complex design system� the choice of an internal representation a�ects

both the interaction that the designer has with the system and the �nal outcome

of the design process� If the choice were simple� there would not be much di�erence

among design systems and the opinions that gave rise to them� As it is� design

systems range from very low order� such as points with adjacency information

�a�k�a� facets�� to very high order� such as implicit surfaces�
�� Since many real�life

objects have smooth� sculptured shapes� the challenge with the low�order faceted

representation is to make the models look and behave like higher�order models

without the size of the model becoming prohibitive���� ��� ���� The challenge

with higher�order representations is to make them easy to use in a practical design

system�

One of the primary reasons faceted representations are used within a design
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system is that they are well understood and well supported� Higher�order represen�

tations can be di�cult to construct� manipulate� and simulate and are only recently

being found in the larger commercial design systems� In contrast� the �nite element

method� the most popular simulation technique� caters to faceted representations

�in two�dimensional simulations� since the meshes consist of interconnected data

points �although higher�order physical relationships between mesh points are often

used�� Many design systems use tessellated models for this reason alone�

However low�order representations have disadvantages� Along with the size�

which causes these representations to be di�cult to manage and manipulate� an�

other disadvantage is appearance� Faceted models have angular silhouettes over

curved portions of their surfaces and can be subject to unwanted mach banding

at adjacent edges���� In addition� higher�order representations are being actively

investigated and are increasingly being used in commercial design systems� The

computation time often consumed with higher�order representations is being coun�

tered with faster computers� making these representations a viable alternative to

the traditional approach of using faceted models in a design system� Despite

these disadvantages� facets are still popular and are implemented in systems which

support a large range of design capabilities�

��� Tensor Product B�splines

Since tensor product B�splines have become commonplace in major design sys�

tems� it is important to understand the capabilities of the representation and have

a clear idea of the extensions that can and need to be made to support the desired

design operations� This thesis introduces the torn tensor product B�spline� a

tensor product B�spline surface representation for which the set of representable

models is closed under most design and simulation operations which may introduce

discontinuities� This closure problem is di�cult because the tensor product B�spline

surface representation does not support discontinuities of arbitrary geometry� Since

tensor product B�spline surfaces are being used more extensively in design processes�

alternate representations which satisfy this closure requirement are more urgently
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needed� The problem is further characterized by looking closer at the examples

mentioned earlier and the situations in which the need for representations closed

under these operations arises and causes di�culty�

��� Physically Based Modeling

Several of these examples fall in the category of physically based modeling�

Unfortunately� physically based modeling is a very general term which can be

applied to just about any design or simulation environment which uses physical

characteristics to help de�ne the model� Even the use of lighting models such

as radiant illumination �radiosity� could be considered physically based modeling

because the resulting image is a product of a �albeit simpli�ed� physical simu�

lation� More commonly� however� physically based modeling refers to the use of

physical characteristics to determine a model�s shape� position and�or orientation

in space� Material characteristics like mass� density� moments of inertia� elasticity�

and plasticity combined with physical behaviors in context such as gravity� collision

detection� and connectivity are examples of the physical characteristics considered

in these design operations� A subclass of these problems deal with the physical

characteristics of a single model� Multiple models require additional linkage and

kinematic information� This thesis primarily addresses the single model case� The

model may be a solid model whose basic elements have volume� or a boundary

representation whose basic elements are surfaces and connected by constraints at

the edges� Models discussed in this thesis are composed of parametric surfaces�

Speci�cally� this thesis addresses manifold and nonmanifold boundary representa�

tions�

����� Thin Plate

The simplest and most well�understood dynamic simulation is that of the thin

plate under tension���� ��� The thin plate problem is kept simple by assuming

that the thickness of the plate does not contribute anything signi�cant to the

formulation of the problem� This allows a two�dimensional simulation of the plate

which substantially reduces the complexity and the solution time� For the most
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part� standard thin plate dynamics is uninteresting since most simulations use a

variation of the standard dynamics formulation� However� the use of continuous

surface representations for thin plates can be di�cult if the dynamics can support

discontinuities such as tears or fractures� Although they may seem avoidable� these

situations may occur in any instance in which plasticity is used� A case could be

made that a model of dynamics without the capacity for fracture is not an accurate

model� since it more accurately re�ects real life�

Plasticity in materials engineering is most often represented by a stress�strain

graph� The stress is the amount of force applied to a material� and the strain is the

amount of deformation caused by the force� Although simpli�ed greatly� the graph

in Figure 
�� is useful for reference����� Normally� a material�s stress�strain graph

is nonlinear and changes according to the history of the stress on the material� The

elastic limit point �E� is the point up to which removal of the forces will cause the

material to return to its original rest state� Stress beyond the elastic limit will cause

the material to permanently deform� The material breaks when stressed beyond

the breaking point �B��

Most parametric surface representations break down when the material reaches

the breaking point� Either the discontinuity is ignored or a secondary representation

is used� such as a triangular or other faceted tessellation or the visual representation

B - Breaking point

Y - Yield point
E - Elastic limit

U - Ultimate load
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Figure ���� Stress�strain graph�
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of the physical elements �e�g�� plastic springs between control points������ In either

case� the set of representable models is no longer closed under this simulation

operation and the resulting representation may not retain smoothness information

which is critical to the model�

����� Stamping

A more complex situation is the dynamics of stamping� In this manufacturing

process� a thin sheet of material called a blank is cut to a speci�ed shape and

loaded into a press� The material is then deformed by forcing the material into

a die by means of a punch� Although thin�plate dynamics play a large roll in

the simulation of this process� a better simulation requires the use of material

thickness and viscosity� The four general categories of critical problems in sheet

metal forming are fracture� wrinkling or buckling� undesired sheet deformation�

and springback��� ��� In some cases� however� these �problems� are not really

problems but desired features� In the case of lance or emboss punching� �see

Figures 
�
 and 
��� the resulting fracture and the accompanying buckle are part

of the design�
��� These simulation results need to be represented as accurately as

possible� Although simulation of stamping processes are traditionally done using

FEM� designing with higher�order parametric surfaces is more common� and the

need for a consistent representation throughout the design process is becoming more

evident�

���
���
���
���

�����
�����
�����

�����
�����
�����

Lancing Punch

Figure ���� Lance forms�
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Figure ���� Embossing�

����� Geology

The study of fractures in rock layers is extremely complex and the represen�

tations used in the simulation of these interactions are inadequate at best� A

good example of the need for discontinuities within a representation comes from

the interaction of layers when a lower layer fractures and an upper layer deforms�

or folds over the fracture �see Figure 
���� This is known as drape�folding�����

The di�erent compositions of the layers may even cause the layers to separate

resulting in a pocket between the layers� Other fractures may extend through the

layers requiring that the representation track the fracture propagation through the

di�erent materials� The process of shearing also can create fractures and creases

in the layers of material which are deformed����� Currently most simulation of

geological phenomena is done with faceted representations using a constraint system

solved by the �nite element method� This is because of the frequent use of the �nite

element method in engineering disciplines and the current di�culty of representing

fractures and other discontinuities in higher�order representations�

����� Medicine

Recently� Peiper has created some interest in surgical simulation� speci�cally

plastic surgery��
� and references therein�� He primarily uses a triangular �nite

element mesh to represent the surface tissue during a �nite element simulation�

The ability to represent discontinuities in higher�order surfaces could have a serious
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Figure ���� Drape folding�

impact on the planning and performance of various plastic surgery techniques� Cur�

rently most facial models are represented by polygons���� ���� However� parametric

surfaces� and tensor product B�splines in particular� would be ideal candidates for

representing skin� especially facial tissue� since smooth faces are more visually real�

istic for simulation� Although smoothness is generally not required for traditional

animation����� the addition of discontinuities to these smooth representations would

provide a more realistic result for simulation of plastic and reconstructive surgery�

��� Design Techniques

The design processes in the above examples all employ similar techniques which

are reviewed in this section� The most common techniques are methods for opti�

mization of functions within the context of solving a system of constraints�

����� Constraints

There are a variety of ways to solve constraints depending on the characteristics

of the constraint functions� For example� systems of linear constraints can be solved

by singular value decomposition or QR factorization��
�� Most systems of constraint

equations used for interactive physically based modeling are linear approximations

to nonlinear systems�
�� 	� �� due to the speed and ease of solving these types of
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equations� If the process of solving the constraint is itself interesting� as it often is

in the case of animation� there are other methods which can be used to iteratively

obtain a solution in which the intermediate values are interesting� These constraint

solving methods fall into three categories� �� optimization� 
� dynamic constraints�

and � reaction constraints��	��

����� Optimization

The most common of the optimization methods are penalty methods and La�

grangian constraints����� Other methods include �nite di�erencing� simulate an�

nealing� augmented Lagrangian constraints� and a host of other derivations of

these methods����� It is these methods paired with a �nite element mesh which

comprise the �nite element method �FEM������ One di�culty of general optimiza�

tion techniques is that they may require the computation of the gradient of the

function being minimized or maximized and often these derivatives do not exist in

closed form� Another di�culty is that most iterative optimization techniques are

susceptible to getting caught in local minima or maxima� ultimately failing to �nd

the globally optimal solution� In addition� intermediate values may not have any

physical meaning� which may be a criteria if the optimization is being carried out

in the context of an animation�

����� Dynamic Constraints

Dynamic constraints��� ��� �� 
	� are systems of constraints which are solved by

applying critically damped forces which are computed by inverse dynamics� The

forces are thought of as occurring though time and therefore result in interesting

intermediate solutions� Unfortunately� these techniques are often di�cult to use

because of their nonlinearity and large number of variables� Dynamic constraints

are most often used in systems involving elasticity where the equations can be

simpli�ed���� ��� 
��see Section 
�	�	��
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����� Reaction Constraints

Another area of force�based constraint solving are reaction constraints� Addi�

tional forces are added to the system at the appropriate points in order to prevent

the constraints from being violated� Typical uses of reaction constraints include

path following and interpenetration prevention�	� 	��� The principal advantage to

reaction constraints are that they are simple to compute� However� they often do

not bear up well when applied to more complex problems��	��

����� Model Deformation

The animation industry has fueled interest in the theory of model deformation�

with most of the theory developed from a physical basis� Elasticity and plasticity

derived from the thin�plate model have been used in many instances to provide

realistic motion and deformation� The standard methods minimize a variational

derivation of an energy functional �similar to the thin�plate energy functional� over

the model as a whole� The majority of the earlier work uses triangles to represent

the �nal model�	�� ��� ��� ��� �	� ��� �� �� ��� 
�� ��� �	� �	�� It is only recently

that these methods have been applied to splines in the works of Bloor andWilson���

���� Welch and Witkin����� Moreton and S�equin�	��� Celniker and Welch�
�� and

Terzopoulos and Qin���� ���� A unique method for deforming models based on

vibration modes was developed by Pentland���� This �modal� dynamics method

is only applicable to models described by closed�form functions�

��� Finite Elements

The �nite element method is easily the most widely used simulation technique

today���� ���� and �nite elements are used so often in physical simulation this

technique is addressed separately�

The �nite element method is essentially the optimization of a system of linear

or nonlinear constraints which are approximations to systems of partial di�eren�

tial equations or integral equations� Boundary value problems provide additional

constraints on the boundaries which prevent degenerate solutions� The reasons for

the �nite element method�s popularity stem from its �exibility and its extensive
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resource and support base� The method is well studied and many ready�to�use

implementations are publicly available� However� there are some signi�cant draw�

backs to this popular technique� An FEM solution requires a well�placed mesh� and

although there has been much work in this area �e�g�� �		��� it continues to be a

problem� In addition� because the systems of equations are generally nonlinear� the

method is slow� Only in very simple cases in which the systems are extremely well

behaved� sparse� or linear can solutions be obtained in interactive speeds�
�� ���

Finally� the �nite element mesh elements are usually represented by facets because

the di�erential equations are easier to form� Therefore the results of the simulation

are often not acceptable within the framework of higher�order parametric surface

design systems� There have been proposed integrations of higher�order parametric

surfaces into the �nite element world �e�g�� ������ but none of these solutions can

support the fracture and other discontinuities which can easily result from the �nite

element method and are more easily represented by facets�

To summarize� the applications which would bene�t by incorporating discontinu�

ities within the representation are varied despite the fact that the design techniques

for generating these situations are standard� However� the problems associated

with representing discontinuities are not easily solvable by the prevailing methods�

Tradeo�s are required to obtain adequate results depending on the application� In

Chapter � capabilities of existing representations and previous attempts to address

these issues are discussed�
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PREVIOUS WORK

Discontinuities introduced during the design process pose di�culties when us�

ing higher�order representations� Although the representation can be changed to

accommodate the new structure� the design process is disrupted and the resulting

representation may not support design operations similar to those available for the

original representation� The approaches to solving this representational closure

problem include the following�

�� Use as an original representation a lower�order� generally faceted� representa�

tion which is known to be closed under operations which introduce disconti�

nuities�


� Use as an original representation a higher�order� usually parametric� represen�

tation with enough degrees of freedom to represent simple cases� Degeneracies

may be introduced to support various continuity features� Representation

reverts to faceted representation once a certain complexity is reached�

� Use as an original representation a modi�cation or extension of a higher�order

representation which is closed under a number of operations which introduce

discontinuities�

The following section reviews the representation classes and how they attempt

or could attempt to address the representation closure problem�

��� Faceted Representations

Faceted representations have the advantage that they are easy to understand

and to implement� The primary disadvantage of the faceted representation is that



��

the collection of facets only approximates smoothness to within some tolerance�

If the tolerance is dramatically reduced� the size of the data structure may ex�

pand prohibitively� Manipulation of models represented by facets requires some

knowledge of the characteristic smoothness of the surface at a higher level than

individual facets� Ultimately� this is no di�erent than the problem of representing

discontinuities in a higher�order model� On the other hand� the topological �exibil�

ity for faceted representations is limited only by the size of the model� If a faceted

representation is used for a physically based simulation� the representation will not

need to dramatically change even if discontinuities are introduced���� Despite these

advantages� higher�order surfaces are being used consistently in design systems and

useful representations which are closed under these design processes are needed�

��� Parametric Surfaces

Parametric surfaces come in many �avors� the most popular of which are mul�

tivariate splines� The tensor product B�spline representation is a special case of

multivariate splines and one of the more widely used parametric surface represen�

tations

����� Multivariate Tensor Product Splines

Each tensor product B�spline surface blend function is actually just the product

of two univarite B�spline blend functions which govern the blending of control points

to describe the surface� One of advantages of the tensor product B�spline repre�

sentation is the fact that it is simple and that algorithms such as re�nement and

order manipulation are well known� Unfortunately� the support of tensor product

surfaces is parametrically rectangular� therefore� any degenerate knot con�guration

which may contribute to a discontinuity is present along the entire parametric

isoline� Most other multivariate splines fall into the category of alternate higher�

order representations�

�� Unusual multivariate splines �such as Box splines�	��� do

not necessarily have rectangular parametric domains� and so any degenerate knot

sequence which creates a discontinuity although isoparametric in nature does not

necessarily lie in a particular direction across the surface�
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However� these other representations have yet to make a signi�cant impact in

design for several possible reasons� First� they are more di�cult to understand

so are less attractive for use in commercial products� Second� standard com�

ponents present in other parametric surfaces such as simple basis functions and

order relationships are not generally present for multivariate splines� This makes

analysis for simulation and interactive design processes very di�cult� In addition�

the complexity and irregularity of the blending functions make this general class of

representations slow� Finally� arbitrary discontinuity within the surface is generally

not supported�

The tensor product torn B�spline surface representation presented in this thesis

may also be applicable to general multivariate splines� This type of extension is

left for future work�

����� Subdivision Surfaces

Subdivision surfaces are another class of surfaces which demonstrates potential

for being able to represent surfaces of arbitrary topological type and embedded

discontinuities� These surfaces are constructive surfaces based on a parameter

and a control net corresponding to the connectivity of the base�level surfaces�

The most common subdivision type are triangles�	�� ��� ��� �	� although both

quadrilaterals�
�� and biquadratic and bicubic tensor product B�splines���� have

been used for the base�level surface type� The topological �exibility of these surfaces

is striking� yet several things stand in their way to becoming the surface of choice

in a design system� First� simulation and interactive manipulation of these surfaces

are di�cult because the surface is constructive� Speci�cally� it is not clear how

discontinuities can be added to the model after the model is constructed simply

because there may be no clear way to translate the information back to the control

mesh� Current implementations deal only with surface reconstruction���� ��� �	��

not interactive manipulation� In addition� di�erential properties of these surfaces

can be di�cult to obtain since the mathematical formulation is constructive�
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��� Alternate Parametric Surface

Representations

Most of the development in alternate representations of parametric surfaces

has used the general class of splines as the base� The development is spurred

by implementations of B eziers� B�splines or NURBS in in popular commercial

design systems �e�g�� AutoCAD� SoftImage� EZFeatureMill� SurfCAM� DStudio��

Changing the spline representation has been a popular technique� among the re�

sults are ��splines or G����splines� ��splines���� ��splines or tension splines�����

G�splines����� Box splines �a type of multivariate spline��	��� Hayes splines����� and

X�splines����� Only the last two have speci�cally addressed the representation of

discontinuities within individual surfaces� but each at the expense of making it

di�cult to support the more common spline methods of re�nement and subdivi�

sion� The most interesting� yet least useful� representation is Hayes splines�����

Hayes splines provide a functional de�nition of the knot vector with respect to the

opposing parametric value� Hayes splines can represent partial discontinuities in a

parametric direction� although they need not be isoparametric� One of the obvious

di�culties with this representation is the complexity imposed by this additional

level of indirection� Hayes splines are hard to describe and substantially harder

to use� Recently� X�splines���� were introduced as a combination of B�splines and

Catmull�Rom splines���� They appear to be easier to use than Hayes splines�

although still providing partial discontinuity across a single spline surface� but

the discontinuities are still isoparametric� In addition� the surface is not a true

tensor product because of a normalizing factor� so common spline methods such as

re�nement and subdivision have di�erent meanings�

The alternate representations are generally very complex and too di�cult to

control for widespread application� In addition� the number of operations for which

the set of representable models are closed is quite small�
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��� Trimmed B�spline Surfaces

Another modi�cation often used with parametric tensor product surfaces like

B�splines is a trimmed representation� A trimmed surface is a surface whose original

domain has been restricted to a set of closed subregions of the original domain�

Early techniques developed by Thomas��
� and Carlson���� ��� approximated the

trimmed surface within the restricted domain with a set of polygons� Sarraga����

suggested using a collection of rational tensor product surfaces to approximate

the trimmed surface� However� in each of these techniques the original surface

representation is di�erent from the trimmed surface representation� making modi��

cations within the same framework di�cult� Representing the trimmed region by an

unevaluated two dimensional CSG tree was suggested by Casale���� but evaluation

of this surface can be slow and tedious� Representing the boundaries of the trimmed

region by algebraic curves was suggested by Farouki���� but this technique does

not scale well to general tensor product B�spline surfaces� Another technique was

developed at the University of Utah by McCollough�	��and uses a parametric curve

evaluated in the domain of the surface to represent the boundary of the trimmed

region �see Figure ���� Trimmed B�spline surfaces are often used in solid model

boundary representations in which the boundary surfaces are nonrectangular� The

computation of intersections of higher�order parametric surfaces such as B�splines

is generally not tractable� and the resulting intersection curves are usually not

representable by simple parametric curves embedded in the surfaces �see Figure �
��

In McCollough�s representation� the actual intersection is approximated by a piece�

wise linear intersection curve along with the corresponding parametric locations

of the individual points within each of the surfaces �see Figure ��� One major

disadvantage to this representation is that a large amount of data is needed to

represent the boundaries of the trimmed region when an adjacency is involved�

At �rst it may seem that the trimmed B�spline representation would support

general discontinuities� but there are serious drawbacks to using this representa�

tion� First� even though complex topologies can be represented� regions which

appear independent by visual cues may not really be independent in the underlying
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Figure ���� Example trimmed surface with parametric curve�

Figure ���� Piecewise linear intersection between two surfaces�
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Consider a U�shaped region cut from a uniform bicubic B�spline� Then the

underlying surface�

S�u� v� �
���X

i�j��

Pi�jB
k
i��u�u�B

k
j��v�v� ����

where the order� k� is � �cubic in each parametric direction�� the knot vector �u �

f�� �� �� �� �� �� �� �g and the knot vector �v � f�� �� �� �� �� 
� � � � g� The knot

vectors indicate that in the u direction� there is only one interval� ��� ��� but in

the v direction� there are three intervals� ��� ��� ��� 
� and �
� �� These intervals

correspond to the piecewise polynomial patches �see Figure ���� A single patch

of a bicubic B�spline has nonzero basis functions� �i�e�� Bk
i��u�u� and Bk

j��v�v�� for

�� control points� Unfortunately� a single patch represents the base of locality of a

B�spline surface� every point within the patch is dependent on all �� control points

�patch boundaries excepted�� Modifying any of the �� control points corresponding

to a particular patch will modify the shape of the entire patch�

Suppose the surface is trimmed so that only a U�shaped region remains �see

Figure �	�� If such a region were cut from a piece of paper� the two ends would

be independently �exible� Intuitively� the same would be expected of the region

cut from the B�spline surface� Notice that both ends of the U contain sections
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from the same patch� Because of this� they are totally dependent on the same

control points� If su�cient �exibility were added to the surface by introducing more

knots and control points so that the individual patches in the two ends are totally

independent of each other �i�e�� the spans of the patches do not intersect�� then this

interdependence could be avoided� Unfortunately� reducing the distance between

the two ends �see Figure ���A�� results in a situation in which only subdividing

the surface into two surfaces is su�cient to maintain the independence of the ends

but subdivision reduces the continuity in the section of the U that crosses the

subdivision boundary �Figure ���B�� and is therefore not an acceptable solution�

This interdependence causes another di�culty� Regions are independent only if a

su�cient amount of the surface is removed between the two regions� During a design

process which introduces discontinuities� the parametric domain often represents a

section of a physical model� Removing or trimming away a section of the domain

represents removal of material which is often not acceptable�

v
u

B

A

Figure ���� Dependence problems in trimmed surfaces�




	

��� Constraints

Regardless of the approach used to represent discontinuities� constraint ful�ll�

ment is often used to keep the model together�	�� �� �	� �
� �� 
	� ���� In a typical

design environment� the designer supplies adjacency or tangent requirements and

then must convert these requirements into a set of constraint equations that can be

numerically or analytically satis�ed within the design environment�

The primary di�culties with this approach are the complexity of the constraint

functions� the lack of a single coherent parametric space �if the discontinuities

were introduced after the model was originally built��� ���� and the possibility

of not being able to �nd a solution to the user�provided system of constraints

due to the nonlinearity of the equations� over�constraining the system� or getting

stuck in local minima� The advantages of this approach include its �exibility�

its enormous popularity in current simulation methods �such as FEM����� and its

large supporting base of research� The torn B�spline representation supports C����

continuity but creases require C��� continuity� Unfortunately� exact solutions to this

C��� continuity requirement are often intractable or nonexistent� Therefore linear

constraints are used to obtain an approximate solution in a reasonable amount of

time� The particular approach used to construct the linear constraint equations is

derived from the approach described by Fowler�	� ���

��� Patching

Combining multisided smooth patches and triangular patches ���� �
� 	� ���

	
� ��� and others� into interesting models has been a long standing approach�

The topological �exibility o�ered by this approach is enormous� but most of these

techniques produce only uniformly smooth models� Recently� interest in models

which have creases� tears� and other continuity features has increased and new

techniques have been developed with support such features���� �	� ��� It can safely

be said that each of these new techniques also uses a multipatch scheme� in which a

signi�cantly large set of basic building blocks are combined with constraints or some

other smoothing method to produce a smaller number or smoother set of patches
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to produce the desired continuity features in the larger model� A recent example

��	� begins with a set of triangles and through optimization and feature recognition

produces a piecewise smooth representation with the continuity features intact� An

earlier example� in computer vision reconstructs surfaces with discontinuities�����

In contrast to the multipatch approach� the torn B�spline introduces continuity

features within a smooth surface�

����� Topology

The torn tensor product B�spline surface dramatically expands the represen�

tational capabilities of a single tensor product B�spline surface� Several common

topological terms will be used in this thesis and are de�ned below�����

De�nition ��� If U is an open set containing x� then U is said to be a neighbor�

hood of x�

De�nition ��� A separation of a space X is a pair U �V of disjoint nonempty open

subsets of X whose union is X�

In particular� its opposite� connectivity� is critical in determining the necessary

continuity requirements in the surfaces surrounding tears�

De�nition ��� An m�manifold is a space X� such that each point x of X has a

neighborhood that can be mapped ��to�� and onto an open subset of IRm�

Most boundary representations of solid models are 
�manifold� Tears in a smooth

boundary representation make the boundary representation nonmanifold�

Although most data representations theoretically permit nonmanifold topology

when combining more than one basic building block� it is rarely used since most

real objects have manifold boundary representations� With the increased use of

visualization and simulation in the physical sciences and mathematics� the use

of nonmanifold topologies has also increased� Bloomenthal and Ferguson��
� use

triangles to represent their topology in a recent treatment of nonmanifold topology

for implicit surfaces�
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The torn B�spline surface described in this thesis allows discontinuities to be

introduced into the surface� causing a model to become nonmanifold� Treatment

of this situation is given in Section ���

The representations and modeling techniques described in this chapter are the

state�of�the�art for representing discontinuities in models� Yet despite their ca�

pabilities� these representations and techniques are di�cult to describe and use

and often fail to meet the �exibility requirements of real�world situations which are

becoming increasingly more common� Clearly a �exible representation is capable of

representing arbitrarily complex discontinuities without information loss in other

areas of the model and is easy to understand without adding undo complexity

to the representation� In the following chapter� the torn tensor product B�spline

surface representation is presented� The torn B�spline surface provides the �exibility

without information loss that is necessary for embedding discontinuities in the

inherently smooth surface representation�



CHAPTER �

TORN B�SPLINES

The torn B�spline representation is built upon the well�known B�spline repre�

sentation� It uses some key techniques from the trimmed B�spline representation

to provide some of the most useful functionality of the B�spline class� such as

evaluation and display� In addition� modeling techniques such as designing with

feature curves and constraints are integral parts of this representation� The previous

research on incorporating discontinuities within models was reviewed in Section ��

Section ��
 contains the technical foundation for torn B�splines� including de�nitions

for the B�spline representation and other core de�nitions� Section �� introduces

the torn tensor product B�spline� In the following section� several types of discon�

tinuities are presented to lay the foundation for the rest of the chapter� It is these

types of discontinuities that the torn B�spline surface is able to represent�

��� Continuity Features

The examples in the previous sections present several situations in which dis�

continuities arise within the context of the modeling process� These discontinuities

characterize the model or di�erentiate the model from other models� Therefore

they are called continuity features�

What is a continuity feature� By word analysis� a feature� according to Webster�

is �a prominent or conspicuous part or characteristic��
�� p� ���� de�nition ���

Continuity in this sense� refers to the smoothness of the model� The de�nition a

continuity feature is as follows�

De�nition ��� A continuity feature is a characteristic change in the continuity of

a model�




�

Continuity features are often the main focus of an outline drawing of a model

since they characterize the shape of the model� The vertices and edges of polygons�

curved boundaries of a sculpted surface� and folds in material are all continuity fea�

tures� In a design system� the continuity features are represented by vertices� edges�

or curves� all de�ned within the context of the higher�order modeling constructs

such as surfaces or solids� In most situations� these features are �well behaved� in

that they form boundaries of the higher�order elements used to construct the model�

Occasionally� these features are not a natural part of the boundary �i�e�� they are

not part of a closed loop which would form a boundary in a surface model� and so

are not easy to compute or use� The designer must then switch representations or

perform some additional work in order to adequately represent this type of feature�

The continuity features introduced or discussed in this thesis are de�ned below�

De�nition ��� A tear is a smooth parametric curve in the parametric domain of a

surface along which the surface is geometrically discontinuous �see Figure ����A���

De�nition ��� A crease��	
 is a smooth parametric curve in the parametric do�

main of a surface along which that surface has G��� continuity but not G��� conti�

nuity �see Figure ����B���

Although these features are de�ned in terms of geometric continuity� it is as�

sumed that the parametric surface is standard and has no other constraints unless

noted so that these features can be discussed in terms of parametric continuity�

De�nition ��� A critical point is the endpoint of a tear in the interior of a surface�

whether or not it is part of a crease� An endpoint on a surface boundary is not

critical unless the boundary is constrained to be adjacent to a boundary of another

surface in the neighborhood of that point �see Figure ����C���

De�nition ��� A dart��	
 is a crease whose endpoint lies in the interior of a

continuous surface �see Figure ����D���

If the interior endpoint of the dart is also the endpoint of a tear� then that
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endpoint is a critical point� In particular� the continuity characteristics change at

the end of a dart�

The same smoothness characteristics are required for all points on the surface

except for the points on the tear and the critical points� A critical point is the

only point on a tear whose connected neighborhood contains both sides of the tear�

These critical points play an important role in the torn B�spline data structure�

De�nition ��� A corner��	
 is the point at which two or more creases join� Usually

a corner describes a C��� discontinuity between the parametric representations of the

creases within the surface �see Figure ����E���

This term can also be used for the intersection of two or more tears� although

the resulting geometry is quite di�erent� A more general de�nition of a corner could

allow a corner to exist in the middle of a single crease� but given the assumption

that a single curve is C��� with respect to parametric space of the surface� corners

require two or more curves�

De�nition ��� A fracture is a pair of parametric surfaces embedded in a solid

which represents a discontinuity within the solid �see Figure ����F���

Practically speaking� any parametric surface slice which intersects the fracture

will have a tear in the surface along the intersection� In the engineering world� a

fracture is one of the most complex continuity features used� This thesis introduces

a method for representing the parametric slices of the solid� and issues involved in

representing the solid itself will be discussed�

��� Technical Background

First the basic de�nition of a tensor product B�spline surface and some additional

terms which are frequently used will be given�
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Figure ���� Continuity features�






����� Tensor Product B�spline

De�nition ��	 A nonuniform tensor product B�spline surface�

Q�u� v� �
m�nX
i�j��

PijBi��u�ku�u�Bj��v�kv�v�� �����

is de�ned by the set of coe�cients� fPijg� the knot vectors� �u � f�ui g� �
v �

f� vi g� and the B�spline basis functions� fBi��u�ku�u�� Bj��v�kv�v� where fBi��u�ku�u�

�Bj��v�kv�v�� is the ith�jth� B�spline basis function of order ku�kv� over the knot

vector �u��v�� respectively�

To simplify notation where there is no confusion� the knot vector and the order

will be inferred from the parametric variable that is used� so Bi��u�ku�u� � Bi�u�

and Bj��v�kv�v� � Bj�v�� In addition� the product of the basis functions will be

abbreviated as Bij�u� v� � Bi�u�Bj�v�� To distinguish the torn B�spline de�nition

from the above de�nition� a surface from De�nition ��� will be referred to as the

standard tensor product B�spline surface�

����� Span

De�nition ��
 The span� S�u� v�� is the set of �ordered pairs of� subscripts whose

corresponding basis functions are nonzero at �u� v�� i�e��

S�u� v� � f�i� j�jBij�u� v� �� �g� ���
�

De�nition ���� Let q�t� � �u�t�� v�t�� be a parametric curve� t � �tmin� tmax�� in

the parameter space of a surface Q� The span of a curve� R�q�� is de�ned as the

union of the set of �ordered pairs of� subscripts whose corresponding basis functions

are nonzero for some �u�t�� v�t�� on the curve� q� i�e��

R�q� �
�

t��tmin�tmax	

S�q�t��� ����

The span will be used to determine which control points are crucial for deter�

mining the set of parametric values along a continuity feature�





����� Patch

De�nition ���� The patch of a span� G�S�� is the closure of the set of �u� v� all

of which have the same span�

In general� if S� and S� are two spans of either points or curves� and S� � S�� then

G�S�� � G�S���

The knot lines �or interior knot values� of the B�spline de�nition delineate

the patches of the surface� For the torn B�spline representation� the continuity

characteristics may not change within a patch�

��� Torn B�splines

Consider the process of introducing discontinuities into a model given the tools

that are currently available� There are two natural ways to think of this process�

First� basic modeling elements can be put together in such a manner that the

discontinuity lies along the boundary between elements� Where the model needs to

be smooth� constraints can be used to enforce some degree of smoothness� This is

a �bottom�up� approach� The second way is to arrange the parameters of the basic

modeling element so that a discontinuity is formed within the modeling element

itself� For example� a tensor product B�spline can have multiple knots� each knot

lowering the degree of the surface by �� This is the �top�down� approach�

The �bottom�up� approach is easy to understand� However� since the surfaces

may be parameterized di�erently� this may become a highly nonlinear constraint

problem� one that may not be solvable� In addition� individual surfaces behave

independently� requiring highly specialized code to make modi�cations to the region

as a whole� Finally� if discontinuities were added to a smooth surface� the original

surface�s structure provides a wealth of smoothness information away from the

discontinuity that is thrown away when multiple surfaces are constructed� The

�top�down� approach is more desirable for these reasons� Unfortunately� cur�

rent representations are limited in their �exibility for representing discontinuities�

therefore the �top�down� approach is limited to certain representations in certain

situations� the merits of each were discussed earlier�
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The bottom�up approach to accommodating discontinuities within a single ten�

sor product B�spline representation results in a set of trimmed B�spline surfaces�

each with its own set of coe�cients �control mesh� and a set of constraints which tie

the trimmed regions back together along the smooth parts� but the constraints along

the smooth parts are just composed of matching coe�cients since both trimmed

regions came from the same surface� The torn B�spline representation is based

on this concept as applied to the �top�down� approach� An exact solution for

smoothness away from the discontinuities is guaranteed implicitly and the param�

eterization matches across the discontinuities by default by focusing on supporting

the discontinuity within the structure instead of continuity between two di�erent

structures� In addition� the surface is one complete unit with full knowledge of all

its domain and is capable of supporting operations on the surface as a whole�

The development of the torn B�spline representation from the �top�down� ap�

proach is best understood by �rst considering the two�dimensional �or 
D� case

of a torn B�spline curve� Figure ��
 shows a torn B�spline curve� To tear a

B�spline curve� q� we introduce a tear point at parametric location� !t� Note that

R��tmin� !t��
T
R��!t� tmax�� � S�!t�� Let � be a classi�cation function which separates

the curve into two distinct regions� �tmin� !t� and �!t� tmax�� �Although !t does not

actually exist in both regions� we assume the limiting case�� S�!t� then occurs in the

spans of both regions� If q is torn at !t� then there must be two distinct locations

for q�!t�� In order to make these two locations independent of each other� their

spans must be independent� hence� the torn representation for each region must

have distinct control points for each i in S�!t�� These additional points are called

the overlap polygon� In Figure ��
� row a contains the original control polygon of a

curve� Row b contains the set of control points� Q�Q� and P�� for R��!t� tmax��� and

row c contains the set of control points� P��P�� for R��tmin� !t��� The function� ��

then determines which curve region a parametric location is contained in� A point

on the curve� q�t�� is evaluated by using the appropriate control points from the

original control polygon and the overlap polygon as appropriate for the region of

the curve which contains q�t� as determined by ��
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In the curve case� the two curve regions can be made independent by subdividing

the curve at the tear point� Since subdivision is a well�established technique� the

torn B�spline curve is mostly academic� The torn B�spline surface is much more

interesting� Informally� a torn B�spline surface is comprised of an underlying tensor

product B�spline surface and one or more curves of discontinuity or tear curves�

Consider �rst� the case where a single tear curve� q�t�� separates a surface into

two distinct regions� Again the requirement is that the surface regions on either

side of the tear curve be independent of each other� The two regions are again

classi�ed by the function� �� In order for the regions to be independent of each

other� the span of the tear in one region must be independent of the span of the

tear in the other region� which is analogous to the torn B�spline curve case� That is�

a point on the tear in one region must use a completely di�erent set of coe�cients

for the span of that point� This implies that R�q� in one region is independent of

R�q� in the other region� The additional coe�cients required to make the spans

independent are stored in the overlap mesh� Figure ���A� shows an isoline drawing

of the torn B�spline surface� Figure ���B� shows the patches which contain the

tear curve� Figure ���C� shows the points in the span of the tear curve� R�q��

which are included in the overlap mesh� Once again� each region� separated by

�� is associated with a particular set of control points selected from the original

mesh and the overlap mesh� Although the maximal number of degrees of freedom

�DOFs� associated with the discontinuity is �xed by the con�guration of tear curves

in the surface and the separation of regions �see Section ����� the methods used

to determine the distribution of these points are implementation dependent �see

Section ��������

Unfortunately� tear curves which fully separate the domain are not the most

common case� since full separation is often representable by other methods �i�e��

subdivision or trimmed surfaces�� More typically� one or more of the endpoints of

the tear curve is in the middle of the surface� often in the middle of a patch as well�

These partial tears are related to Thomas� cut curves��
�� When the tears separate

the surface� it is clear how to determine the classi�cation function� �� When the
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B CA

Figure ���� Torn B�spline surface with complete tear�

tears do not separate the surface� the distinction is no longer clear� Fortunately� the

original smoothness of the surface is required away from the discontinuities� thus

only one surface location is associated with a given parametric location� Regardless

of how the regions are classi�ed� the evaluation of a given point must be well de�ned

in the context of the torn surface� A method for making this classi�cation well

de�ned is presented in Sections ��� and following�

If a tear curve has an endpoint in the middle of the surface� the neighborhood

of this critical point has an assumed continuity requirement� the surface must have

the same continuity as the underlying B�spline surface except possibly at the tear�

If the tear has an endpoint in the middle of a patch� the entire patch must remain

connected� Recall that all points in the interior of the patch have the same span�

therefore they are all dependent on the same coe�cients� This dependence because

the cross�patch continuity is being maintained on all patch boundaries and the

span is essentially the smallest piece of the surface which is able to support the

cross�patch continuity described by the order and knot vector of the underlying

tensor product B�spline surface� This characteristic of the patch means that if two

points are connected in the same patch� then there is only one con�guration of

coe�cients given the boundary continuity requirements for that patch� Conversely�

if the spans of two parametric locations are di�erent in at least one coe�cient� then

the two points are not connected within the patch� Therefore� either the patch is
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separated from one patch boundary to another� or any two points on the patch

are connected and the patch retains its original continuity� If the endpoint of the

tear lies on a patch boundary� then this connectivity of the patch is not a problem�

since the discontinuity crosses the entire patch� However� if the endpoint lies in the

middle of a patch� there are several options available� the choice of which ultimately

determines the degree to which the patch is kept smooth without modifying the

tear itself�

�� Require that the entire patch containing the endpoint remains connected

�continuous��


� Allow the patch to become separated beyond the original tear curve descrip�

tion�

� Introduce additional �exibility which creates a patch boundary at that point�

If maintaining smoothness where there is no discontinuity is more important than

having full discontinuity along the entire length of the tear curve� then the �rst

option is preferable to the second� This choice also prevents artifacts of the classi��

cation scheme from being present in the surface since the additional portion of the

patch that is discontinuous from the second option is dependent on the classi�cation

of the regions� The third option was investigated� and initial experimentation

indicated that it was a viable option also� Full integration and analysis of the

e�ects of such a change are left for future work� An example of partial tear is given

in Figure ���� Figure ����A� is an isoline drawing of the surface� Figure ����B� shows

the patches of the surface that the tear extends through the hatched patch is the

patch whose span is removed to satisfy the �rst option given above� Figure ����C�

shows the resulting control points that are in the overlap mesh�

Since the initial overlap mesh computation is derived directly from the span of

the tear curve� the span of the tear�s mid�surface endpoint is included in the overlap

mesh� However� regardless if the tear ends on the boundary of a patch or in the in�

terior of a patch� if any coe�cient in the span of the endpoint is in the overlap mesh�
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Figure ���� Torn B�spline surface with partial tear� A� Isolines from the surface�
B� Parametric domain with the tear�s span highlighted� C� Control points of the
surface� highlighting the control points used in the overlap mesh of the tear�

the discontinuity extends across the patch� So the span of the endpoint is removed

from the overlap mesh to maintain the continuity of the surface at the endpoint� In

Figure ��	�a�� shaded regions of patches correspond to spans that have been added�

the outlined regions �circled� correspond to spans which are subsequently removed�

In Figure ��	�b�� the shaded points of the corresponding control mesh are added�

and� likewise� the outlined points are removed� The remaining points in the darkly

shaded regions make up the overlap mesh� Additional considerations for adding

and removing points from the overlap mesh are discussed in Section ����

B

a. b.

A

Figure ���� Subpatch diagram with tear�
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��� Torn B�spline De	nition

De�nition ���� The torn B�spline surface representation has several parts�

�� an underlying tensor product B�spline surface de�nition� with the requisite

order� knot vectors� and control mesh

�� a set of tear curves� f��gT���� de�ned within the parameter space of the under�

lying B�spline surface� along which the surface is discontinuous

�� a set of control meshes� fO���
ij g

T
���� called overlap meshes� which contain the

additional coe�cients�

�� a masking function� �� which identi�es for each region� c� the composition of

control points from the original control mesh� Pij� and the overlap meshes�

O
���
ij �

	� a piecewise mapping� �c� whose value is � if a given parametric point� �u� v��

is contained in the parametric region� c� and � otherwise� This function may

be ambiguous if the point lies on a tear curve or its extension�

Then we de�ne the torn B�spline surface as

T �u� v� �
TX
c��

�c�u� v�
m�nX
i�j��

P
�c�
ij Bi�j�u� v� �����

where

P
�c�
ij �

��
�

Pij if �c�i� j� � �

O
���
ij if �c�i� j� � 	 otherwise�

���	�

For utility� let !��u� v� � c �� �c�u� v� � ��

Let us examine each of these parts in turn�

��� Underlying B�spline Surface

The underlying tensor product B�spline surface is the basis for the torn B�spline

surface� The order and knot vector of the torn B�spline surface are inherited from

it� and its control mesh serves as the base control mesh of the torn B�spline surface�
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��� Tear Curves
 ��

As discussed in earlier sections� the tear curves which are part of the torn B�spline

representation can have arbitrary parametric geometry and extend completely or

partially across the surface� They may abut� but not cross� each other or themselves�

The type of curve is limited only by the implementation� There is no limit on the

number of tear curves in a torn B�spline surface�

��� Overlap Mesh
 O

The additional DOFs allowed by the introduction of tears can be computed by

examining the span of the tear�

De�nition ���� The overlap mesh� O
���
ij � is the mesh of additional coe�cients

associated with the tear� ��� By de�nition� O��� � P �

There are several requirements which make the classi�cation of points a well�

de�ned process� The �rst requirement is that the surface must retain its original de�

gree of smoothness except along tear curves� Before the discontinuity is introduced�

the knot vector describes the parametric continuity of the surface� In particular� for

a tensor product B�spline surface of order � in the u direction� the surface will be

C�
� in regions between knots and C�
�m� at knots of multiplicitym with respect to

the u parameter� After the introduction of the tear discontinuity� the same degree

of parametric continuity is maintained everywhere on the surface� except at the

discontinuity� The second requirement is that the surface is discontinuous along

the tear curve except where� to be so� would violate the �rst requirement� Finally�

all additional degrees of freedom contained in the overlap mesh of each tear must

be present in the new representation and must be independent� In a quick jump

ahead to Section ������� when more than one tear is in a surface� the classi�cation

of the regions and the automatic distribution of the new control points may make

two independent regions dependent� dropping con�icting degrees of freedom from

the picture� This case eliminates certain choices for region classi�cation and control

point distribution�
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����� Maximal Independence

When a tear curve is added to a B�spline surface� the tear curve makes the two

regions on either side of the tear independent of each other� Depending on the

separation of the domain into parametric regions� the number of additional degrees

of freedommay be di�erent� It can be proven that the additional coe�cients present

in the overlap mesh are both necessary and su�cient to make two points on opposite

sides of the tear independent� However� in some cases� this independence is not the

only independence required� In particular� if two points on the same side of the

tear are to be independent of each other� the proof given below does not apply�

In this case� the implementation of the torn B�spline data structure determines

whether or not this independence is made available� In any case� for any given

implementation and con�guration of tear curves� there is a maximal number of

degrees of freedom which can be utilized� This number is obtained by summing up

the degrees of freedom in the original surface plus all the degrees of freedom in the

overlap meshes� This concept� although it is implementation dependent� will be

used throughout the remainder of this thesis�

However� it is possible to determine the globally maximal number of degrees of

freedom for a given tear con�guration regardless of implementation� A very simple

heuristic can be used to determine the maximal number of degrees of freedom for

a given tear� The algorithm essentially counts the number of times per coe�cient

that the curve doubles back on itself� In short� the curve is divided into sections

where all of the points in the same section have the same span� We proceed along

the curve� piece by piece� using the span of the piece as a �window� of sorts�

marking the coe�cients with a tag� After all coe�cients have been marked for a

given section of the curve� the tags of the coe�cients in the window are all nonzero

and negative� the tags for the coe�cients outside of the window are zero if they

have not been seen and greater than zero if they have been seen� The ordinal value

of the tag indicates the number of times the window has �revisited� the coe�cient�

The detailed algorithm is presented below�

�� Identify sections of the tear curve according to spans� where all the points in a



�

section have the same span� �Only connected points can be in a given section�

and points on patch boundaries make their own sections��


� Initialize an array of integers to �� one for each coe�cient in the control mesh�

Call this array the tag array and each item the tag of the coe�cient�

� Begin at one end of the tear and proceed through all of the sections consecu�

tively� doing one of the following for each coe�cient in the span of the section�

�a� If the coe�cient�s tag is �� set it to ���

�b� If the coe�cient�s tag is less than �� do nothing�

�c� If the coe�cient�s tag is greater than �� increment it and negate it �i�e� 


becomes ���

For each coe�cient not in the span of the section� if the coe�cient�s tag is less

than �� negate it� Proceed to the next section�

�� After all sections have been processed� for each coe�cient� if the coe�cient�s

tag is greater than �� negate it�

	� For each coe�cient in the span of each endpoint �unless the endpoint lies on

a boundary such as another tear� a trimming curve� or the boundary of the

parametric domain�� if the coe�cient�s tag is greater than �� decrement it�

The resulting tag for each coe�cient indicates the number of additional unique

degrees of freedom required for maximal independence of the tear curve at that

coe�cient� Although the algorithm is simple� it may not be clear how best to use

this information� since� at this point� it is a heuristic� However� it may a�ect how the

tear curve should be split and may ultimately determine the best implementation�

These and other related questions are left for future work�

����� Suciency of O
���
ij

The span of the curve is used to compute the additional coe�cients �DOFs�

needed in the overlap mesh� Do these additional DOFs provide enough �exibility to
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cause a given tear curve to be discontinuous along its length� This question can be

answered by carefully examining the construction of each Oij� The necessity of each

of the additional DOFs in the overlap meshes is demonstrated by the fact that in

order for the parametric regions on either side of a parametric curve embedded in a

given B�spline surface to be independent� the spans of the curve in each region must

be independent of each other� To impose the requirement that the neighborhood

around the ends of the tear curves have the same continuity characteristics as the

original surface� the spans of the endpoints must be totally dependent on the same

coe�cients�

Are more coe�cients necessary to describe the surface on either side of the tear�

To show that these are the only coe�cients needed� we �rst show that if a point

lies between two other points then the intersection of the spans of the two other

points is a subset of the span of the �rst point�

Theorem ��� Let points A� B� and C on a B�spline surface of order ku and kv in

the u and v directions� respectively� be described by parametric locations� �uA� vA��

�uB� vB�� and �uC� vC�� respectively� Let C be between A and B if min�uA� uB� �

uC � max�uA� uB� and min�vA� vB� � vC � max�vA� vB�� Recall that S�p�� is the

span of the point� p� Then if P�i��j � S�A� � S�B� then P�i��j � S�C��

Proof� Assume� for now� that A� B� and C do not lie on knot lines� Let

S�A� � P�iA�����iA�ku��	��jA�����jA�kv��	

S�B� � P�iB �����iB�ku��	��jB�����jB�kv��	

S�C� � P�iC �����iC�ku��	��jC �����jC�kv��	�

Consider �rst the argument for the row index i� the argument for j follows analo�

gously� If P�i��j � S�A� � S�B�� then

max�iA� iB� � "i � min�iA� iB� # ku 	 ��

Since C is between A and B�

min�iA� iB� � iC � max�iA� iB� �����
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min�iA� iB� # ku 	 � � iC # ku 	 � � max�iA� iB� # ku 	 �� �����

Therefore�

iC � "i � iC # ku 	 �

which with the analogous argument for "j� implies that

P�i��j � S�C� � P�iC �����iC�ku��	��jC �����jC�kv��	�

As stated above� it is assumed that the points do not lie on knot lines� This

implies that the number of indices for a given direction that are in the span of a

point is equal to the order in that direction� If A or B lies on knot lines �at the

minimum in either direction�� the spans become smaller� but because the restriction

becomes tighter� the argument still holds� However� if C lies on a knot line in a

given direction� the span of C is reduced by the number of knots at that parametric

location� This implies that Equation ��� does not follow directly from Equation ���

without additional argument�

Suppose then that uC lies on a knot with multiplicity m� Then the number of

indices in the span of C in the u direction is ku 	 � 	m and the maximum index

for i in the span of C is iC # ku 	 � 	 m� We need to show that min�iA� iB� #

ku 	 � � iC # ku 	 � 	 m �the right�hand side of Equation ��� holds if m 
 ���

By the de�nition of the B�spline basis functions� the number of knots between the

parametric locations of two points determines the di�erence between the beginning

index values of the spans of the two points� This means that

min�iA� iB� #m � iC �

Then�

min�iA� iB� � iC 	m�

and so

min�iA� iB� # ku 	 � � iC # ku 	 � 	m�

which is what we needed to show�

The argument is similar if max�iA� iB� or max�jA� jB� lies on a knot line�
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De�nition ���� For A and B on a B�spline surface� 
� A and B are independent

of each other� if either S�A� � S�B� � � or if S�A� � S�B� � T and !��A� � �A

and !��B� � �B then for all �i� j� � T � ��A�i� j� �� ��B �i� j��

If the surface is not torn� then there is only one mesh� and the two points are

independent of each other if the intersection of their spans is empty� If a surface

is torn� then the spans can overlap� as long as each index pair in the intersection

corresponds to a control point in a di�erent mesh� Now we show that� in fact�

nothing is missing from O��

De�nition ���� A and B are on opposite sides of the tear �� if the straight line

�in parametric space� between A and B intersects the tear an odd number of times

�where intersection with a tangent of the tear that is not an in�ection counts as two

intersections� and an intersection at a tear endpoint is one intersection��

Even if two points are not on opposite sides of a tear by this de�nition� a complete

classi�cation� where every point is on one side of the tear or the other� is sometimes

useful� The containment function� �c� is used to provide this kind of complete

classi�cation in De�nition ���
 of the torn B�spline surface�

Theorem ��� If A and B are on opposite sides of the tear� ��� and S�A� and S�B�

are not part of a constraint region� then S�A� and S�B� are independent of each

other�

Proof� Assume A and B are independent of each other and on opposite sides of

the tear ��� and assume that S�A� and S�B� are not part of a constraint region�

Let C be a point on �� such that C lies on the line between A and B� Let !��A� �

�A and !��B� � �B� Suppose then that there exists an index pair� �i� j�� such

that ��A�i� j� � ��B �i� j� and therefore �i� j� � S�A� � S�B�� This implies that

�i� j� �� O�� Then by the Theorem ���� �i� j� � S�C�� However� by de�nition� all

�i� j� � S���� are in O� unless they are part of a constraint region� If �i� j� � O�

then ��A�i� j� �� ��B �i� j� since the A and B are in regions on opposite sides of the
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tear� and this is a contradiction�

As indicated by the assumptions� Theorem ��
 does not apply to the case

when individual control points are removed from the overlap mesh in order to

maintain smoothness in the regions surrounding the tear� Then there are fewer

DOFs and points on opposite sides of the tear are� by design� not completely

independent of each other� Results pertaining to constraint regions will be presented

in Section ������

These theorems show that the de�ned overlap meshes are both necessary and

su�cient to provide the maximum �exibility around the discontinuity�

Unfortunately� the assumptions also state that the points A and B had to be on

the opposite sides of a tear� If A and B are on the same side of a given tear� or

more precisely� ��A� � ��B�� then they are dependent on each other as though the

tear did not exist� since they are guaranteed to use the same set of control points by

�� This implies that even if a tear should pass between the two points and double

back before terminating� theoretically requiring independence between the points�

this independence is not guaranteed� See Section ������ for a discussion of how to

split tears so that � is de�ned appropriately�

��� Masking Function
 �

The masking function is the embodiment of the constraints within the data

structure� As such� this function is dependent on the overall structure of the tears

within the torn B�spline surface� Two aspects of the particular implementation

discussed here need to be clear before proceeding� The �rst is that the tears are

connected to the boundaries of the parametric region �or another tear� by adding

invisible parametric line segments� called extensions� to the endpoints of the tears�

These extensions partition the surface into disjoint parametric regions indicated by

c� The containment function� �c� is a classi�cation function and embodies these

disjoint regions� it is discussed further in Section ���� The second is the concept

that the disjoint regions and the tears are related to one another by an ordering�

called the signature ordering�
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De�nition ���� A valid signature ordering for a torn B�spline surface is a �possi�

bly partial� ordering of parametric regions and tears of a torn B�spline surface such

that

�� every tear and every disjoint region are in the graph of the ordering�

�� every tear directly precedes one and only one region in the graph�

�� no region is preceded by more than one tear�

�� tears are not directly preceded by tears� and

	� regions are not directly preceded by regions�

By this de�nition� a region may precede any number of tears �including none��

but a region�s direct precedence of more than one tear is discouraged for simplicity

and ease of implementation�

De�nition ���� The signature for a region of a torn B�spline surface is de�ned by

the portion of the signature ordering of the torn B�spline that precedes and includes

the region�

With these de�nitions� every distinct parametric region� c� has a unique signa�

ture� The implementation and other issues surrounding the signature ordering for

a surface is discussed in Section �������

De�nition ���	 The masking function� �c�i� j� � ZZ
� � f�� � � � � Tg� determines if a

particular coe�cient� O���
ij � is used in parametric region� c� Let �u�� v�� � ���tmin��

�u�� v�� � ���tmax� and D �
S
fS�ui� vi�ji � �� �� �ui� vi� does not lie on another

discontinuity �such as a surface boundary or another tear�g� Then �c�i� j� � 	 if

�� there exists a point� �u� v�� on ��� such that �i� j� � S�u� v�	D�

�� O���
ij exists and 	 is the last tear in the signature of c� and

�� O���
ij has not been replaced by another DOF by being a member of the span of

an extension �more details are in Section ��������
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There are special considerations for tears which intersect�

��	�� Intersecting Tears

A tear may intersect another tear in one of two ways� �� end to end or 
� side

to end� Other cases are not allowed by the de�nition of a tear curve� Where the

endpoint of a tear lies is critical to determining the continuity of the surface near

that point� If the endpoint of a tear lies on the edge of a discontinuity �either

the boundary of the surface� or another tear�� then the span of the endpoint may

be used as part of the overlap mesh in its entirety because no continuity needs to

be maintained at that point� The two discontinuities �in particular� the tears� are

said to have a parent�child relationship at the point of intersection �see Figure �����

Since no modi�cations need to be made when processing the tear that the second

tear abuts to� it is considered the parent� The abutting tear is considered the child

since the computation of the additional coe�cients depends on the intersection�

The end to end case is very similar in that a parent�child relationship is also

determined� In this case� however� the particular relationship is not necessarily

clear� In most cases� it makes no di�erence which tear is the parent and which is

the child� The only di�erence seen by experimentation is that the determination of

parent

from parent

End-to-end

extension 

child

T-join

parent

child

A) B)

Figure ���� Example of parent�child relationships for two types of intersections�
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the coe�cients may be more complex for a particular relationship in some cases�

The exact nature of this complexity relates to the composition of the control meshes

for some regions� In particular� experiments have shown that fewer exceptions to

the general composition rules are encountered when the parent tear precedes the

child tear �see Section ������ for a discussion of precedence rules and ordering�� The

parent�child relationship pertains only to a given intersection� In particular� a set

of tears may have a circular relationship when considering all endpoint intersections

of all tears �see Figure �����

These conditions provide the inherent constraints of the representation by en�

forcing continuity within patches containing the endpoints of the tear curves and

providing additional DOFs to guarantee the independence of patches which are

separated by the tear� For the de�nition and discussion of signatures� see Sec�

tion ������� For a discussion of prevention and propagation� see Section �������

�� Containment Function
 �

Suppose that two points� A and B� are on opposite sides of a tear as shown in

Figure ���� Then S�A� � f�i� j�ji � � �� 	� �� j � 
� � �� 	g and S�B� � f�i� j�ji �

� �� 	� �� j � �� 	� �� �g� Then S�A�
T
S�B� � f�i� j�ji � � �� 	� �� j � �� 	g� If these

parent

Parametric Domain

Extension from parent

Extension curve flow

child

Figure ���� Example of circular parent�child relationships�
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A
B

S(B)
S(A)

a)

Figure ��	� Illustration of overlapping spans for two given points� a� Parametric
domain with points A and B on opposite sides� b� Control mesh indicating spans�

two points are to be independent� it is necessary to partition� or separate� the surface

into regions which are evaluated with di�erent sets of control points� In particular�

control points with subscript pairs in the intersection of the spans must have a

unique control point identity for each side� The containment function� �� classi�es

each parametric location with respect to each of these separated parametric regions�

The containment function� �� can be constructed� for example� via a set of oriented

boundary loops which are determined by extending tear curves to boundaries

�see Figure ����� The parametric locations on the boundaries between parametric

regions are de�ned in more than one parametric region so the classi�cation must

have more information� If the parametric location is on a tear� an is left �ag is used

to disambiguate the results of this function� If the parametric location lies on an

extension of the tear curve� an arbitrary choice can be made since the parametric

regions must be continuous along the extension� If the parametric location is on a

tear� this ambiguity is expected� Otherwise� the representation enforces smoothness

in that region� so the choice is arbitrary�

De�nition ���
 The containment function �c�u� v� � IR� � f�� �g is the charac�

teristic function of the restricted domain of the parametric region� c�

�c�u� v� �

�
� if �u� v� � domain�c�
� otherwise�

�����



	


C3

C0

C

1

2

C4

C1

Primary monotonic direction

4

3

2

Figure ��
� Tears in a surface with dashed extension curves�

PT
c�� �c�u� v� represents the number of distinct parametric regions which contain

a particular parametric location� In the interior�
PT

c�� �c�u� v� � �� Along interior

boundaries� that is� tears and their extensions�
PT

c�� �c�u� v� � 
� At points of

intersection of the interior boundaries� the sum can be higher�

���� Implementation

In Section ��� it was shown that the additional degrees of freedom created by the

introduction of a tear into the torn B�spline surface are both necessary and su�cient

to provide the maximum �exibility allowed by the discontinuity� Determining

the mask values � for each parametric region is probably the most challenging

task in implementing the torn B�splines� Intuitively� each additional coe�cient

created by the discontinuities in the surface must be used by a parametric region to

di�erentiate it from its adjacent parametric regions across the discontinuity� This

is accomplished by assigning to each parametric region a unique combination of

additional DOFs from the tears in the structure�

One procedure which determines the parametric regions and their unique com�

binations of DOFs can be outlined as follows�

�� Split tears into monotonic segments�



	


� Compute O����

� Determine necessary extension directions and extend curves�

�� Separate the domain into parametric regions� c�� i�e�� de�ne �c�

	� Order parametric regions and tears�

�� Construct �c�i� j��

������ Splitting Tears

Tear curves are split into monotonic sections with respect to the parametric

domain for two primary reasons� Foremost� the monotonicity provides a framework

within which parametric regions and tears can be ordered without cycles� A natural

ordering can then be derived from adjacency and parametric value information�

This is important for determining a unique set of control points for each parametric

region� The second reason can be most clearly seen by considering some examples�

In Figure ����� the tear curve enters and leaves the same patch twice �known as

�doubling back��� Intuitively� this should cause the patch to be split into three

independent patches �I� II� and III in Figure ������ However� since the two outside

patches are on the same side of the tear� they will belong to the same parametric

region and therefore use the same set of control points� That is� the two outside

sections� I and III� will not be independent as expected� A related example is in

Figure ����� In this �gure� the tear curve �spirals� back into the same patch again�

causing even more confusion� In Figure ���� it is at least clear which region each

section of the patch belongs to� even though they are dependent� In Figure �����

the center section of the patch in question belongs to the regions on both sides of

the curve� Unless the two parts of the tear curve which pass through the patch

are di�erentiated� the description of the surface is ambiguous� In both of these

examples� it is not necessary for the curves to pass through the same patches to

cause these problems� They only need to pass through patches which are dependent

on the same coe�cients� It is easy to see that in most cases� if a curve spirals or
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I IIIII

Figure ����� Example of a curve that �doubles back��

III

I

II

Figure ����� Example of a curve that spirals�



		

doubles back� that this type of problem is likely to occur�

Spirals are eliminated completely by splitting new tear curves into monotonic

sections in any given primary direction since to spiral the curve must have a min�

imum or maximum relative to any given direction� However� isolating monotonic

sections in a spiral may result in a given curve section doubling back �see I� II�

and III� in Figure ���
�� Unfortunately� the doubling back case is more di�cult to

correct� Splitting the curve into monotonic sections with respect to both primary

parametric directions will solve this problem� but splitting curves this way in all

cases is not necessary� It would be the most e�ective if the problem cases could be

identi�ed and split only if necessary� Since identifying these problems �especially

the doubling back case� is nontrivial� they will be left for future work�

Splitting a tear results in two independent curves whose endpoints intersect� If

endpoints intersect by accident� it is usually di�cult to detect� but in this case

the exact nature of the intersection is known� The parent�child relationship �intro�

duced in Section ������ can be assigned arbitrarily by ordering the curve segments

Secondary direction splits

Monotonic direction

I

II

III

IV

Primary direction splits

Figure ����� Example of a curve that spirals and �doubles back� and the
monotonic splits that may be required�
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according to beginning parametric value� The parent�s endpoint in question is

extended in the monotonic direction whereas the child�s endpoint is not extended

�see Section �������

������ Computation of O���

Computation of O��� proceeds directly from the maximal independence algo�

rithm presented in section ������

������ Determination of Extension Directions

The tears are extended from their endpoints in the parametric domain out to

another boundary� either an actual boundary of the surface� or another tear or

extension� The span of the extension is considered a continuity constraint region�

since an extension bounds two or more surfaces whose control points in the span

of the extension must be the same� Figure ��� shows an example of a surface

with a set of tears and their extensions� The regions in Figure ��� labeled Ci are

the parametric regions separated by the extended tears� The wise choice of the

extension direction is essential to a maximally independent surface�

The extension directions are crucial because they in�uence the ordering of the

parametric regions and tears and a�ect the ease of maintaining the boundary

conditions within the structure� Since the extensions are added by the structure�

they need to be as unobtrusive as possible� In light of the discussions in the previous

section on the importance of monotonicity� it would seem that the best extension

would maintains the monotonicity of the tear in the primary direction� Particularly�

the span of the extension must avoid intersecting the overlap mesh of the tear�

Since the span of the extension is shared by regions on both sides of the tear�

automatically maintaining continuity across the extension would be impossible�

This is now developed formally�

De�nition ���� An extension� �� of �� is valid if �i� j� �� S��� for all �i� j� � O��

To see why a valid extension is required� suppose that span of the extension

curve contains a pair �i� j� that is also contained in the set of control points of O��



	�

Choose a point� x� on the extension curve such that �i� j� � S�x� �see Figure �����

Because of the continuity of B�splines� there exists two points� !x� and !x�� in the

neighborhood of x such that !x� is on one side of the extension curve and !x� is on

the other side� Given that the region on one side of the extension does not use O�

and the region on the other side does� then these two points are not dependent on

the same control points and the regions are not the same along the extension curve

at x even though they are required to be�

Even with this criteria� there are generally several options� two of the most

obvious are given here�

�� Extend the tear by continuing the tear in the tangent direction �in parametric

space� of the tear at the endpoint� This approach has the advantage of being

easy to understand conceptually� and it maintains the continuity of the tear

at the endpoint�


� Extend the tear by an isoparametrically straight segment in the primary

monotonic direction� away from the tear in the direction closest to the tangent

at the endpoint� The advantages of this approach are that the signature

ordering tends to remain the same independent of the order in which tears

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

x

^
2

^

x

x
1

a. b.

x

Figure ����� Points in the neighborhood of x on either side of the extension�
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are extended� and it is generally easier to deal with computationally�

For computational purposes� the second option was chosen for implementation in

this thesis� For tears that have been split into monotonic sections� the tangent of the

tear at the split point is perpendicular to the monotonic direction� so extensions

are made in the direction opposite the normal of the tear relative to parametric

space� In the case of a parametrically straight tear� where the normal is not well�

de�ned� the choice is arbitrary� If convenient� the tear may be extended so that the

orientation of the extended tear relative to the primary monotonic direction will

match that of the other tears�

Another special case occurs when two extensions �run into each other�� This

happens when the extension directions are opposites of each other and the end�

points have the same position perpendicular to the monotonic direction �as in

Figure �����A��� The are several options in this case�

�� Choose one curve and extend it slightly perpendicular to the monotonic direc�

tion and then proceed as before �as in Figure �����B���


� Choose another direction for one of the tears �as in Figure �����C���

The �rst option is also probably the best option� This option has the advantage of

keeping the ordering characteristics provided by the monotonicity of the tears� The

second option has the advantage that a certain set of directions can be preset so

that the monotonicity can be maintained and the various choices can be permuted

until a solution is found�

Since these extensions are critical to the separation of regions and ultimately to

the composition of coe�cients for those regions� a solution must be guaranteed if

an option is to be viable� A viable solution has the following characteristics�

�� all extensions of tear curves satisfy the requirements of avoiding the overlap

mesh of their corresponding tears�


� no extension may terminate at the endpoint of another tear�



	�

Primary monotonic direction

A) B) C)

Figure ����� Extensions that �run into each other�� �A� The problem� �B�
Solution �� Right angle sidestep� �C� Solution 
� Alternate directions�

It is easy to see that the �rst option given above will always provide a solution�

Since there are a �nite number of possible extension curves �two for each tear curve�

and an in�nite number of extension distances� there will always be a distance to

extend the curve before turning in the monotonic direction so as to avoid running

into any other extension�

The viability of second option is a bit more di�cult to show� In order for two

extensions to �run into each other�� they must be aligned exactly and moving in

opposite directions� Further� no other tear endpoint lies on this �line of sight�

between the two endpoints �if so� the two would not run into each other�� Suppose

we label these two extensions as a con�icting pair� Let n� �� be the number

of preset extension directions �given as o�sets to the tangent of the curve at

the endpoint�� Suppose� then� that there exists at least one con�icting pair and

that for both extensions� all other possible directions would result in a con�icting

pair� Taking it one step further� suppose that the one of the extensions switches

directions in response to the con�ict� In order to continue having a problem� the

new con�icting pair must have potential con�icts in all directions� In the limit�

there must be �
T �n extensions causing con�ict� where T is the number of tears�

since each extension has a con�icting extension in each direction� But if n � �� this

is impossible since there are only 
T extensions� Therefore� as long as there are 


or more possible extension directions� the second option will provide a solution�
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Unfortunately� the second option may require �nding a solution among �
T �n

possibilities� so heuristics should be used to govern the selection process� For�

tunately� experimentation has shown that although the possibility of a con�ict

occurring is high� especially in arti�cial situations� a simple set of rules will result

in a solution in O�T � time� Following is a brief list of one rule set that is e�ective�

������ Initial Extension Rules

Given a curve� determine the initial guess of the extension direction for the

extension at the beginning of the curve by the following rules� For the sake of

terminology� the tangent of the curve at its beginning points in the direction of

curve� The inverse of this tangent points away from the curve� However� the tangent

of the curve at the end of the curve points away from the curve and the inverse

tangent points toward the curve� All evaluations are relative to the parametric

space of the surface�

�� Determine which of the primary monotonic direction or its inverse is closest to

the inverse tangent direction at the beginning of the tear� Use this direction

if the tangent at the beginning of the tear is not perpendicular to the primary

direction�


� If the tangent at the beginning of the tear is perpendicular to the primary

monotonic direction� determine the direction closest to the inverse of the

tangent at the end of the tear� Use this direction if the tangent at the end of

the tear is not perpendicular to the primary direction�

� If both ends of the tear have tangents perpendicular to the primary monotonic

direction� use the extension direction closest to the vector from the end of the

tear to the beginning of the tear� provided this vector is not perpendicular to

the primary monotonic direction�

�� If all of the above fail� use the secondary monotonic direction closest to the

inverse of the tangent at the beginning of the curve� This is guaranteed �except

for rare degenerate cases� to be nonzero if all of the above fail�
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Once an initial guess is made� any enumerative technique can be used to �nd a

solution for which there are no con�icts�

The removal of con�icting pairs is necessary in order to produce exactly T # �

separate parametric regions� If T tears are in the surface� there is the potential

for T # � unique coe�cients for a particular �i� j� pair in the torn surface� There

must be a unique parametric region for each of these potential coe�cients in order

to provide the maximum �exibility for each of the tear curves� If a con�icting pair

persists� the number of separate parametric regions is reduced by ��

After the directions have been determined� the curves are extended and infor�

mation regarding intersections is compiled for each tear�

������ Parametric Regions� �c

The current implementation uses trimming loops to separate the domain into

parametric regions although other techniques such as a quadtrees may be just

as applicable� Information about where the extended tear curves intersect the

boundaries and other tears is used to compile a set of boundary loops� One notable

side e�ect of this process is that the particular curve segments of the tear curves

which make up the boundary for a given parametric region can be cached� This

information is used to determine the signature ordering of the parametric regions

and tears �see Section ��������

������ Ordering Parametric Regions and Tears

Finally� the piecewise functions� �c�i� j�� determine the composition of coe��

cients from the overlap meshes and original mesh in each of the parametric regions�

We refer to the ordering which determines these compositions as a signature or�

dering �de�ned in Section ����� The signature of each parametric region must be

unique� The signature ordering is an alternating� possibly partial� precedence rela�

tion� beginning with a single root parametric region� The ordering then alternates

after this� tear� region� tear� region� etc� Every tear and parametric region are

required to be part of this precedence relation� From this relation� the signature

ordering for each of the parametric regions is the portion of the precedence graph
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which precedes the given parametric region �de�ned formally in Section ����� The

precedence graph is denoted by an ordered set� For example� suppose a precedence

relation for a given torn B�spline surface is cI  �A  cII  �B  cIII� where ci

are the parametric regions and �i are the tear curves� The root of the graph is cI

and its signature ordering is denoted by the empty set� fg� since nothing precedes

it� The signature ordering for cII is denoted fcI�Ag� In a similar fashion� the

signature ordering for cIII is denoted fcI�AcII�Bg� Although every tear and region

must be included in the signature for the surface� at certain points the relation is

only partially speci�ed� In this case the notation used is illustrated in the following

example� if cI  �A  cIII and cII  �B  cIII are the partial orderings that are

known for the surface� then f�fcI�Ag� fcII�Bg�cIIIg denotes the precedence relation

for the surface� The rules of precedence are given in Section �������
 below�

A valid signature ordering does not require that an ordered relationship exists

between all combinations of tears and regions� It is possible for the relation to

have branches �see cases 
a and 
b� below�� in which case a precedence relationship

is not de�ned between members of the branches� However� branching is allowed

only in some cases �for examples of inappropriate branching� see cases �a and �b�

below�� It is usually desirable for the precedence relation to be totally ordered�

even if the signature ordering is valid� In the case of branches� either a speci�c

method is used to create a total ordering or an arbitrary precedence is assigned for

convenience� There are two primary reasons to create a total ordering� First� in

some cases it is necessary to prevent DOFs from being dropped� Second� if it is

not necessary� then assigning an arbitrary order will not a�ect the outcome� The

reasoning behind this is that if a particular ordering a�ected the outcome� where

the outcome is the interdependence between two parametric regions� then either a

precedence relationship can be determined� or it is required �as in the branching

case� above�� The essential requirement is that the signatures be di�erent� this

is what is required to provide the maximum independence between regions� As

long as the signatures follow the rules below� any set of unique signatures will

result in the same amount of freedom� This can be easily shown by observing that
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if the signatures are unique� then the di�erence in composition between adjacent

surfaces is the addition of the DOFs associated with the tear which forms the

boundary� Therefore� completing the ordering is a good idea regardless of the

particular situation� Determining an order with the fewest complications is best

accomplished by reorienting the tears so they all travel in approximately the same

direction� Then the ordering can easily be determined� For the purposes of this

discussion� tears refer to the actual tear combined with its extensions�

�������� Reorientation of Extended Tears

Once we have determined the necessary extensions for each of the tear curves�

the extended tear curves can be reoriented so that all of the tears are oriented in

the same direction within the domain of the surface� If v is the primary monotonic

direction� then the extended curves� except for the few rare cases� can be oriented so

that the beginning of the curve has the smallest v value� In the rare case in which the

tear curve was extended in the secondary monotonic direction� the reorientation is

relative to the secondary monotonic direction �in this case� u�� After reorientation�

the curve�s left side is the region to the left of the curve when looking from the

beginning to the end�

�������� The Precedence Relation

The precedence relation is determined by the following rules�

Rule �� A parametric region� cI � precedes a tear� �A� cI  �A� if any part of

�A�s left side lies on an edge of cI �

Rule 
� A tear� �A� preceeds a parametric region� cI � �A  cI � if �A�s right side

lies on an edge of cI �

Rule � �Transitivity� If cI  �A and �A  cII� then cI  �A  cII �

Rule �� No tear may be in immediate predecessor of more than one parametric

region�
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These rules create a partial ordering �possibly with branches� of alternating

parametric regions and tears within the surface� Additional rules used to create a

total ordering are given below� When all parametric regions have a unique signature

ordering� the signatures are considered to be valid�

There are several tear con�gurations which result in branching of the signature

ordering� To provide a valid signature ordering� additional relational pairs may be

necessary� The cases in question are�

�a� Two tears intersect the left parametric boundary where the lower tear is

oriented toward the boundary and the upper tear is oriented away from the

boundary �Figure ���	��

�b� Two tears intersect the right side of the same tear within the surface where

the lower tear is oriented toward the boundary and the upper tear is oriented

away from the boundary �Figure ���	��


a� Two tears intersect the right parametric boundary where the lower tear is

oriented away from the boundary and the upper tear is oriented toward the

boundary �Figure ������


b� Two tears intersect the left side of the same tear within the surface where the

lower tear is oriented away from the boundary and the upper tear is oriented

toward the boundary �Figure ������

Cases �a and �b are similar with the parametric boundary� b� and the larger tear�

�C � playing the same role� In both cases� the parametric regions� cI and cIII � are

not ordered with respect to each other� From the rules given previously� cI  �A�

�A  cII � cIII  �B and �B  cII � and in Figure ���	��a�� cIV  �C � �C  cI �

�C  cII and �C  cIII in addition �see Figure ���	��b��� The signatures with this

partial ordering are
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sig�cI� � fg sig�cI� � fcIV �Cg
sig�cII� � f�fcI�Ag� fcII�Bg�g sig�cII� � fcIV �C �fcI�Ag� fcII�Bg�g
sig�cIII� � fg sig�cIII� � fcIV �Cg

sig�cIV � � fg

where the �rst column is for case �a and the second column is for case �b� Since cI

and cIII have the same signature �in both �a and �b�� this ordering is not a valid

signature ordering for either case� Therefore additional relational pairs are needed

to produce a valid signature ordering�

The following rule is given to correct this problem�

Rule 	� Suppose a tear� �i� immediately precedes more than one parametric

region� say cI and cII � or these two parametric regions are not preceded

by any tear� Let �j be the tear immediately following cI � Create the

relation� �j  cII �

The creation of this additional relation can be described through the conceptual

movement of the common boundary away from the other intersecting tears �be it a

surface boundary or a tear�� creating what could be called a phantom region� If the

common boundary is isoparametric� this would then cause a con�ict as described

in Section ����� since the extensions would now �run into each other�� Since the

tears actually intersect a common boundary� choosing any alternative extension

directions would resolve the con�ict� These new extensions produce an ordering

between one of the tears and one of the parametric regions� For example� if the

boundary were moved in Figure ���	 and the tear extension con�icts resolved using

option 
 of Section ������ the con�guration in Figure ���� results� The additional

relation �A  cIII combined with the already established relations is su�cient to

determine the valid signature ordering�

�cIV  �C � cI  �A  cIII  �B  cII� �����

for the surface as a whole �portion enclosed in �� is for case �b�� with signatures�
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Figure ����� Resolution of common boundary signature con�icts by introducing
phantom regions�

sig�cI� � fg sig�cI� � fcIV �Cg
sig�cII� � fcI�AcIII�Bg sig�cII� � fcIV �CcI�AcIII�Bg
sig�cIII� � fcI�Ag sig�cIII� � fcIV �CcI�Ag

sig�cIV � � fg�

Cases 
a and 
b in Figure ���� are similar with the parametric boundary� b�

and the larger tear� �C � playing the same role� Once again� the parametric regions�

cI and cIII� are not ordered with respect to each other� In these cases� cII  �A�

cII  �B� �A  cI and �B  cIII � and the additional relations� cI  �C � cII  �C�

cIII  �C and �C  cIV � Here cases �a and �b are di�erent from cases 
a and 
b�

The current ordering produces the following signatures�

sig�cI� � fcII�Ag sig�cI� � fcII�Ag
sig�cII� � fg sig�cII� � fg
sig�cIII� � fcII�Bg sig�cIII� � fcII�Bg

sig�cIV � � fcII�A�fcI�Bg� fcIII�Cg�g

where the �rst column is for case 
a and the second column is for case 
b� As it

is� the signatures for each of the parametric regions are unique �regardless of which
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branch is taken in the ordering assigned to cIV � and thus make up a valid signature

ordering� However� since sig�cIV � is not well de�ned� an arbitrary ordering should

be chosen to totally specify the relation� As indicated earlier� total ordering can be

derived for all signatures to simplify the situation� A total ordering is obtained by

arbitrarily asserting that cI  �B� The following new signatures would result if the

precedence relation were augmented as described�

sig�cIII� � fcII�AcI�Bg sig�cIII� � fcII�AcI�Bg
sig�cIV � � fcII�AcI�BcIII�Cg

After a valid signature for each parametric regions has been identi�ed� the

composition of each of the control meshes for each of the parametric regions via

the function � is determined�

������ Determination of �c�i� j�

The signatures of each parametric region provide most of the information needed

to construct �� Since for any parametric region� the coe�cient for a given a

subscript pair �i� j� may only be obtained from single source� the function �c�i� j�

maps each coe�cient� �i� j�� of a particular parametric region� c� to a given tear� 	�

To begin� all coe�cients are from the original mesh� Pij � so all map to tear � �an

index for which there is no tear�� The �c�i� j� are constructed in the order in which

c appears in the signature ordering of the surface� For notational convenience�

assume that c�  ��  c���  ����  � � �� Then

�c����i� j� �

�

 if O�

ij exists
�c��i� j� otherwise�

������

This means that for a given parametric region� c���� its control mesh is constructed

by compositing the additional coe�cients in the overlap mesh of tear� ��� on top

of the current composition of the previous parametric region� c�� However� recall

that the coe�cients which describe the parametric regions must be identical along

any extensions of the tear in order to maintain continuity away from the tear� This
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requires that �c��i� j� � �c��i� j� where fPijg is in the span of an extension and c�

and c� are the parametric regions on either side of the extension� In some cases�

con�icts occur which require some additional attention in order to determine the

overlap mesh correctly for a given coe�cient and parametric region in the span

of an extension� These con�icts are resolved by the procedures below which are

performed in the order presented�

�������� Update Prevention

In rare cases� the span of an extension between c� and c�� where c�  c� according

to the signature order� is updated by coe�cients from O�� If c�  ��  c� and c� is

adjacent to �� then coe�cients from O� will be part of the control meshes for the

parametric regions on both sides of �� e�ectively removing the additional DOFs

created by the discontinuity �see Figure ������ In this case� O� is prevented from

using its coe�cients in any part of the extension�s span� This is not a problem since

the span�s DOFs are already represented in a parametric region elsewhere� This

additional computation is performed by asserting that O� does not exist within the

context of the de�nition of Equation ����� The modi�cations are then propagated

through to successive parametric regions�

�������� Update Propogation

A more frequent case occurs when the span of an extension intersects the overlap

mesh of another tear or when one tear has an endpoint on another tear� A solution

is to copy the values of � from one parametric region to the other within the

span of the extension� Since this behavior is integrated into the signature concept�

the solution to this problem� known as forward propagation� is contained in the

de�nition of � and so is part of Equation ����� The requirement that the spans

of extensions be identical in both adjacent surfaces� c�  c�� is met because if an

overlap O� updates c� and the span is within the update� then c� is also updated

by O� �see Figure ������ This assumes� of course� that the update prevention case

of Section �������� does not apply�

The second case� whose solution is known as backward propagation� sometimes
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occurs when a tear touches another tear �by accident� but more frequently occurs

when a tear is split� Recall the �parent�child� relationship de�ned in Section �������

Recall also that when a tear touches another tear in the general case� the child tear

has an endpoint on the parent tear� The root of the problem is that the span of

the endpoint of a tear that touches a boundary �be it another tear� or not� is not

removed from the span of the tear when determining the overlap mesh� The child

tear that updates a parametric region adjacent to the extension that connects the

parent tear to a boundary will require the use of DOFs from the overlap mesh of

the child tear in all of its adjacent cached surfaces� even if the inheritance appears

backward �see Figure ��
��� The inheritance would be reversed if one of the adjacent

cached surfaces precedes the child tear� Therefore� any DOFs in the intersection

of the extension�s span and the child tear�s span must be from the child tear�s

overlap mesh in all adjacent surfaces� In addition� the DOFs in this intersection

must be propagated back to any extensions adjacent to these parametric regions

whose spans are also intersect this set �see Figure ��
���

Back propagation is performed for each child tear endpoint according to the tear

order within the signature ordering from Section ������� after the initial values from

the signature for � are determined�

���� C��� Feature Curves � Creases

C��� feature lines� or creases� are tears with added constraints that maintain

trans�nite interpolation of each side of the tear along the curve� Mutual curve�curve

constraints are introduced in order to maintain this connectivity� More precisely� if

cL�s� is the tear curve in the surface on the left side of the crease� and cR�s� is the

tear curve on the right side� then cL�s� � cR�s�� Note that in general� there are not

enough DOFs to produce C��� continuity along a proposed arbitrary crease curve�

A requirement of C��� or G��� smootheness along a crease frequently is not possible

to meet� However� several conditions contribute to a reasonable solution�

�� relatively small curvature of creases with respect to parameter space�
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Figure ����� Backward propagation through multiple extensions�
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� identical parameterization on each side of the crease curve�

� existence of a solution �con�guration with the original continuity across the

crease curve�� and

�� the assumption that the constraints can only be approximated because of the

nature of the problem�

Minimization of the following equation can be used to help maintain the con�

nectivity after the crease is introduced�

� �
Z
jcL�s�	 cR�s�j

� ds� ������

Since satisfying this constraint is generally approximated by a linear system and

combined with other constraints� a solution in which � � � is rarely found� despite

the fact that the original con�guration satis�es the above constraint exactly�

The introduction of creases into a surface can take place in a variety of situations�

First� in the design phase� a crease may be introduced as a feature line� In

this phase� the crease is often made isoparametric and the designer may utilize

other methods for representing the crease� such as multiple knots� duplicate control

points� or multiple surface patches�

During a simulation� creases may be introduced as byproducts of some physical

process� Creases in this case are rarely isoparametric so the torn B�spline data

structure is ideal� In addition� the crease constraint formulation given above is

suitable for linear constraint systems and so can be integrated very easily into most

simulation systems� In addition� the fact that at one time the crease did not exist�

contributes to the existence of a solution in subsequent time steps�

Finally� in the case of model reconstruction� creases may be introduced as part of

a solution to a system of interpolation constraints� The crease may be introduced

when it is clear �but is it ever really clear�� that the �exibility of the surface is

insu�cient to satisfy the constraints on the surface� Much work in vision and model

reconstruction has gone into adequately detecting these cases and determining the
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nature of these continuity features� Once a crease is discovered� there is usually

considerable �exibility in deciding exactly where the crease is in parametric space�

This presents both opportunity and di�culty� Since placing a curve in parametric

space is a highly underconstrained problem� analysis and heuristics provide only a

starting guess at a possible solution� The good thing is that an acceptable solution

very likely exists because of the large solution space� The di�culty is �nding it�

Factors to consider are as follows� �� how much �exibility really exists� or how dense

are the data points in the vicinity of the curve� 
� how good is the initial solution

relative to the desired tolerance� perhaps endless modi�cations are not necessary�

and � how much error is due to incorrect crease placement and how much error

could be more appropriately attributed to lack of re�nement� To obtain a solution�

the suggested crease�s constraint is added to the system of constraints already being

used by the interpolation�

���� Constraints

As already indicated� torn tensor product B�splines are ideally suited for use in

linear constraint systems in the same manner as standard tensor product B�splines�

Unfortunately� the crease constraint is nonlinear unless it is isoparametric� However�

linear approximations to these nonlinear problems have become widely used in

constraint systems���� for several reasons� First� the solutions are reasonable given

the �exibility of the surfaces� Designers are looking more for smoothness than for

dead�on accuracy� Computing the most accurate solution may not produce the

most pleasing design� Second� linear solutions are so much faster than nonlinear

constraints that using linear constraints is not prohibitive in the design process�

Finally� systems of linear constraints are easy to formulate and require considerably

less input from the designer� Information such as the di�erential of the Gaussian

curvature of the surface with respect to each degree of freedom� which is hard

to describe and time consuming to compute� is usually not necessary for a linear

constraint system �although some components may be the same��

Constraints could be used in conjunction with tears to introduce creases with
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higher�order continuity� although� at that point they cease to be creases� but it is

not clear whether these continuity features are necessary�

���� Adding Flexibility Through Re	nement

Maintaining C���� continuity along the entire feature curve requires additional

degrees of freedom� One method of creating enough DOFs to provide this �exibility

is to re�ne the original surface at the ends of the tear so that all tears start and

end at subpatch boundaries� then recompute new overlap meshes and de�ne new

masking functions� If the end of the tear changes parametric position� as might

occur in a physical modeling simulation� the surface would need to be rere�ned at

the new point� The challenge then� is to maintain as much of the original description

in all of the modeling operations as possible� We de�ne the tear�re�ned B�spline

surface as follows�

De�nition ���� Suppose that !�u and !�v are the new knot vectors for the re�nement

which include the tear�s end points� Let �i�!�� and �j�!�� be the coe�cients for the

knot insertion �as de�ned by the Oslo Algorithm���
�� If �c�i� j� � �� let O
���
ij � Pij �

We de�ne a new masking function� !�� for the re�ned surface� Then the tear�re�ned

B�spline surface is de�ned by

T �u� v� �
TX
c��

�c�u� v�
m�nX
�����

R
�c�
�� B���u�u�B���v�v� ����
�

where

R
�c�
�� �

� Pm�n
i�j�� Pij�i�!���j�!�� if �c�i� j� � �Pm�n
i�j��O

�	c�i�j��
ij �i�!���j�!�� otherwise�

�����

Modi�cation of surface position can then be computed in terms of the original

coe�cients�
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ANALYSIS

In this section� an analysis of the class of surfaces represented by torn B�splines�

using the techniques presented in Section ���� to select overlap meshes� masking

functions and containment functions and the spatial and computation requirements

for using the torn B�spline surfaces� is presented�

��� Class of Representable Models

The general class of surfaces represented by the torn B�spline representation is

trimmed tensor product B�splines with arbitrary curves of C���� continuity which

extend from patch boundary to patch boundary� Although the representation

supports arbitrary curves of C���� continuity whose endpoints are anywhere� the

requirement that the patch is smooth everywhere surrounding the endpoints of the

tear results in the entire patch being smooth� The alternative is to allow the two

patches to have C���� continuity in the surface beyond the tear curve�

The smoothness requirement is easily shown by observing that a cubic B�spline

has only �� DOFs� Matching �rst and second partial derivatives across extension

curves to ensure smoothness across patches requires �
 DOFs� However� since

four additional DOFs are needed to determine a C��� curve� the two patches on

either side of the tear are fully constrained� One possible method of introducing

additional degrees of freedom is through re�nement� and this technique is discussed

in Section 	���

There are other practical restrictions on the geometry of the tears which do not

a�ect the class of representable surfaces but which should be mentioned� The �rst

is that a tear curve may not intersect either itself or another curve� As in the

real world� tears which intersect become separate tears at the intersection point� as
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though they had crossed a boundary of the surface� A self�intersection isolates the

surface regions into two independent trimmed surfaces�

Another less obvious restriction is that tears which spiral must be split into

multiple tears� This restriction is treated in detail in Section �������

��� Complexity

Although space and computational requirements have essential minima� neither

requirement can be optimized independently of the other� In the following two

sections� the space and computation requirements for regular B�spline surfaces�

trimmed B�spline surfaces� and torn B�spline surfaces are discussed in relation to

each other�

����� Space

The space required for the regular tensor product B�spline representation is nmd

real values for an nm grid of IRd points plus n # ku #m# kv reals for the knot

vectors and 
 integers for ku and kv� The addition of trimming curves to create the

trimmed B�spline surface adds only the space for the arbitrary curve representation�

In the worst case� for monotonic tears� the torn B�spline data structure requires the

original set of nmd reals plus one additional set of nmd reals for each tear in addition

to the storage requirements for each tear itself� The identi�cation of the overlap

mesh for each tear� which requires nm booleans� and the masking functions for

each parametric region� which each require nm integers� are both optional but are

time consuming to compute� All other values can be computed as needed without

signi�cant penalty� The usual n#ku#m#kv reals are required for the knot vectors�

See Figure 	�� for a comparison table� Considering that the B�spline representation

is fairly compact� the increase in data requirements is relatively insigni�cant since

T is usually a small constant �i�e�� less than ����

����� Computation

Analysis of computational requirements for the torn B�spline surface is at best

a di�cult task� There are a wide variety of tradeo�s available between bu�er space
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B�spline

Type Realsy Ints Booleansy Additional

Regular nmd� n� ku �m � kv �
Trimmed nmd� n� ku �m � kv � curve space
Torn nmd�T � �� � n � ku �m � kv � �nm�T � �� tear curve space
y
n 	 rows
 m 	 columns
 T 	 number of tears
 d 	 depth of IR space

ku 	 row order
 kv 	 column order

Figure ���� Space requirement table

and computation time� Initialization of the representation is the most computa�

tionally intensive but needs only to be done once� and then it can be incrementally

updated at di�erent stages depending on the amount of bu�ering and the extent

of the modi�cation� Determining the parametric regions is the most intensive

subtask� For the trimming loop implementation� this requires arbitrary curve�curve

intersection and linking of curves into loops� Other tasks include span computation

which involves curve�line intersections and the masking function calculation�

Relative to regular B�spline surface evaluation� torn B�spline surface evaluation

is slow� However� torn B�spline surface evaluation is roughly equivalent to trimmed

B�spline surface evaluation� especially when performing multiple evaluations when

whether the point is contained is not known� Since the repeated cost of multiple

evaluations is determining containment� usually by a clipping algorithm� evaluation

of a trimmed surface with two trimming loops is no di�erent than evaluation of a

torn B�spline with a single tear�
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STANDARD METHODS

As regular tensor product B�splines and other spline representations have become

more popular and the body of research on them has increased� a certain set of

standard methods� or operations� which have been very useful for modeling� have

become associated with these parametric representations� These methods include

� Evaluation� used for evaluating the geometric properties of the representation�

� Re�nement� used for adding �exibility to a surface�

� Subdivision� used for tessellation of surfaces$among other things�

� Degree Raising� used for changing the smoothness of the surface�

� Knot Removal� used for approximating surfaces�

� Display� used for both isoline and shaded display in advanced graphical mod�

eling systems�

Presented below are the methods as modi�ed for use with the torn B�spline

representation� Note that when there are no tears in the torn B�spline surface�

the representation is equivalent to the regular B�spline surface representation and

further� each of the methods presented below is equivalent to the corresponding

method for regular B�spline surfaces� The portions of the algorithms presented in

the �gures that are added or modi�ed for the torn B�spline surface are boldface�

��� Evaluation

The torn B�spline representation derived from the regular tensor product B�

spline representation� so evaluation routines at the lowest level are identical� Fig�
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ure ��� provides a comparison of pseudo code for both representations� In the case

of a torn B�spline surface� the steps required to evaluate a point at a parametric

location� �u� v�� are explained further as follows�

�� Determine the parametric region to which the point belongs by determining a

c such that �c�u� v� �� ��


� Construct a surface from the general orders and knot vectors of the surface

and the composite mesh of parametric region�

� Evaluate S�u� v� �
Pm�n

i�j�� P
�c�
ij Bi�j�u� v�� where c is the mesh of the parametric

region chosen in step �� using any standard B�spline evaluation method�

The evaluation of an isoline corresponding to a parametric value� u� such as

would be used for a line drawing of the surface� can produce either a single torn

B�spline curve or a set of regular B�spline curves� For display� a set of individual

curves may be the preferred result� whereas for most modeling situations� a torn

B�spline curve may be preferred� The steps in Figure ��
 are analogous to the point

case� Since the isoline extends across the entire surface� evaluation is performed

with respect to each parametric region�

�� Determine if the isoline passes through the current region� If not� continue

with the next region�


� Create a surface from the parametric region�

Point evaluation: torn B-spline surface

compute a temporary surface for that region

evaluate the parametric location in the temporary surface

1 compute the region containing the parametric location

2

3

Figure ���� Point evaluation� Bold sections are new with torn B�splines�
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Isoline evaluation: torn B-spline surface

1

2

3

4

5

6

7

8

9

10

11

12

13

make a new curve from the control polygon

extract a control polygon for the isoline

for each parametric region,

}

if the region has a valid interval then

{
compute a temporary surface for the region

if returning a torn curve then

if a torn curve hasn’t been defined then

make a new curve from the control polygon

else

add a region to the torn curve

}

else

{

{

extract a curve segment described by the interval

add it to the list of returned segments

}

Figure ���� Isoline evaluation� Bold sections are new with torn B�splines�
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� Re�ne the surface so that order	� knots are at the parametric value� u� This

will interpolate the control points of the isoline at u�

�� Extract the control polygon at the index that corresponds to the interpolated

control points�

	� Extract the curve section depending on the desired return type�

To return a torn B�spline curve�

�a� If no regions have been de�ned yet� create a regular B�spline curve from the

control polygon �the valid region may be needed if the surface is trimmed

as well as torn�� Otherwise� construct �r�u� for the torn curve by using the

valid region� reg int� Here� r represents the separation of the parametric

regions of the B�spline curve� equivalent to the parametric regions� c� of

the torn B�spline surface�

To return a set of regular B�spline curves�

�a� Construct the isoline from the re�ned control points�

�b� For each region� extract and return the corresponding segment of the full

isoline�

�c� Append the curve segment to the return list�

Evaluation of a point on a torn B�spline curve is analogous to evaluating a point

on a torn B�spline surface so will not be discussed separately�

��� Re	nement

Re�nement takes place in two stages� �� re�nement of the individual parametric

regions� then 
� recomputation of the overlap meshes� containment functions� and

masking functions� Pseudo�code is listed in Figure �� and the steps are detailed

below�
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Refinement: torn B-spline surface

1

5

4

3

2

recompute the auxiliary functions and their values

refine the control mesh for the region

for each parametric region,

for each tear,

match tears with their new overlap meshes

Figure ���� Re�nement�

�� Re�ne each of the parametric regions� each region inheriting the knot vectors

and orders of the surface as a whole�


� Recompute which points belong in the overlap meshes based on the re�ned

control point structure�

� Recompute � and � functions based on the re�ned control point structure�

Re�nement of a regular B�spline surface does not change the geometry of the

surface� only the �exibility of the surface� The same is true for re�nement of a torn

B�spline surface�

��� Subdivision

Subdivision is initially similar to re�nement� but because the parametric do�

main of the surface changes� more drastic restructuring is needed� The steps for

subdivision are given in Figure ��� and are explained below�

In the given pseudo�code� it is assumed that only one region of the surface is

returned� If more than one region is desired� this process can be repeated for each

subdivided section� The mapping functions in steps � and 	 allow any or all of

the subdivided surface sections to be returned� Recall that the subdivided surface

sections are complete surfaces and so will be referred to as such�

�� Subdivide each parametric region� storing the new control meshes for later use�
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Subdivision: torn B-spline surface

for each parametric region in region_list,

compile a list of subdivided regions

1

2

for each tear in tear_list,

compile a list of tears clipped to the subdivision region

3

4

to the new surface using the maps

recompute auxiliary functions for the new lists of tears and regions5

create a map between old and new parametric regions

create a map between old and new tears

transfer the overlap information from the old8

6

7

Figure ���� Subdivision algorithm�


� Clip each tear to the boundaries of the subdivided region�

� Recompute the structure for the new surface� The new regions and new tears

are provided in this recomputation function�

�� Create a set of maps� �� � c � c�� between the old parametric regions and

the new parametric regions for each of the returned surfaces� �� This is a

potentially many�to�one mapping�

The maps are constructed by �rst extracting one point contained in each of the

parametric regions of the old surface �see Figure ��	�� If possible� these points

are chosen to be within the domain of the subdivided region as well� Then for

each point� the corresponding parametric region in the new subdivided surface

is determined� Because this is a many�to�one mapping� �c�i� j� may equal 	

for more than one parametric region� c� in the new surface� However� because

of the continuity requirements of the original surface� it is guaranteed that the

� functions are nonzero for the same values of 	� If this were not the case�

then DOFs would be lost in the translation�
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New surface

Region mapping

Subdivision region

Figure ���� Subdivision mapping of parametric regions�

	� Create a mapping between the old tears and the new tears for each of the

returned surfaces�

�� Transfer the values for the overlap meshes from the new region list as deter�

mined by the mappings just created�

The mapping in step 	 is de�ned by � � 	� 	� from tears in the old surface to

tears in the new surface �see Figure ����� If a tear� 	� does not exist in the new

surface� �� � ��	� � ��� Let the base control points in the new surface �� formally�

P
���
ij � be referenced equivalently by O

����
ij � �Recall that 	 indexes start at ���

In the transfer function� the new mesh points are reconstructed by the following

formulas� For each new surface� ��

P
�
��c��
ij � P

�c�
ij for each c� �����

where P ��

ij are the sets of composite control points for each of the parametric regions�

�� in the new surfaces� P
�c�
ij are the control points for the parametric region� c� in
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New surfaceSubdivision region

Tear mapping

Figure ���� Subdivision mapping of tears�

the old surface� Then for each of the old tears� 	� and each of the new surfaces� ��

let

��c � �
��c��i� j�� ���
�

Then�

O
���c�
ij � P

�
��c��
ij for each c and ij ����

where � is de�ned with respect to the new surfaces and O
��c
ij are the sets of control

points for each of overlap meshes in the new surfaces�

A slightly modi�ed version of this algorithm will also be used in Section �����

for splitting up surfaces when tears become complete�

��� Degree Raising

Frequently� additional �exibility is desired while modifying a tensor product B�

spline or other parametric surface� Re�nement is one possible method of increasing
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the �exibility� but re�nement does not change the order of the surface� If the surface

is initially order 
 in each direction� the surface is made up of piecewise bilinear

patches� Re�nement of this surface will result in a piecewise bilinear surface� To

increase the smoothness capabilities of a surface� the order of the surface needs

to be increased� When raising the degree of a B�spline surface� enough knots are

added to the existing knot vector to support the higher order while maintaining the

previous continuity characteristics at the original knots� The new control points

are computed as a linear combination of the original control points��� ���

The degree�raising algorithm for torn B�splines is very similar to the re�nement

algorithm� Pseudo�code for the torn B�spline degree�raising algorithm is given in

Figure ���� Since a degree�raised surface and its original surface are geometrically

identical and the new surface has more �exibility than the original surface� there are

clearly enough degrees of freedom in the new torn surface to accurately represent the

original surface� Once again� each parametric region is degree�raised independently�

then the tears and the characteristic functions are recomputed� Informally� since

the new surface is geometrically equivalent to the original surface� the continuity

requirements between parametric regions are not compromised during the process�

��� Knot Removal

A surface after knot removal is� at best� an approximation to the original surface�

A knot removal algorithm which can approximate a B�spline surface up to a given

Degree Raising: torn B-spline surface

5

1

2

3

4

recompute the auxiliary functions and their values

for each tear,

for each parametric region,

degree raise the control mesh for the region

match tears with their new overlap meshes

Figure ���� Degree raising�
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tolerance has been suggested by Lyche and M%orken�	��� and this algorithm can be

extended to torn surfaces� The knot removal algorithm for torn B�spline surfaces

is given in Figure ����

�� Perform the following two steps for each parametric region�

�a� Decompose region into scalar surfaces in each dimension�

�b� Reduce knots in each of the scalar surfaces�


� Construct a common knot vector set from the reduced scalar surfaces�

� Re�ne all scalar surfaces to match common knot vectors�

�� Compose the reduced surfaces into one surface with the common knot vectors�

The primary di�erence between regular B�spline surfaces and torn B�spline

surfaces for knot removal is the decomposition of the surface into scalar surfaces�

One possible method for extending this algorithm for torn surfaces is to decompose

each of the parametric regions into their respective scalar surfaces so that reduction

can be performed on each� A common knot vector can then be constructed from all

Knot Removal: torn B-spline surface

recompute the auxiliary functions and their values

5

6

7

8

4

3

2

1
{

compose the scalar surfaces into a new surface

refine the scalar surfaces to the common knot vectors

construct a common knot vector in each direction

reduce the knots in the column direction

reduce the knots in the row direction

decompose regions into scalar surfaces

}

for each parametric region,

Figure ��	� Knot removal for regular and torn B�spline surfaces�
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of the reduced knot vectors� The parametric regions are then composed individually�

and the control points of the original surface and the overlap meshes are determined

in a similar manner to the restructuring phase of re�nement discussed earlier� With

regular B�splines� reducing knots in several scalar surfaces can produce knots that

are close but unequal to each other� causing more knots to be added than necessary�

Since torn B�splines have signi�cantly more surfaces and contain regions which

should not be considered� this problem can be severe� A better algorithm would

reduce knots in the surface as a whole� not in each parametric region independently�

Although construction of a common knot vector set is guaranteed to preserve

the tolerance when reuniting the surfaces� the nature of torn B�splines suggests that

this tolerance may not be maintained in the restructuring phase due to signi�cant

dependence on placement of knots near the endpoints of a tear� The extent to

which this placement actually a�ects the �nal geometry�s deviation from the original

surface is a subject for further research�

��� Display

Two of the more common methods of display for regular B�spline surfaces are

isoline and shaded�surface display� Since these methods are widely used for B�spline

surfaces and there may be other display techniques which would be applicable�

the issues surrounding display techniques for torn B�splines will be considered in

general� For most display techniques� straightforward application of the re�nement

or subdivision algorithms discussed above is su�cient� However� there are shortcuts

available because of the structure of torn B�splines�

����� E�ective Use of Cached Surfaces

The torn B�spline surface contains parametric regions which are unique with

respect to their composition of control points� Although these regions are easily

computable when necessary� it may be practical to construct a regular B�spline

surface for each of the regions� including all of its parameters� based on the com�

position of control points in the region and the general information in the torn

B�spline surface� These surfaces can then be cached to facilitate evaluation of the
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torn B�spline surface� Further� the boundaries of the parametric regions can be

instantiated as trimming loops on these cached surfaces�

Another shortcut can be taken in isoline display� To show isolines of a torn

B�spline surface� isovalues for the isolines in each parametric direction are deter�

mined and the surface is re�ned independently in each direction so that the control

points for these isolines are interpolated in each direction by the re�ned meshes�

However� for torn B�splines� once the isovalues are computed� the individually

trimmed parametric regions can be displayed without determining the individual

regions for each of the isolines as indicated in the isoline evaluation algorithm in

Figure ��
�

In addition� a display algorithm will generally display the entire surface unless it

is trimmed� When a surface is trimmed� however� the display time usually increases

dramatically� Figure ����A� illustrates a typical situation requiring isoline evalua�

tion� The performance hit for a trimmed torn B�spline is even worse considering

that the isolines are �rst trimmed to the boundaries of the parametric regions

�Figure ����B�� and then to the trimming loops of the surface �Figure ����C��� The

result is shown in Figure ����D��� If the 
D intersection of the domains represented

by the boundaries of the parametric regions and the trimming loops of the surface

are pre�computed �Figure ����E��� then a single clip to the intersected region �Fig�

ure ����F�� is performed instead of two clips� Other than the one time intersection

of the two regions� the display performance of a trimmed torn B�spline matches

that of the nontrimmed torn B�spline surface�

����� Black Holes

The shaded surface display also bene�ts from caching the parametric regions as

surfaces� One particular issue of a shaded surface display are black holes� These

holes appear when two surfaces meet at an edge� but the display algorithm does

not recognize the adjacency and enforce it� When converting to polygons� the

piecewise linear edges of the two surfaces may not match and part of the �usually

black� background may be seen between the surfaces� Since the individual cached

surfaces can be displayed for a torn B�spline surface� the boundaries of the cached
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E) Boolean intersection

C) Trimming loop clip

For each isoline

Standard isoline evaluation Alternate method

Extensions

A) Surface structure

F) Intersection clipB) Parametric region clip

D) Resulting isoline

Trimming Loop
Tear

Isoline

Figure ��
� Illustration of alternate routes for isoline evaluation�
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surfaces along the extensions of tears need to be included in some sort of adjacency

maintenance procedure to prevent black holes along the boundary� A procedure of

this sort subdivides the surface on either side of the boundary in exactly the same

locations so that the resulting polygons on both sides match up vertex by vertex�

Unfortunately� if the boundaries of the parametric region are represented by

trimming loops� the display of torn B�spline surfaces is slower than regular B�spline

surfaces� However� the representational �exibility gained by the introduction of

arbitrary discontinuities o�sets this disadvantage�



CHAPTER �

MODELING WITH DISCONTINUITIES

In a comprehensive modeling system� many unusual shapes arise from seemingly

ordinary modeling operations� These irregular shapes can be the result of explicit

or implicit� low�order or high�order operations� An explicit �or direct� operation

is an operation in which the designer has control over the resulting shape subject

to geometric requirements� An implicit �or indirect� operation is an operation

in which the designer does not have control over the resulting shape but rather

has control over certain properties of the resulting shape� A low�order operation

requires the designer to manipulate the parameters of the representation directly�

A high�order operation allows the designer to manipulate other parameters which

have a prede�ned e�ect on the model�s representation� For example� a low�order�

explicit operation would be manipulating the control points of a B�spline surface�

A high�order explicit operation would be a bending operator for the same B�spline

surface� Instead of control points� the designer manipulates a radius� a center

point� and start and end positions�
�� A low�order implicit operation might be

a physically based operation where the user speci�es boundary conditions for a

B�spline surface� but the remaining degrees of freedom are computed according to

the physics of the simulation� An example of a high�order implicit operation might

be physically based fairing operator���� 
��� The fairing function allows the user to

specify the curvature requirements of the surface subject to the physical simulation

laws� The �nal outcome of the surface is not necessarily known by the user� and

direct speci�cation of individual surface parameters may not be permitted�

Discontinuities within a model can arise in many di�erent situations and as a

result of all di�erent types of operators� Several operators which can be used to
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create irregular shapes frommodels while maintaining a consistent closed boundary

representation are introduced in Chapter �� First� however� we will look at the

interaction of tears with a conventional closed �manifold� boundary representation

and some of the more basic issues involved in creating complex B�spline models�

��� Tears and Trims

Most models constructed from B�splines are not created solely from the B�spline

surface with the canonical four parametric boundaries� To require this would be to

limit the interesting models which can be created� In fact� most modeling systems

use some method of trimming tensor product B�spline surfaces when they are part

of a boundary representation of a model� This type of trimming is easy to support

for torn B�spline surfaces as well�

First� the algorithm which constructs the overlap mesh must recognize the

trimming boundaries as the boundaries of the surface� The primary issue� in this

case� is whether or not a critical point of a tear is still a critical point� Since the

domain is restricted� what previously was a critical point of a tear may now lie on

or outside of a boundary� making it noncritical� A secondary issue is whether or not

a tear extends from one boundary of a trimmed region to another boundary of the

same region� The tear would separate the domain of the surface� even if the tear

is completely in the interior of the parametric domain of the surface� Generally�

trimmed boundaries are not expanded once trimmed� Boolean operations may

further limit the surface� but expansion takes place by the addition of other surfaces�

Because of this� a tear which separates the trimmed region �Figure ����A�� can be

extended to the boundaries of the trimmed surface �Figure ����B�� and treated as

though it was a complete tear �see Section ������� If the tear is not made complete

as suggested� it is possible that the two regions may share control points and could

therefore be dependent�

Next� the parametric regions are trimmed against the surface�s trimming curves

in order to perform evaluation and display as explained in Section ���� If trimming

loops are used to represent the parametric regions� then a 
D Boolean intersection
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Extended tear
Trimming Loop

Tear

B) Complete separationA) Parametric domain

Figure ���� Extending a tear to completely separate the parametric domain�

is performed on each pair of loops� The primary concern for this procedure is

the robustness of the 
D Boolean operation which is performed using these curves�

Numerical problems in the intersection can result if the trimming curves of the orig�

inal surface coincide with the boundaries of the parametric regions� In most cases�

however� a priori knowledge can provide the necessary information to adequately

determine the intersected regions�

����� Complete Tears

Not all tears begin and end in isolation� Frequently� tears originate at boundaries

and continue to other boundaries� On occasion� tears may make a complete loop

e�ectively isolating a portion of the domain of the surface� Fortunately� this case

can be handled without di�culty in nearly the same manner as any other case�

Enough DOFs are added to provide a completely independent section of the surface

through normal tear processing� However� at times� a single torn surface needs

to be separated into two individually trimmed surfaces when a complete tear is

made� One primary advantage of this is the simpli�cation of the data structures�

A disadvantage is that the connection between the parametric regions of the original

surface is lost�
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The conversion of a complete tear to two trimmed surfaces is intuitively straight�

forward� First� the portions of the tears which are part of the complete loop are

identi�ed and the remaining portions of the tears are identi�ed as either inside

or outside the complete loop� Then a surface is created for both of the separated

regions with the complete loop providing the trimming information� The remaining

tears are then added to the surface which contains the tear in its nontrimmed region�

At this point� the auxiliary functions � and � are rede�ned for both of the surfaces�

Following is a more detailed procedure for performing this conversion with a

discussion of some of the factors that should be considered�

�� Identify the newly closed loop� It is assumed without loss of generality that

only one closed loop exists� If the parametric regions corresponding to the �

functions are not represented by trimming loops� then they are converted to

trimming loops at this time�one for each region�


� Optional� Concatenate tears that make up the new loop if possible� See

Section ��
 for details on this procedure�

� Mark the sections of the tears which make up the loop� separating the inside

and outside� During initial construction of the parametric regions� the section�

ing of the tears may be performed� If this information is computed and cached�

the sections do not need to be recomputed here� The appropriate sections are

merely marked in this case�

�� Construct two individual surfaces� OutsideSrf and InsideSrf as follows�

�a� Knot vectors� orders� and end conditions are copied to new surfaces with�

out tear information�

�b� Construct the trimming loop for each new surface by performing a 
D

Boolean operation between the newly formed loop and the trimming loops

from the original surface as follows�

LoopOut � OldLoop 	NewLoop
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and

LoopIn � OldLoop � NewLoop�

�c� Add the sections of the original surface�s tears contained in loopin to the

InsideSrf surface� Add all but one of the tears which make up NewLoop

to OutsideSrf along with any portion of any tear which is contained in

OutsideSrf�

�d� Recompute � and � functions for the new surfaces�

�e� De�ne two mappings from the parametric regions in the original surface to

parametric regions in each of the new surfaces as detailed in Section ���

�f� De�ne two mappings from tears in the original surface to tears in each of

the new surfaces as detailed in Section ���

�g� Update the overlap meshes using the coe�cient mapping functions from

the previous two steps� This is also detailed in Section ���

Several of the above steps require additional explanation� In step �c� the number

of tears is reduced by exactly one� Intuitively� it may seem that all the tears which

make up the boundary of the closed loop could be eliminated since the surface is

being separated� but upon further inspection� it is clear that this naive approach

leads to the ordinary trimmed surface dependency that is to be avoided� Consider a

simple example� two tears are added to a surface� each having the same endpoints

�see Figure ��
�� Assume that they are not the same tear� In the original torn

surface� the point A in the surface above tear I is independent of the point in the

surface below tear II� despite the fact that the two curves may pass through the

same patches along their entire length� If this surface is split into two surfaces�the

interior and exterior of the loop�and if the exterior surface is implemented as single

trimmed surface� the points A and B will be dependent�

A single parametric region can be removed because the interior surface �ignoring

its contained tears� behaved in the old surface like a single parametric region� Since

the surface is being separated� one of the tears which helped make the surface
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Figure ���� Illustration of tear dependence during conversion of complete tears�
Dotted lines delineate subpatches�

unique can be removed� The choice of which tear to remove is arbitrary� However�

heuristics indicate that the tear with the most DOFs is the best option� The

potential drawback is that OutsideSrf will end up with DOFs which do not a�ect

the �nal surface shape�

The last several steps of the separation algorithm are taken from the subdivision

case and are discussed in detail in Section ���

��� Tear Reduction and Equivalence

At times it may be desirable to reduce the number of tears that are maintained in

the surface or change the con�guration of tears within the surface� Tear reduction

is desirable whenever two tears meet end to end� as in the case of complete loop

formation� It may also be possible to isolate a tear within the complete loop� so a

con�guration change may be appropriate� The general rule for tear reduction �by

concatenation� is the inverse of tear splitting �see Section �������� If the concatena�

tion of the two tears results in a monotonic section� or� in other words� the splitting

algorithm would not resplit the tear� then the tears may be concatenated� The

primary advantage of tear reduction is the simpli�cation of the surface structure�

Recon�guration of tears is generally less critical and may be di�cult to assess
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and perform automatically� One primary area of usage is in surface reconstruction

where the tear con�guration and surface structure are not a priori knowledge�

Determination of the tear con�guration is then a very important and necessary

task�

Consider the following example� illustrated in Figure ��� Suppose that disconti�

nuities occur in the surface such that they extend away from a given point in more

than two distinct paths� The logical choice is to create tears in tangent continuous

segments� The con�guration shown in Figure ���A� would result in three distinct

tears emanating from the intersection point� The con�guration in �B� would result

in two tears with the second tear�s end point intersecting the �rst at the intersection

point� The con�guration in �C� would be similar� only a choice needs to be made

between two possible distinct con�gurations� However� in any of these cases� the

choice is either two tears in two ways or three tears meeting at one point� The

choices di�er only in aesthetics and structure� the �exibility of the surfaces are

equivalent� The tears are equivalent for a very simple reason� Separating a tear

into two sections is an equivalence operation if the tears are in monotonic sections�

This is easily seen by the following observations� First� by assigning the parent�child

relationship between split sections� we see the span of the split point is only in the

overlap mesh of the child tear� Since the tear is monotonic� it does not double back�

so the two sections do not have any control points in common except for those in

CA B

Figure ���� Tear con�guration� �A� No tangent directions� �B� One tangent
direction� �C� More than one tangent direction�
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the span of the endpoint� Therefore� splitting a monotonic tear does not change

the �exibility of the surface and so is an equivalence operation� From this it is

obvious that any con�guration choice is equivalent to any other providing they are

monotonic sections�

If the tears are equivalent� then why are all choices not equal� The di�erence�

besides aesthetics� is in underlying structure� The computational e�ciency of

many algorithms� such as those used for display and constraint maintenance on

the surface� are dependent on the number of tears in the surface� In the situation

of a closed loop� isolation of a tear on one side of the loop means that it can be

removed from the opposite surface� thereby reducing the number of tears in the

surface� This is the primary advantage of tear reduction as well� Consider the

example in Figure ���� The current tear con�guration �A� has three individual

curves which have formed a complete loop� A simple approach to splitting the

surface would result in the outer surface having three tears� I and IIa �B� and the

inner having one tear IIb �C�� Recon�guration of tears I and II can isolate tear

IIb in the interior of the loop �C�� Splitting the surface in this con�guration results

in a single tear for the outer surface and a single tear for the inner surface �D�

which cuts the complexity by roughly 
	& �from four cached surfaces to three��

Determination of equivalencies is deceivingly complex� Visually� the best solu�

tion is usually clear� However� the di�culties lie in the expense of testing each of

the possible equivalencies if equivalence is to be determined automatically� It is

easy to determine if an adequate number of DOFs exist in the two sets of overlap

meshes� but testing each individual con�guration is a combinatorial nightmare� It is

true that 	 is usually small and that certain con�gurations can be ruled out �those

resulting from splits cannot be reduced further�� but an exponential algorithm is a

recipe for problems� Future work in this area may likely turn up a more e�cient

method for determining these equivalencies� At this point� user intervention may

be the best alternative�
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Figure ���� Tear reduction� �A� Initial con�guration� �B� and �C� Unaltered split�
�D� Recon�gured tears� �E� and �F� Recon�gured split�
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��� Tears
 Creases
 and Manifolds

Since most boundary representations of solid objects are manifolds� the occur�

rence of a nonmanifold representation usually means that either

�� it is a simpli�cation of a manifold�


� it is part of a larger representation�

� it belongs to a D layered or similar representation� or

�� it is an invalid representation�

In the following sections� examples of situations which result in each of these

possibilities are discussed�

����� Tears in Thin Plates

A nonmanifold representation may be a simpli�cation of a manifold� This is

particularly true in the case of a thin plate representation where a single 
D surface

or set of 
D surfaces in IR
 represents a D solid modeled by extrusion� Because

the extrusion distance is small� physical e�ects caused by the material�s thickness

are assumed to be negligible�

The addition of a tear in this case causes little concern� An extruded torn

surface is a manifold as well and poses few special problems� Determination of the

extrusion direction for a given location on the surface is only slightly more di�cult

for a torn B�spline surface than a regular tensor product B�spline surface� During a

process such as stamping� a thin plate extrusion direction may need to be modi�ed

so that it varies across the surface� The additional complexity may cause di�culty

in areas where the tear edges are in close proximity to each other� Extrusion in

the direction of the surface normal on each side of the tear could cause the D

model to self�intersect� In particular� if a crease is introduced into the surface

and the extrusion is made into the concave portion of the crease� the surface is

guaranteed to self�intersect� However� this self�intersection problem is present for

both representations� Fortunately �or unfortunately� this problem is present in
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other �elds� most notably that of computer�aided manufacturing �CAM�� where

o�setting surfaces produces toolpaths for computer numerically�controlled �CNC�

machining and so continues to be a topic of active research� Solutions presented

in CAM can be readily adapted to this problem� Since discontinuities are an area

of great interest in physical simulation� many solutions to these types of problems

exist and the most appropriate action depends entirely on the situation�

Occasionally� the volume of the extruded solid may need to be preserved� Stretch�

ing a surface would cause the width of the extrusion to be reduced where the surface

is stretched� If the surface is very plastic so that it stretches considerably before

�breaking�� the width of the surface near the failure point may be nearly zero� On

the other hand� if the material is rigid� the width may not change much before the

surface breaks� When the surface breaks� a tear or other continuity feature may

be introduced� A related di�culty may occur if the material is thick enough to

exhibit slightly di�erent behavior between the top boundary of the material and

the bottom boundary� In this case� properly registering the continuity features

between the top boundary and the bottom boundary or introducing some more

complex tear geometry will result in acceptable solutions� To register curves in

this case and others to follow� a matching parameterization is determined� For

parametric curves� this defaults to a reparameterization of one of the curves� If

the tears are not represented by parametric curves� then the registration is more

di�cult� It may be appropriate to convert the tears to parametric curves in order

to facilitate registration�

Figure ��	 shows a thin plate whose top boundary is torn to a greater extent

than its bottom boundary� The solution in this case is to create two tears on the top

boundary surface and one tear on the bottom boundary surface� The tear nearest

the edge in the top surface is registered with the bottom tear� The interior tear

in the top surface contains a custom ravine one of whose endpoints matches the

interior endpoint of the tear in the bottom surface�
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Figure ���� Custom thin plate with mismatched tears�

����� Multiple Surfaces and Tears

Many sculptured models are composed of multiple surfaces� �stitched� together

into a boundary representation which complete encloses the D space occupied

by the object� Often during a simulation or other modeling process� individual

surfaces are singled out and modi�ed by themselves because using the entire model

would be cumbersome and computationally prohibitive� It is possible that within

this context� a single surface may acquire continuity features as a result of the

modeling process� Unfortunately� these features usually cause the model to become

nonmanifold� that is� no longer encompassing a volume completely� Given that this

situation may arise� the following techniques may be useful to the designer�

�� Filling in the cracks�

A tear creates a hole or separation in the surface that is technically not part

of the boundary� In the larger context of a manifold boundary representation�

this is a problem� Unless a crease is introduced to reattach the edges of the

tear� the edges of the tear must be joined with some other part of the model� A

very natural response is to patch the hole with another new surface or surfaces�

There are many options in this case� but two possible operations introduced
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in Chapter �� the shear �or ruled� �ll and the ravine �ll are good candidates

for this task� Brie�y� the shear �ll creates a simple ruled surface between the

edges� and the ravine �ll creates two ruled surfaces between an auxilary curve

and each edge� A user�de�ned curve can be provided for the auxilary curve�

and this curve can be used to maintain consistency across boundaries �see

Boundary restructuring� below��


� Boundary restructuring�

Since continuity features may reach the edges of the parametric domain of a

single surface� boundaries of adjacent surfaces may need to be restructured

to accommodate the new topology of the torn surface� The new surface�s

edges may need to be reregistered with the older surfaces� edges� This may

not be too di�cult� but it is usually critical to maintaining a valid boundary

representation�

� Constraining the tear domain�

�An ounce of prevention is worth a pound of cure�� Placing additional con�

straints at the boundaries of a simulated surface could prevent undesired

behavior from occurring in the �rst place� For instance� if a discontinuity

is approaching a boundary� constraining the boundary to remain adjacent

to its neighboring surface can prevent unwanted restructuring of the model�s

boundary adjacencies� even if the tear reaches the boundary�

�� Maintaining consistency across boundaries�

Since most continuity features which arise during simulation arise at bound�

aries� constraining the domain of the tear may not be physically realistic� A

more plausible scenario has the continuity feature originating at an edge where

two surfaces are adjacent and propagating in both directions from the failure

point� This could be considered a single continuity feature and may needed to

be treated as such� There are several approaches to this problem� First� the

two tears can be propagated independently of each other� The surfaces used to
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�ll the cracks can be adjusted so that they meet at a common boundary since

they already meet where the two original surfaces are adjacent� If the surfaces

are �lled with a linear shearing operation� the �lling surfaces are adjacent by

de�nition� If the surfaces are �lled with the ravine operation� a custom curve

with an adjacency point can be used� In this case� the �rst section of the curve

is used by one surface� and the latter section of the curve is used by the second

surface�

A second option would be to maintain a higher�level tear which is kept at

the object representation level� In most boundary representations� surfaces

are gathered into a single data structure �sometimes called a shell� which is a

full representation of the model� The tears exist at the surface level and have

no interaction with other surfaces except when the shell requires adjacency�

Because the overall data structure would need to be modi�ed in this case� the

�rst solution is recommended�

����� Higher�Dimensional Complex Models

Solid models which have a boundary representation lack the internal structure

which may be necessary for some physical simulations� Typically� this occurs when

the model becomes large or has internal structure that is not evident from the

exterior� A good example is a model of the human body� In this case� the skin does

not re�ect the interior structure of the body� Physical simulations of deformation

and� more recently� electrochemical interactions require a representation of the

interior of the body being studied� Traditional �nite element meshes for solid

models contain interior nodes which� in turn� re�ect the structure of the interior

of the object� Boundary representations of these models contain multiple layers

embedded within each other� each representing the boundary between two distinct

solids� It is understood that these interior boundaries represent both the exterior

of one region and the interior boundary of another� In this manner� the manifold

behavior of the real world is simpli�ed by a nonmanifold representation�

This technique� called �D layering� can be interpreted in several ways� The
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�rst interpretation given above� considers each enclosed �or disjoint� region to be

a manifold described by its enclosing boundaries� Properties of the interior are

usually simpli�ed to be uniform or some combination of the boundary properties�

Another interpretation is derived from the thin plate concept extended to composite

materials� In this scheme� boundaries of thin volumes are composited on each other�

separated by some extrusion distance� By arbitrary designation� the uppermost

boundaries re�ect their characteristics through the extruded volume to the next

boundary surface� Physical simulations of such structures rely on the thin plate

characteristics of each level while modeling the interaction between the surfaces

as demanded by the characteristics of the adhesive� In this case� the interior

structure of the model is greatly simpli�ed while providing the rich interactions

of the surfaces�

The di�culties which arise from the introduction of discontinuities are similar in

each case� To maintain a valid layered structure� the boundaries must completely

enclose a region� Although the solutions in Section ���
 apply in these cases� the

physically realistic solution may not be clear� For example� a rip in a layer of

composite material may be interpreted in di�erent ways� It could represent a void

in the interior of the material which would need its own boundary description� It

could also represent a partial separation of the layer� known as a pocket� which would

best be represented by �lling in the region� creating a new boundary between the

two adjacent composite layers� In the medical �eld where interiors are �uid� it could

represent a breech of a boundary between two interiors allowing the characteristics

of each volume and the boundary between them to change�

A more complex example can be seen in geology� In studying layered rock

formations� scientists have noted that certain layers are more �uid than others and

exhibit di�erent physical characteristics� In a concept called drape folding� softer

layers are draped over distinct discontinuities which are present in lower� more rigid

layers� As the bedrock shifts over a slip zone� a sharp discontinuity appears� but the

more �uid layers of rock above it are bent and crushed� ultimately �lling the void

which would ordinarily be left behind� In this case� the boundaries which surround
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the bedrock are torn and the tears are extruded to the boundary below� e�ectively

partitioning the volume between the boundaries� The upper�level surfaces are not

torn� yet are registered appropriately with the surfaces below them� The volume

between these surfaces is �uid and does not cause an automatic propagation of the

discontinuity that a rigid volume would� The �uid layer is then composed of the

draped upper surface and the split lower surface with a portion of its boundary

that is exposed along the extrusion� Care must be taken in this case to make the

extruded surfaces on each side of the separation to be coincident�

Other problems may also arise when the layers physically slip over each other�

The initial surface may need to be reregistered� Voids may occur between layers�

requiring the addition of another surface� These problems are made more di�cult

by the presence of discontinuities� but the solutions in most cases are extensions of

the above suggestions�

It is clear that modeling with discontinuities is by no means easy or straight�

forward given the possible di�culties that may arise� In the next chapter� several

modeling operators are presented which provide basic methods for creating and

modeling with torn B�spline surfaces�
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OPERATIONS

Modeling operators provide high�level handles on complex shape construction�

making it relatively easy to create models without necessarily knowing a lot about

the underlying representation� Some modeling operators are presented below which

are designed to ease the construction of models with discontinuities� These op�

erators are not only applicable in initial design but are useful in simulation as

well� They will be discussed in order of increasing complexity� Most operators

apply to single surfaces� their generalization to complex models will be discussed as

necessary� The operators are described in the context of a modeling language called

Shape Construction Language �SCL� developed by the Alpha� research group at

the University of Utah����

��� Cut Operator

The introduction of a tear into a model� by means of a Cut operator� is the

simplest operation involving discontinuities� The operands are a single surface and

a curve embedded in the surface�s parametric space� The resulting model is a torn

surface �see Figure �����

tornsrf � cut� srf� crv ��

The basic functionality of this operator is provided by the torn surface data

structure itself� The addition of a single tear to a surface is a fairly simple task�

However� there is some preprocessing which makes construction of a valid torn

surface easier as the surfaces become more complex� First� the new tear curve� crv�

is intersected with all existing tears in srf� Since it is not legal to cross tears� the

curve is split at the intersection points and each new section becomes a distinct tear�
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CUT

Surface Torn surfaceCurve in the parametric domain

Figure 	��� The Cut operator�

Next� each of these new tears is tested for monotonicity given the primary direction

and is split if necessary� In this stage� information about the coincident end points

is saved on the tear to ease the � and � function constructions in later stages�

Finally� the tears are added to the surface and determination of the supporting

structures proceeds� The resulting surface can then be further modi�ed by another

shape manipulation technique�

This operator is extensible to shells as well in the following form�

tornshell � cut� shell� srf� crv ��

where srf is a pointer to the surface within the shell to which the tear is added�

Surface adjacency information stored in the shell needs to be updated after the

surface is torn only if the trimming loops for the cached surfaces are used for other

techniques such as boolean operations with other models or elimination of black

holes in a shaded rendering� In most cases this is not necessary since the actual

parametric boundary of the surface has not changed�

The Cut operator only modi�es the structure of the surface or shell� it does not

actually modify its shape� However� additional shape operators will clearly show

the e�ects of the structure change�

��� Shear Operator

A slight modi�cation of the Cut operator� the Shear operator will create a simple

ruled surface between the two edges of a given tear in a surface �see Figure ��
��
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SHEAR 1

Shear filled surfaceSurface Index of tear in surface

Figure 	��� The Shear operator�

If the torn surface represents topographical information� the region containing a

�shear� drop�o� between two elevations can be made manifold with this operator�

shearsrf � shearfill� srf� tearidx ��

Tears can be speci�ed by either a pointer to the actual tear� or the index of the

tear in the surface� The resulting surface contains a list of �ll surfaces� or surfaces

which �ll the gap between two discontinuous regions� associated with each tear as

appropriate� Both the Cut operator and the Ravine operator following use this

concept of �ll surfaces� The �ll surfaces created for the Shear operator are ruled

surfaces between the two edges of the tear� Since a particular side of a tear may be

partitioned to fall into di�erent parametric region� more than one ruled surface may

result� If one side of the tear is discontinuous �by joining with another tear� the

ruled surfaces may not be connected over the entire length of the curve� A di�erent

solution may be in order since this situation is not well de�ned with ruled surfaces�

The determination of the actual curves used for the sides of the ruled surface is

probably the most di�cult task� The regions of the surface on opposite sides of the

tear may have drastically di�erent behaviors� In the current implementation� the

following procedure is used to determine the curves�

�� The curves on each side of the tear are evaluated within the surface to obtain

a piecewise linear curve to within some tolerance of the surface� This results

in curves with a very large number of control points�
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� To facilitate further approximation� the degree of the curves are raised to

support smoothness�

� The curves are then reduced to within yet another tolerance using the Ly�

che�M%orken knot removal technique�	��� �Tangent discontinuities in the para�

metric tear curves may be lost if both the degree is raised and the curves are

smoothed��

�� The knot vectors of the curves are registered to the same interval� ����� and

are merged into a single knot vector�

	� The merged knot vector is used to make the two curves compatible by re�ning

them to the same level�

Since portions of the tear may be part of the boundary in di�erent parametric

regions� the curve is partitioned according to distinct pairs of parametric regions

on opposite sides� For example� if a tear�s left side bordered three di�erent regions�

��� ����� ����� ���� and ����� ��� and the right side of the tear bordered two di�erent

parametric regions� ��� ��	� and ���	� ��� then a ruled surface would be made between

the tears for each of the distinct pairs of regions� ��� ����� ����� ��	�� ���	� ���� and

����� �� �see illustration in Figure ����

The disadvantages of this procedure are evident� First� two stages of approxima�

tion may cause the di�erence between the edges of the ruled surfaces and the actual

tear edges to exceed acceptable tolerances� Of course� this is highly dependent on

the actual shape of the surface and the complexity of the curve� The parameters

that work in one case may not work in another� even if the parametric curve

remains the same� Second� the knot removal may not result in a curve with a

similar parameterization scheme� This a�ects the registration phase� not in the

actual registration� which is straightforward� but in the resulting pairing of the

curves� A particular parametric location on an edge may no longer be paired with

the same parametric location on the other side of the curve� A better approach

for this procedure would be to develop a technique for extracting a higher�order
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Figure 	��� Individual ruled surfaces produced by Shear operator in a surface with
multiple tears�

approximation to the curve embedded in the surface while maintaining roughly the

same parameterization as the original tear� This way only a single approximation is

used� and the registration problem is minimized� Fortunately� in actual experiments

with this operator� manipulation of the tolerances has provided adequate results

for such tasks as rendering the surface�

��� Ravine Operator

Another variation of the Cut operator� the Ravine operator creates a straight line

between the endpoints of a tear and creates two ruled surfaces one from each side of

the tear extending to this base curve �see Figure ����� This situation is particularly

useful with models which contain multiple surfaces� The Ravine operator can be

extended to support arbitrary curves of connection between any two end points�

even if they lie in separate surfaces�

ravinesrf � ravinefill� srf� tearidx ��

ravinesrf� � ravinefillcrv� srf� tearidx� basecrv ��

The Ravine operator di�ers from the Cut operator in that two ruled surfaces are

created for each section instead of one� The third curve which forms the boundary

of both sets of ruled surfaces is either computed by creating a straight line between

the tear�s endpoints or is provided by means of a custom base curve� The technique
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Figure 	��� The Ravine operator�

used in the straight Ravine operator to determine the embedded curves is similar to

that of the Shear operator� However� the registration of the two sides of the surfaces

is replaced with registration to a linear segment or single curve �see Figure ��	��

The number of ruled surfaces is determined by the number of parametric regions

on each side of the tear� not distinct pairs of regions as is the case for the Shear

operator�

If an arbitrary base curve is provided� each side of the tear needs to be registered

with this base curve� If the tear crosses multiple parametric regions� the base curve

needs to be partitioned equivalently� It is not necessary that the base curve have

end points that match the end points of the curve� However� this may signi�cantly

modify the boundary description of the surface �although not any more than a

Tear: Right side

Tear: Left side

Ravine
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Figure 	��� Individual ruled surfaces produced by Ravine operator in a surface
with multiple tears�
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non�lled tear would� if the tear intersects the boundary� Therefore� some care is

required when using this operator in the context of a more complex model�

��� Thin Plate Constructions

The operators presented below all construct thin plate solid representations from

the minimal single surface representations used for thin plate simulation� These

constructions accept one or two possibly torn surfaces and result in a manifold

solid�

For the purposes of these operators� a thin plate representation requires that

the top and bottom surfaces be represented equivalently and the sides are simple�

usually ruled� surfaces�

The third thin plate operator� Custom Thin Plate� takes two surfaces� a top

and a bottom� each of which can have its own unique topology� Ruled surfaces are

attached between the two surfaces along all boundaries�

	���� Fixed Width Plate

The Fixed Width Plate assumes that the top and bottom surfaces are equiva�

lently torn and the distance between the top and bottom surfaces is uniform �up to

representation capabilities�� In this constructor� a single surface which represents a

thin plate is extruded in a given direction for a given distance �see Figure ����� An

alternate method called the Normal Thin Plate determines the extrusion direction

based on the normal as it varies across the surface� This variation� however� may

result in an approximation only� The format for such constructors would be

thinplate� � FixedThinPlate� tornsrf� direction� distance ��

thinplate� � NormThinPlate� tornsrf� distance� tolerance ��

where tornsrf is the shape containing surface� direction is a D vector� and

distance is the extrusion distance� The resulting thinplate� is a collection of

surfaces in a shell�

For the Normal Thin Plate operator� no direction is given since the normal of the

surface is used� However� an optional tolerance is provided since the o�set surface is
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Figure 	��� The Fixed Width Plate operator�

an approximation� In addition� some surface shapes may result in self�intersections�

discontinuities and other anomalous regions� Since these operators essentially

construct o�sets of the given surface� they are subject to all the di�culties that

o�setting a regular B�spline surface may have� Once again� the returned object is

a shell �or collection of B�spline surfaces with adjacency information��

	���� Variable Width Plate

The Variable Width Plate operator also assumes that the top and bottom are

cut equivalently� and for this case� the distance between the two surfaces �or surface

thickness� may be computed as inversely proportional to the amount that the

surface is stretched at that point �see Figure ����� The concept� in this case� is

that a tear must occur where the surface thickness is near �� The Variable Width

Plate operator takes a sculptured surface� tornsrf� and a structure which contains

the vector valued width information� widthsrf� The easiest implementation of

widthsrf is by another surface which represents either the bottom surface directly�

which is equivalent to the Custom Thin Plate operator described in the next section�

or a surface which represents the di�erence between the top and bottom surfaces �an

example constructor is shown below�� This structure could be expanded to contain

enough information in order to compute the width of the plate on the �y� Since

the top and bottom are equivalently torn� no �ll surfaces are necessary between

opposite sides of a tear in the same surfaces to maintain the topology of the solid

model for this operator�
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Figure 	��� The Variable Width Plate operator�

thinplate� � VarThinPlate� tornsrf� widthsrf ��

The primary di�culty with the Variable Width Plate is deciding what the width

of the plate should be at any given point� As a more complex variation of the Fixed

Width Plate� a reference surface� which is a representation of the amount the surface

has stretched at each parametric location� perhaps in terms of the percentage width

of the surface� may be used� Then� when the plate is constructed and new stretch

values are computed� the surface can be properly o�set by adding these surfaces

together�

The width or other stretch values can be determined by any of several di�erent

methods� First� if the physical simulation which deforms the surface has a concept

of how much a surface is stretched at a given point� values can be obtained from the

simulation� For example� when de�ning linear elastic elements between nodes on

the surface� the elastic elements maintain a rest state �or an original length�� When

compared to the actual length� the ratio of the lengths provides a measure of how

much the element has expanded or contracted� This in turn determines the forces

transferred between nodes� Related to this is the method of using the linear stretch

terms� which are a product the �rst partials in the primary directions� that are

used in most linear optimization techniques for tensor product B�splines����� These

terms do not have to be part of the simulation� However� if they are� they can be

used without incurring any additional computational cost� Otherwise� computing

the stretch terms can add to the cost of computation� especially if the thin plate
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construction is dynamic�

If a sampled set of widths for the o�set surface is given� the o�set surface can

be determined by surface reconstruction techniques� Unfortunately� unless special

care is taken to keep the widths along tears at �� additional �ll surfaces will likely

be needed between corresponding tear edges in the two surfaces� If an o�set width

surface is provided� the o�set surface can be obtained by adding the two surfaces� If

the surfaces have compatible parameterizations� this is straightforward� Otherwise�

an additional reparametrization step is needed �which� unfortunately� may result

in an approximation��

	���� Custom Thin Plate

Usually a thin plate is represented by a single surface for simulation and other

analytical methods� However� occasionally� a second� or bottom� surface may be

available� The Custom Thin Plate constructor allows the most �exibility of the thin

plate constructors� by using this second surface that represents the bottom of the

plate �see Figure �����

thinplate� � CustomThinPlate� tornsrftop� tornsrfbot ��

This added information makes this operator simpler than the others and prevents

it from being susceptible to the same types of approximation problems� One

particular situation in which this operator may be useful is when multiple surfaces

are being used as part of a D layered representation� The individual layers can

easily be represented by a custom thin plate generated from the surfaces within the

structure�

��� Layering Constructor

The Layering Constructor is designed to support the construction of models by

D layering� The input to this constructor is a set of surfaces� top to bottom� and

information about how the surfaces are put together� called bindings�

layeredVolume � threeDLayer� tsrf�� bindings�� tsrf��
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Figure 	�	� The Custom Thin Plate operator�

bindings�� bottomsrf ��

The bindings are list of structures which contain information about how each

tear in the �rst surface is bound to another tear in the second surface� The binding

structure contains an index for a tear in the �rst surface� an index for the tear

in the second surface� and a bind value that describes how use the indices� The

binding values can be either match or thru� A match binding means that the

tears indicated by the indices are matched� In this case� ruled surfaces are created

between the edges of the tears� left side to left side and right side to right side

�see Figure ����� The tears are assumed to be oriented correctly� A thru binding

assumes only one of the indices is nonzero� and it means that there is no matching

tear in the other surface� In this case� the parametric tear curve from the indicated

surface is evaluated in the other surface and the new curve is used to create the

bottom of the ravine� Then the Ravine operator is used to create ruled surfaces for

the indicated tear �see Figure ������ It is not necessary that all tears in all surfaces

be bound� particularly if they have already been �lled�

With many match bindings� a set of ruled surfaces attached end to end would

be created� In this case� a single higher�order surface could be constructed from the

collection of ruled surface boundary curves on each side of the tears� The di�culty

with this method would be the fact that these surfaces would need to be constructed

by interpolating the boundary curves which could easily result in approximation or

oscillation problems�
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Figure 	�
� Example of a match binding� f�� match� �g�

Figure 	���� Example of a thru binding� f�� thru� �g�
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��� Fold Operator

The Fold Operator constructs a crease within a surface and folds or bends the

surface at the crease�

foldedSrf � foldSrf� srf� centerpt�

creasedir� extent� bendAngle ��

foldedSrf� � foldSrf� srf� centerpt� crease� bendAngle�

	anchorpts
�	bendpts
 ��

The operator takes a surface to fold� srf� a description of where to fold the

surface� a measure of how big the crease is extent� and a measure of how much to

fold the surface� bendAngle� Describing where to fold the surface requires both a

center position or focal point� centerpt� and a vector� creasedir� which indicate

the direction of the crease� The bend measure is an angular speci�cation where �

indicates no bending and ��� indicates a complete fold� Positive bend angles refer

to a fold produced in a clockwise direction around the tangent direction of the tear�

Negative bend values indicate a bend in the counter�clockwise direction� The size

of the crease is given in terms of a percentage of the surface� One hundred percent

indicates a crease which extends from edge to edge� and 	�& indicates a crease

whose longest reach is half of the distance to the edge farthest from the center

position� Together� centerpt� creasedir and extent describe the tear which is

added to the surface�

The constraint which represents the bend is derived from the newly constructed

tear� and is prepared for use in a minimization process� In addition� anchor points

are sampled from the surface to the left of the tear �relative to the direction of

the tear curve in parametric space� to provide a way for that surface to remain

stationary� Five anchor points are sampled as follows�

�� The vector orthogonal to the tangent direction �the parametric normal direc�

tion� at the center position in the stationary surface is constructed and its

point of intersection with the boundary is determined� The �rst three points
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are selected by sampling points at 	& �close�� 	�& �mid�� and �	& �far� of

the distance along this normal vector �see Figure �����A���


� Based on a percentage parameter� back� which behaves like the parameters�

close� mid� and far� above� line segments are drawn which connect the back

point on normal vector to the endpoints of the tear� The points at the

percentage of these segments indicated by the side aprameter are selected

as the fourth and �fth points �see Figure �����B���

� Finally a set of bend points is constructed in a process similar to the an�

chor points only these points are evaluated with the normal in the opposite

direction�

The bend points are then rotated by the bend angle counter�clockwise around the

surface�s tangent direction determined by the focal point and the crease direction�

These sets of points are submitted to a minimization procedure along with the

crease constraints and a folded surface is returned� �Minimization of torn surfaces

is discussed in Section ����� Alternately� a custom crease can be speci�ed� along

with a point on the curve �analogous to the center position� at which to perform

A

far

close

back

side

B

midv

Figure 	���� Diagram of parameters used to compute anchor points�
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the fold� Although this allows nonlinear creases� performing a fold around a custom

curve is not generally solvable if the crease is to be maintained to a given tolerance�

In addition� the various automatically constructed anchor points which are used

in the minimization can actually be any points which embody the type of shape

construction desired� Allowing modi�cation of the parameters� close� mid� far�

back� and side� can provide �ne tuning of the shape of the surface�

Clearly this procedure can be prone to error since the anchor and bend points

are not guaranteed to exhibit any kind of properties other than that they are in

the surface �unless the surface is trimmed�� they are not the same� and they are

relatively easy to compute in most cases �trimmed B�spline surfaces can be more

di�cult�� They also do not adequately represent the shape of the surface in most

cases� Ideally� the anchor and bend points would be customizable in any version of

the operator� In some cases� the tear which is constructed by the given parameters

may not provide enough degrees of freedom to be able to adequately represent the

folded surface� This may result in a torn crease or an undesirable surface shape�

Another improvement would be to use surface normal constraints near the center

position rather than transformed bend points� However� care would need to be

taken to maintain the surface shape after the fold� Maintaining the surface shape

after the fold is� in itself� a subject for further study�

Figures ���
����	 represent the various stages of a paper airplane being folded

by using the fold operator� The original shape of the surface was maintained by

successively adding position constraints to a system of both position and curve ad�

jacency constraints subject to a curvature minimization solution using the Lagrange

Multiplier Method discussed in Section ���� below�

��� Minimization

Constrained minimization techniques are standard in modeling processes where

fair surfaces are desired� Most commonly� the equations for �nite elements are

minimized subject to boundary constraints to obtain a solution for a physical

system� Since these techniques can be readily applied to B�splines using linear
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Figure 	���� Paper airplane� Primary fold�

Figure 	���� Paper airplane� Initial wing folds�
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Figure 	���� Paper airplane� Second wing folds�

Figure 	���� Paper airplane� Final wing folds�
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systems of equations� they can also be applied to torn B�spline surfaces and shells�

The techniques outlined below are a summary of those presented by Welch and

Witkin���� which were adapted for use with torn B�splines in this thesis�

	���� Objective Functions

In order to obtain a fair surface shape� one possible objective function measures

the stretching and bending of the surface in terms of di�erential tangents and

curvature�

Q�w� �
Z
w
kGk�

�
# kBk�


� �����

In this equation� G and B are the �rst and second fundamental forms of the

surface� w� which represent the parameterization invariant di�erential geometry

of the surface���� and � and � are the weights for the matrix norms of the

fundamental forms� These two terms control the resistance to stretching and

bending� respectively�

When this equation is linearized to obtain the thin plate under tension model����


��� the following equation results�

Q�w� �
Z
w

�X
i�j��

�ijDiwDjw # �ij�DiDjw�
�� ���
�

where Diw is the partial derivative of the surface w at the ith parameter�

Welch and Witkin���� use a composite B�spline surface representation whose

objective function formulation is similar to that of torn B�splines� The torn B�spline

surface is composed of parametric regions� each having the same level of re�nement�

but with a restricted set of control points� Then

Q�w� �
Z
w

�X
i�j��

�
B� �ijp

TDibp
TDjb

#
�ij�pTDiDjb��

�
CA � ����
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where b is product of the basis functions for the surface and p is the composite

control point vector which is a concatenation of all control points� both in the

original mesh� and in the overlap meshes of the torn B�spline surface�

Minimization requires the determination of the Hessian matrix� which is a matrix

of sums of products of �rst and second partials that provide the transformation of

motion and gradients in one space to motion and gradients in another space� To

isolate the Hessian matrix from Equation ��� p is moved outside the integration

resulting in the following equation�

Q�w� � pT
Z
w

�X
i�j��

�
B� �ijDib�Djb

#
�ij�DiDjb�DiDjb�

�
CA p �����

� pTHp ���	�

where� is the outer product de�ned as follows� given vectorsA � ��i� andB � ��j��

A�B � C where Cij � �i � �j�

	���� Linear Constrained Optimization

Not suprisingly� the objective function described in the previous section has a

minimum when all degrees of freedom are �� To obtain a more reasonable solution�

constraints must be added to the system� Since B�splines lend themselves very

nicely to linear constraint formulation��� 
�� and others�� they can be introduced

into the linear system with very little e�ort� Each additional linear constraint

becomes a row in the matrix which represents the system of equations to be solved�

There are two classes of linear constraints which are used with torn B�splines

as implemented for this thesis� The �rst are simple geometric constraints� such as

points� tangents and twists� For each of these constraints� one row is added to the

constraint matrix� The other class of constraints� known as trans�nite constraints�

deal with constraints over higher�dimensional geometric objects such as curves or

surface patches� In particular� a curve constraint� such as the one suggested for

implementing creases� requires integration of the constraint function over the curve�

Curve constraints are generally formulated as constraints of the gradient of the
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di�erence between an embedded curve and its desired shape� With this formulation�

the number of rows added to the constraint matrix equals the number of control

points �or DOFs� in the surface�

Once the linear constraints are determined� there are standard ways of �nding

the minimum of the system� Two of the most common are the method of Lagrange

multipliers and the penalty method� Each of these methods has its own advantages

and disadvantages�

The minimization problem can be stated as

min
�����pTHp 	 pTf

��� �
p subject to Ap � b

�����

where H is the Hessian of the function to be minimized� f is the gradient op�

timization term� and Ap � b is the linear constraint system to be solved� The

standard approach is to transform this problem into an unconstrained problem by

the methods given below such that any solution for !p� when transformed back�

would satisfy the constraints� or

min
!p

�����
 !pT !H !p	 !pT !f
���� � �����

Since this system is at a minimum when its derivatives are �� then we can solve

!H !p � !f � �����

and then transform the resulting !p back to obtain the solution to the constrained

minimization problem�

	���� Lagrange Multiplier Method

The Lagrange multiplier method is one possible method for transforming the

constrained system to the unconstrained system� In this method� a new variable�

y� is introduced for each linear constraint row in A� It is necessary to minimize

F �p� y� with respect to p and y where
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F �p� y� �
�



pTHp 	 pTf # �Ap 	 b�Ty� �����

The augmented system obtained by di�erentiating this equation by each of the

elements of p and then each of the elements of y is�

	
H AT

A �


 	
p
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�

	
f
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Lagrange multipliers are simple to formulate and provide an exact �or least

squares� solution to the constraints while minimizing the Hessian� but this method

has several disadvantages� First� an additional variable� y �the Lagrange multiplier��

is added for each of the constraint rows� dramatically increasing the number of

variables in the system� In addition� the constraint matrix needs to be linearly

independent before trying to solve the system� In most cases� a least squares �t to

the constraints is desired� which requires ATA �where A is the original constraint

matrix� as the constraint matrix to be included in the system� Typically� these

matrix multiplies are computationally expensive� Finally� the augmented system is

not positive de�nite anymore� so care must taken when solving this system�

The Singular Value Decomposition �SVD� method can be used to solve this

system of equations since it is designed to deal with problems at singularities� This

method was used for all examples in this thesis involving minimization�

	���� Penalty Method

In contrast� the penalty method is signi�cantly more di�cult to formulate� The

transformed system in this case is

min

�����
�

A
H

�
p 	

�

b
f

������ � ������

In particular� determining the weights� 
� associated with the particular con�

straints is somewhat of a black art� In depth knowledge of the relative worth

of the constraint functions is an absolute necessity� The constrained minimum is
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approached by the unconstrained minimum as 
 ��� so allowing for a changing


 during the solution process is essential� If 
 is too small� then a large constraint

residual must again be subjected to another minimization step� However� this

method is inherently more stable since the constraint matrix does not need to be

normalized� In addition� since the constraint rows do not need to be independent�

incremental updates of the factored matrices �used in some solution techniques� is

possible�



CHAPTER 

APPLICATIONS

The representational power available in the torn tensor product B�spline surface

has been discussed and various operators to construct these surfaces have been

presented� This chapter describes how the torn B�spline surface can be used for

more complex modeling in the application areas discussed at the beginning of this

thesis� In addition� various examples in these areas will be presented�

�� Surface Reconstruction

The problems encountered when reconstructing models from data are a research

area unto themselves� Yet with a few examples it can be seen how torn B�spline

surfaces can be used to solve some of the more common problems� It is assumed for

these examples that the data are given as three�dimensional �or D� points corre�

sponding to a particular parametric location on the surface� Surface reconstruction

with other types of data can be addressed with the same approach�

One common di�culty that often arises when reconstructing surfaces is when

the data makes an abrupt jump from one elevation to another along a line or curve�

These jumps are common when reconstructing models from D laser scanner data�

Parts of the model that are obscured by other features from a particular direction

are primary candidates� Other range data properly registered can be used to �ll in

the gaps� As with all data in this category� an initial step of determining the nature

and structure of the discontinuity is required� Once the discontinuity is discovered�

a surface can be constructed from the given data�

To illustrate� consider the sequence of surfaces in Figure ���� Figure ����A� is

the original surface and the data sampled from that surface� There are 
�� points

generated by random sampling and 
� evenly placed points around the perimeter to
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make sure the corners were adequately constrained� For this example� the original

surface is order �� with �  � control points in the mesh� Figure ����B� shows the

surface reconstructed by interpolation with a normal B�spline surface with �  �

control points so that the number of DOFs for the interpolated surface is de�nitely

larger than the number of DOFs on the original surface� The number of data

points ensures that the system is overconstrained and that a least squares solution

is required� The error values� �� given in Figure ���� are the sum of the squares

of the distances between the data points and their corresponding actual surface

positions� It is evident that even though there are signi�cantly more DOFs in the

new surface than are in the original surface� the distribution of the DOFs is not

e�ective enough to produce reasonable results� On the other hand� Figure ����C�

shows a surface reconstructed with a priori knowledge of the discontinuity and

application of discontinuity within the interpolated surface� Clearly this new surface

is a more reasonable reconstruction�

However� rarely is the discontinuity known before reconstruction� The sur�

face in Figure ����D� has a discontinuity that is an approximation of the original

with representative modi�cations� such as a smaller size and more variation since

the discontinuity is likely approximated by measuring gradient di�erences �with

standard edge detection techniques�� The full extent of the tear is not likely

to be discovered because the data do not vary much near the ends because of

the continuity requirements� In addition� the structure of the data may make

it di�cult to properly register the discontinuity in the parametric domain� This

�nal surface has a larger error� yet still manages to capture the structure of the

data signi�cantly better than standard interpolation� The torn B�spline surfaces

constructed for interpolation are �x� to match the DOFs of the original surface�

Even when keeping the number of DOFs approximately the same� the torn B�spline

surface�s structure is much more desirable�

Another di�culty occurs when the original model has an edge and the data

re�ects this feature� For this case assume the data are unorganized� that is� no

speci�c parametric locations accompany the points to be interpolated� The most
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Figure 
��� Interpolation� �A� Reference surface with data points� �B� In�
terpolation with smooth surface �� � ���	������ �C� Interpolation with torn
surface same tear�� � ���������� �D� Interpolation with torn surface� di�erent
tear �� � ���	�	����
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common method for dealing with this problem is to construct multiple surfaces

which meet at the edge� Here the advantages of the torn B�spline surface are less

obvious but just as signi�cant� First� not all edges are straight and the curved�

nonisoparametric ones can cause problems if not carefully registered� Second�

registration of the parametric data with the individual surfaces can be a nontrivial

task� even for edges which are straight� if they are not aligned with the isoparametric

lines of the data source� If the registration problems can be solved� using multiple

surfaces to represent the data is nearly equivalent in complexity to using torn

B�spline surfaces� In both cases� additional DOFs and constraints are often used

to adequately represent the surface� In the case of torn B�spline surfaces� however�

the parameterization of the surfaces near the edge may be more desirable since

the parameterizations are guaranteed to match across the edge� Unfortunately� a

general crease is not always representable with a single torn surface� In this case

multiple surfaces is the best option�

�� Stamping

One of the more common issues in the stamping process is the formation of wrin�

kles� folds and tears� whether they are intentional or not� Such aberrations in the

structure usually require a change in representation� With torn B�spline surfaces�

then need for changing the representation is eliminated since the discontinuities can

be incorporated into the surface� The following examples illustrate the intentional

formation of such features�


���� Lance Punching

In normal punching� a punch with beveled edges is inserted into a sheet of

material causing a section of the material to be removed in the shape of the

punch� In lance punching� a portion of the punch does not go through the material

leaving the material attached along a straight�edged crease�
��� The shape of the

cut portion is determined by the shape of the tool� Figure ��
 shows a single

surface which has been lance punched twice by two di�erent punches resulting in

di�erently�shaped tabs� This surface contains a single tear around each of the cut



��

Figure 
��� Single surface with two lance punches�

portions and a tear representing each of the creases along which a curve adjacency

constraint is maintained�


���� Embossing

Embossing is similar to punching in that a fold or region of high curvature

is intentionally created around the perimeter of the punch� Rather than introduce

large numbers of DOFs to represent the region of high curvature� a crease is created�

Figure �� represents one portion of an embossing that has rounded corners� This

embossed surface contains a single tear and a curve adjacency constraint along the

entire length of the tear� In a regular tensor product surface� the degree of freedom

required to produce similar results would be prohibitive�

�� Geology

Drape folding is one of the more interesting geological formations that is not

easily represented by ordinary smooth parametric surfaces� This formation is caused

by a vertical shift in bedrock position along a fault line� The layers situated on

top of the bedrock are often more �uid creating a rock layer which is draped from

the higher section to the lower section without actually separating along the fault�



��

Figure 
��� Section of an embossed model�

The representation of the boundaries of these layers is easily accomplished with

torn tensor product B�spline surfaces combined into the D layering representation

described in Section ��	� In ordinary circumstances� the individual layer boundaries

would be composites of surfaces and would not easily be integrable into a single

comprehensive representation�

Figures ������� illustrate the strati�cation of these layers as represented by the

torn B�spline surfaces� Figure ��� shows the top boundary of the geological model

with uniform smoothness throughout and a plateau on one corner of the model�

Notice the colors of the layers represented in the model which are visible along the

edges� This top surface is a regular tensor product B�spline surface�

Figure ��	 shows the model with the top layer removed� This layer is directly

above the bedrock and has a fold in the boundary near the fault line� The fold is

represented by a single tear from on edge of the surface to the adjacent edge� with

a higher tolerance curve adjacency constraint along the entire edge�

Figure ��� shows the bedrock layer� This surface contains a tear identical to that

of the surface directly above it� but instead of a constraint� the sheer drop in the

bedrock is �lled by a ruled surface as discussed in Section ��
�

Figure ��� provides a close�up of the composition of the layers and the e�ects of



��

Figure 
��� Drape fold example� D layered model�

the bedrock shift on the upper layers� The edges bounding the D layered model

are composed of ruled surfaces between the layers as discussed in Section ��	� In the

construction of this example� no interlayer binding was used� The individual layers

interacted only at the edges since the bedrock layer�s tear is shear �lled and the

draped layer�s tear is a crease� neither of which requires any additional extension�



���

Figure 
��� Drape fold showing crease in second layer�



���

Figure 
��� Drape fold showing fault in third layer�



��


Figure 
��� Drape fold bottom surface with back sides showing layered relation�
ship�



CHAPTER ��

CONCLUSION

The problems associated with representing discontinuities in the modeling pro�

cess are di�cult� The torn tensor product B�spline representation was introduced

to provide an easy and intuitive means for representing some of the more di�cult

situations� Existing higher�order representations which may be pieced together

often have parameterization di�culties and may require extensive continuity con�

straints� often requiring signi�cant user intervention� In addition� models composed

solely of polygons lack the ability to further approximate the smooth surface they

represent once discontinuities are introduced� The torn B�spline representation can

incorporate arbitrary �speci�cally non�isoparametric� curves of discontinuity within

a single surface representation�

The torn tensor product B�spline representation is derived from the widely used

B�spline representation and� as such� supports the more familiar B�spline modeling

operations such as re�nement and subdivision� When using this representation� a

modeling process which includes discontinuities no longer has to terminate or switch

representations at the point of their introduction� The torn B�spline representa�

tional space is closed under modeling operations which introduce discontinuities�

Designers can then continue the modeling process without interruption and inco�

porate the current structure in further modeling operations�

Examples from geology� sheet metal forming� and surface reconstruction demon�

strate this power of the torn B�spline representation� Situations which were previ�

ously di�cult� if not completely intractable� have straightforward solutions when

the torn B�spline representation is used� Basic modeling operations for a command�

based modeling environment utilize this representational power to dramatically re�



���

duce the amount of user intervention often required when producing these complex

models by other methods�



CHAPTER ��

FUTURE WORK

Although the torn tensor product B�spline representation dramatically expands

the �exibility available to the designer� there are still improvements that can be

made� many of which have already been mentioned�

Foremost of these improvements would be an easier and more powerful crease

maintenance mechanism� In the current representation� creases require a curve

constraint to be maintained during the modeling process� The best situation would

be a representation which was able to handle creases as easily as tears within

the torn B�spline representation� However� the adjacency issues are so di�cult

and complex that the solution would likely be similar to a constraint system�

Assuming that constraint maintenance is the most viable solution� it can still

be improved� One di�culty of the current system is that the curve position or

adjacency constraint is usually an approximation� even if there are adequate degrees

of freedom available in the surface� The attractiveness of this approximation is its

speed since these systems are usually linear� but there is a signi�cant amount of a

priori knowledge about the creases� most notably that both edges have the same

parameterization� the same amount of �exibility� and that an exact solution does

exist� i�e�� the original� uncreased surface� A custom constraint maintenance system

would be the most e�ective option in this situation� although the possible inclusion

of other constraints needs to be considered�

Although this thesis presents several high�level modeling operators� these are

clearly not all of the operators that could be useful� A modeling system which

utilizes torn B�splines needs to have all of the representational �exibility at its

�ngertips otherwise the power will not be adequately harnessed� Additional tech�
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niques for constructing torn B�spline shells �collections of surfaces with adjacency

information� would be useful for a CSG type of modeling system which uses bound�

ary representations� Additional operators to combine parts of surfaces� to sew

surfaces together� and to split surfaces apart could be developed to aid in the

design process� The �exibility introduced by the D layered representation could be

further utilized by operators which allowed for easy manipulation of these surfaces

after construction�

The torn tensor product B�spline surface is introduced in this thesis since B�

splines are one of the most commonly used smooth�surface representations� B�

splines work well for the basis of this representations because the control of the

surface local� depending on number of control points and order or the surface�

This allows regions of varying continuity without adding new surfaces� Other

parametric surface representations which have this characteristic of locality are

prime candidates for extension� One potentially interesting class of surfaces are G�

splines��� which include ��splines and ��splines�

Of course� complex representations have the tendency to be slower than simpler

ones� but the speed issues encountered in the torn B�spline representation result

more from the underlying trimmed surface representation than from the elements

of the torn B�spline representation itself� More e�cient trimmed B�spline surfaces

would mean more e�cient torn B�spline surfaces�



REFERENCES

��� Alpha � User�s Manual� Engineering Geometry Systems� Salt Lake City� ���
�

�
� Bajaj� C� L�� and Ihm� I� Smoothing polyhedra using implicit algebraic
splines� Proceedings of SIGGRAPH��
 �Chicago� July 
�$�� ���
�� pages ��$
��� ACM SIGGRAPH� New York� ���
�

�� Balun� T�� Tang� S� C�� Chappuis� L� B�� and Wu� J� H� Application of
mechanics methods to evaluation of forming and process design� Proceedings
of the Sheet Metal and Stamping Symposium� SP$��� �Detroit� Mich�� March
�$	� ����� pages ���$���� SAE� Warrendale� Penn�� ����

��� Baraff� D� Analytical methods for dynamic simulation of non�penetrating
rigid bodies� Proceedings of SIGGRAPH��� �Boston� July �$August �� ������
in Computer Graphics 
� �August ������ pages 

$

� ACM SIGGRAPH�
New York� �����

�	� Baraff� D� Curved surfaces and coherence for non�penetrating rigid body
simulation� Proceedings of SIGGRAPH��� �Dallas� August �$��� ������ in
Computer Graphics 
��� �August ������ pages ��$
�� ACM SIGGRAPH� New
York� �����

��� Bartels� R� H�� Beatty� J� C�� and Barskey� B� A� An Introduction
to Splines for Use in Computer Graphics and Geometric Modeling� Morgan
Kaufmann Publishers� Inc�� Los Altos� Calif�� �����

��� Barzel� R� Modeling with dynamic constraints� SIGGRAPH Course Notes
'��� July �����

��� Barzel� R�� and Barr� A� H� A modeling system based on dynamic
constraints� Proceedings of SIGGRAPH��� �Atlanta� August �$	� ������ in
Computer Graphics 

�� �August ������ pages ���$���� ACM SIGGRAPH�
New York� �����

��� Bathe� K��J� Finite Element Procedures in Engineering Analysis� Prentice�
Hall� Englewood Cli�s� N�J�� ���
�

���� Bathe� K��J�� and Wilson� E� L� Numerical Methods in Finite Element
Analysis� Prentice�Hall� Englewood Cli�s� N�J�� �����

���� Blanc� C�� and Schlick� C� X�splines� A spline model designed for the
end�user� Proceedings of SIGGRAPH��	 �Los Angeles� August �$��� ���	��
pages ��$��� ACM SIGGRAPH� New York� ���	�



���

��
� Bloomenthal� J�� and Ferguson� K� Polygonization of non�mainfold
implicit surfaces� Proceedings of SIGGRAPH��	 �Los Angeles� Calif�� August
�$��� ���	�� pages ��$��� ACM SIGGRAPH� New York� ���	�

��� Bloor� M� I� G�� and Wilson� M� J� Representing PDE surfaces in terms
of B�splines� Computer�Aided Design 

�� �July$August ������ 
�$��

���� Bloor� M� I� G�� and Wilson� M� J� Using partial di�erential equations
fo generate free�form surfaces� Computer�Aided Design 

�� ������� 
�
$
�
�

��	� Carignan� M�� Yang� Y�� Magnenat Thalmann� N�� and Thalmann�
D� Dressing animated synthetic actors with complex deformable clothes�
Proceedings of SIGGRAPH��
 �Chicago� July 
�$�� ���
�� pages ��$����
ACM SIGGRAPH� New York� ���
�

���� Carlson� W� E� An algorithm and data structure for d object synthesis
using surface patch intersections� Proceedings of SIGGRAPH��
 �Boston� July

�$�� ���
�� pages 
		$
�� ACM SIGGRAPH� New York� ���
�

���� Carlson� W� E� Techniques for the Generation of Three Dimensional Data
for Use in Complex Image Synthesis� PhD thesis� Ohio State Univ�� September
���
�

���� Casale� M� S� Free�form solid modeling with trimmed surface patches� IEEE
Computer Graphics and Applications ��� �January ������ $��

���� Catmull� E�� and Clark� J� Recursively generated b�spline surfaces on
arbitrary topological meshes� Computer�Aided Design ���� �November ������
	�$		�

�
�� Celniker� G�� and Gossard� D� Deformable curve and surface �nite�
elements for free�form shape design� Proceedings of SIGGRAPH��� �Las Vegas�
Nev�� July 
�$August 
� ������ in Computer Graphics 
	�� �August ������
pages 
	�$
��� ACM SIGGRAPH� New York� �����

�
�� Celniker� G�� and Welch� W� Linear constraints for deformable b�spline
surfaces� Proceedings of Symposium on Interactive D Graphics �Cambridge�
Mass�� March 
�$April �� ���
�� pages ��	$���� ACM SIGGRAPH� New York�
���
�

�

� Chui� C� K� Multivariate Splines� Capital City Press� Montpelier� Vt�� �����

�
� Cobb� E� S� Design of Sculptured Surfaces using the B�spline Representation�
PhD thesis� Univ� of Utah� June �����

�
�� Cohen� E�� Lyche� T�� and Riesenfeld� R� Discrete b�splines and subdi�
vision techniques in computer�aided geometric design and computer graphics�
Computer Graphics and Image Processing ���
 �October ������ ��$����

�
	� Cohen� M� Interactive Spacetime Constraints for Linked Figures� PhD thesis�



���

Univ� of Utah� June ���
�

�
�� Costello� R� B�� Ed� Random House Webster�s College Dictionary� Ran�
dom House� Inc�� New York� ���
�

�
�� Dixon� J� R�� and Poli� C� Engineering Design and Design for Manufac�
turing� A Structure Approach� Field Stone Publishers� Conway� Mass�� ���	�

�
�� Doo� D�� and Sabin� M� Analysis of the behaviour of recursive division
surfaces� Computer�Aided Design ���� �November ������ 	�$���

�
�� Ellens� M� S�� and Cohen� E� An approach to C�� and C� feature lines�
In Mathematical Methods for Curves and Surfaces� T� L� M� Daehlen and
L� Schumaker� Eds� Vanderbilt Univ� Press� LaVergne� Tenn�� ���	�

��� Farin� G� Curves and Surfaces for Computer Aided Geometric Design� A
Practical Guide� Academic Press� Inc�� New York� �����

��� Farouki� R� T� Trimmed�surface algorithms for the evaluation and inter�
rogation of solid boundary representations� IBM Journal of Research and
Development �� �May ������ ��$��

�
� Feynman� C� R� Modeling the appearance of cloth� Master�s thesis� MIT�
May �����

�� Forsey� D� R�� and Bartels� R� H� Hierarchical B�spline re�nement�
Proceedings of SIGGRAPH��� �Atlanta� August �$	� ������ in Computer
Graphics 

�� �August ������ pages 
�	$
�
� ACM SIGGRAPH� New York�
�����

��� Fowler� B� M� Geometric manipulation of tensor product surfaces� Pro�
ceedings of Symposium on Interactive D Graphics �Cambridge� Mass�� March

�$April �� ���
�� pages ���$���� ACM SIGGRAPH� New York� ���
�

�	� Fowler� B� M�� and Bartels� R� H� Constraint based curve manipulation�
Submitted for publication�� ���
�

��� Fukutomi� K�� Maruyama� M�� Kudo� M�� and Nagamitsu� T� Veri��
cation of �nite element method applied to automotive body panels� Proceed�
ings of the Sheet Metal and Stamping Symposium� SP$��� �Detroit� Mich��
March �$	� ����� pages ��$���� SAE� Warrendale� Penn�� ����

��� Gascuel� M��P�� Verroust� A�� and Puech� C� A modeling system
for complex deformable bodies suited to animation and collision processing�
SIGGRAPH Course Notes '
�� July �����

��� Gourret� J� P�� N� M��T�� and Thalmann� D� Modeling of contact
deformation between a synthetic human and its environment� Computer�Aided
Design 
�� �September ������ 	��$	
��



�	�

��� Grandin� Jr�� H� Fundamentals of the Finite Element Method� Macmillan
Publishing Co�� Indianapolis� Ind�� �����

���� Grimm� C� M�� and Hughes� J� F� Modeling surface of arbitrary topology
using manifolds� Proceedings of SIGGRAPH��	 �Los Angeles� August �$���
���	�� pages 	�$��� ACM SIGGRAPH� New York� ���	�

���� Hayes� J� G� New shapes from bicubic splines� NPL Report NAC 	��
National Physical Laboratory� September ����� Presented at CAD ��� Interna�
tional Conference on Computers in Engineering and Building Design� Imperial
College� London�

��
� Herron� G� Triangular and Multisided Patch Schemes� PhD thesis� Univ� of
Utah� September �����

��� Hishida� Y�� and Wagoner� R� W� Experimental analysis of blank holding
force control in sheet forming� Proceedings of the Sheet Metal and Stamping
Symposium� SP$��� �Detroit� Mich�� March �$	� ����� pages �$��� SAE�
Warrendale� Penn�� ����

���� Hollig� K�� and Mogerle� H� G�splines� Computer Aided Geometric
Design ��� �September ������ ���$
���

��	� Hoppe� H�� DeRose� T�� Duchamp� T�� Halstead� M�� Jin� H��
McDonald� J�� Schweitzer� J�� and Stuetzle� W� Piecewise smooth
surface reconstruction� Proceedings of SIGGRAPH��� �Orlando� Fla�� July

	$
�� ������ pages 
�	$�
� ACM SIGGRAPH� New York� �����

���� Hoppe� H�� DeRose� T�� Duchamp� T�� McDonald� J�� and Stuet�
zle� W� Surface reconstruction from unorganized points� Proceedings of
SIGGRAPH��
 �Chicago� July 
�$�� ���
�� pages ��$��� ACM SIGGRAPH�
New York� ���
�

���� Hoppe� H�� DeRose� T�� Duchamp� T�� McDonald� J�� and Stuetzle�
W� Mesh optimization� Proceedings of SIGGRAPH�� �Anaheim� Calif��
August 
$�� ����� pages ��$
�� ACM SIGGRAPH� New York� ����

���� Huebner� K�� and Thornton� E� A� Finite Element Method for Engineers�

nd edition� Wiley� New York� ���
�

���� Isaacs� P� M�� and Cohen� M� F� Controlling dynamic simulation with
kinematic constraints� behavior functions and inverse dynamics� Proceedings
of SIGGRAPH��� �Anaheim� Calif�� July 
�$�� ������ in Computer Graphics

��� �July ������ pages 
�	$

�� ACM SIGGRAPH� New York� �����

�	�� Light� R� A�� and Gossard� D� C� Modi�cation of geometric models
through variational geometry� Computer�Aided Design ���� �July ���
�� 
��$

���



�	�

�	�� Loop� C� Smooth subdivision surfaces based on triangles� Master�s thesis�
Univ� of Utah� August �����

�	
� Loop� C� Smooth spline surfaces over irregular meshes� Proceedings of
SIGGRAPH��� �Orlando� Fla�� July 
	$
�� ������ pages �$��� ACM SIG�
GRAPH� New York� �����

�	� Loop� C�� and DeRose� T� Generalized B�spline surfaces of arbitrary
topology� Proceedings of SIGGRAPH��� �Dallas� August �$��� ������ in
Computer Graphics 
��� �August ������ pages ��$	�� ACM SIGGRAPH�
New York� �����

�	�� Lyche� T�� and Morken� V� Knot removal for parametric B�spline curves
and surfaces� Computer Aided Geometric Design �� ������� 
��$
��

�		� Malone� J� G�� Plunkett� R�� and Hodge� Jr�� P� G� An elastic�plastic
�nite element solution for a cracked plate� Finite Elements in Analysis And
Design 
�� �April ������ ��$����

�	�� McCollough� Jr�� W� T� Trimmed surfaces� Master�s thesis� Univ� of
Utah� July �����

�	�� Mirtich� B�� and Canny� J� Impulse�based simulation of rigid bodies�
Proceedings of Symposium on Interactive D Graphics �Monterey� Calif�� April
�� ���	�� pages ���$���� ACM SIGGRAPH� New York� ���	�

�	�� Moreton� H� P�� and S�equin� C� H� Functional optimization for fair
surface design� Proceedings of SIGGRAPH��
 �Chicago� July 
�$�� ���
��
pages ���$���� ACM SIGGRAPH� New York� ���
�

�	�� Mueller� T� I� Geometric Modelling with Multivariate B�splines� PhD
thesis� Univ� of Utah� June �����

���� Munkres� J� R� Topology� Prentice�Hall� Englewood Cli�s� N�J�� ���	�

���� Nielson� G� M� Some piecewise polynomial alternatives to splines under
tension� Computer Aided Geometric Design ������� 
��$
	�

��
� Peiper� S�� Rosen� J�� and Zeltzer� D� Interactive graphics for plastic
surgery� A task�level analysis and implementation� Proceedings of Symposium
on Interactive D Graphics �Cambridge� Mass�� March 
�$April �� ���
��
pages �
�$��� ACM SIGGRAPH� New York� ���
�

��� Pentland� A�� and Williams� J� Good vibrations� Modal dynamics for
graphics and animation� Proceedings of SIGGRAPH��� �Boston� July �$
August �� ������ in Computer Graphics 
� �August ������ pages 
�	$


�
ACM SIGGRAPH� New York� �����

���� Pierre� D� A� Optimization Theory with Applications� John Wiley and Sons�
Inc�� New York� �����



�	


��	� Platt� J� C�� and Barr� A� H� Constraint methods for �exible models�
Proceedings of SIGGRAPH��� �Atlanta� August �$	� ������ in Computer
Graphics 

�� �August ������ pages ���$
��� ACM SIGGRAPH� New York�
�����

���� Plotnikov� L� M� Shear Structures in Layered Geological Bodies� A� A�
Balkema Publishers� Brook�eld� Vt�� �����

���� Press� W� H�� Flanner� B� P�� Teukolsky� S� A�� and Vetterling�
W� T� Numerical Recipes in C� The Art of Scienti�c Computing� Cambridge
Univ� Press� Cambridge� England� �����

���� Qin� H� D�NURBS� Dynamic Non�Uniform Rational B�Splines� PhD thesis�
Univ� of Toronto� ���	�

���� Sarraga� R� F� Computer modeling of surfaces with arbitrary shapes� IEEE
Computer Graphics and Applications ���
 �March ������ ��$���

���� Sarraga� R� F�� and Waters� W� C� Free�form surfaces in GMSolid�
Goals and issues� In Solid Modeling by Computers� M� S� Pickett and J� W�
Boyse� Eds� Plenum Press� New York� September ����� pages ���$
��� Pro�
ceedings of a symposium held September 
	�
�� ���� at the General Motors
Research Laboratories� Warren� Mich�

���� Schroeder� W� J�� Zarge� J� A�� and Lorensen� W� E� Decimation of
triangle meshes� Proceedings of SIGGRAPH��
 �Chicago� July 
�$�� ���
��
pages �	$��� ACM SIGGRAPH� New York� ���
�

��
� Strang� G�� Ed� Linear Algebra and Its Applications� second ed� Academic
Press� Inc�� New York� �����

��� Szeliski� R�� and Tonnesen� D� Surface modeling with oriented par�
ticle systems� Proceedings of SIGGRAPH��
 �Chicago� July 
�$�� ���
��
pages ��	$���� ACM SIGGRAPH� New York� ���
�

���� Terzopoulos� D� Regularization of inverse visual problems involving dis�
continuities� IEEE Trans� on Pattern Analysis and Machine Intelligence ���
�July ������ ��$�
��

��	� Terzopoulos� D�� and Fleischer� K� Deformable models� The Visual
Computer � ������� ��$��

���� Terzopoulos� D�� and Fleischer� K� Modeling inelastic deformation�
Viscoelasticity� plasticity� fracture� Proceedings of SIGGRAPH��� �Atlanta�
August �$	� ������ in Computer Graphics 

�� �August ������ pages 
��$
���
ACM SIGGRAPH� New York� �����

���� Terzopoulos� D�� Platt� J�� Barr� A�� and Fleischer� K� Elastically
deformable models� Proceedings of SIGGRAPH��� �Anaheim� Calif�� July



�	


�$�� ������ in Computer Graphics 
��� �July ������ pages 
�	$
��� ACM
SIGGRAPH� New York� �����

���� Terzopoulos� D�� Platt� J�� and Fleischer� K� From goop to glop�
Heating and melting deformable models� Tech� rep�� Schlumberger Palo Alto
Research� Palo Alto� Calif�� November �����

���� Terzopoulos� D�� and Qin� H� Dynamic NURBS with geometric con�
straints for interactive sculpting� ACM Transactions on Graphics ��� �April
������ ��$���

���� Terzopoulos� D�� and Witkin� A� Physically based models with rigid
and deformable components� IEEE Computer Graphics and Applications ���
�November ������ ��$	��

���� Thingvold� J� A� Elastic and plastic surfaces for modeling and animation�
Master�s thesis� Univ� of Utah� March �����

��
� Thomas� S� Modelling Volumes Bounded by B�spline Surfaces� PhD thesis�
Univ� of Utah� June �����

��� Turk� G�� and Levoy� M� Zippered polygon meshes from range images�
Proceedings of SIGGRAPH��� �Orlando� Fla�� July 
	$
�� ������ pages ��$
��� ACM SIGGRAPH� New York� �����

���� Vince� J� ��D Computer Animation� Addison�Wesley� Reading� Mass�� ���
�

��	� Volino� P�� Courchesne� M�� and Thalmann� M� M� Versatile and
e�cient techniques for simulating cloth and other deformable objects� Pro�
ceedings of SIGGRAPH��	 �Los Angeles� August �$��� ���	�� pages ��$����
ACM SIGGRAPH� New York� ���	�

���� Wang� Y� F�� and Wang� J��F� Surface reconstruction using deformable
models with interior and boundary constraints� IEEE Trans� on Pattern
Analysis and Machine Intelligence ���	 �May ���
�� 	�
$	���

���� Watt� A�� and Watt� M� Advanced Animation and Rendering Techniques�
ACM Press� New York� ���
�

���� Weil� J� The synthesis of cloth objects� Proceedings of SIGGRAPH���
�Dallas� August ��$

� ������ pages ��$	�� ACM SIGGRAPH� New York�
�����

���� Weinberg� D� M� Some two�dimensional kinematic analyses of the drape�
fold concept� In Laramide Folding Associated with Basement Block Faulting in
the Western United States� V� M� III� Ed� The Geological Society of America�
Inc�� Boulder� Colo�� �����

���� Welch� W�� and Witkin� A� Variational surface modeling� Proceedings
of SIGGRAPH��
 �Chicago� July 
�$�� ���
�� pages �	�$���� ACM SIG�



�	�

GRAPH� New York� ���
�

���� Witkin� A�� Fleischer� K�� and Barr� A� Energy constraints on pa�
rameterized models� Proceedings of SIGGRAPH��� �Anaheim� Calif�� July

�$�� ������ in Computer Graphics 
��� �July ������ pages 

	$
�� ACM
SIGGRAPH� New York� �����

��
� Witkin� A�� and Kass� M� Spacetime constraints� Proceedings of SIG�
GRAPH��� �Atlanta� August �$	� ������ in Computer Graphics 

�� �August
������ pages �	�$���� ACM SIGGRAPH� New York� �����

��� Witkin� A�� and Welch� W� Fast animation and control of nonrigid
structures� Proceedings of SIGGRAPH��� �Dallas� August �$��� ������ in
Computer Graphics 
��� �August ������ pages 
�$
	
� ACM SIGGRAPH�
New York� �����

���� Yen� W��c� J� On Representation and Discretization of Finite Element
Analyses� PhD thesis� Univ� of Utah� December ���	�


