
TrISH � TRANSPARENT INTEGRATED STORAGE

HIERARCHY� A HIERARCHICAL STORAGE

MANAGEMENT SYSTEM FOR THE

���BSD UNIX OPERATING SYSTEM

by

Sidney G� Bytheway

A thesis submitted to the faculty of
The University of Utah

in ful�llment of the requirements for the degree of

Master of Science

Department of Computer Science

The University of Utah

March ����

Copyright c� Sidney G� Bytheway ����

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Sidney G� Bytheway

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory�

Chair� Robert R� Kessler

Gary Lindstrom

Lee A� Hollar

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah�

I have read the thesis of Sidney G� Bytheway in its �nal form and have
found that ��� its format� citations� and bibliographic style are consistent and acceptable�
��� its illustrative materials including �gures� tables� and charts are in place� and �	� the
�nal manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School�

Date Robert R� Kessler
Chair� Supervisory Committee

Approved for the Major Department

Dr� Tom Henderson
Chair�Dean

Approved for the Graduate Council

B� Gale Dick
Dean of The Graduate School

ABSTRACT

Online disk space is a valuable� relatively expensive� and frequently scarce re�

source that is often abused by users who squander it on large quantities of inactive

data� Large inactive �les should instead be moved to cheaper and more abundantly

available o�ine or near�line storage� Users� however� are often reluctant to utilize

o�ine storage because it is di�cult to use� An extension to the UNIX operating

system that transparently migrates inactive data between online and o�ine storage

is examined� enhanced� and evaluated�

To my wife�

Trish

and my children�

Benjamin� Allie� Aaron and Brooke

who were my support throughout this project�

CONTENTS

ABSTRACT � iv

LIST OF TABLES � x

LIST OF FIGURES � xi

ACKNOWLEDGMENTS � xii

CHAPTERS

�� INTRODUCTION �

��� Disk Storage �
��	 O�ine Storage �

��� Storage Hierarchy �
��
 Hierarchical Storage Management �

��� Thesis Outline �

�� THE BUMP MIGRATION SYSTEM �

	�� Background and Goals �
	�	 How BUMP Accomplished Its Goals �
	�	�� Migrating Files to O�ine Storage ��
	�	�	 Out of Space Error Handling ��
	�	�� Reloading Migrated Files ��
	�	�
 UNIX Process Flags ��
	�	�� Kernel and Migration Daemon Communication � � � � � � � � � � � � ��
	�	�
 UNIX Kernel Modi�cations �	
	�	�� UNIX System Utility Modi�cations ��
	�	�� BUMP System Tools �

	�	�� BUMP Databases �

	�	��� System Administrator and User Tools ��

	�� Analysis of BUMP ��
	���� Full Filesystem Errors ��
	���	 O�ine Device Support ��
	���� BUMP�s Database System �

	���
 Data Integrity and Reliability ��
	���� E�ciency and Usability ��
	���
 Chosen Limitations ��
	���� Miscellaneous ��

�� TRISH ENHANCEMENTS AND EXTENSIONS TO BUMP � � 	�

��� Goals of the TrISH System � 	�
��	 Performance Enhancements � 		
��	�� Restructuring the System � 		
��	�	 Concurrent Restore and User Access � 	�
��	�� On�Disk Data for Migrated Files � 	�
��	�
 Replacing the Database � 	

��	�� Better Free Space Management � 	�

��� Usability Enhancements � 	�
����� NFS Support � 	�
����	 O�ine Device Support � 	�
����� Site Integration Support � 	�
����
 Eligibility Algorithm � 	�
����� System Administrator Tools ��
����
 User Tools ��
����� Miscellaneous �	

��
 Reliability Enhancements ��
��� Summary of Enhancements to BUMP �

�� TRISH IMPLEMENTATION DETAILS �

�� TrISH Operation �

�	 UNIX Kernel Support ��

�	�� Filesystem Support ��

�	�	 Controlling Transparency �
�

�	�� Migration Daemon Communication Path � � � � � � � � � � � � � � � � �
�

�	�
 NFS Server Support �
	

�	�� Quota System Support �
�

�� Device Access Methods �
�

�
 Database Access Functions �

�� The TrISH Migration Daemon �
�

���� Request Management �

���	 TrISH Reload Servers �
�

�
 Enhancements to Standard Utilities �
�

�
�� The ls Command �
�

�
�	 The find Command ��

�
�� The fsck Command ��

�
�
 The df Command ��

�
�� The du command ��

�
�
 The dump Command ��

�
�� The restore Command ��

�� ANALYSIS OF TRISH ��

��� TrISH Design ��
��	 Performance Features �

��� TrISH Simulation ��
����� Simulation of sunset��home�grad ��

vii

����	 Simulation of geronimo��u �
�
����� Simulation of fast��usr�lsrc�avalanche � � � � � � � � � � � � � � � �
�
����
 Simulation Conclusions ��

��
 Usability Features ��
��� What Did Not Work �	
��
 Future Enhancements ��
��� Lines of Code in TrISH �

��� Conclusions �

�� RELATED WORK �

�� RASH �

���� The Goals of RASH ��

���	 How RASH Accomplished These Goals ��

���� RASH System Calls ��

���
 RASH UNIX Kernel Modi�cations ��

���� Similarities Between RASH and TrISH ��

���
 Di�erences Between RASH and TrISH ��

�	 UniTree �	

�	�� The Virtual Disk System �	

�	�	 Similarities Between UniTree and TrISH � � � � � � � � � � � � � � � � � � �

�	�� Di�erences Between UniTree and TrISH � � � � � � � � � � � � � � � � � � �

�� DFHSM under MVS ��

���� DFHSM Storage Management Functions � � � � � � � � � � � � � � � � � � ��

���	 Di�erences Between MVS and UNIX ��

���� Similarities Between DFHSM and TrISH � � � � � � � � � � � � � � � � � � ��

���
 Di�erences Between DFHSM and TrISH � � � � � � � � � � � � � � � � � � ��

APPENDICES

A� TRISH CONFIGURATION FILE ��

B� THE OUTMIGRATION PROCESSES ��	

C� FREE SPACE CREATION ���

D� THE TRISH RELOADER SERVERS ��

E� TRISH OPERATING SYSTEM CALLS ���

F� KERNEL TO DAEMON MESSAGES ���

G� DEVICE ACCESS METHOD ROUTINES ���

H� DATABASE ACCESS ROUTINES ���

viii

I� MISCELLANEOUS TRISH PROGRAMS ���

J� THE TRCTL COMMAND �		

K� DEVICE MANAGEMENT �	

L� COMMUNICATING WITH THE OPERATOR � � � � � � � � � � � � � � �	

REFERENCES �	�

ix

LIST OF TABLES

��� UNIX File Sizes � 	

D�� Requests for TrISH Reload Servers ��

F�� Valid Operations for fmig msg ��	

G�� Access Method Routines ��

H�� Database Access Routines ��

LIST OF FIGURES

��� UNIX File Size Graph �

��	 Storage Hierarchy �

��� sunset��home�grad � File Size ��

��	 sunset��home�grad � Days Since Access �
�

��� sunset��home�grad � Badness Value �
�

��
 sunset��home�grad � Simulated Disk �
�

��� sunset��home�grad � Simulated Access �
	

��
 geronimo��u � File Size �

��� geronimo��u � Days Since Access �

��� geronimo��u � Badness Value �
�

��� geronimo��u � Simulated Disk �

���� geronimo��u � Simulated Access �

���� fast��avalanche � File Size �
�

���	 fast��avalanche � Days Since Access �
�

���� fast��avalanche � Badness Value �
�

���
 fast��avalanche � Simulated Disk �
�

���� fast��avalanche � Simulated Access ��

A�� Sample Code to Retrieve Con�guration Parameters � � � � � � � � � � � � � � �	

F�� Contents of fmig msg ���

I�� Filesystem Analysis Graph ���

I�	 Filesystem Analysis Graph ���

J�� trctl Command Options �	�

L�� Sample X�window from the oprq Command �	�

ACKNOWLEDGMENTS

I would like to thank Jay Lepreau for his time and guiding hand through this

project and for providing �nancial support and a machine for this work to be

developed and tested on� Mike Hibler for his technical expertise and patience with

�dumb� questions� and the rest of the Computer Science Laboratory sta� for their

help and patience at critical times� The following registered trademarks occur in

the text�

UNIX is a registered trademark of Novell�

NFS is a registered trademark of Sun Microsystems�

UniTree is a trademark of General Atomics�

MVS is a registered trademark of International Business Machines�

DFHSM is a registered trademark of International Business Machines�

CICS is a registered trademark of International Business Machines�

CHAPTER �

INTRODUCTION

Over the last few years� we have seen an enormous increase in the storage

capacity of computer disk drives� An average disk drive a few years ago held

�� to
� megabytes of data and cost about �	���� per megabyte� Today disk drives

hold up to ����� megabytes of data and cost about ���� per megabyte�

��� Disk Storage

Amazingly enough� as the amount of available disk space has grown� so has the

amount of data that needs to be stored� The space requirements of graphical images�

scienti�c data� and even business data have kept pace with� and even outstripped�

advances in disk drive technologies� The need for more� inexpensive storage space

is as much of a need today as it was �� years ago� A study conducted for Epoch

Peripheral Strategies found that storage increased on average of
�� to ��� per

year� �The usage of disk space is going up faster than the price of disk is going

down����� p�

��

An informal survey��� of internet sites revealed some surprising facts about disk

space usage� This survey asked sites to voluntarily run a program that gathered

data about the sizes of �les on their systems� Data for over ���� �le systems

containing �	 million �les with 	�� gigabytes of data were gathered� The data are

summarized into Table ��� and graphed in Figure ���

By examining the graph in Figure ���� it becomes evident that ��� of the �les

are less than �
K in size and that the remaining ��� �which are larger than �
K�

consume ��� of the disk space� Thus� ��� of the �les consume ��� of the disk

space�

	

Table ���� UNIX File Sizes

File Size Number of � of Cumm � Disk Space � of Cumm �
�Max� Bytes� Files Files of Files in Megabytes Space of Space

� �
�
�� ��	 ��	 ��� ��� ���
� �	�� ��� ��	 ��� ��� ���
	 ��
� ��� ��� ��� ��� ���

 ��	�
 ��� ��
 ��� ��� ���
� 	�	�� ��	 ��� ��� ��� ���
�

��

 ��
 	�� ��� ��� ���
�	 	����� ���
�� ��� ��� ���

 	�	��� 	��
�� �
�� ��� ���
�	� 	����� 	�� ��
 	
�� ��� ���
	�
 ��	���
�	 �	�� ���� ��� ���
��	 �	�

�� ���
 	��� �

�� ��	 ���
��	
 �����	
 �
�� ���
 �

	�� ��
 ���
	�
� 	������ ���� ���� ���
�� ��
 	�	

��
 �����
� �
�	 �	��
�

�� ���
��
���	 ��

�� ��
 ����

�
 	�

��
�
��
 �
��	
 ��� ���� ����
�� ��� ���

�	�
� ��

��
�� ���
 ��
	��
 ��	 ����

���
 �
�	�� 	�� �
�� �
�
	�

�	 		��
�����	 ��
�

 ��
 ���� ������� ��� 	���
	
	�

 ��	�
� ��� ���� 	������ ��� ����
�	
	�� ��

 ��� ���� 	��	��� ���
��

��
���
 �		�
 ��� ���� 	�
�	�� ��� �
��
	�����	 �
�
� ��� ���� 	�	���
 ���
���

��
��
 �		� ��� ����� 	������ ��� ����
����
�� 	
�� ��� ����� �
�
	�� ��
 ����
�
���	�
 ��� ��� ����� �������
�
 ����
����

�	
�� ��� ����� ��
�
��
�
 ����

�����

 	�� ��� ����� �	�����
�� ���

��
	���	�
� ��� ����� �
���� 	�	 �	��
	
�
��
�
 	� ��� ����� �

��	 	�	 ����
��
�����	 �	 ��� �����

���� ��� �
��
�����
��	
 � ��� ����� ���
�� ��� ���

	�
�
��

� � ��� ����� �
	��� ��
 �����

�

10%

30%

50%

70%

90%

4 64 1K 16K 256K 4M 64M 1G

P
e
r
c
e
n
t

Size of File

Cummulative Percentage by Size

Number of Files
Space in Files

Figure ���� UNIX File Size Graph

Similar results were obtained at the National Center for Atmospheric Research

�NCAR�� An analysis of NCAR�s mass storage system �MSS� showed that about

half of the �les contained ��� of the data����� Given that their MSS limited �le

sizes to 	�� MB and that �les larger than this were broken up into multiple 	��

MB �les� a storage system that would allow larger sized �les would have an even

smaller ratio of �les to data�

NCAR also concluded that �only �� of all �les are referenced more than ��

times� ��� of the �les in the trace were never read at all� and another 	�� were

read only once����� p�
	��� Additionally �for �les which were referenced� the

second reference came soon after the �rst����� p�
	��� and �about one third of all

requests came within eight hours of another request for the same �le����� p�
����

They concluded that ��les can be migrated to a less costly storage medium if they

are unreferenced for only a few days����� p�
����

These conclusions clearly indicate that if the relatively few� very large� inactive

�les could be moved to less expensive storage� fewer disk drives would be needed�

Even a ��� reduction in disk drive needs would save an organization a considerable

amount of money�

��� O�ine Storage

The storage capacity of o�ine storage devices such as tape drives and optical

disk drives has also been increasing at a tremendous pace over the last few years�

The old ��
�inch tape drives of a few years ago held less than 	�� megabytes of

data� Today helical scan tapes� such as �mm and
mm tape drives� can hold up to

������ megabytes of data ���� The cost for �mm o�ine storage space is less than �

cent per megabyte ���� far less than even the cheapest disk drive�

Sadly� these o�ine storage devices are de�cient in two major areas� they are

slow and inconvenient to use� The data transfer rate of a disk drive is around ��

megabytes per second� whereas the transfer rate of an �mm tape drive is less than

��	 megabyte per second� Human intervention is often required when accessing

o�ine storage� For instance� when a user wants to access data on a tape� the tape

must be manually loaded into the tape drive� Because UNIX does not provide a

way to automatically keep track of what data are on which tape� the user is left

with this tedious and error prone task� Additionally� since �lesystems are not built

on tapes� the access to data on tapes is only through UNIX utilities such as tar�

Because of this� data on a tape are not directly accessible by a program� It must

�rst be extracted from the tape before it can be used� The risk of losing data on a

tape is high� especially when writing data to a tape that already has data on it� It

is no wonder that few users actually use o�ine storage�

Near�line storage devices are a relatively new technology� A near�line device

consists of an o�ine device� such as a tape drive or optical disk drive with removable

media and a robot mechanism that can insert and remove media from the drive

without human intervention� Tape and optical disk juke�boxes are examples of

near�line storage devices� These devices do not require human intervention� but

�

they are di�cult to use directly� because the user is still left with the responsibility

of keeping track of what data are on which media� For the purposes of this paper�

when referring to o�ine devices� both near�line and o�ine devices are implied unless

explicitly stated otherwise�

��� Storage Hierarchy

A Storage Hierarchy �see Figure ��	� can be constructed out of online� near�line�

and o�ine storage� Speed and cost increase going up the hierarchy and storage

size increases going down the hierarchy� At the top of the hierarchy is online disk

storage� It is expensive and fast and has limited availability� In the middle of

the hierarchy is near�line storage� It is moderately inexpensive and somewhat slow

when compared to online storage� At the bottom of the hierarchy is o�ine storage�

It is very inexpensive� abundantly available� and slow�

As evident in the �le size analysis discussed earlier� if the few large �les in the �le

system could be moved through the storage hierarchy to near�line or o�ine storage�

less of the expensive online storage space would be required to support more data�

The problem is making near�line and o�ine storage easily usable�

All users of the UNIX operating system are familiar with the �lesystem� The

UNIX �lesystem has a hierarchical directory tree structure where users can organize

�
�
�
�
�
�
�
�
�
�
�
�
�
��

J
J

J
J

J
J

J
J

J
J

J
J

J
JJ

Online

Near
line

O�ine

Speed
and
Cost

B
B

�
�

Size

�
�

B
B

Figure ���� Storage Hierarchy

their data into �les and groups of �les� Since most �le manipulation utilities

and user programs only access data that are in the UNIX �lesystem� the user

must �manually� move any data that are on o�ine storage to the �lesystem before

processing it� If o�ine storage could be transparently integrated into the UNIX

�lesystem� users could begin using o�ine storage without changing the way they

access and manage their data�

��� Hierarchical Storage Management

A system that enables the automatic movement of data through the storage

hierarchy is the topic of this thesis� The system is named TrISH� short for Trans�

parent Integrated Storage Hierarchy� TrISH is integrated into the UNIX �le system

and transparently manages near�line and o�ine storage as an extension to online

storage space�

TrISH is based on BUMP� the BRL�USNA Migration Project��	�� The BUMP

system was extensively modi�ed� extended� and enhanced� The base set of features

and enhancements that were to be added to the TrISH system include the following�

� Add NFS server capabilities�

� Re�ne migration system architecture�

� Enhance migration system performance�

� Improve interactive access to migrated �les by reducing the access latency�

� Develop support to reduce �out migrations� by reusing valid o�ine copies of

�les that have been previously migrated�

� Develop better o�ine device handling�

� Add support for robot mounted �near�line� devices�

� Enhance migration system databases�

� Add support for the UNIX quota system�

�

� Develop system administrator migration tools�

� Develop user migration tools�

As the system was designed� other features were also added� These are discussed

in Chapter ��

��� Thesis Outline

A complete description of the BUMP system is provided in Chapter 	� At

the end of that chapter� I draw some conclusions about BUMP� its strengths� its

weaknesses� and its possible future enhancements� In Chapter �� I explain how the

TrISH system improves on the BUMP system� I compare and contrast the two

systems and explain� in general terms� the goals behind the improvements made in

the TrISH system�

A detailed description of TrISH is contained in Chapter
� including a general

operational description� extensions made to the operating system and to a few of

the UNIX system utilities to support TrISH� I also discuss in detail the TrISH

supporting programs and daemons� In Chapter �� I analyze the speci�c features

of TrISH and draw some conclusions about how successful TrISH is at addressing

the problems raised in Chapter 	� A quick survey of a few hierarchical storage

management systems� including a comparison of them to TrISH� is presented in

Chapter
�

The appendixes are full of grungy and boring details for those interested in

reading about the modi�cations to the operating system� the structure of messages

between di�erent components of TrISH� abstracted interface functions� and the

TrISH con�guration �le�

CHAPTER �

THE BUMP MIGRATION SYSTEM

The US Army Ballistics Research Laboratory and the US Naval Academy de�

veloped a system they named The BRL�USNA Migration Project� or �BUMP� for

short� The BUMP system is the starting point for the work done on TrISH�

��� Background and Goals

The BUMP system was originally designed to address two speci�c issues� First

they wanted to utilize online disk space e�ciently� and second they tried to eliminate

errors due to full �lesystems� There were a number of goals de�ned for the system

to address these issues�

There were two primary design goals of the BUMP project� The �rst goal was

to develop a UNIX�based �le migration system that would cause a �lesystem to

appear as though it had much more storage than the device �disk drive� on which

it was created� The second goal was to do it transparently so that no unmodi�ed

programs would be able to tell the di�erence between a migrated �le and a regular

�le� except for possible delays in the completion of the open�� system call��	��

To accomplish these two primary goals� the following speci�c goals were used as

guidelines in designing the BUMP system�

� Separate the migration policy from the migrationmechanism so that a site can

change the policy without having to also change the mechanism�

� Keep modi�cation of the UNIX kernel to a minimum� Implement in user�level

code as much of the migration system functionality as possible�

� Preserve the size of the on�disk inode structure� This would allow easier imple�

�

mentation of the system in existing sites and keep system utility modi�cations

to a minimum�

� Provide the ability to support a variety of secondary storage devices without

changing the internal structure of the migration system�

� Provide robust system operation� even under adverse conditions such as a

heavily loaded system or operating system crashes� The reliability and avail�

ability of a system running BUMP should be similar to a system not running

BUMP�

� Allow multiple copies of data on o�ine storage to enhance reliability�

� Provide the capability of having data online and o�ine at the same time so

that space reclamation or in�migration can be performed quickly�

� Support di�erent types of secondary storage devices by providing access meth�

ods for moving data between them�

It is also important to acknowledge the �consciously chosen limitations� of the

BUMP system� These limitations included the following�

� Only regular �les would be considered for migration� No directories or special

�les would be migrated�

� File migration services would be provided only to the machine connected to

the disk system� Remote �le access through NFS would not be supported�

� No support was to be provided for creating �les that are larger than the

�lesystem in which they were created�

��� How BUMP Accomplished Its Goals

The BUMP system provides facilities to migrate data transparently between the

standard UNIX �le system and o�ine storage� It consists of some UNIX kernel

modi�cations to create and support migrated �les� a daemon that communicates

��

with the kernel and performs migration system tasks for the kernel� a few UNIX

system utility modi�cations� and a set of tools to manage migrated �les�

����� Migrating Files to O	ine Storage

In order to migrate a �le� a number of things need to happen� The �le must

be identi�ed as one that can be migrated� The algorithm used to determine if a

�le can be migrated compares the product of the �le size and number of days since

last accessed with a system administrator de�ned badness value� If the �le has a

badness value larger than the �lesystem�s limit� the �le is eligible to be migrated�

All eligible �les are premigrated � This is the process of transferring all of a �le�s

data block pointers �the �lesystem data structures that link a �les data to the

�le� to another �le� assigning the �le a unique number� called the �le handle and

stamping it with the machine�s identi�er� The �le and its o�ine data are linked

using the �le handle and the machine id � The inode ��le� that was the target of

the data block pointer copy is called the staging �le� It exists in a special directory

in the �lesystem called the staging area� The database is updated to show that the

premigrated �les have copies of their data in the staging area�

Premigrated �les are then copied to o�ine storage� and the database is updated

to show that the �les have copies of their data on o�ine storage� An important

detail is that the data are actually read from the staging area �les�

����� Out of Space Error Handling

When the free space in a �lesystem drops below a predetermined limit� the kernel

noti�es the migration daemon� The migration daemon forks a process which releases

the storage held by all premigrated �les� that is� all of the data in the staging area

are released� If �lesystem free space never falls below the limit� premigrated �les

retain their online data�

A process that is writing data when a �lesystem becomes full will block until

the migration system can create more free space� If no free space can be created�

the blocked process may wait forever�

��

����� Reloading Migrated Files

When a process attempts to open a migrated �le� it is blocked in the open��

system call while the migration daemon restores the �le�s data� If the �le cannot

be restored� the open system call returns an open error to the calling process�

When a migrated �le is accessed� the migration daemon is noti�ed by the

kernel� The migration daemon forks a reload process which has the responsibility

of reloading the �le�s data� The reload process consults the database to determine

the o�ine media that will be used to restore the data� The data are copied from

o�ine storage to a staging area �le� The data block pointers from the staging area

inode are transferred to the migrated �le�s inode� The migrated �le�s inode type is

changed from migrated to regular and the staging area �le is deleted� Of course if

the staging area data were never released� no access to o�ine storage is needed�

����� UNIX Process Flags

A process can set a few di�erent process �ags to modify the behavior of the

migration system� One process �ag causes the system to return an error when

opening migrated �les� Another causes the migration system to reload �les in the

background after returning an open error� The last process �ag will cause the system

to return an out�of�space error when writing to a full �lesystem rather than blocking

the process� The default is to block the processes when it opens a migrated �les

and when it attempts to write to a full �lesystem�

����� Kernel and Migration Daemon Communication

A virtual communication link� implemented by a migration system device driver�

is used by the UNIX kernel and migration daemon to send and receive messages�

Over this link the kernel sends out�of�space and reload requests to the daemon� and

the daemon sends back the status of reload requests� This communication link is

also used by the BUMP system calls to request services and information from the

kernel�

�	

����� UNIX Kernel Modi
cations

To support migrated �les the following changes were made to the UNIX kernel�

� A new migrated inode type was created

� Two �elds were added to the on�disk inode� They store the �le handle and

machine id for migrated �les�

� A system call to migrate a �le �transfer its data block pointers to a �le in

the staging area and update the �le handle and machine id inode �elds� was

added�

� A system call to unmigrate a �le �transfer data blocks from the staging area

�le back to the original �le� was added�

� Process �ags to support customization of the migration system were added�

� System calls to query and set the new process �ags were added�

� A virtual communication device driver was added to allow the kernel and the

migration daemon to send and receivemessages from each other and to support

the new BUMP system calls�

The following kernel routines were modi�ed to support migrated �les in the

following ways�

ufs open�� Noti�es the migration daemon when a migrated �le is opened� The

requesting process is blocked �unless the nonblocking process �ag is set� until

the �le has been successfully restored�

dirremove�� Informs the migration daemon when migrated �les are deleted� The

migration daemon invalidates the database entries of deleted �les�

ufs create�� Noti�es the migration daemon when a migrated �le is re�created so

it can invalidate the database entries for the �le�

��

ufs setattr�� Sends a message to the daemon when a migrated �le is being trun�

cated to length zero so it can invalidate the database entries� If a migrated

�le is being truncated to a length other than zero the �le is restored as usual

before the requesting process may continue�

execve�� Checks that migrated �les are restored correctly before attempting to

execute them�

newproc�� Passes the migration process �ags to child processes�

ufs getattr�� Changes the status of migrated �les to regular �les so that the

requesting process does not know that the �le has been migrated�

alloc�� Noti�es the migration daemon when �lesystem free space drops below the

allowed minimum�

realloccg�� Blocks the requesting process when the �lesystem is out of space until

free space has been created by the daemon�

����
 UNIX System Utility Modi
cations

In general the user does not need to know if a �le is migrated� but there are

circumstances in which the user will want or need this information� The following

system tools have been modi�ed to recognize and work with migrated �les and�

where appropriate� provide �le migration information to the user�

Changes to fsck When fsck encounters an inode type it does not recognize� it

resets it to a regular inode� Since fsck does not normally know about migrated

inodes� it was modi�ed to recognize and perform integrity checks on migrated

inodes�

Changes to ls When a long listing of a migrated �le is requested� the �le type

�ag is set to �m�� indicating a migrated �le� The �le handle and machine id

�elds are listed along with the �le name� providing a way to identify the �le

handles and machine ids of migrated �les�

�

Changes to find Another �le type ��type m� indicating a migrated �le� was added

to the �nd utility since migrated �les do not test true as regular �les ��type f��

Also the �ls option was modi�ed to display an �m� for migrated �les� similar

to the ls command�

Changes to restore When the restore program encounters a migrated �le� it

creates a new �regular� �le� ensures that the inode entries are valid and converts

this regular �le into a migrated �le� �The dump program was not modi�ed since

it does not interpret the inode �elds��

����� BUMP System Tools

The tools to manage migrated �les include�

� Nightly jobs that migrate �les from the �lesystem to o�ine storage

� Programs that restore �les from o�ine storage to online storage

� Scripts to reclaim online storage when free space in a �lesystem drops to an

unacceptable level�

����� BUMP Databases

The BUMP system was built to be portable and self�contained� it could not

assume there would be any particular database system available at all sites� Con�

sequently a database system was built into it� The data are stored in ASCII text

�les with newlines separating records� Normal UNIX text processing commands

may be used to process and create reports from the database �les�

The two permanent databases in the BUMP system are the �le handle database

and the volume database� The �le handle database relates �le handles to o�ine

storage media� It is used to locate a �le�s data on o�ine storage� The volume

database stores the device type� location� size and other information about o�ine

volumes�

��

������ System Administrator and User Tools

The BUMP system su�ers from a chronic lack of system administrator tools� The

only tools provided by the system are the out�migration and out�of�space utilities�

There are no system administrator planning tools�

There are no user tools to force a �le to migrate� nor are there any tools to

�batch� reload migrated �les� There is no way to release manually the staging area

space of �les that will not be needed again�

��� Analysis of BUMP

����� Full Filesystem Errors

BUMP adequately addresses the issue of eliminating out of space errors in the

�lesystem� When the kernel noti�es the migration daemon that disk space is low�

the daemon is usually able to create free space� When it cannot� the reason is

frequently that there are large active �les still in the �lesystem�

Since the BUMP system creates free space by simply deleting data in the staging

area� free space can be created quickly� Often� however� more free space is created

than is necessary� since all premigrated �les in the staging area are deleted� A

system administrator has to carefully balance the number of �les that are premi�

grated� A large number of premigrated �les allows for fast free space creation� but

the penalty is more �les that must be restored from slow o�ine storage�

A better approach would be to have high and low free space values� called the

free space high and low water marks� When free space drops below the low water

mark� staging area �les are deleted until the free space again reaches the high

water mark� In addition� if large numbers of �les are premigrated� the free space

creation process has a deep reservoir of quickly obtainable free space� The system

administrator should be able to adjust the high and low water marks to balance

free space with free space creation processing�

����� O	ine Device Support

The BUMP system successfully provides the ability to add support for many

o�ine devices� When support for a new o�ine device is needed� new device access

�

method functions are written to mount and unmount the media� read and write a

block of data� write �le labels� etc�

BUMP does not� however� provide the ability to e�ectively support various types

of devices� like online and near�line devices� The device abstraction should be at

a higher level� rather than its current low�level implementation� For instance� all

BUMP routines assume that media must be mounted before it can be opened�

but online devices are never unmounted� and near�line devices may already be

mounted� If the abstraction level were to be raised to a higher level� �for instance

at the opening� closing� reading and writing level�� then the device access methods

would be able to provide more e�cient handling of the speci�c device and its media�

An unfortunate side e�ect of the way in which BUMP deals with o�ine storage is

the fact that the o�ine media are mounted and unmounted for each reload request�

If a number of �les all reside on the same o�ine tape and these �les are to be

reloaded� the BUMP system would mount and unmount the tape for each �le� A

better approach would be to restore all �les from the tape while it is mounted�

O�ine devices must be dedicated to the BUMP reload processes excluding them

from being used by other processes and even from use by other BUMP processes�

The o�ine devices should be able to bemoved between processes� A devicemanager

would be the best way to handle detachable devices�

Much of the o�ine storage management functions� like tape and device man�

agement� have been built into the BUMP system� If a site already has a tape

management system� it is unusable by the BUMP system� The o�ine management

functions should be abstracted out of the BUMP system�

����� BUMP�s Database System

The BUMP system had an implied goal of not being dependent on any particular

third party database system� This is an admirable goal� but there are a number of

problems with the way it was implemented� First� the database was built into the

migration system� rather than being a separate entity� Consequently the database

interfaces were also built into the system instead of being abstracted out� This

makes it impossible to add support for a site�s favorite database system without

��

rewriting most of BUMP� Secondly� the database provided by BUMP is very slow

and ine�cient� It has been determined that database updates are in fact one of the

worst bottlenecks in the system�

A well�de�ned interface between the BUMP system and the database would

allow a site to use its favorite database� Of course a database system should be

provided with the system just in case a site does not have one�

����� Data Integrity and Reliability

Data integrity is guaranteed by the o�ine device access methods� These software

routines generate and add CRC codes to the data as they are written to the o�ine

device� This may be in addition to any CRC and ECC codes generated by the

device itself� The CRC codes are validated as the data are read from the o�ine

device� and bad data are discarded�

By allowing multiple copies of a �le to exist on di�erent o�ine media and device

types� the system may shield itself from single point failures� It also enhances this

reliability by dividing a �le into data chunks called granules� Data are written to

and read from o�ine storage in granules� If a granule is unreadable� another copy

of the granule can be used instead� Some near�line devices� however� have better

reliability than the online storage from which the data were migrated� On these

devices the overhead of granule management is inappropriate�

Granules are also used to deal with �les that are larger than the o�ine storage

media� If� while writing a granule� the end of the volume is reached� the data

written up to that point are discarded and a new copy of the granule is written to

a new volume�

The data integrity and reliability features of BUMP are bene�cial and should

be retained� However� they should be implemented in the device access methods

rather than in the BUMP system routines� If it is appropriate for a device to use

granules to improve reliability� then the method can implement them� If a style

of media management other than granules is more appropriate� then the device�s

method can provide it� BUMP forces CRC checking for all o�ine copies� However�

many o�ine devices perform CRC checks already� This additional CRC checking

��

adds overhead without improving upon the reliability or integrity of the system�

Options like CRC checking should be optionally implemented in the device access

methods�

����� E�ciency and Usability

As a user searches through a directory looking for a particular �le� many �les are

accessed� If a signi�cant number of the �les in the directory are migrated� many of

them will inevitably be reloaded� Most of these �les are not needed by the user and

will probably not be modi�ed� In the BUMP system these reloaded �les have to

go through the migration process all over again by being copied to o�ine storage�

If o�ine copies of unmodi�ed �les could instead be reused� the e�ciency of the

migration system would be greatly improved� Additionally if a feature could be

designed and implemented such that these �false reloads�� could be eliminated� the

interactive feel of the system would improve dramatically�

When BUMP restores a �le� the entire �le is restored to the staging area and

then moved into the original �le� The requesting process cannot access any of the

data in the �le until the entire �le has been restored� If instead the data were made

available to the requesting process as soon as they was read from o�ine storage� the

available data could be processed while the rest of the data continue to be restored�

This becomes especially attractive when accessing very large �les�

Another e�ciency problem with BUMP is rooted in the way the database is

updated� When the database needs to be updated� a new process is created to

perform the update� When only a few update processes are attempting to access

the database at the same time� they collide and must wait for each other� A

signi�cant amount of time is spent by these processes waiting for the database to

become available�

Every time a �le is reloaded three processes are created� a reload process� a copy

process and a database update process� Process creation in UNIX is relatively fast�

but when a large number of �les are reloaded at the same time� process creation

can consume a signi�cant amount of computer resources and time�

For instance� reloading �� premigrated �les ��les that have copies of their data in

��

the online staging area� takes about 	� seconds� Since restoring these �les does not

require that o�ine storage be accessed� these �les should be reloaded in less than

� second� All of the time needed to restore these �les is spent in process creation

and database update collision waits� By eliminating the process creation time and

database update collisions� the system�s throughput would increase dramatically�

����� Chosen Limitations

Since almost all of the inactive data in the UNIX �lesystem are occupied by

regular �les� migrating only regular �les does not limit the space saving bene�ts of

BUMP�

NFS �le servers would bene�t enormously from the use of the BUMP system�

However� since BUMP provides migration services only to processes running on the

local machine� an NFS �le server cannot provide the migration system services to

its clients� A remote host can access the BUMP system only through UNIX system

utilities such as ftp and rcp� which do not provide the same transparency that

NFS provides� Extending the BUMP system to provide NFS support for migrated

�lesystems would increase its usability�

Providing support to create �les larger than the �lesystem in which they live

would require extensive UNIX kernel and on�disk inode structure modi�cations�

The primary goal of minimizing kernel modi�cations is probably more important

than providing this feature� especially since 	 Gigabyte disk drives� the maximum

size of a �le in UNIX� are readily available and relatively inexpensive�

����
 Miscellaneous

The UNIX kernel modi�cations are well�de�ned� concise� and few� They are

nonobtrusive and easy to install�

The algorithm that determines when a �le can be migrated to o�ine storage is

very limited� its only inputs are the age and size of the �le� If enhanced� a system

administrator could better manage online storage� It should include the number of

days since last accessed� a minimum size� a maximum size� current size� location�

�le access patterns and how much data the user already has on o�ine storage�

	�

The BUMP system su�ers from an acute lack of system administrator tools�

Tools should be created that facilitate the movement of data through the storage

hierarchy� analyze online data for planning purposes� and generate reports on

migration system use�

If a user knows that a �le will not be accessed in the near future� he may wish

to force the �le to migrate to o�ine storage� BUMP does not provide a way to do

this� Similarly if a user knows that a �le that has been migrated to o�ine storage

will be accessed soon� he or she may wish to reload it before it is needed� The

BUMP system does not provide a way for users to �batch� reload �les�

BUMP�s UNIX kernel modi�cations do not support the standard UNIX �quota�

system� If a site needs to use the BUMP system because it is low on disk space�

it is probably already using the quota system� Support should be added for the

UNIX quota system�

CHAPTER �

TRISH ENHANCEMENTS AND

EXTENSIONS TO BUMP

The BUMP system was developed to test the feasibility of migrating data from

the UNIX �lesystem to o�ine storage� As such it was not overly concerned with

system performance or usability� However� in order for a �le migration system to

be accepted by the user community it must provide good performance� be easy to

use� and provide essential features�

The TrISH system was created to address these issues� It takes the fundamental

principles developed by the BUMP system to new levels of performance� usability�

and reliability� This chapter highlights some of the features of TrISH�

��� Goals of the TrISH System

The TrISH system was designed with a number of goals in mind� As was

discussed in the introduction� the main goal of TrISH is to provide access to

o�ine storage in a usable way� This implies that it must be integrated into the

operating system� transparent to the user� reliable� not add excessive overhead to

the access time for the o�ine devices it manages� and be maintainable by the system

administrator�

The base features that were to be added to TrISH are listed in section ��
�

As the changes and enhancements for these features were added to the operating

system� other necessary and desirable features became apparent� The merit of

these features was compared to the cost of implementing them� If the value of

the feature outweighed the cost of implementation� the feature was added �with

the understanding that this is a master�s thesis and needed to end at some point��

		

Even though keeping modi�cations to the kernel at a minimum was not a major

concern� they did end up being relatively minor� well�de�ned� and intuitive�

Features that added performance and reliability were chosen before features that

provided usability or bells and whistles� the thought being that� if the data are not

safe or if accessing it is miserably slow� then the system will not be used� That

said� there were a number of usability enhancements made to the system� both for

the end user and for the system administrator�

��� Performance Enhancements

System performance is the greatest obstacle to placing BUMP into a production

environment� As discussed in section 	����� the BUMP system has some serious

performance problems� The TrISH system improves upon the performance of the

BUMP system in a number of ways�

����� Restructuring the System

One of the most serious bottlenecks in the BUMP system is process creation�

Every time a �le is restored three processes are created� a reload process� a copy

process� and a database update process� The UNIX operating system is very good at

process creation� nevertheless it is still a time consuming activity� TrISH eliminates

most of the process creation overhead through the use of server processes� These

processes are always available and waiting for requests from the migration daemon�

The most important server processes are the TrISH daemon and the reload servers�

The TrISH daemon coordinates the activities of the reload servers� which perform

the actual work of reloading �les from o�ine storage�

Not only do these server processes eliminate the extra overhead of process

creation� but they also provide other� even greater � performance improvements� In

the BUMP system� since every o�ine restore is performed by a separate process� the

o�ine device must always be returned to a �known� state when the process ends�

In the TrISH system� the reload server stores state information about the device�

With this state information the reload server performs device access optimizations�

such as leaving recently accessed media in the device with the assumption that it

	�

will be used again soon� For o�ine devices like optical disk� this results in a big

performance gain�

The TrISH migration daemon �trishd� listens for requests from the operating

system� When a �le needs to be restored� trishd routes the request to an available

reload process� Information� such as the currently mounted o�ine volume� is

communicated between trishd and the reload processes� Using this knowledge� the

request dispatching algorithms intelligently schedule requests to the appropriate

reload process� For instance� if a reload process has the desired o�ine volume

currently mounted� it will receive the reload request� Requests are also prioritized�

and all high priority reload requests are processed �rst� This feature allows low

priority �batch� reloads without impacting high priority interactive reload requests�

����� Concurrent Restore and User Access

While the BUMP system is restoring a migrated �le to online disk� the requesting

process is blocked from executing� It cannot continue until the entire �le has been

restored to disk� If the �le is large� the process will wait a substantial amount of

time� In the TrISH system� the �le�s data are available to the requesting process as

soon as they have been read from the o�ine device and written to the �lesystem�

This optimization signi�cantly improves the responsiveness of the TrISH system�

Additionally� if the data are read soon after they have been restored� the read

request will be satis�ed from the �lesystem bu�er cache� This improves the re�

sponsiveness and performance of the system even more because the number of I�O

operations are reduced� This bene�ts not only the requesting process� but also

every process on the system�

����� On�Disk Data for Migrated Files

The TrISH implementation of concurrent restore facilitates another equally im�

portant feature� In the TrISH system� a migrated �le can retain a variable amount

of data at the front of the �le in the online �lesystem� even after it has been migrated

and gone through the free space creation process� Three bene�ts of this feature are

	

� Reuse of o�ine data� When a �le is restored to online disk� it is left in a

migrated state with all of its data on�disk� If the �le is not modi�ed� the o�ine

data remain valid� and the �le does not need to be remigrated �recopied� to

o�ine storage� It is also immediately available for release by the free space

creation process�

� Fewer false restores� When a user is searching through a directory using the

head and file commands� migrated �les with enough on�disk data will not

have to be restored from o�ine storage if they already contain the necessary

piece of the �le� Experience has shown that only � K�bytes of data must be in

the �le to prevent the entire �le from being restored when using the head and

file commands�

� Improved interactive performance� The on�disk data feature can also improve

the interactive feel of the system as well� For instance� if the system editors

were enhanced to allow the user access to the on�disk data immediately� while

the rest of the �le is being restored in the background� the user may never

know that the �le was migrated� This type of service could be especially

useful for graphical image �les� where the �rst few thousand bytes of the �le

would contain a very low resolution markup of the image� The user could view

the low resolution image and� if so desired� request that the high resolution

image be restored from o�ine storage�

This single feature �the implementation of on�disk data� has proven to be a very

important part of the TrISH system� The ability to reuse o�ine data and the ability

to concurrently access a �le as it is being restored are the most important bene�ts

of this feature�

����� Replacing the Database

The BUMP system uses its own sequential access database� The enormous

amount of time required to search sequentially through a large database slows

down the whole system� making it impossible for the migration daemon to respond

	�

to reload requests in a timely manner�

To make matters worse� whenever the database needs to be updated� a database

update process is created� When an update process attempts to access the database

and another process is currently using it� it waits an arbitrary amount of time �up

to � seconds� and attempts to access the database again� If the database is still

busy� the process waits again� This wait and try loop continues until the database

is successfully updated� When a large number of processes are trying to update the

database at once� more time is spent waiting for the database than updating it�

The database for the TrISH system has been isolated to well�de�ned routines that

can call any existing database� including commercial� high performance databases�

The database access routines allow the TrISH migration daemon to directly update

the database without the overhead of creating a new process or the arbitrary waiting

involved in the BUMP system� Currently� access routines for an indexed database

manager called IDBM have been written� Only a small number of access routines

would need to be rewritten to support a di�erent database system�

����� Better Free Space Management

When a �le is migrated in the BUMP system� its data are temporarily stored in

the staging area� When the �lesystem is low on space� all of the data in the staging

area are deleted� thus creating free space in the �lesystem� Given these constraints

a system administrator has the di�cult job of balancing migration parameters�

If too few �les are migrated and stored in the staging area� free space creation

can be very slow� The reason is that rather than just releasing the online space

occupied by migrated �les in the staging area� the entire migration process� from

identifying �les to copying them to o�ine storage� must be performed whenever

space is needed in the �lesystem� If� again� too few �les were migrated� the whole

process would need to be performed over again�

If too many �les are migrated and stored in the staging area� then when the

staging area space is released� more free space would be created than is needed to

ful�ll the request at hand� The problem lies in the fact that all of the �les whose

	

staging area data were deleted will need to be restored from o�ine storage next

time they are accessed�

Moreover� BUMP selects �les for migration based solely on the value of the �le�s

eligibility and not on the space needs of the �lesystem� If the migration process

�nds an old �le in the �lesystem� it will be migrated regardless of the current

amount of free space� Unless the data stored in the �lesystem are very regular and

predictable� tuning the migration eligibility algorithm is very di�cult�

To address these problems� TrISH includes three additional system administrator

de�ned parameters� the high watermark� the low watermark� and the migrated

target� These values are used as follows�

The high watermark When the amount of used space in the �lesystem reaches

the high watermark� the free space creation process is started�

The low watermark The free space creation process releases space in �lesystem

until the amount used space in the �lesystem is at or below the low watermark�

The releasable watermark The nightly migration process attempts to migrate a

su�cient number of �les so that the amount of used space minus the amount of

�releasable� space in the �lesystem is at most this value� �Given the migration

eligibility algorithm� this may or may not be possible��

These values are expressed as a percentage of the total space in the �lesystem�

These three values can be tuned by the system administrator to meet the needs of

the site� If a �lesystem�s free�space is o�� either too low or too high� the high and

low watermark values can be adjusted so that the free�space creation process creates

just the right amount of free space� If a system generally converts a large amount

of migrated space into free space� then the releasable watermark value should be

lowered� If a system rarely converts migrated data to free space� this value can be

increased�

	�

��� Usability Enhancements

A system that solves only half of a site�s storage needs is only marginally better

than no system at all� The TrISH system builds upon the solutions provided by

the BUMP system to provide a more functional� extendable� and integrated storage

management system�

����� NFS Support

As workstations continue to become more powerful and less expensive� more and

more sites are moving away from a central computer environment to a distributed

computing environment� Increasing network speeds and availability accelerates and

encourages this trend� These distributed environments commonly use centralized

�le servers which are accessed through the use of network �le access protocols such

as NFS to store their data� These �le servers would bene�t greatly from the services

a �le migration system can provide� The TrISH system supports access to migrated

�les through NFS�

����� O	ine Device Support

One of the goals of the old BUMP project was to facilitate easily the addition of

new o�ine device types into the storage hierarchy� BUMP was only marginally suc�

cessful in reaching this goal� Online and near�line devices do not �t into the BUMP

device abstraction which was designed with the assumption that only magnetic tape

devices would be used� Many of the device speci�c functions are performed by the

BUMP system utilities rather than the device access method routines� For instance�

CRC checking and granule processing is performed by all BUMP system utilities�

Because of this� if functions other than CRC checking and granule processing would

be more appropriate for a particular device� they cannot be provided� Additionally�

because device state information is kept by the BUMP applications rather than by

the device access routines� some state information required by robotic auto�loaders

is not available� For these reasons it is di�cult to add support for near�line devices

to the BUMP system�

The TrISH system uses a higher level of abstraction for o�ine storage devices� It

	�

is the responsibility of the device support routines to perform CRC checks� granule

allocations� and other data processing that is appropriate for the device� The TrISH

utility programs use these high�level device access routines and� hence� can use new

storage devices without modi�cation� This higher level of abstraction also enables

the device support routines to perform intelligent media management� For instance�

keeping the last used tape in the drive until it is known that it is no longer required�

Initially� device access routines have been written for an �online compression� de�

vice� an �online copy� device� and the Hewlett�Packard rewritable magneto�optical

disk autochanger� The optical disk device access routines can optionally perform

software data compression as the data are written to the device�

����� Site Integration Support

The TrISH migration system requires a number of services that may or may not

be presently available at a particular site� For instance� TrISH requires the services

of a database system to store information about migrated �les� If a site has an

existing database system they are familiar with� then TrISH should be able to use

it� If� on the other hand� the site does not have one� one should be provided by

the TrISH system� The ability to integrate existing services into the TrISH system

improves the probability that it will be accepted by the support sta��

TrISH has separated the required services from itself so that a site may easily

�plug in� their own services to replace the TrISH provided ones� A well�de�ned

and separate interface has been provided so that integration with existing systems

will be painless�

The replaceable services that TrISH requires are as follows�

� Modi�ed kernel� A small set of kernel support routines provides the interface

between the migration daemon �trishd� and the operating system� Any

operating system kernel that supports these routines will be able to use the

TrISH migration system�

� Database server� The database provides the information storage and retrieval

functionality necessary to keep track of migrated �les and their o�ine data�

	�

TrISH comes with support for the IDBM database� but support for other

databases would be easy to add�

� Media manager� The media manager provides a way for TrISH to request

another unit of o�ine media �such as another blank tape�� TrISH has a simple

media allocation system� Access to another system would be easy to add�

� Device manager� The device manager controls access to o�ine devices� If

TrISH needs to read a tape� it must �rst acquire the exclusive use of a tape

drive� The device manager provides this service by serializing access to o�ine

devices� The device manager also provides the support necessary for TrISH

to use nondedicated o�ine devices� The device manager only allocates and

assigns devices to processes� it does not perform the actual I�O to the device�

The device manager service eliminates the restriction in BUMP that all devices

must be dedicated to the BUMP system and cannot be used by other processes�

� Message manager� When a message needs to be sent to the operator or to the

system administrator� the message manager is used� The message manager

may log the message or distribute copies of the message to various people�

An X�windows�based message system has been provided with TrISH� but

integrating a new system would be easy to do�

����� Eligibility Algorithm

To give the system administrator control over which �les are chosen for migra�

tion� the eligibility algorithm was written as a C language routine that can be easily

modi�ed to meet the needs of the site� The eligibility algorithm is used to decide

not only which �les to migrate but also which �les to release during the free space

creation process� The eligibility algorithm has access to the following data�

� Name of the �le

� The fstat data for the �le� including userid� user group� size of �le and last

access times

��

� The TrISH �le system con�guration parameters� Additionally these parame�

ters can be extended to include custom values de�ned by the system adminis�

trator

� The amount of on�disk data for �les that have already been migrated �used by

the free space creation process�

With access to these data� the eligibility algorithm can be modi�ed to implement

any number of site�speci�ed migration policies� Some potential site policies are as

follows�

� Larger �les should be migrated before smaller �les�

� If a �le is smaller than some minimum size� do not bother to migrate it�

� Active �les stay� inactive �les are migrated�

� Files that are infrequently modi�ed� even though they may be frequently read�

are migrated whereas �les that are frequently modi�ed are not�

� A particular user or group gets preferential treatment� Their �les will be larger

and older than another group�s �les before they are migrated�

� Certain types of �les should be migrated before other types of �les� For

example� object �les should be migrated before source �les�

� Files with a given name or within a given directory tree should be migrated

before others� Files in another directory tree should never be migrated�

The eligibility algorithm assigns a �badness value� to each �le in the �lesystem�

The �les are then ranked and sorted by their badness values� with the largest

badness value ranking �rst and the smallest badness value ranking last� The

ordering of �les by their badness value is used during both the the migration process

and the free space creation processes� These processes are be described in section

���

��

����� System Administrator Tools

TrISH� unlike the BUMP system� has a number of tools designed to be used by

the system administrator� With these tools the administrator can analyze the needs

of a �lesystem before enabling �le migration� gather statistics on the e�ectiveness

of the migration system� monitor the work load of the system� and forecast future

needs�

A �lesystem analysis and graphing tool will help an administrator choose ap�

propriate migration system parameters� This tool gathers information about the

number� age� and size of �les in the �lesystem� This tool would be used to

de�ne initial values for migration system parameters and to verify and tune those

parameters on an ongoing basis�

A tool that examines migration system statistics within the UNIX kernel and

shows access patterns to migrated and nonmigrated �les will help an administrator

maintain good migration system parameters� These kernel statistics include calls

to the open� read� write� trunc� unlink� and getattr operating system calls for

both migrated and nonmigrated �les� For migrated �les� the amount of time spent

waiting for �le reloads is also tracked� This information can be used to analyze the

e�ectiveness of TrISH�

The trishd process logs all requests� A log processing program enables the

system administrator to analyze the type and volume of migration system requests�

These data will give the administrator even more detailed information on how the

migration system is being used�

����� User Tools

The users of the system will often know when they will or will not be using a

particular �le in the near future� TrISH provides a few tools that enable the user

to control and direct the handling of �les� The following tools and commands were

not provided by the BUMP system�

A user has the ability to force the migration of �les to o�ine storage using the

trforce command� This is very useful if a large �le has just been created and it is

known that the �le will not be needed in the near future� By forcing such a �le to

�	

migrate� the user will create free space in the �lesystem and will reduce the chance

of the user�s other �les� which may be needed soon� from being migrated�

The user also has the ability to release on�disk space being held by migrated �les�

Remember that migrated �les can have data in them waiting to be released when

needed� Using the trelease command� the user can release the space in migrated

�les� Using this command� the user can free up space in the �lesystem and possibly

keep another �le from having its data released�

Using the trctl command� a user can perform batch reloads of migrated �les�

This is very useful if it is known that the user will be needing a set of �les and

wants them to be reloaded in advance� The batched reload requests are placed on

a low priority queue and are processed in the background when there are no other

higher priority requests�

TrISH also implements the migration system process �ags discussed in Chapter

	� Using these �ags� the user can tailor the way certain conditions are handled� For

instance� the user can tell the system to return an error� rather than automatically

reloading migrated �les� when the process attempts to read past the on�disk data�

The user can also request that his or her process never receive an out�of�space error

message but rather blocks until the migration system has a chance to free some

disk space for it to use�

����
 Miscellaneous

The UNIX Quota system is used by system administrators to help manage online

disk usage� With it a system administrator can limit the amount of disk space each

user may consume� Considering that a site which is currently short on storage

space is in all likelihood using the quota system and considering that these are the

very sites that would bene�t most from implementing the TrISH system� support

has been added for the quota system� Data residing in the �lesystem are deducted

from the user�s quota� When a migrated �le�s data are released� that space is no

longer counted against their quota�

The TrISH system has one central con�guration �le where system parameters are

stored and can be easily maintained by the system administrator� This contrasts

��

with the BUMP system in which many con�guration parameters are hard�coded

into the source code� An additional feature is that the con�guration �le can be

extended� If a site adds a new feature to the TrISH system� the con�guration �le

can be extended to contain the site speci�c values used by the new extentions to

TrISH� The TrISH con�guration �le is described it detail in Appendix A�

Key algorithms� like the badness calculation function used to order �les for

migration� have been separated from the rest of the source code to enable easy

customization of the system� These algorithms can be quickly located and easily

modi�ed to meet site speci�c needs� Combined with extensions to the con�guration

�le� this enables the system to be highly tuned and customized for a site�s special

needs�

The operating system calls ioctl and select are used by programs to gather

information about the status of open �les� These system calls have been modi�ed

to understand and return information about migrated �les� The ioctl system call

returns the amount of on�disk data available to be read from the �le� The select

system call returns true when an open migrated �le has data available to read�

��� Reliability Enhancements

The data reliability of the BUMP system is quite good� Much thought and e�ort

were put into constructing a system that would protect and keep safe the user�s

data� It runs CRC checks on all data written to and read from o�ine storage�

It provides e�ective recovery techniques to deal with media errors� Its databases

were built so that even if the BUMP system was totally destroyed� the system

administrator could� by hand� rebuild the system and recover all of the data�

TrISH has retained all of the reliability features of BUMP �CRC checking�

granule processing� multiple o�ine copies� error recovery� and has added one more

reliability enhancement�

The only problem with the BUMP system�s reliability is the centralized database�

If the database is corrupted or lost� the entire BUMP system is useless� In the

TrISH system there are separate databases for each of the managed �lesystems�

rather than one monolithic database� The databases for each �lesystem hold only

�

the information for the �les migrated from that �lesystem� When one �lesystem�s

database is unavailable� no other �lesystems are a�ected� An added bene�t to this

architecture is that a �lesystem is self�contained� It� along with its database� can

be moved to another machine with very little work� If a �lesystem�s databases

are located within itself� the backup and restore process is also simpli�ed� This

also prevents the database from being out of date with the �lesystem� should a

�lesystem need to be restored from its backups�

��� Summary of Enhancements to BUMP

A number of enhancements over the BUMP system have been added to TrISH�

A summary of the major enhancements in the TrISH system are listed below�

� Eliminated excessive and unnecessary process creation�

� Created intelligent reload servers�

� Created an intelligent migration daemon �trishd��

� Enhanced device access routines and methods� enabling smarter handling of

near�line devices�

� Implemented concurrent restore and user access�

� Facilitated the reuse of o�ine data�

� Provided support for on�disk data�

� Improved interactive performance�

� Isolated database access routines from the TrISH system�

� Implemented better free space management through the use of high� low and

releasable watermarks�

� Provided support for NFS server functions�

� Implemented a media manager�

��

� Provided a device manager�

� Furnished an operator messaging manager�

� Enhanced badness value calculation function�

� Implemented �lesystem analysis tools to determine if �le migration is appro�

priate for a particular �lesystem�

� Provided kernel statistics gathering tools�

� Enabled migration log analysis facilities�

� Enhanced the migration daemon

� Provided the reloader control program�

� Enabled a �le to be forced to migrate�

� Forced release of migrated �le�

� Implemented batch reloading of migrated and released �les�

� Facilitated support for the standard quota system�

� Designed the central extensible con�guration �le�

� Enhanced system to work with distributed database system�

� Extended system calls to understand migrated �les�

CHAPTER �

TRISH IMPLEMENTATION DETAILS

The goals of the TrISH system were discussed in detail in Chapters � and �� To

summarize� they are to provide easier access to o�ine storage through the method

of automatically and transparently moving large inactive �les from expensive online

storage to inexpensive o�ine storage and to provide this functionality in an e�cient�

reliable� integrated� and feature�rich way�

��� TrISH Operation

To accomplish the goals set out for it� the TrISH system transparently migrates

a �le�s data to o�ine storage when they are not being used and transparently

restores the data when they are again being used� The steps involved in migrating

and restoring a �le�s data are described below�

�� Identify a �le that should be migrated�

	� Make the �le into a migrated �le�

�� Copy the �le�s data to o�ine storage�

� Mark the �le as being releasable�

�� Release the �le�s online storage when space is needed�

� Restore the �le�s data from o�ine storage when they are accessed�

�� De�migrate the �le when it is modi�ed�

To identify �les that can and should be migrated� the target �lesystem is scanned

and its �les are assigned a �badness value� using a system administrator de�ned

��

badness function �explained in detail in section ����
�� The �les are then ordered

by their badness values and the �les at the top of the list are migrated� Files are

migrated until the releasable watermark value has been achieved or until no more

�les meet the minimum requirements� The initial state for newly migrated �les is

nonreleasable with all on�disk data� Because the �le�s data have not yet been copied

to o�ine storage� its data cannot be released for use by another �le� Furthermore

since none of the �le�s data have been released� they all reside on�disk�

At this point� the �le�s data are copied to o�ine storage� The system admin�

istrator� through con�guration �le parameters� speci�es which o�ine devices the

data are copied to and the number of copies to be made� After the �le�s data are

successfully copied to o�ine storage� they are marked releasable� meaning its data

can be released by the free�space creation process and made available to other �les�

When the used space in the �lesystem rises above the high watermark� the free

space creation process is started� The releasable �les in the �lesystem are ordered

by their badness values� Files at the top of the list are selected and their on�disk

data are released until the low watermark value is reached or until there are no more

releasable �les� If� during the migration and copy�out processes above� a su�cient

number of �les have been migrated and copied to o�ine storage� the free space

creation process can occur a number of times before the migration process �steps

��
 above� must be dispatched again� The idea is to migrate a large amount of

space during o� peak hours so that it can be easily released and used during peak

hours when it is needed�

As alluded to above� when a migrated �le is accessed� the o�ine data must be

restored to the online �lesystem� The responsibility of restoring the �le belongs

to the TrISH migration daemon and its reload processes� When a �le needs to be

restored� the kernel noti�es the migration daemon� which in turn dispatches the

reload request to an available reload process�

If a migrated �le is modi�ed� it is changed from a migrated �le back to a regular

�le� The old o�ine copies are no longer valid and can be discarded� To become

a migrated �le again� it must once again go through the migration process� If�

��

however� the �le is not modi�ed� it retains its status as a migrated and releasable

�le� Its disk space can be released at any time since the existing o�ine copies are

still valid�

These processes are described in greater detail in the appendixes� The identify�

migrate� and copy�out processes are described in Appendix B� The free space

creation process is described in Appendix C� The restore process is described in

Appendix D�

��� UNIX Kernel Support

A number of enhancements were made to the UNIX operating system kernel

to support the process of �le migration� The modi�cations are independent of the

migration system� allowing any migration daemon to use the same operating system

interface� The changes and enhancements to the UNIX kernel can be categorized

as follows�

� Enhanced the �lesystem to support migrated �les�

� Created new system calls and enhanced existing system calls to create� manage�

and monitor migrated �les� The new and enhanced system calls are discussed

in detail in Appendix E�

� Provided a communication path between the UNIX kernel and the migration

daemon�

� Enabled special migration system process �ags to control the level of trans�

parency�

� Provided support for NFS access�

� Added support for the quota system�

The changes are described in greater detail in the following sections�

��

����� Filesystem Support

To support migrated �les� the standard UNIX �lesystem data structures were

enhanced� A �eld was added to the �lesystem super block that contains the

�lesystem�s high watermark� When the amount of used space in the �lesystem

reaches this point� the free space creation process is started�

A new �le type� IFMIG� was created and the on�disk inode structure was enhanced

to include two additional �elds� The new �elds are i fmigid and i ondisk� The

i fmigid �eld holds the �le�s migration identi�er� This identi�er is used to track

the �le�s data through o�ine storage and to identify it in the migration system

databases� The i ondisk �eld contains the amount of on�disk space in the �le�

Additionally� the previously unused on�disk inode �eld� i flags� is now used to

hold the IFMIGREL and IFMIGMOD �ags� They indicate that the �le is releasable or

contains modi�ed data� respectively�

In addition to changes to the �lesystem data structures� changes were made to

the �lesystem modules in the operating system� When a migrated �le is opened�

the operating system noti�es the migration daemon by sending it the �le migration

identi�er� the �fmigid�� of the �le� The migration daemon can choose to begin

reloading the �le immediately� or it can postpone reloading the �le until a read

request is made for data that do not reside on�disk�

When a process tries to access data that do not reside on�disk� the process is

blocked and a message indicating that the process is waiting for the �le to be

reloaded is sent to the migration daemon� The migration daemon is responsible

for reloading the �le as soon as possible� so that the blocked process can resume

execution� As the �le�s data are restored� the blocked process is allowed to continue

so that the recently restored data can be processed� If more than one process is

reading the �le at a time� only one reload request is sent to the migration daemon�

and all processes are unblocked when data are available�

When a migrated �le is closed� the migration daemon is noti�ed� It has the

option of canceling any pending or in�progress reload request for the �le� This

could happen if the �le was opened but never read or if only the �rst part of the

�

�le was read�

When a write request is made to a migrated �le� the write is allowed to complete

when the on�disk data include the part of the �le that is being written� The

IFMIGMOD�ag� in the i flags �eld is set� indicating that the �le�s data have changed

and that it should be de�migrated �made into a regular �le� when it has been

completely restored� A �le that is truncated to a nonzero length is handled the

same way� When a �le is truncated to zero length� it is immediately made into a

regular� zero length �le�

When a �le is modi�ed� truncated� or deleted� the o�ine copies of the data are

no longer needed� A message is sent to the migration daemon notifying it that it

can discard the o�ine data and invalidate or delete the �le�s database entries�

If a migrated �le containing an executable program is to be run� the process is

blocked until the entire �le� or program� has be restored to on�disk storage� It is

necessary to wait until the entire program is reloaded because the UNIX kernel will

demand page the program directly out of the �lesystem and into main memory����

bypassing the standard �lesystem code�

The �lesystem�s space allocation routines were also modi�ed� These changes

e�ect not only migrated �les but regular �les as well� When an allocation request

causes the used space in the �lesystem to rise above the high watermark� the

migration daemon is noti�ed so that it can start the free space creation process�

Additionally� when an allocation request would normally return with an ENOSPACE

error message because the free space in the �lesystem has been exhausted� the

requesting process is instead blocked� An urgent out�of�space message is sent to

the migration daemon� The process remains blocked until enough space has been

created to honor the allocation request� If the free space creation process was

unable to create some free space� the allocation request fails with an ENOSPACE

error message�

����� Controlling Transparency

By default� migrated �les appear to be regular �les� Except for possible access

delays� unmodi�ed programs cannot tell when they are accessing a migrated �le�

�

A process can customize the default behavior of the system when accessing

migrated �les by setting new process �ags� These process �ags are passed from

parent processes to their child processes� and� of course� the child process can

modify them as well� The process �ags are as follows�

FMIG FLAG NOTRANSP By setting this �ag� a process will be noti�ed with

an error message whenever a read or write request to a migrated �le would

have blocked� Additionally� a background reload request for the �le is sent to

the migration daemon�

FMIG FLAG CANCEL If this �ag is set� the background reload request nor�

mally generated when the FMIG FLAG NOTRANSP �ag is set is suppressed� This

�ag only has meaning when used in conjunction with the FMIG FLAG NOTRANSP

�ag�

FMIG FLAG SPACERETRY By setting this �ag� the process will be blocked

rather than receive an ENOSPACE error when the �lesystem does not have

enough free space to satisfy an allocation request� The process will remain

blocked until enough free space has been created in the �lesystem to satisfy

the request�

����� Migration Daemon Communication Path

A communication path� implemented as a pseudo device driver in the kernel� is

used by the �le migration routines in the UNIX kernel and the migration daemon

to send and receive messages� The regular UNIX system calls� open��� read���

write��� and select��� are used by the migration daemon to open communica�

tions� receive messages� send messages� and test for messages from the kernel�

When the migration daemon is running and operational� the communication

path is open� The kernel assumes that when the path is open a migration daemon

is waiting to process requests� and when it is not open� no migration daemon

is running� With this assumption� �le migration activities are enabled while the

communication path is open� When it is not open� some of the �le migration

	

activities are disabled� For instance� if an attempt is made to delete a migrated

�le while no migration daemon is running� the request is denied� since the migra�

tion daemon needs to be noti�ed when a migrated �le is deleted� On the other

hand� a migrated �le�s on�disk space can be released when no daemon is running

because the migration daemon does not need to be noti�ed� An errno value of

EFMIGOFF is returned when a request is canceled or aborted because the migration

communication path is closed�

The structure of the messages sent across this communication path is discussed

in greater detail in Appendix F� Included in this discussion is a list of the valid

operations�

����� NFS Server Support

Because of the structure of the TrISH operating system modi�cations� no change

to the NFS server code was required to enable NFS access to migrated �les� When a

request is made from NFS to the UNIX �lesystem� the standard �lesystem routines

are used� Since these standard routines were already enhanced to handle migrated

�les� the NFS server had immediate access to migrated �les�

A few restrictions� however� exist on the method and the level of access to

migrated �les through NFS� NFS clients must use hard � rather than soft � mounts

when mounting TrISH enabled �lesystems via NFS� This restriction is required

because the length of time needed to reload a migrated �le is often greater than

the time�out limit for soft�mounted �lesystems� Hard�mounted NFS �lesystems� on

the other hand� do not time�out NFS requests and hence can deal with long delays�

Because process �ags are not passed between the NFS client and the NFS server�

the transparency controls discussed in section
�	�	 are not supported on NFS

mounted �lesystems�

The NFS protocol has speci�ed the information that is sent between the client

and the server when� for instance� performing a stat system call� The speci�cation

precludes appending additional information for migrated �les� As a result� migrated

�les always look like regular �les to NFS clients� and they are unable to use the

select�� and ioctl�� system calls discussed in Appendix E�

�

A hidden bene�t� however� is lurking in these restrictions� Because the NFS

client machines do not need and� in fact� cannot get any information about migrated

�les they are guaranteed transparent access to them� This allows an NFS client�

whose operating system does not contain the TrISH enhancements� access to the

migrated �les on a TrISH�enabled NFS server�

In a future project� enhanced access to migrated �les via NFS could be developed�

At this time� however� it is beyond the scope of this project to modify the NFS

protocol to provide these enhancements� Transparent access to migrated �les is

su�cient for this project and is� in fact� a giant step beyond what the BUMP

system provided�

����� Quota System Support

Like the NFS server support discussed above� support for the quota system

required no kernel changes� This is because the TrISH kernel modi�cations make

use of the standard �lesystem routines� which already contain support for the quota

system�

��� Device Access Methods

One of the goals of the TrISH system is to allow the easy integration of new

o�ine devices into the storage hierarchy� To this end a small set of well�de�ned

access routines has been implemented� Integration of a new device into the TrISH

storage hierarchy simply requires de�nition of the access routines and an update to

the con�guration �le� No programs need to be changed� The migration and reload

processes will access the new devices through their access methods�

Another goal of the TrISH system is to reliably and e�ciently manage o�ine

storage� To aid in achieving this goal� o�ine data are organized into �granules��

A �le may be broken down into multiple granules� and one given granules may be

written to one or more o�ine storage devices� Granule size is determined by the

access method routines and is de�ned to optimize both the use of the media and

the performance of the device�

Using granules increases the reliability of the system by providing an easy

mechanism of recovering from media and device failure� If an o�ine granule is

unusable� another granule containing the same piece of data can be used instead�

Granules also make the task of writing access methods easier� Because the size of

a single chunk of o�ine data is reduced� the access method is liberated from the

di�cult task of handling multivolume datasets� The granule implementation has

already provided the mechanism for splitting a �le�s data into manageable pieces�

The device access routines can be grouped into the following categories� con�g�

uration functions� initialization and cleanup functions� volume handling functions�

granule handling functions� and data block functions� Some functions� if they are

not needed or are not applicable for the device� do not need to be de�ned� For

instance� the compress method does not mount or unmount any media and does

not have those functions de�ned� The TrISH device access routines are discussed

in further detail in Appendix G�

To date� access method routines for copying data to another �lesystem auto�

matically compressing data inside the �lesystem� and copying data to the Hewlett�

Packard magneto optical jukebox has been developed� Providing access routines for

either robot or operator mounted magnetic tape devices would be a straight�forward

addition to the system�

��� Database Access Functions

Database system independence is another one of the goals of the TrISH system�

Because there are many types of database systems� including relational databases�

indexed �les� and sequential �les� access to the database has been abstracted into

functional units of work� For instance� when the reload process needs a list of

granules containing a �le�s data� it calls the granuals for fmigid�� function�

Using the database system on the host� this routine creates a list of the granules

containing the required data�

There are database access functions for initializing and closing the database�

adding� deleting� updating� querying� and sorting various database entries� The

types of database entries include granule entries� volume entries� releasable �le

�

entries� migratable �le entries� and forced migration �le entries� A list of the

database access functions can be found in Appendix H�

Database system reliability is another design goal of the TrISH system� This

is accomplished� in part� by separating the database entries for each migrated �le

system� If the database for one �le system is damaged� the other �le systems on

the machine can still be used while the damaged database is reconstructed� The

database access functions have been designed and implementedwith the expectation

that each �lesystem has its own database�

A side bene�t of this technique is that� depending on the implementation of the

database� the performance of the overall system increases� Since each �lesystem

has its own database� it is smaller� easier to maintain� and easier to optimize� Ad�

ditionally� since there are multiple databases on the system� the database accesses

have inherent parallelism�

A �lesystem�s database is divided into two di�erent logical databases� the main

TrISH database and the �out�migration� database� The main TrISH database is

where permanent information is stored� such as the granule and volume database

entries� The out�migration database holds the list of �les to migrate along with

their badness values� These databases are separated because the out�migration

database is deleted and re�created on a regular basis to re�ect updated badness

values as well as new �les in the �lesystem�

��� The TrISH Migration Daemon

The TrISH migration daemon� trishd� orchestrates the activities of a number of

di�erent entities� It listens for requests from the kernel� the system administrator�

and the users� It dictates the activities of the reload and free space creation

processes� It sets parameters in the �lesystems and enables the �le migration

activities of the UNIX kernel� In short it is the heart and brains of the migration

system�

����� Request Management

The TrISH daemon keeps track of requests on three di�erent priority queues�

The highest priority queue is where kernel requests are placed� the lowest priority

queue is for general user requests� and the medium queue is for high priority user

requests� Lower priority requests are dispatched only if no higher priority request is

dispatchable� Once a request is dispatched it will not be interrupted or preempted�

even if a higher priority request is dispatchable�

In the TrISH system� each o�ine device has its own reload server� and each

reload server services only one device� In order for TrISH to start using a device�

the corresponding reload server must be started� The reload server is shutdown to

stop using a device� To trishd� there is no distinction between a device and reload

server�

The �le migration routines in the UNIX kernel send reload and out�of�space

requests to trishd� Reload requests are placed on the high priority work queue

and dispatched when a reload server is available� If a reload server is not able to

successfully reload a �le� the reload request is requeued� and a new reload server is

given the chance to restore the �le� By doing this� all possible ways of reloading a

�le are explored before returning a reload failed message to the kernel�

Out�of�space requests are immediately handled by starting a free space creation

process� When the process sends back a message indicating that some space was

created in the �lesystem� trishd sends a message to the kernel informing it that free

space was created and that any blocked processes should be restarted� If the freer

process is not successful at creating space in the �lesystem� a failure message is sent

to the kernel� and the kernel in turn returns error messages to processes waiting for

space to be created� Because a single �lesystem can potentially generate a number

of out�of�space requests in a short amount of time� trishd must keep track of

current free space processes� and only create a new process if one does not already

exist for the �lesystem� The free space creation process is discussed in further detail

in Appendix C�

Every request that is sent to trishd is forwarded to the TrISH log �lter program�

�

The current �lter program just logs all of the requests to a �le� but future intelligent

log �lters could analyze the requests and watch for patterns of access� For instance�

if more than a few �les were accessed in the same directory� the log �lter could

generate reload requests for all of the migrated �les in the directory under the

assumption that the user will probably request the �les in the near future�

The system administrator manages trishd by querying the state of reload

servers� starting and stopping reload servers� querying the progress of reload re�

quests� cancelling reload requests� and shutting down the TrISH system� When

a device is started� its controlling reload process is created� The reload process

is responsible for sending regular status reports to trishd so the current state of

the reload process and the device is known� This information is displayed when

a query is received concerning the state of a reload process� When a request is

made to shutdown a reload server� trishd removes the reloader from the available

queue and sends it a shutdown message� The reloader is then responsible for ending

gracefully�

If a reload request is currently dispatched when a cancel reload request is re�

ceived� the request is forwarded on to the reload server� When the server reports

back to trishd that the cancel request was completed� the original reload request is

deleted from the queue� If the reload request was not dispatched� then the original

reload request is just deleted�

A user can query the state of reload requests� cancel reload requests� and initiate

batch reload requests for �les� These requests are handled the same way that system

administrator requests are handled� except a user can only cancel reload requests

for his or her own �les and can only initiate reload requests for �les he or she has

access to�

The system administrator and the system users communicate with trishd with

the trctl program� It is how the system administrator starts� stops� and retrieves

information about reload servers and shuts down the TrISH system� It is also how

a user initiates batch reloads� cancels pending and in�process reload requests� and

checks on the status of reload requests� The trctl program is discussed in further

�

detail in Appendix J�

����� TrISH Reload Servers

The TrISH reload servers are responsible for listening for� and responding to�

control messages from trishd� These messages include reload requests� cancel

reload requests� status update requests� shutdown requests� and regular �pings� to

make sure that the reload server is still alive� The reload server must be able to

accept requests at any time� even when it is busy responding to a previous request�

For instance� a cancel request could arrive while the reloader is busy restoring a

�le� The list of the valid reloader requests is in Appendix D�

There are a number of tasks performed by trishd in the management of reload

servers beside just starting and stopping them� For instance� reload servers are

responsible for sending periodic status information� Included in this information is

the current volume mounted on the device� the current �le being reloaded including

its fmigid� the owner and group of the �le� the total size of the �le� and the amount

of data that have been restored to the �le�

The name of the currently mounted volume is used by trishd to perform

dispatching optimizations� Since most o�ine devices� including robot controlled

devices� typically su�er from long delays when mounting new volumes� trishd

groups reload requests for the same o�ine volume to the same device� This

enables full utilization of a volume once it is mounted� As mentioned above� high

priority requests are serviced before low priority requests� even when the low priority

requests are on the same volume as one of the high priority requests�

Occasionally� a reload server will be unable to reload the requested �le� When

this happens� trishd will automatically requeue the request� and send it to another

reload server that may have access to other o�ine copies of the �le� A pathological

case for optical disk juke�boxes that trishd must deal with is the situation where

two CD drives are available for use� one drive has volume �A mounted and the

other drive attempts to mount volume �B� Unfortunately� volume �B is on the

�ip�side of volume �A� So even though volume �B is not mounted� this request can

only be serviced when volume �A is dismounted� Trishd handles this situation by

�

requeuing the reload request when the reload process returns a �volume busy� error

message and only dispatching when the con�icting volume is unmounted�

A feature called �nondedicated devices� enables TrISH only to use a device when

it is needed� The nondedicated reload server is not started when trishd initializes

but rather remains in a dormant state until a reload request is to be dispatched

to it� The reload server is started and given the reload request� When no more

reload requests exist for the device and it has been idle for a short period of time

�con�gurable by the system administrator�� the reload server is again shutdown and

placed in the dormant state waiting for another reload request� While the server

is in the dormant state� the device is unallocated and available for use by other�

non�TrISH� processes on the computer system� This feature is especially useful

when more than one device of a particular type exists and some of these devices

should� for most of the time� be available for non�TrISH system work� but should

also be used by TrISH when a large number of reload requests are received�

��� Enhancements to Standard Utilities

A few of the standard UNIX utilities that access and provide information about

�les and �lesystems have been enhanced to return information about migrated �les�

The enhanced utilities are discussed in this section�

����� The ls Command

There are situations where users will need to know information about migrated

�les� For instance� a user may want to know how much of a �le�s data resides in

on�disk space� The ls command has been enhanced to return the fmigid value�

and the amount of on�disk space when the ��l� �ag is speci�ed�

The example below shows three migrated �les� The �rst �le�s data all resides in

on�disk space� the second has �K of on�disk data� and the last has none� The type

of these �les is listed as �m�� meaning migrated� and their fmigid is listed along

with the on�disk space�

�� saaz� ls �l big� test�

mrw�rw�r�� � bytheway �������� Jan 	
 ����� bigfile�
�
���	��� ���������

mrw�rw�r�� � bytheway 	������� Jan 	
 �
��� bigfile�
�
���	��
 �
���

��

mrw�rw�r�� � bytheway ������� Jan ��
���� testing
�
���	���
�

����� The find Command

A new �type m �ag has been added to the �nd command to locate migrated

�les� The �type f �ag only �nds regular� nonmigrated �les� When the �ls �ag is

set� the output lists a �le type of �m� for migrated �les� The �ls �ag to �nd� unlike

the ls command� does not list the �le�s fmigid or the amount of on�disk space�

����� The fsck Command

The fsck command was modi�ed to ignore the high watermark value in the

�lesystem super block� It was enhanced to know that the migrated �le type �IFMIG�

is a valid type and that migrated �les should be treated the same as regular �les�

Since migrated �les use the data block pointers in the inode the same way that

regular �les do� only these simple changes were needed for the fsck program�

����� The df Command

A new �ag ��m� was added to the df command� When this �ag is speci�ed� the

df command queries the database of the �lesystem to get the amount of releasable

space in the �lesystem� The amount of releasable space is added to the amount of

available space� This value is then subtracted from the amount of used space� By

specifying the �m �ag� a user can see the true amount of available space in the �le

system� Below is an example of df with and without the �m �ag�

�� saaz� df �u

Filesystem kbytes used avail capacity Mounted on

�dev�sd�f ������ �	����
���	 ��� �u

�� saaz� df
m �u

Filesystem kbytes used avail capacity Mounted on

�dev�sd�f ������ 	���� ������ �
� �u

����� The du command

A new �ag ��m� was added to the du command� When this �ag is speci�ed�

another column is printed containing the amount of space in the �le�directory that

is not releasable� By using this �ag the user can �nd out how much nonreleasable

��

space is being used by �les� Below is an example of du with and without the �m

�ag�

�� saaz� du
s �

����� bigfile�

� bigfile	

	� trishlog

	�	� trishlog
��
��
��

���� trishlog
��
	�

	
�� trishlog
��
�
��

�	� trishlog
�
��
��

��� saaz� du
s
m �

����� � bigfile�

� � bigfile	

	� 	� trishlog

	�	� � trishlog
��
��
��

���� � trishlog
��
	�

	
�� � trishlog
��
�
��

�	� � trishlog
�
��
��

����� The dump Command

The dump command was enhanced so that it would treat migrated �les the same

way it treats regular �les� No other changes were necessary to support migrated

�les�

����
 The restore Command

The restore command was enhanced so that it will correctly restore migrated

�les� To restore correctly a migrated �le� the fmigid �eld� the releasable �ag

�IFMIGREL�� and the modi�ed �ag �IFMIGMOD� must be set correctly� Additionally�

if part of the �le was not on�disk when the dump tape was created� that part of

the �le must be released since the dump tape does not contain valid data for that

part of the �le�

The steps to restore a migrated �les are as follows�

�� If the on�disk space was less than the size of the �le� then extend the �le to

the correct length by seeking to the end of the �le and writing a dummy byte

�	

of data �these data will be released later�� If this is not done� the �le�s length

would be incorrectly set to the length of only the on�disk data�

	� Use the fmig migrate�� system call to make the �le into a migrated �le� Use

the same fmigid that was used in the old �le� With the fmigid in place� the

o�ine data are again associated with the �le�

�� If the releasable �ag �IFMIGREL� was turned on in the old �le� set it on in the

newly restored �le using the fmig releasable�� system call�

� If the on�disk space was less than the size of the �le� then release the �le�s

on�disk space using the fmig release�� system call�

�� If the modi�ed data �ag �IFMIGMOD� was set� cause the kernel to reset this �ag

by reading and rewriting the �rst byte of the �le�

CHAPTER �

ANALYSIS OF TRISH

Many of the problems �described in Chapter 	� with the BUMP system are a

result of design decisions that limited the capabilities of the system� The TrISH

system was redesigned in a number of fundamental areas to address these problems�

As a result of the improved design� the TrISH system does not have many of

the limitations that the BUMP system su�ered� Some of the original limitations

went away with no extra work� Interestingly� requirements for some of the solved

problems� like the quota system support� were not fed into the design phase� This

gives validity to the design of the TrISH system and gives some assurance that

it is well�integrated with and conforms to the fundamental design of the UNIX

operating system�

��� TrISH Design

As was mentioned in Chapter �� the design decision to allow a �le to have

both on�disk data� and o�ine data� had a number of system performance bene�ts�

Interestingly enough� the performance gains were not in the area �rst thought to

be most important� These performance gains will be discussed in section ��	�

Redesigning the o�ine device access method routines was a formidable but

successful undertaking� The task of identifying and abstracting the minimum basic

functions was di�cult� However� by using the TrISH access method routines� pro�

grams that access data on o�ine media are greatly simpli�ed� and more importantly�

they are more generic� They no longer have to worry about mounting o�ine media�

recovering from media error� generating CRC check sums� and handling device

speci�c routines� the access method routines perform these tasks� Additionally�

since the abstraction boils down to easily understood and implemented pieces�

�

writing new device access methods is also simpli�ed� Unlike the BUMP device

access routines� which often required applications to do �special case� coding for

devices that did not quite �t the abstraction model� the TrISH device access routines

require no application level special case coding�

The decision to base the TrISH enabled �lesystem on the standard UNIX �lesys�

tem and its inodes simpli�ed the design of the system greatly� The underlying

�lesystem provides the directory structure� the data block allocation routines� the

online device access routines� and special functions like enforcement of quotas�

On the other hand� this decision also implies some limits on the implementation�

For instance� because TrISH is inode�based� the maximum number of �les in the

�lesystem is limited to the number of inodes that were allocated in the �lesystem

when it was created� Another approach would be to create a �new� �lesystem type

that is not inode�based� In such a system� a database would hold the information

that the inode currently holds� This approach would not be limited by the number

of inodes initially created in a �lesystem� however� many other parts of the system

would be more di�cult to implement� and the existing �lesystem code could not

be leveraged to ease the implementation�

��� Performance Features

Given the number of changes between the BUMP system and the TrISH system�

it is hard to know which changes are contributing the most to the performance

improvements� However� some logical conclusions can be drawn�

On�disk data feature was initially designed to help prevent �les from being

restored when a user searches through a directory for a particular �le� However� in

practice when a �le is read it is read from beginning to end� making the e�ectiveness

of leaving a small portion of the �le in on�disk space dubious� Also� if all migrated

�les kept the � K�bytes of on�disk space required �see section ��	��� to prevent false

reloads when being accessed with file or head commands� they could consume a

large amount of disk space� especially if there are a large number of migrated �les�

For instance� if 	����� migrated �les retained � K�bytes of data� they would hold �
�

��

M�Bytes of data� This results in the conclusion that �lesystem wide nonreleased

on�disk data are� most likely� not a good idea� On the other hand� if the few

�les with a high probability of only having their �rst � K�bytes of data accessed

could be identi�ed� this feature would be useful� In practice this is hard to do and

should probably be done by a user who knows what the future access patterns of

the �le will be� There are also certain applications and data formats that could

take advantage of the on�disk data feature to allow quick access to rough data or

directory information with slower access to more detailed data� For instance image

�les� account history �les� mail logs� and backup �les have potential for taking

advantage of on�disk data�

The real performance gains from the implementation of on�disk data come from

four areas� First� a �le can be accessed while it is being restored from o�ine storage�

Second� a �le�s o�ine data remain valid until the �le is modi�ed� thus preventing

unnecessary copies to o�ine storage� Third� the on�disk data are immediately

available to the requesting process without intervention from the reload servers�

Fourth� the free space management processes are intelligent about releasing space

and retaining on�disk staging area data� A few of these will be discussed below�

In the BUMP system� a migrated �le�s data may reside in a �staging area��

When a migrated �le that has data in the staging area is accessed� a reload process

is created to actually move the data from the staging area to the �le� This process is

faster than going to o�ine storage for the data� but it still involves creating a reload

process� checking the database� and moving the data to the �le� The TrISH system

implements the same functionality with on�disk data� This has many bene�ts� Since

on�disk data are already in the �le� it is not necessary to create a reload process�

This greatly improves the access latency for �les with on�disk data� If the migration

daemon is unavailable� �les with on�disk data can still be accessed as if they were

nonmigrated �les� In the BUMP system� all migrated �les are unaccessible when

the migration daemon is unavailable�

When free space is required in the �lesystem� the TrISH system releases only

enough space to satisfy the immediate need� By doing this� many �les keep their

�

on�disk data� In contrast� the BUMP system releases all staging area data whenever

space is required� In most cases� more data are released than is necessary� and any

hope of accessing data from the staging area is gone�

In the BUMP system� whenever a �le is restored from o�ine storage� a new

process is created� This reload process mounts the o�ine media� restores the �le�

unmounts the o�ine media� and goes away� In the TrISH system� when a reload

server restores a �le� it keeps the o�ine media in the device� When another request

for o�ine data on the same media is received� the media is already mounted and

ready to use� If the average time to mount an o�ine volume is about
 seconds and

�� migrated �les whose o�ine data reside on the same o�ine volume are restored�

the BUMP system would spend
� seconds just mounting and unmounting the

media� The TrISH system would spend only
 seconds� a signi�cant improvement�

The database access methods in the BUMP system are extremely slow� For

instance� it could take up to �� or
� seconds to delete �� migrated �les� In the

TrISH system� with its intelligent database access methods� it takes only ��� seconds

to delete �� �les�

The BUMP system selects �les for migration based solely on their badness value�

When �les are assigned a badness value� their value is compared to a system

administrator�de�ned value� If the �le�s value is greater� it is migrated� It is a

very di�cult task for the system administrator to �ne�tune this value so that just

enough� but not too much� free space is created� The TrISH system takes a di�erent

approach� Rather than using the badness value to de�ne when a �le is migrated�

it is used to de�ne what order �les are migrated� The system administrator just

de�nes the amount of free space he would like in the �lesystem� TrISH migrates �les

until the free space target is reached� This greatly simpli�es the task of de�ning

system parameters and also achieves the real goal of guaranteeing free space in the

�lesystem�

The examples below show the bene�t of intelligent reload servers and the TrISH

implementation of the staging area data through on�disk data� The �le being

accessed is a �
 K�byte text �le� The application is wc� the UNIX word count utility�

��

The csh built�in command time is used to track the amount of time required to

execute the command� The third column in the output is the elapsed time used by

the wc command�

The following is the output from the ls �l command� which shows that the �le

has no on�disk data�

��� saaz� ls �l test�
	

mrw�rw�r�� � bytheway 	���� Jun �
���� test�
	
�
���	���
�

The �le is accessed with the wc command� The o�ine media must be mounted

by the reload server and the data reloaded into the �lesystem� This takes �	 seconds

to complete�

��� saaz� time wc test�
	

��� ��� 	���� test�
	

��u
�
s
��� �� ��	k ���io
pf�
w

The output of the ls �l command shows that the �le is still a migrated �le and

that it has all on�disk data� A �le in this same state in the BUMP system would

be migrated with its data in the staging area�

��� saaz� ls �l test�
	

mrw�rw�r�� � bytheway 	���� Jun �
���� test�
	
�
���	��� 	�����

When the �le is read� it is accessed in less than � second� The TrISH system

simply allows the �le to be read as if it was not migrated� The BUMP system

would have had to create a reload server to move the data from the staging area to

the �le�

�	
 saaz� time wc test�
	

��� ��� 	���� test�
	

�
u
�
s
�

 �
� 	�	k �
�
io
pf�
w

Using the trelease program� the �le is released so it has no on�disk data� The

�le is again accessed with the wc command� At this point the reload process still

has the o�ine media mounted� it simply reloads the �le� This access took only �

second� The BUMP system would have taken at least �	 seconds to reload the �le�

just like the �rst example above�

��

�	� saaz� trelease �keep
 test�
	

�	� saaz� time wc test�
	

��� ��� 	���� test�
	

�
u
�
s
�
� �� 	�	k ���io
pf�
w

��� TrISH Simulation

The TrISH system has been running dependably for over 	 years on a test

machine� However� due to extenuating circumstances it was never deployed into

production use� As a result� usage and performance statistics are not available for

production work loads� To analyze the e�ectiveness of the TrISH system� I will

present simulated TrISH activities that were generated using the TrISH simulator�

It should be noted that all of the features discussed in this paper are actually

implemented in the TrISH system� Also� statistics presented in other parts of this

paper are from the running TrISH system� Only the numbers in this section are

simulated�

Using the simulator to assess the value of �le migration has some values over

using a production system� With the simulator I was able to change �lesystem sizes

and TrISH parameters like the high� low� and target watermarks and add additional

trace values to the simulator as they were identi�ed across multiple simulations�

These incremental changes� re�nements� and �what if� runs would not have been

possible with activity logs from a production system�

The TrISH simulator works by creating a virtual �lesystem that is smaller than

the real �lesystem� It migrates and releases �les to �t in the virtual �lesystem

and then uses �lesystem inode dump logs to recreate �le activity in the virtual

�lesystem� The simulator very closely resembles the actual activities of the TrISH

system� The results of simulating three di�erent �lesystems are presented in this

section�

����� Simulation of sunset��home�grad

The �home�grad �le system� on the �le�server sunset� is a � Gigabyte �lesystem�

with about � Gigabytes of used space� It holds the home directories of graduate

students in the Department of Computer Science at the University of Utah� To

��

determine the size of the virtual disk� an analysis of the size and number of �les in

the �lesystem was done� Figure ��� shows the results�

This graph clearly shows that about ��� of the �les consume only 	�� of the

space� The other ��� of the space in consumed by about ��� of the �les� If one

migrated all of the big �les one could reduce the amount of used space by ����

However� I would like to migrate just the old big �les� since they will most likely

not be accessed again soon� Figure ��	 shows the relationship between the age�

number� and size of �les in the �home�grad �lesystem�

This shows that there is no real relationship between the age of a �le and the

size of a �le� That is� a large �le is just as likely to be created today as it was a

few months ago� The TrISH system combines the age and size of the �le to come

up with the badness value �discussed in section ����
�� Files with larger badness

values are migrated �rst� Figure ��� shows the relationship between badness value�

number� and size of �les�

This graph is much steeper� showing that there are relatively few old large �les�

0%

20%

40%

60%

80%

100%

2K 16K 128K 1M 8M 64M 512M

C
um

m
ul

at
iv

e
P

er
ce

nt

Size of File

Cummulative Percent by Size

Number of Files
Space in Files
Knee of curve

Figure ���� sunset��home�grad � File Size

�

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
um

m
ul

at
iv

e
P

er
ce

nt

Number of Days

Cummulative Percent by Days Since Access

Number of Files
Space in Files

Figure ���� sunset��home�grad � Days Since Access

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

m
ul

at
iv

e
P

er
ce

nt

Badness Value

Cummulative Percent by Badness Value

Number of Files
Space in Files
Knee of curve

Figure ���� sunset��home�grad � Badness Value

�

When it comes to migrating �les� the fewer that have to be migrated the better�

This graph shows that by migrating ��� of the �les� one could reduce the �lesystem

to ��� of its original size� However� this is very close to the edge of the knee in the

Number of Files curve� meaning that if an unexpected need for space came along�

a large number of �les would need to be migrated to satisfy the requirement� If the

knee of the graph is moved up slightly� then the �lesystem can be safely reduce to

�� to
�� of its original size�

The real �lesystem has � Gigabytes of used space�
�� of this is 	 Gigabytes�

Figure ��
 shows what would have happened to the used space and the nonmigrated

space in the �lesystem had TrISH been enabled on a 	 Gigabyte �lesystem holding

these �les�

The space between the Used Space curve and the Nonmigrated Space curve

consists of data that have been copied to o�ine storage and are in the on�disk

area of the migrated �les� The ability of the TrISH system to keep free space in the

�lesystem is clearly shown by the Used Space curve� When the used space reaches

.5 Gig

1 Gig

1.5 Gig

2 Gig

0 2 4 6 8 10 12 14 16 18

S
pa

ce

Day

Simulated Disk for sunset:/home/grad

Used Space
Non-migrated Space

High Watermark
Low Watermark
Migrated Target

Figure ���� sunset��home�grad � Simulated Disk

	

the high watermark� the free space creation process converts migrated on�disk space

to free space� bringing the amount of free space down to the low watermark� This

can be seen on days
�
� and �� When there is no more on�disk space available

for free space creation� the outmigration process starts and creates more on�disk

migrated space�

To show the impact on the system and to the user� Figure ��� plots the total

number of �les� the number of migrated �les� the number of �les that were accessed�

and the number of accessed �les that were migrated and had to be restored or were

on�disk and did not need to be restored� A similar graph could be drawn for the

amount of space that was migrated� accessed� and restored� but the real impact

comes from the number of �les� not their size�

The �gure shows that� indeed� roughly ��� of the �les were migrated� It also

shows that between � and
� of the �les are accessed on any given day� It shows

that on average� only about �� �les had to be restored� with a peak of 	�� �les on

day �� Also the on�disk space saved a number of restores� On days
� �� and
� it

1

10

100

1000

10000

100000

1000000

2 4 6 8 10 12 14 16

N
um

be
r

of
 F

ile
s

Day

Simulated access for sunset:/home/grad

Total
Migrated

Accessed
Restored

Ondisk Accessed

Figure ���� sunset��home�grad � Simulated Access

�

saved over �� reloads each day� with day
 saving 	� reloads� The BUMP system

would have had to restore these �les from o�ine media�

By impacting only a very small number of �le accesses� the TrISH system is able

to squeeze this � Gigabytes of used space into a 	 Gigabyte �lesystem� saving at

least � Gigabytes of disk space and possibly more� since free space management

is handled by TrISH rather than overallocating the size of the �lesystem� This

�lesystem seems to be a good candidate for the TrISH system�

����� Simulation of geronimo��u

Geronimo is the �le server for the Utah Supercomputing Institute �USI�� The �u

�lesystem is the home directory �permanent� space for users of the USI computing

facilities� During the following analysis �u was an � Gigabyte �lesystem and was

��� full� About 	� days into the statistics gathering process� the �lesystem was

rebuilt into a �	 Gigabyte �lesystem� This e�ectively rendered the remaining traces

unusable� However� some interesting facts can be observed during the �rst 	� days

of data gathering�

Each of the USI machines has a large �lesystem set aside for big temporary

�les� these �les are not usually written into the �u �lesystem� At various times

in the past� some users have had up to
 Gigabytes of space in these temporary

�lesystems� Rather than use the UNIX quota system to control space usage in the

�u �lesystem� users are billed for their space at a small monthly rate� giving them

some incentive to keep there accounts clean of large dead �les�

The same �gures that were presented for the sunset��home�grad �lesystem will

be presented for this �lesystem� Figure ��
 shows that in spite of the incentives for

the users to keep their accounts free of large �les� this �lesystem has a proliferation

of very large �les� In fact� �� of the �les occupy ��� of the space�

By examining the age distribution of the �les� shown in Figure ���� one can

see that this is a young �lesystem� at least compared to the sunset��home�grad

�lesystem� Very few �les have not been accessed in the last year� Like the last

�lesystem� there is no strong correlation between the size of a �le and the age of a

�le� although there are a number of large �les that are about �� days old�

0%

20%

40%

60%

80%

100%

2K 16K 128K 1M 8M 64M 512M

C
um

m
ul

at
iv

e
P

er
ce

nt

Size of File

Cummulative Percent by Size

Number of Files
Space in Files
Knee of curve

Figure ���� geronimo��u � File Size

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
um

m
ul

at
iv

e
P

er
ce

nt

Number of Days

Cummulative Percent by Days Since Access

Number of Files
Space in Files

Figure ��
� geronimo��u � Days Since Access

�

By again staying on the upper side of the knee on the Number of Files curve�

shown in Figure ���� it can be observed that ��� of the �les� as mapped by the

badness value� occupy only between �� and 	�� of the used space� By taking ���

of � Gigabytes� a virtual �lesystem of ��� Gigabytes is calculated�

As shown in Figure ���� this �lesystem is quite active� Free space creation

occurred every few days� and outmigration occurred regularly� In fact� to prevent

constant free space creation and outmigration processing� the low watermark was

lowered to ��� and the migrated target watermark was lowered to ��� of the

virtual �lesystem size� With all this �lesystem activity� one would expect that

there would also be a lot of migrated �le reloads�

In fact there are surprisingly few reloads� as shown in Figure ����� The number

of reloads peaked at about
�� and� happily� the on�disk space prevents almost as

many reloads as there were reloads� As predicted� between � and ��� of the �les

were migrated� and like the �home�grad �lesystem� around � and �� of the �les

were accessed on any given day�

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

m
ul

at
iv

e
P

er
ce

nt

Badness Value

Cummulative Percent by Badness Value

Number of Files
Space in Files
Knee of curve

Figure ���� geronimo��u � Badness Value

.25 Gig

.5 Gig

.75 Gig

1 Gig

1.25 Gig

1.5 Gig

2 4 6 8 10 12 14 16 18

S
pa

ce

Day

Simulated Disk for geronimo:/u

Used Space
Non-migrated Space

High Watermark
Low Watermark
Migrated Target

Figure ���� geronimo��u � Simulated Disk

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18

N
um

be
r

of
 F

ile
s

Day

Simulated access for geronimo:/u

Total
Migrated

Accessed
Restored

Ondisk Accessed

Figure ����� geronimo��u � Simulated Access

�

This � Gigabyte �lesystem was easily squashed to a ��� Gigabyte �lesystem� an

��� savings in disk space usage� Very few �les needed to be reloaded� and the

on�disk space saved between �� and ���� of the potential reloads� This �lesystem

also appears to be a good candidate for the TrISH system�

����� Simulation of fast��usr�lsrc�avalanche

The �usr�lsrc�avalanche �lesystem contains the source code for a software

project under development in the Computer Systems Laboratory in the Department

of Computer Science� It is a � Gigabyte �lesystem and is about ��� full�

Once again� it appears to have roughly the same �le size characteristics as the

other �lesystems examined� This is shown in Figure �����

Figure ���	 shows that this is a very young �lesystem� Whereas �� to
�� of

the �les in the other �lesystems have not been accessed in �� days� only �� of the

�les in this �lesystem have not been accessed in the last �� days�

The badness curve in Figure ���� shows that about ��� of the �les could be

0%

20%

40%

60%

80%

100%

2K 16K 128K 1M 8M 64M 512M

C
um

m
ul

at
iv

e
P

er
ce

nt

Size of File

Cummulative Percent by Size

Number of Files
Space in Files
Knee of curve

Figure ����� fast��avalanche � File Size

�

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
um

m
ul

at
iv

e
P

er
ce

nt

Number of Days

Cummulative Percent by Days Since Access

Number of Files
Space in Files

Figure ����� fast��avalanche � Days Since Access

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

m
ul

at
iv

e
P

er
ce

nt

Badness Value

Cummulative Percent by Badness Value

Number of Files
Space in Files
Knee of curve

Figure ����� fast��avalanche � Badness Value

�

migrated� reducing the size of the �lesystem to about ��� of its original size� A

��� Megabyte �lesystem will hold ��� of this � Gigabyte �lesystem�

What appeared in this static analysis to be a �so�so� �lesystem for migration

turned out to be a really bad choice� Figure ���
 shows that free space creation

is occurring many times each day� and out�migration is happening on a frequent

basis�

The initial out�migration of �les� shown in Figure ����� looks like what was

expected� about ��� of the �les were migrated� Unfortunately� everything went

down hill from there� On days
� �� and
� an ever increasing number of �les had

to be migrated to create the enormous amount of free space required by the new

�les being created in the �lesystem� By day
� ��� of the �les were migrated� On

day �� ���� �les were accessed� and a staggering ��
� of them had to be reloaded�

On other days� less than 	�� �les had to be reloaded� but only
�� to ��� �les were

accessed on those days�

This is not a good candidate for the TrISH system� It is a young� very active

88 Meg

175 Meg

263 Meg

350 Meg

0 5 10 15 20 25 30

S
pa

ce

Day

Simulated Disk for fast:/usr/lsrc/avalanche

Used Space
Non-migrated Space

High Watermark
Low Watermark
Migrated Target

Figure ����� fast��avalanche � Simulated Disk

��

1

10

100

1000

10000

5 10 15 20 25

N
um

be
r

of
 F

ile
s

Day

Simulated access for fast:/usr/lsrc/avalanche

Total
Migrated

Accessed
Restored

Ondisk Accessed

Figure ����� fast��avalanche � Simulated Access

�lesystem with no large inactive �les to migrate� Also since it started out quite

small �� Gigabyte�� the opportunity to save a lot of space did not exist�

This simulation also points out a weakness in the TrISH simulator� The �lesys�

tem traces were run nightly� In an active �lesystem like this one� a lot of �les are

created one day and deleted the next� The simulator can only look for deleted �les

after the entire daily trace �le has been processed� Because of this� the simulator

will wrongly see that the �lesystem is out of space� perform free space creation�

�nish the trace �le� and delete �les that did not appear in the trace �le� This e�ect

can be seen clearly on the Simulated Disk �gure for fast��usr�lsrc�avalanche

on day �� TrISH worked very hard to create free space by migrating and releasing

�les� After the deleted �les were removed� the free space in the �lesystem dropped

down to
��� The TrISH simulator performs a worst case analysis� which for this

�lesystem is pretty bad�

��

����� Simulation Conclusions

One weakness of the simulator is that it only knows that a �le was accessed

sometime during the day� It does not know how many times the �le was accessed

nor what order they were accessed� Since a �le�s data remain on�disk after they

are reloaded� the number of reloads to accesses reported by the simulator is an

absolute worst case� It assumes a �le is accessed only once� If the true number

of �le accesses was known� it is very likely that the number of reloads to total �le

accesses would be a miniscule amount�

These simulations show that a hierarchical storage management system is a

viable option for the sunset��home�grad and geronimo��u �lesystems� It reduced

the disk space requirements of these �lesystems and only impacted a small number

of �les� The fast��usr�lsrc�avalanche �lesystem would not bene�t from an

HSM system� but since it is the source directory for an active development project�

one could have predicted this outcome�

��� Usability Features

From a user perspective the most important feature of the TrISH system is the

ability to actively manage migrated �les� A user has the ability to force a �le to

migrate� to release a �le�s on�disk data� and to �batch� reload any number of �les�

He or she also has the ability to prevent the normal automatic �le migration process

from migrating a �le� The user has ultimate control over �les and can choose when�

where� and why they are migrated�

Users may also be interested in application programs that have the ability to

detect migrated �les and the amount of on�disk data they hold and to watch for

data being restored into them� These applications can provide a more interactive

feel to migrated �les and allow the user more control over when a �le is restored

from o�ine data�

From a system administrator�s point of view� the ability to manage the TrISH

system is very good� especially compared to BUMP� TrISH has tools to analyze

�lesystems to determine if they are a good match for being managed by TrISH�

The system administrator has the tools to start� stop� drain� and cancel reload

�	

servers� He can get kernel�level statistics to determine the impact TrISH has on

�le access times� New �le migration policies are easy to implement� thanks to the

modi�able badness value functions and free�space tuning parameters�

Before implementing TrISH on a system� the system administrator can gather

statistics on the types of �les in the �lesystems� If a �lesystem looks promising� he

can run the TrISH simulator for a few weeks or months to see if the �lesystem is

actually a good �t for �le migration� These preanalysis tools are very important

when implementing the system� They help prevent user dissatisfaction by identi�

fying �lesystems that are not appropriate for �le migration� It is also a useful tool

for predicting good starting values for parameters and sizes� Example output from

the TrISH simulator is in section ���

The TrISH device manager provides a way to manage o�ine devices and share

them between TrISH processes and other processes� such as backups and individual

user requests� Through the use of the device manager� TrISH can automatically

activate reload servers to meet peak demands and yet return idle devices back to

system for use by others� This limits the impact of the TrISH system on the rest of

the system� The device manager is very stable and has proven to be very useful� It

has been used at the Utah Supercomputing Institute for the last � years to manage

tape devices for backup purposes�

The TrISH operator messaging system provides a convenient and robust way to

communicate with someone when human intervention is required� The X�window

system support has proven to be extremely useful and hardy� Even if the X�server

hangs or is rebooted� the operator messaging system recovers and is successful at

contacting an operator� The operator messaging system has also been used at the

Utah Supercomputing Institute for the last � years to coordinate the activities of

the operations sta��

��� What Did Not Work

There was one initial design goal that was dropped because it was technically

infeasible� Initially� I wanted to eliminate the need for the �le migration identi�er�

��

Both BUMP and TrISH use this �eld to associate a migrated �le�s o�ine data with

the �le�s inode located in the �lesystem� This �eld consumes most of the remaining

unused space in the on�disk area of the inode structure� I was hoping that since

the inode number is already unique and since the migration database can be stored

with the �lesystem �eliminating duplicate inode entries between �le systems�� yet

another unique number was unnecessary� This might be the case if migrated �les

are never restored from backup tapes� but in fact migrated �les are restored� and

when they are� their inode number changes� If the o�ine data are referenced by the

inode number� the restored �le will no longer have access to its o�ine data� Even

worse� the migration system might be confused and restore another �le�s data into

the �le when it is reloaded� Because of this� the �le migration identi�er �eld was

kept in the inode�

The informal analysis that I have done leads me to believe that once a �le is

read� it is read from the beginning to the end� There are a few notable exceptions�

such as the file and head commands� but generally� when a �le is read� it is read

from beginning to end� In the TrISH simulations I performed� retaining on�disk

data usually caused more problems than it solved� The bottom line conclusion is

that on�disk data should not be used across the board for all �lesystems� Of course�

there are a few exceptions to this rule� as was discussed above in section ��	�

��� Future Enhancements

Since every �le migration request is passed on to the logging task� there is a

potential for performing some intelligent monitoring and processing of events� For

instance� it could keep a history of reload requests and automatically de�migrate

active migrated �les� Doing so would prevent them from being released when space

was needed in the �lesystem� It could reload all of the �les in a directory� if the

directory was part of a program source tree� The assumption would be that� if a

compile accesses one �le� it will most likely access most� if not all� of the �les in the

same directory�

When a �le is updated or deleted� the o�ine data becomes invalid� When a

�

large number of �les have been updated and deleted the o�ine media becomes full

of invalid data� A space reclamation process should be developed� It must be able

to handle near�line devices such as optical disk� as well as o�ine devices such as

�mm tape�

Since backups are performed nightly� the ability to use backup tapes for the

o�ine source would reduce the time spent copying data to o�ine storage� In general

this is a very di�cult thing to manage� Since TrISH does not control the backup

system or its media� it is not reasonable for it to place any con�dence in the o�ine

data or the ability to recover a migrated �le using the backup media�

It would be bene�cial for an NFS client to have the ability to get migrated �le

information� such as the amount of on�disk data� The ability to control the actions

of the NFS server through process �ags would also be useful� In order to provide

these capabilites� either the NFS protocol would need to be modi�ed or another

ancillary server� similar to lockd� would need to be implemented�

��� Lines of Code in TrISH

The TrISH system as a whole ended up being much larger than I had anticipated�

totaling roughly
����� lines of code� Most of the code was in implementing

library routines ������� lines� and TrISH daemons and utilities ����	�� lines��

The operating system modi�cations required ��
�� lines of code� with most of the

code ������ lines� being used to implement the communication mechanism between

trishd and the UNIX kernel� The modi�ed system utilities only required
	� lines�

Although TrISH is a large and complicated system� the bulk of the code as

well as the complexity has been implemented in user space daemons and programs

rather than the UNIX kernel� Because most of the code is in user space� the task

of adding features and solving program bugs is more readily accomplished�

��	 Conclusions

I have shown that by using a hierarchical storage management system� inexpen�

sive o�ine devices can be e�ectively used to store large� inactive �les� with minimal

impact on the general use of the system� By doing so� space is made available for

��

smaller more active �les� ultimately saving money that would otherwise need to be

spent on an ever increasing amount of online disk space�

The TrISH hierarchical storage management system provides a well�integrated�

well�designed� and easily extendable system for managing the movement of data

between online and o�ine storage�

TrISH has improved on the foundation laid by its predecessor� the BUMP system�

in a number of ways� TrISH has improved performance through the implementation

of concurrent reload and access� the reuse of o�ine data� and the redesign of

�lesystem procedures to eliminate delays to staging area data� It provides improved

reliability through the use of distributed data bases and redundant o�ine copies�

It has improved manageability by providing utilities to control the TrISH servers�

It is more usable because it allows user controlled migration� reload� and release�

In short� it is a robust and e�ective hierarchical storage management system�

CHAPTER �

RELATED WORK

Hierarchical storage management �HSM� systems have recently become an area

of intense research and development� When this thesis was started� only a small

handful of HSM systems existed� Now there are a number of HSM systems� both

commercial and research�

In the April ���
 issue of RS�Magazine����� there were 	� commercial HSM

vendors listed� Peripheral Strategies� a marketing research company� predicts that

by ����� ��	� million will be spent on HSM systems� compared to ���� million in

���������

Government and industry are both supporting research on HSM and other

storage management systems� such as the �Robo�line� project �	�� being conducted

at the University of California at Berkeley� Dr� David A� Patterson from Berkeley

said �My thesis is that a factor of ���� increase in storage capacity available on

most Ethernets will have a much greater impact than a factor of ���� increase in

processing speed for a gaggle of scientists��	� p� ��� Clearly� storage management

is� and will continue to be� an interesting area of research and development� In this

chapter� three of the HSM systems available at the time this thesis was started� are

reviewed and compared to TrISH�

��� RASH

The NASA Ames Research Center has developed a UNIX�based mass storage

system named �NAStore� short for NAS Mass Storage Subsystem�
�� NAStore

includes a �le migration system titled Rapid Access Storage Hierarchy �RASH��

��

����� The Goals of RASH

RASH�s purpose� as stated by the authors� was to

�� � � transparently and optimally � � � manage the use of the various types

of storage media in the Mass Storage System� This includes the movement

of �les between levels of storage� the archiving of �les from disk to higher

levels� the restoration � � � of �les � � � � and the movement of volumes

between the higher levels of the hierarchy� RASH will act to maintain

a de�ned amount of free space on the �le systems��
� p� �
��

Other goals listed for RASH include����

� Ensure that no single media error will result in data loss�

� Provide the ability to turn over to the user the o�ine media containing the

user�s data�

� The UNIX kernel modi�cations should be kept to a minimum and �made as

cleanly as possible�� However� if there is a con�ict between performance and

�cleanliness�� performance wins�

� Use a commercial database system�

� Archive only regular �les� No directories or special �les are archived�

� O�ine data must be kept on removable media in standard interchange format�

����� How RASH Accomplished These Goals

To accomplish these goals the RASH system provided a three�level storage

hierarchy� Level � is magnetic disk� Level � is tape cartridges in an auto�loader� and

Level 	 is tape cartridges on the shelf� The granularity of data movement between

levels of the hierarchy is a �le� and a �le can exist in only one stage of the hierarchy

at a time�

Data are moved between the level � �disk� and the level � �tape� hierarchies by

a set of nightly batch processes� One process identi�es the �les that can be moved

��

from disk to tape� Another process orders the list� using a system administrator

de�ned formula� and begins moving the �les from disk to tape ��les at the top of

the list are moved �rst�� It continues to move data to tape until the amount of free

space in the �lesystem reaches a predetermined value� at which point the movement

of data to tape stops� If during the day a �lesystem becomes full� the list is again

consulted and data are moved from disk to tape until the free space value is once

more achieved�

When a �le is accessed that is not stored on disk� the UNIX kernel sends a

message to the RASH daemon process� The daemon forks a process which copies

the data from a higher level of storage �tape in an auto�loader� tape on the shelf�

to disk� As the data are copied to disk� they are immediately available to the

process that was accessing the �le� The RASH paper says that if a �le spanned

tape volumes� the data could be coped from each volume in parallel���� but no

reference is made as to whether this feature was actually implemented�

����� RASH System Calls

A few system calls were added to the UNIX kernel to support the RASH daemon

and system utility programs such as ls� backup� and restore� The added system calls

are as follows�

rashopen�� Open a �le using a device and inode pair� �A device�inode pair is the

information sent from the kernel to the RASH daemon to identify a �le that

needs to be copied to disk��

rashwrite�� Write data into a �le that is not completely resident on disk� This

system call is used to bypass the normal checks against writing past the disk

resident data�

rashclose�� Close a �le that was opened with rashopen��� Wakes up any process

waiting for this �le and clears the RASH �ags in the inode�

rashcntl�� Updates and queries the RASH �elds in the inode�

��

The rashopen� rashwrite and rashclose system calls are only used by the RASH

daemon�

����� RASH UNIX Kernel Modi
cations

In order to provide this storage hierarchy the UNIX kernel needed to be modi�ed�

The routines that were modi�ed include the following�

alloc�� If free space drops below a minimum� inform the RASH daemon�

ialloc��� iread��� iupdate�� Handle RASH �ags in the inode�

iput�� If the reference count on an archived �le goes to zero �meaning the �le has

been deleted�� inform the RASH daemon�

core�� Clear the RASH inode �ags and inform the RASH daemon if the core �le

has been archived�

gethead�� Wait for archived �les to be completely restored�

rdwr�� Delay read if the data being accessed has not yet been restored� Clear the

RASH inode �ags and inform the RASH daemon of writes to archived �les�

copen�� Inform the RASH daemon to start the reload process for archived �les�

close�� If an archived �le was modi�ed� delay execution until the restore process

has completed�

����� Similarities Between RASH and TrISH

Some of the goals of RASH are similar to the goals of TrISH� They are as follows�

� Run under the UNIX operating system�

� Provide transparent access to o�ine storage through the use of the existing

UNIX �lesystem�

� Ensure data integrity�

��

� Provide high performance�

� Keep UNIX kernel modi�cations to a minimum�

� Provide a way for the system to automatically create free space in a full

�lesystem�

Because of these similarities the TrISH �le migration system has many of the

features found in RASH� Most notable are the following�

� Allowing data to be available to the user process as soon as they are restored

to the �le�

� Providing a storage hierarchy�

� Attempting to create free space when the �lesystem is full�

����� Di�erences Between RASH and TrISH

In spite of these similarities� the goals of TrISH and RASH di�er in the following

ways�

� TrISH is expected to run on any machine that runs
��BSD UNIX� This means

any type of o�ine device could be attached to the system� The TrISH system

was designed to accommodate this diverse o�ine storage pool�

� TrISH cannot assume a common commercial database system will exist on the

machine� It was designed so that it can use any database system�

� Where RASH was designed with the intent of providing many tera�bytes of

storage� TrISH is designed to provide a more convenient way of accessing o�ine

storage� As such it was designed in an attempt to keep the same interactive

feel of online storage� Although there is a slightly di�erent emphasis� TrISH

should also be able to provide mass storage capabilities in the multi�Gigabyte

range�

��

� A direct result of the goal to provide a more interactive o�ine storage system

is the added goal that the system must be customizable at the user�level� A

user should have the option of modifying the way the migration system handles

the reading and writing of migrated data�

� Another subtle point is that RASH seems to be designed for dealing with

relatively few very large �les� whereas TrISH is designed for large numbers of

�small� �les� This design will also provide the same level of service as RASH

for large �les�

� TrISH is not overly concerned about the policies associated with �le migration

and with o�ine storage management� These policies will be provided by the

system administrator� The TrISH system just provides a mechanism to enforce

the policies of the system administrator�

Because of these di�erences� the TrISH �le migration system provides features

not found in RASH� Most notable are the following�

� An arbitrary amount of data may be behind in the �lesystem when a �le is

migrated to secondary storage� This will provide a more interactive feel to

migrated �les�

� Reload servers run constantly� waiting to provide instantaneous restore service�

and saving the process startup time for more useful work�

� Database access has been abstracted out to access routines� New access

routines can be written to take advantage of any particular database a system

may have�

� O�ine devices access has been abstracted� When a new o�ine storage device

is added to the system� only the well�de�ned interface routines need to be

written�

�	

� The routines that de�ne policy� like the �le migration ordering routine� are

well�de�ned and modi�able by the system administrator�

��� UniTree

UniTree is a commercially available mass storage system from the DISCOS

Division of General Atomics� It runs on many UNIX and UNIX�based machines

including Alliant� Amdahl� CDC Convex� Dec� Fugitsu� IBM and Sun����

����� The Virtual Disk System

The UniTree mass storage system provides what appears to be unlimited disk

space to the user� This virtual disk is actually implemented as a storage hierarchy

that can contain online disk� o�ine tape� optical disk� tape silos� or other storage

devices� Once the user stores data onto the virtual disk� the data move around the

storage hierarchy under control of the UniTree system according to site con�gurable

parameters� Data are managed by UniTree only when the data have been explicitly

moved to the UniTree virtual disk� UniTree de�nes the low�level storage hierarchy

as online disk space and the high�level storage hierarchy as o�ine tapes� �This may

seem reversed� but UniTree�s terminology will be used throughout this section��

The virtual disk and its storage space can only be accessed through the NFS and

FTP network �le access protocols� To access the virtual disk through NFS� a client

machine must mount the virtual disk into its own �le tree using the NFS mount

command� Once this is done� users can access data stored on the UniTree virtual

disk the same as any other NFS�mounted disk� To access the virtual disk using the

FTP protocol� a user executes the FTP command to connect to the UniTree server�

He or she then uses the standard FTP commands to store� recall� list� and delete

�les on the virtual disk�

The UNIX �lesystem is not used to store data on UniTree�managed online disk�

instead UniTree uses its own storage access mechanisms� This was done to bypass

some of the limitations of the UNIX �lesystem such as limits on �le size� number of

�les� and �lesystem size� The UniTree virtual disk� however� when accessed through

NFS or FTP� appears to the user as though it were a regular UNIX �le system� All

��

of the normal UNIX �lesystem semantics are supported through the NFS access

protocol�

When data are �rst stored on the virtual disk� they are physically stored in

online disk space� After a speci�ed amount of time� the data are copied to higher

levels in the storage hierarchy� When free space in a given level of the hierarchy

drops below a low watermark � �les are ordered using a site con�gurable function�

Files at the top of the list are purged from that level of the hierarchy until the free

space again reaches a high watermark � A �le is not purged from one level of the

hierarchy until a copy exists in a higher level� To improve the speed at which free

space can be created� �les are regularly copied to higher levels of the hierarchy�

When a �le is accessed it must exist on �rst�level storage �disk�� If the data do

not exist on �rst�level storage� they must be retrieved from a higher level of the

storage hierarchy� This is true for all �le accesses whether they be through NFS or

FTP�

Because multiple copies of migrated �les can exist in the storage hierarchy

and these copies may exist in the same or across multiple levels of the hierarchy�

reliability is greatly enhanced� If one level of the storage hierarchy fails� another

level can be used to retrieve the data� System databases and directories are

shadowed on separate disk drives and backed up regularly� also improving the

reliability of the system�

Since access to data stored in the UniTree virtual disk can only happen through

network protocols �NFS and FTP�� �le access speed is limited by the speed of

the connecting network� However� since UniTree supports many di�erent types of

networks� including ��� megabyte per second HIPPI and UltraNet� network speed

may or may not be the limiting factor at a given site� File access speed is also

limited by the rate at which data can be restored to level one storage� UniTree

recommends that �les which are heavily accessed should be copied to unmanaged

client disk rather than being accessed directly from the UniTree virtual disk through

NFS�

A future enhancement to UniTree is the UniTree Client Disk Manager �UCDM��

�

The UCDM product will manage client machine �le systems and automatically

move data from the client disks to the UniTree virtual disk� When the user accesses

a �le that has been moved to the virtual disk� UCDM will transparently restore the

�le to the client disk from the UniTree virtual disk�

����� Similarities Between UniTree and TrISH

UniTree and TrISH have a number of similarities� Most notable are the following�

� They both run under the UNIX operating system�

� They provide transparent access to a storage hierarchy�

� They both manage free space for online devices�

� They provide NFS access to data in the storage hierarchy�

����� Di�erences Between UniTree and TrISH

In spite of the similarities� there is one signi�cant fundamental di�erence between

UniTree and TrISH� UniTree only provides access to its virtual disk through NFS

and FTP� whereas TrISH is integrated into the UNIX �lesystem� Some of the

implications of this are as follows�

� UniTree provides no automatic relief for out�of�space error conditions in the

standard UNIX �lesystem�

� A user must explicitly move data to the UniTree virtual disk� As a result� it

cannot manage much of the inactive data in a UNIX �lesystem�

� When a UniTree stored �le is to be accessed� it is copied from o�ine storage to

UniTree�s online storage and �per UniTree�s recommendations� copied to the

local client disk where it will be accessed� During this process three di�erent

storage devices are accessed� and the �le is read or written �ve times� The

TrISH system� on the other hand� copies data directly from o�ine storage to

online storage where they are accessed� Since TrISH allows the data to be

��

accessed as soon as they are restored and since it uses the standard UNIX

�lesystem� the requesting process will very likely �nd the requested data in

the �lesystem data cache� If data requests are satis�ed from the cache� the

data are read or written only twice� a signi�cant performance improvement�

� Even the machine where the UniTree virtual disk resides must use the network

access mechanisms �NFS and FTP��

Another di�erence is that UniTree does not provide a way for the user to modify

its behavior� whereas a process running on a UNIX system with TrISH can set

various process �ags to modify TrISH�s behavior�

��� DFHSM under MVS

The MVS operating system has a space management system named Data Fa�

cility Hierarchical Storage Manager �DFHSM�� It provides a number of functions

for managing online and o�ine storage including free space management� data

migration through a hierarchy of storage levels� and data availability management�

�The relevant di�erences between the MVS operating system the UNIX operating

system are listed in subsection
���	��

����� DFHSM Storage Management Functions

DFHSM attempts to provide total online and o�ine storage management� As

such it is very complicated and provides a high�level of integration with other

storage management activities� such as backups and restores� Signi�cant planning

and administration are required to get the most from DFHSM�

The DFHSM system provides the following functions to the MVS user����

� Free space management for online storage� This is accomplished by releasing

unused space from the end of overallocated data sets ��les� and deleting data

sets that meet criteria de�ned by the system administrator�

� Migration of eligible data sets� The migration can be from level � storage

�disk� to level 	 storage �tape� or from level 	 storage to level � storage� The

�

migration of data from one level to another is automated by the system� there

is no user involvement�

� Restoration of data from level 	 storage to level � storage� The restoration

occurs through reference of the data set or through user command� The

restoration of data from level 	 storage to level � storage requires user in�

volvement�

� Data availability by managing disaster backup and recovery functions� au�

tomatic physical disk backup and restore functions� and automatic data set

backup and restore functions�

The DFHSM system also provides an interactive facility for users to request

processing for their data sets� It provides bad tape error recovery� data compression�

optimum reblocking of data sets during restore processing and internal control data

set reconstruction from journal and checkpoint �les����

The space management tasks performed by DFHSM can be broken down into

the following categories�
��

� Daily space management

� Space�saving functions

� Automatic recall

� Interval migration

� Command space migration�

The daily space management tasks are performed once a day with the goal of

creating enough free space on online storage to handle the day�s workload� The

tasks performed include the following�

� Delete temporary data sets�

� Release overallocated space in data sets�

��

� Delete any data set whose explicit expiration date has passed�

� Reduce the number of data set fragments so that the data are stored contigu�

ously on the disk� This is accomplished by migrating then restoring the data

set�

� Migrate data sets from disk to tape based on last reference date until the

amount of desired free space is achieved�

Most of the space saving functions that are performed by DFHSM are closely

tied to the way �les are managed in MVS� they include the following�

� Compaction of data written to level � and level 	 storage�

� Small data set packing� This involves combining multiple level � data sets into

one level � or 	 data set� If the �les are small� this saves space because the

size of storage allocation in MVS is about

 kilobytes�

� Partitioned data set compression� When members of a partitioned data set

are modi�ed� the old space where the member used to be becomes unusable�

DFHSM makes this unusable space in partitioned data sets usable again�

� Automatic blocking of data for maximum storage capacity� MVS data sets do

not have a �xed block size like the UNIX �le system� The block size can be

manipulated to provide the most e�cient use of disk space�

The automatic recall process restores a data set from level � or 	 storage to online

storage� When a �le is referenced� the system catalog is searched� If the volume

the data are stored on is �MIGRAT�� DFHSM copies the data from o�ine storage

to disk and updates the catalog� The system then allows normal �le processing to

continue�

The interval migration process deals with out�of�space conditions during system

execution� When a prede�ned minimum free space limit is exceeded� DFHSM

begins migrating data to level � and level 	 storage� When the minimum free space

��

limit is again reached� migration stops�

Command space migration is the way a user can manually control the otherwise

automatic functions of DFHSM� For instance� using a DFHSM command� a user

can force the restoration of a data set from level � or level 	 storage�

����� Di�erences Between MVS and UNIX

There are a number of di�erences between the UNIX operating system� where

TrISH was designed to run� and the MVS operating system� where DFHSM was

designed to run�

Most of the interactive work in MVS is done within a transaction processing

monitor �TP monitor�� which opens all of the �les it will need as an initialization

step when it �rst starts� The TP monitor is started in the morning and runs all

day� As transactions are processed the �les are already open� so data are just read

from or written to the �le�

This is very di�erent from UNIX where interactive programs open and close �les

frequently� As a result very few �les would need to be restored on demand under

MVS� whereas UNIX would require a large number of on demand restores�

In MVS� �les are located by their name� volume label� and unit type� Because

this is a lot of information to keep track of� the system provides a central catalog

that stores this information� The catalog is indexed by �le name� and it stores the

volume label and unit type of the media where the �le is stored� When a program

wants to open a �le� it speci�es the �le name� The operating system uses the catalog

to determine the volume and device type� The program does not know which disk

or tape the data are being retrieved from or even� in the case of sequential data

sets� whether it is being retrieved from disk or tape� When a �le is moved between

one volume and another� the catalog is updated with the new volume name and

unit type� A program accessing the data need not know where a �le is stored since

it uses the catalog to �nd it�

�Customer Information Control System �CICS� is the most common TP monitor for MVS�

��

In UNIX� �les are named and located through the �lesystem� which only supports

online devices� If data are stored o�ine� the user is responsible for keeping track of

the media and the devices that can read it� When data are moved from online to

o�ine storage� all programs that access the data need to be changed to access the

data from the o�ine storage�

Since MVS is a proprietary operating system that runs on proprietary hardware�

it can be changed without having to worry about unknown side e�ects� UNIX is

an open operating system that runs on many di�erent kinds and types of hardware

and uses many di�erent types of online and o�ine storage devices� Any features

added to UNIX must take into account the fact that they will be used on devices

that were not available on the development system�

Files in MVS are statically allocated by telling the system how big the �le will

be when it is created� If the user misjudges the amount of storage needed to

store the data and overallocates storage� the extra space is unavailable for use in

other �les� In UNIX� data space is given to �les on an as�needed basis� eliminating

overallocation waste� A storage management system in UNIX does not need to deal

with this issue�

When a �le is created in MVS� an explicit expiration date may be speci�ed which

tells the system when the �le can be automatically deleted� UNIX does not provide

this capability�

In an MVS system� �les are generally very large� but they are relatively few in

number� In a UNIX system the opposite is true� there are generally large numbers

of small �les� A migration system designed for UNIX must be able to deal with

large numbers of �les�

����� Similarities Between DFHSM and TrISH

DFHSM and TrISH both provide the following features�

� Storage hierarchy containing both online and o�ine storage�

� Free space management where the system tries to keep the amount of free

space on online storage within a range de�ned by the system administrator�

��

� Transparent access to the o�ine storage hierarchy�

����� Di�erences Between DFHSM and TrISH

There are many di�erences between DFHSM and TrISH� The reason for most

of these di�erences is the fact that DFHSM was developed for use under MVS�

whereas TrISH was developed for use under UNIX�

� TrISH does not provide any of the MVS speci�c storage management fea�

tures found in DFHSM� for instance� partitioned dataset compression� release

of overallocated space� deletion of expired �les� small �le packing� and the

reblocking of �les�

� Because DFHSM is meant to be a total storage management system� it has

been integrated with backup and restore functions� TrISH is not meant to

replace the regular UNIX backup and restore processes�

� In DFHSM data sets are migrated from level � to level � or 	 based solely

on the length of time since last reference� In TrISH the algorithm to decide

when �les are migrated can take into account any number of factors� since it

is written by the system administrator�

� DFHSM was designed to work well with a �xed set of o�ine storage devices�

whereas TrISH will be designed to work well with an open�ended set�

APPENDIX A

TRISH CONFIGURATION FILE

The TrISH con�guration �le is where all con�gurable values are kept� The TrISH

con�guration �le is extendable so that it can meet the needs of the system� For ex�

ample� badness functions� de�ned by the system administrator� store con�guration

parameters here�

A�� The Con
guration Access Routines

A set of library routines has been provided that allow easily retrieval of informa�

tion from the con�guration �le� These routines automatically validate parameter

types and parse the parameter list� With these routines the device access methods�

the database access routines� the badness functions� or any other part of the system

can easily retrieve con�guration information from the TrISH con�guration �le�

Figure A�� contains the code that retrieves the con�guration parameters for the

Hewlett�Packard optical disk jukebox access method routines� As can be seen� to

add another con�guration parameter is a trivial task�

A�� Example TrISH Con
guration File

To facilitate a discussion about the TrISH con�guration �le parameters and

options� a sample con�guration �le is investigated� The �rst group of items in the

TrISH con�guration �le is the systemwide parameters that are needed by trishd

to start everything up� They are as follows�

�

� General information�

�

�

parms�

type � sysparms

�	

logger�path � �usr�local�trish�bin�trlogger

log�file � �usr�local�trish�trishlog

freer�path � �usr�local�trish�bin�trfreer

kern�interface � �dev�fmig�

run�dir � �usr�local�trish

stop�file � �usr�local�trish�stop�file

ping�time � �� minutes

logger path Speci�es the location of the TrISH log �lter program dis�
cussed in section
�����

log
le De�nes the location of the systemwide log �le�

freer path The location of the free space creation program�

kern interface The name of the kernel communication special �le dis�
cussed in section
�	���

run dir The directory where the TrISH daemons and servers should run�
If one of the servers crashes� the core �le will be written to this
directory�

stop
le The location of the global stop �le discussed in section B���

ping time The time interval at which trishd sends ping requests to the
reload servers to verify that they are still alive�

static int mnt�fnd�
� acpath�fnd�
� drnum�fnd�
� dc�fnd�
�

cmp�fnd�
� cmpp�fnd�
� ucmpp�fnd�
�

static hpmoac�conf tmp�conf�

sid�stnzparse�desc desc�list
NUM�DESC� � �

��mount�point�� SPD�DSTRING��mnt�fnd� �tmp�conf�dhc�mount�point��

��changer�path�� SPD�SSTRING��acpath�fnd�tmp�conf�dhc�changer�path� �
��

��drive�number�� SPD�INT� �drnum�fnd� �tmp�conf�dhc�drive�number��

��data�check�� SPD�TF� �dc�fnd� �tmp�conf�data�check��

��compress�� SPD�TF� �cmp�fnd� �tmp�conf�compress��

��compress�pgm�� SPD�DSTRING��cmpp�fnd� �tmp�conf�compress�path��

��uncompress�pgm��SPD�DSTRING��ucmpp�fnd� �tmp�conf�uncompress�path�

��

�� Parse the stanza into the appropriate variables ��

num�unmatched � sid�stnzparse� desc�list� NUM�DESC� pairs�

�num�pairs� unmatched ��

Figure A��� Sample Code to Retrieve Con�guration Parameters

��

To enable �le migration in a �lesystem� the �lesystem is simply listed in the

con�guration �le with all of its migration parameters� The parameters for �lesystem

entries are as follows�

�

� Migrated Filesystem information�

�

�

�u�

type � filesystem

mount�point � �u

database�dir � �u�TrISH

filesystem�id � ��	

high�watermark � ���

low�watermark � ���

releasable�watermark � ���

keep�bytes �
���

levels � level�cmp� level�hpmo

�gradpub�

type � filesystem

mount�point � �gradpub

database�dir � �gradpub�TrISH

filesystem�id � ���

high�watermark � ���

low�watermark � ���

releasable�watermark � ���

keep�bytes �
���

levels � level�hpmo

mount point Tells TrISH where to �nd the �lesystem in the �lesystem
hierarchy�

database dir Tells where to locate the database that contains the entries
for the �lesystem�

lesystem id This is a unique� organization�wide� �lesystem identi�er�
If a �lesystem is moved from one machine to another� this identi�er
will link the �lesystem�s migrated �les to their o�ine data�

high watermark When the used space in the �lesystem goes over this
percentage� trishd is sent a low space message�

low watermark The free space creation process stops creating free space
when it successfully brings the used space in the �lesystem below this
percentage�

�

releasable watermark The migration process stops creating migrated
�les when the amount of used space less the amount of releasable
space in the �lesystem falls below this percentage�

keep bytes This tells the free space creation process how much of a �le�s
space should be left on�disk after it is released�

levels This parameter de�nes the devices in the �lesystem�s storage hier�
archy� When a �le is �rst migrated� it is copied to one of the �rst�level
devices� Although �lesystems can share o�ine devices� they can only
share the media in those devices if they also share the same database�

The �lesystem entries point to storage levels� Each storage level is composed of

one or more devices� Each device in a level must have access to the same set of

o�ine volumes� The parameters for level entries are as follows�

�

� Storage level information�

�

�

level�hpmo�

type � level

devices � hpmo����� hpmo���	

copies � 	

level�cmp�

type � level

devices � comp�� comp	� comp�

copies � �

devices The name of the devices for this level�

copies The number of o�ine copies that should be made for this level
of the hierarchy� Any number of copies may be made at each level�
A �le is not made releasable until this number of copies has been
successfully created�

In order for a device to be usable by the TrISH system� it must have a device

entry in the con�guration �le� For each device entry� trishd will create a reload

server� If a device is sharable� it can have multiple device entries� This will cause

trishd to create multiple reload servers that will access the same o�ine device�

��

For example� the automatic compress access methods use a sharable directory in a

�lesystem and can have multiple reload servers using the same device�

The device con�guration entries contain the following information�

�

� Device information�

�

�

hpmo�����

type � device

device�type � hpmoac

device�name � hpmo�box�

initial�state � STARTED � DEDICATED

path � �dev�sd	c

mount�point � �mnt	

changer�path � �dev�ac�

drive�number � 	

data�check � TRUE

compress � TRUE

compress�pgm � �usr�ucb�compress

uncompress�pgm � �usr�ucb�uncompress

hpmo���	�

type � device

device�type � hpmoac

device�name � hpmo�box�

initial�state � STARTED � NON�DEDICATED � ALLOCATE

idle�time � �min

data�check � TRUE

compress � TRUE

compress�pgm � �usr�ucb�compress

uncompress�pgm � �usr�ucb�uncompress

�

� The following three compress devices service the same filesystem�

�

comp��

type � device

device�type � compress

device�name � fmigcomp

initial�state � STARTED � DEDICATED � SHARED

compress�dir � �fmig�TrISH�CMPDIR

path � �dev�null

�

comp	�

type � device

device�type � compress

device�name � fmigcomp

initial�state � STARTED � NON�DEDICATED � SHARED

idle�time � �min

compress�dir � �fmig�TrISH�CMPDIR

path � �dev�null

comp��

type � device

device�type � compress

device�name � fmigcomp

initial�state � STARTED � NON�DEDICATED � SHARED

idle�time � �min

compress�dir � �fmig�TrISH�CMPDIR

path � �dev�null

device type This �eld contains the name of the device�type con�gura�
tion entry that will be discussed below� This is used primarily to link
the device access methods to the device�

device name When a �le is copied to o�ine storage� the volume and
device name are included in the database entry� This parameter
speci�es the name that should be stored in the database� This name
is not unique to this device but rather is shared between all devices
that have access to the same set of media� For instance� the Hewlett
Packard optical disk jukebox has two drives in it� and they both have
access to the same set of optical disk volumes� These two drives will
share the same device name�

initial state This parameter contains �ags to indicate the initial state of
the device and reload server when trishd starts up� The valid �ags
and their meaning are as follows�

STARTED When trishd starts up� it also starts up reload servers
for devices whose initial state is STARTED�

DRAINED The opposite of STARTED�

NON DEDICATED Nondedicated devices are initially placed in a
dormant state� When trishd receives more reload requests than
it has reload servers� it automatically starts a dormant reload
server and starts sending it requests� When the server has been
inactive for a short amount of time �de�ned by the idle time pa�
rameter discussed below�� it is automatically shutdown by trishd
and again placed in the dormant state�

��

DEDICATED Opposite of the NON DEDICATED state� The reload
servers for DEDICATED devices will not be automatically shut�
down� rather they must be explicitly shutdown by the system
administrator�

SHARED Most o�ine devices can only be used by one processes
at a time� SHARED devices� however� can be used by multiple
processes at the same time�

ALLOCATE Devices marked ALLOCATE are allocated using the sim�
ple device management system supplied with TrISH� Allocated
device entries do not need to specify many parameters that non�
allocated devicesmust specify� for instance� the name of the device
special �le�

idle time This is the amount of time this device should be idle before
it is automatically shutdown and placed in a dormant state� This
parameter is required only if the device is NON DEDICATED�

path This is the path name for the device special �le� This parameter is
required for devices that are not dynamically allocated�

The other parameters in the example con�guration �le above are device�speci�c

parameters� Some of these parameters are only required if the device is not dynam�

ically allocated with the device manager since that information is returned by the

dynamic allocation routines� The Hewlett Packard optical disk jukebox parameters

are as follows�

mount point Optical disks are formated with the regular UNIX �lesys�

tem and must be mounted in the directory tree to be accessed� The

mount point parameter speci�es the location to mount this device�

This parameter is required only for nonallocated devices�

changer path This parameter designates the path of the robotic control

mechanism inside the jukebox� This is required for nonallocated

devices�

drive number The drive number� along with the changer path� is used

to move optical disks between the storage slots and the drive� This

is only required for nonallocated devices�

��

data check If set to TRUE� the access methods generate CRC codes to

verify the validity of the o�ine data�

compress If set to TRUE� the access methods automatically compress the

data as it is being written to the optical disk�

compress pgm This is the path name of the compress program� This is

required only for devices that are doing compression�

uncompress pgm This is the path name of the uncompress program�

This is required only for devices that are doing compression�

Devices of the same type are accessed using the same set of access method

routines� The parameters that con�gure the behavior of the access method routines

are de�ned in the device type entries� In the example below� the compress device

type has special parameters similar to the ones discussed above� The device�type

parameters are as follows�

�

� Device type information�

�

�

�

hpmoac�

type � device�type

media�type � mo�disks

access�method � hpmoac

reloader � �usr�local�trish�bin�treloader

block�size � �K

granual�size � �Meg

capacity � ���Meg

mount�time � �sec

data�rate � �Meg

ir�gap � �

cost � ���

compress�

type � device�type

media�type � NONE

access�method � compress

compress�pgm � �usr�ucb�compress

uncompress�pgm � �usr�ucb�uncompress

��

reloader � �usr�local�trish�bin�treloader

block�size � �K

granual�size � 	Meg

mount�time � �

data�rate � 	��Mb

ir�gap � �

cost � ���

capacity � �

media type De�nes the type of media used in the device� This links the
parameters for the media to the device type� The media parameters
are overridden by the device type parameters�

access method De�nes the access method routines that are used to
access this type of device�

reloader Speci�es the path of the reload server program for this device�
Currently there is only one reload program which handles all devices�
However� if a special reload server was needed for a particular device�
it would be speci�ed here�

block size The block size used to read�� and write�� data blocks to the
device� De�ned to optimize throughput to the device and optimize
the utilization of the media�

granual size De�nes the size of granules for this device� De�ned to
optimize the trade�o� between media space utilization� and error
recovery and volume handling�

capacity De�nes the capacity of the device� When a volume runs out�
of�space another volume is used instead�

mount time Designates the average amount of time necessary to mount
a volume� This parameter is currently ignored� but could be used to
help trishd chose the faster of two reload options�

data rate Designates the average data rate for the device� This param�
eter is not currently being used� but was intended to be used similar
to mount time�

ir gap The amount of data lost between separate �les on the device�

cost Used to categorize the cost of the storage space� Currently not used�
but is meant to help determine which �les should be moved through
the storage hierarchy�

The media type con�guration entries are used to de�ne general parameters for

each media type� This information is overridden by the parameters contained in

the device type parameters described above�

���

�

� Media type information�

�

�

mo�disks�

type � media�type

block�size � ��	

granual�size � ��	Meg

capacity � ���K

NONE�

type � media�type

block�size � �

granual�size � �

capacity � �

Using the TrISH control program �trctl�� the system administrator and system

operators manages the activities of trishd� the reload servers and reload requests�

The user con�guration parameters designate who the system administrators and

operators are and the authority level they have been granted�

�

� User information�

�

�

root�

type � user

user�name � root

authority � superuser

bytheway�

type � user

user�name � bytheway

authority � superuser

lepreau�

type � user

user�name � lepreau

authority � superuser

mike�

type � user

user�name � mike

���

authority � system

stoller�

type � user

user�name � stoller

authority � operator

user name The userid of the user�

authority One of three levels of authority to be granted to the user� The
levels of authority are�

operator Users with operator authority can start and stop reload
servers and cancel outstanding reload requests�

system Users with system authority can do anything operators can
do as well as shutdown the TrISH migration system�

superuser Superuser authority is currently the same as system se�
curity� but this level was de�ned for future use�

APPENDIX B

THE OUTMIGRATION PROCESSES

As was introduced in section
��� the steps necessary to migrate a �le are identify

the �les to migrate� migrate them� copy their data to o�ine storage� mark them as

releasable� and release their space when needed� In this appendix� these processes

will be examined more closely�

B�� The tridentify Process

The �rst step to migrating �les is to identify which �les are eligible to be mi�

grated� The tridentify program does this in the TrISH system� The tridentify

program saves a copy of the out�migration database� deletes the database� and

recreates a new� empty one� It then executes the following commands to load the

new database�

find �FS
xdev
type f
print � trstop � troutdbload �FS

The find command locates and prints all nonmigrated �les in the �lesystem�

This list of �les is �ltered by the trstop program� and the �nal list of �les is assigned

badness values and loaded into the out�migration database by the troutdbload

program�

The trstop program is used to stop �les from being migrated that should not

be migrated� For instance a user�s dot �les ��cshrc� �login� �forward� the

programs needed by the TrISH system to function� and the TrISH database �les

should not be migrated� These �le names are placed in the systemwide �stop �le��

Below is an example of a systemwide stop �le�

�

� Don�t migrate �dot� files ��login� �logout� �plan� etc��

���

�

������trish�stop�

�������a
zA
Z�
����
���

�

� Don�t migrate the files TrISH needs to operate�

�

��usr�ucb�compress�

��usr�ucb�uncompress�

��usr�local�trish����

�

� Don�t migrate the TrISH migration database files�

�

����TrISH����

����trishdb���

����granual���

����volume���

����inprocess���

����nextfid���

����currvol���

����outmigdb���

����migratable���

����releasable���

In addition to the global stop �le� users can have their own personal stop �le

in their home directory� named �trish stop� The �le names contained in it are

prevented from being migrated� This feature has obvious advantages for a person

who uses a �le frequently enough that he does not want it to be migrated but

infrequently enough that the migration system would migrate it anyway�

B�� The trmigrate Process

Converting regular �les into migrated �les is the next step in the migration

process� When trmigrate selects a �le to be migrated� it is added to the inprocess

database and made into a nonreleasable migrated �le using the fmig migrate��

system call� �An �inprocess� �le is a migrated �le that has not yet been copied to

o�ine storage��

The trmigrate program calculates a �target� value by multiplying the total

blocks in the �lesystem by the releasable watermark value and subtracting the free

space� the space occupied by releasable �les� and the space occupied by inprocess

��

migrated �les� If the target value has not been reached yet� it proceeds to migrate

the �le with the largest badness value� The size of the �le is subtracted from the

target value� This process continues until the target is reached or until no more

migratable �les exist�

B�� The trcopyout Process

The migrated �les are copied to o�ine storage by the trcopyoutprogram� There

may be multiple levels in the storage hierarchy� but at this point in the migration

process� the �les are only copied to the �rst�level of the hierarchy� However� the

trcopyout program can be con�gured to make multiple copies of the �le on the

�rst�level device�

The trcopyout process �nds an available �rst�level storage device� Even though

this device will be the only one used by trcopyout� if the device supports removable

media� like tape drives� multiple volumes may be used�

The �rst �le from the in�process database is selected� and a granual is allocated

using the device�s granual allocation routine� The target volume is mounted if the

device has removable media� and the device and �le are opened� Data are copied

from the �le to the granual� until the granual is full� If another granual is needed� it

is allocated and its volume is mounted� This continues until the �le has been totally

copied to o�ine storage� The copy counter in the in�process record is incremented�

When no more copies of the �le need to be made� the record is deleted from the

in�process database and the �le is marked releasable using the fmig releasable��

system call� Furthermore� �les that were forced to migrate with the trforce

command are released using the fmig release�� system call� An entry is made in

the releasable database so that the free space creation process will know the �le�s

space is eligible to be released�

The next �le is selected and the process continues until the �les are all copied

to o�ine storage�

APPENDIX C

FREE SPACE CREATION

When space in the �lesystem is low� the kernel sends a message to the migration

daemon notifying it of the low space condition� The migration daemon starts the

trfreer process� which is responsible for alleviating the space problems�

One activity that the tridentify process performs that was not discussed in

section B�� is the loading of the releasable database� This database contains the

names and badness values of migrated �les with releasable on�disk space�

The trfreer process �rst calculates a target free�space amount by multiplying

the size of the �lesystem with the �lesystem�s low watermark and then subtracting

this value from the amount of used space in the �lesystem�

The �le with the highest badness value is selected from the releasable database

and its space is released with the fmig release�� system call� The amount of

space released is subtracted from the target� and the process continues until the

target has been met or until there are no more releasable �les�

After the �rst �le is released� the trfreer process sends a message to the

migration daemon informing it that it was able to create some space� The migration

daemon� in turn� sends a message to the kernel that free�space was created in the

�lesystem and that any processes which are blocked waiting for space should now

be allowed to run�

A user can force a �le�s space to be released by using the trelease command�

This command veri�es that the user has permissions on the �le and then calls the

fmig release�� system call� If the user owns the �le or has read access to it� then

he has su�cient authority to release it�

APPENDIX D

THE TRISH RELOADER SERVERS

The TrISH reload servers are responsible for listening for and responding to

control messages from trishd� These messages include reload requests� cancel

reload requests� status update requests� shutdown requests� and regular �pings� to

make sure that the reload server is still alive� The reload server must be able to

accept requests at any time� even when it is busy responding to a previous request�

For instance� a cancel request could arrive while the reloader is busy restoring a

�le� The list of requests that a reloader must deal with are in Table D���

When a reload request is received� the server can either accept or reject it� A

request is rejected if the server is currently in the process of reloading a �le or if

the necessary volume is busy� When a request is rejected� trishd will requeue the

request and may� at a later time� send it back to this reloader again� Accepted

reload requests are sometimes failed by the reloader because an unrecoverable error

has occurred� Failed reload requests are also requeued by trishd� except that the

request will not be sent to this server again� A reload request will fail only when

all of the granuals containing data for the �le are unaccessable and the �le cannot

be fully restored�

Table D��� Requests for TrISH Reload Servers

Request Action To Perform
RELOAD IPC RELOAD Reload a �le from my device
RELOAD IPC CANCEL Cancel current reload request
RELOAD IPC SHUTDOWN Shutdown after current reload �nishes
RELOAD IPC PING Return PONG to verify I�m alive
RELOAD IPC STATUS Send status information to trishd

���

The cancel request will cause the reload server to abort the current reload

request� The ping request will cause the reload server to return a �pong� so that

trishd will know that this server is still alive�

The status request will cause the server to return updated status information�

Status information is sent to trishd when something interesting changes� For

instance� when the reloader mounts a new o�ine volume� a status update is sent�

Graceful recovery from device� database� and media errors is a key feature of the

TrISH reload servers� If an error occurs while reading a granual� the reload server

will search the database for another granual on an accessible volume� The reload is

restarted from where the error occurred using a new granual� If all o�ine granuals

are unreadable or if the device fails� the server noti�es trishd that the request

failed� The request can then be sent to another reload server� While restoring a

�le� the reload server may get an out�of�space error condition� When this occurs�

the reload server waits for about �� seconds and tries to write the data again� After

about �	 tries� the reload server gives up and returns a failed message to trishd�

APPENDIX E

TRISH OPERATING SYSTEM CALLS

In order to set migration system parameters� set process �ags� and create�

manage� and reload migrated �les� a few system calls were added to the operating

sytem� They are as follows�

fmig stat�� Returns� in addition to the �le status information returned by the

stat�� system call� information about migrated �les� Migrated �les look like

regular �les to unmodi�ed programs� When a program needs to know if a �le

is migrated� it can use this system call instead of the stat�� system call�

fmig lstat�� Returns� in addition to the �le status information returned by the

lstat�� system call� information about migrated �les�

fmig fstat�� Returns� in addition to the �le status information returned by the

lstat�� system call� information about migrated �les�

fmig migrate�� Converts a regular �le into a migrated �le by changing its type

to IFMIG� setting the on�disk space �eld to the size of the �le� and placing the

fmigid value in the inode�

fmig demigrate�� Converts a migrated �le into a regular �le by changing its type

to IFREG and clearing the on�disk and fmigid �elds�

fmig releasable�� Marks a �le as releasable� meaning that its on�disk space can

be released� This is only done after a �le�s data have been successfully copied

to o�ine storage�

fmig release�� Releases a migrated �le�s on�disk data� This can only be done if

���

the �le is releaseable and has no modi�ed data� If speci�ed� a small amount

of data at the begining of the �le will be left �on�disk��

fmig frelease�� Releases a migrated �le�s on�disk data� This system call is similar

to the fmig release�� system call� except the argument is a �le handle rather

than a �le name�

fmig open�� Opens a migrated �le for output� When a reload request is sent from

the kernel to the migration daemon� the �le�s device and inode numbers are

sent along in the request� The reload process uses those values� along with

this system call� to open the �le� The regular open�� system call cannot be

used because the migration daemon does not know the name of the �le that it

should restore� It only knows the fmigid� the device� and the inode number�

fmig write�� Writes data to a migrated �le� The standard write�� system call

does not allow data to be written past the current on�disk data� This however�

is exactly what the reload process must do to restore a �le�s data� This system

call is used by the reload process to write to migrated �les� When data are

written to the �le the processes that are blocked waiting for data are woken

up�

fmig lseek�� Repositions the o�set of the �le descriptor to a spec�ed location in

the �le� This system call is just like lseek��� except that it performs the

added step of setting i ondisk to the �seeked to� position if it is greater than

the current value of i ondisk� This function is used by the reload process to

restore �holes� in �les when they are reloaded� Without this call� �les that

originally had holes in them would instead have data blocks where the holes

used to be�

fmig close�� Closes a migrated �le� This system call is also used by the reload

process� It is like the regular close�� system call� except that it wakes up

processes that are blocked waiting for this �le to be restored� It also calls

fmig demigrate�� for �les that are fully restored and have modi�ed data in

���

them�

fmig sethwm�� Sets the high watermark for a �lesystem�

fmig gethwm�� Retrieves the value of the high watermark for a �lesystem�

fmig set�ag�� Sets the process �ags discussed in section
�	�	

fmig get�ag�� Gets the current value of the process �ags discussed in section
�	�	

In order to provide access to more information about migrated �les� the following

standard operating system calls were enhanced�

select�� The select�� system call is used to determine if a �le is ready to be

read from or written to� Select usually only supports character special �les�

like terminals� printers� and sockets� but it has been enhanced to support

migrated �les� When a migrated �le has data ready to be read� the �le is

�selected��

ioctl�� When used on regular �les� the ioctl�� system call with the FIONREAD

command returns the number of bytes left to be read from the �le� A new

command FIONDREAD will return the number of on�disk bytes available to be

read from the �le� By using this call� a program can determine how much data

it can request without being blocked�

APPENDIX F

KERNEL TO DAEMON MESSAGES

The migration messages are of �xed size and are easily decoded using the

fmig msg structure� The items included in the structure are listed in Figure F���

A few of these �elds are worth discussing�

The ms op �eld de�nes the requested operation� The list of possible operations

and a short description of their meaning is shown in Table F��� The last two entries�

FMIG D�K DONE and FMIG D�K FAIL� are for messages sent from the migration dae�

mon to the kernel� the others are for messages sent from the kernel to the migration

daemon�

Most messages are about migrated �les� Migrated �les are identi�ed by their

fmigid� The fmigid is the constant value that links a migrated �le to its data� This

value is sent to the migration daemon in the ms fmigid �eld� Using the fmigid�

the migration system can identify a �le�s database entries and �nd its data in o�ine

struct fmig�msg

int ms�magic! �� FMIG�MSG�MAGIC ��

u�long ms�id! �� ID of this message ��

int ms�op! �� operation ��

uid�t ms�uid! �� UID of process ��

int ms�pid! �� PID of process ��

int ms�result! �� may contain errno ��

long ms�data�! �� misc data slot � ��

long ms�data	! �� misc data slot 	 ��

fmigid�t ms�fmigid! �� file migration id ��

struct fmig�devino ms�devino! �� pass to fmig�open�� ��

"

Figure F��� Contents of fmig msg

��	

Table F��� Valid Operations for fmig msg

Operation Code Description
FMIG K�D RELOAD BLOCK Blocking reload of �le
FMIG K�D RELOAD ASYNC Asynchronous reload of �le
FMIG K�D CANCEL RELOAD Cancel reload of �le
FMIG K�D UNLINK File was unlinked �deleted�
FMIG K�D TRUNC File was truncated
FMIG K�D DEMIGRATED File was de�migrated by the kernel
FMIG K�D OPENING File is being opened
FMIG K�D CLOSING File is being closed
FMIG K�D CHOWN File has a new UID or GID
FMIG K�D LOWSPACE Low space condition in �lesystem
FMIG K�D NOSPACE No space condition in �lesystem
FMIG K�D CANCEL NOSPACE Cancel no space condition
FMIG D�K DONE Request to migration daemon successful
FMIG D�K FAIL Request to migration daemon failed

storage�

When the time comes to send a reload request to the migration daemon� the

name of the �le is no longer known� To identify the �le in such a way that it can

be opened� the ms devino structure is sent to the daemon with the reload request�

Using this structure and the new system call fmig open�� discussed in Appendix

E� the restore process can open the migrated �le and reload its data�

The optional �elds ms data� and ms data� are only used by a few of the oper�

ations� For instance� the FMIG K�D CHOWN operation places the new userid �UID�

and groupid �GID� into these �elds�

APPENDIX G

DEVICE ACCESS METHOD ROUTINES

The TrISH access routines and a short description of their function are listed

in Table G��� These routines can be grouped into the following categories� con�g�

uration functions� initialization and cleanup functions� volume handling functions�

granule handling functions� and data block functions� Some functions� if they are

not needed or are not applicable for the device� do not need to be de�ned� For

instance� the compress method does not mount or unmount any media and does

not have those functions de�ned�

The con�guration functions retrieve con�guration parameters for the device from

the TrISH con�guration �le� For instance� the con�guration function for the optical

disk jukebox retrieves the path of the robotic changer and the mount point for the

device� The con�guration functions are optional�

The optional initialization and cleanup functions place the device in a known

state and initialize access method block values� They are also responsible for retriev�

ing dynamic con�guration information for devices that are dynamically allocated�

The volume�handling functions are used to mount and unmount o�ine media�

Some devices do not have removable media� so for these devices� the media handling

access routines would not be de�ned�

The granule functions are used to open� close� allocate� and delete granules�

These functions are required for all access methods� The open routine is respon�

sible for positioning the media� starting any helper programs �like compress or

uncompress�� and opening the device using the open�� system call� The close

routine ends any helper programs and calls close�� on the device and any other

necessary function to prepare the device for the next open� mount� or unmount

request� The allocate function is responsible for allocating space on a volume for

��

Table G��� Access Method Routines

Access Method
Routine Description

Con
gure functions
dev config Read special con�g info for a speci�c device
devt config Read special con�g info for the device type

Initialize�Cleanup functions
init Initialize device� state data structures and such
dynam init Further initialization of dynamically allocated devices
cleanup Return device to know state� free state data structures

Volume functions
mount Mount a speci�c volume
unmount Un�mount currently mounted volume

Granule functions
open Open a granule for reading or writing
close Close a granule
allocate Allocate space on a volume for a granule
delete Delete a granule from a volume

Block functions
read Read a block from an open granule
write Write a block to an open granule
seek Seek to a speci�c block in an open granule

the granule� It will most likely need to consult and update its database for the

current or next available volume� The delete function is responsible for freeing the

space allocated by invalid granules� For devices like magnetic tape� another process

may be required to consolidate good data onto one volume and free the volume to

be used again�

The block functions are used to read� write� and seek the actual data on the

device� The unit of transfer� the block size� is determined by the access routines

and is de�ned to optimize the data transfer rate of the device� The read and write

routines can implement optional processing of the data at the block level� For

instance� the optical disk access methods implement CRC checking at the block

level� At the simplest level� the read and write routines just call the operating

system read�� and write�� system calls�

APPENDIX H

DATABASE ACCESS ROUTINES

There are database access functions for initializing and closing the database and

adding� deleting� updating� querying� and sorting various database entries� These

include granule entries� volume entries� releasable �le entries� migratable �le entries�

and forced migration �le entries� A list of the database access functions can be found

in Table H���

��

Table H��� Database Access Routines

Database Access Routine Description
dbinit�� Open the TrISH database
dbcleanup�� Close the TrISH database
dbinit outdb�� Open the outmigration database
dbcleanup outdb�� Close the outmigration database
add granual�� Add a granule entry
delete granual�� Delete a granule entry
obsolete granual�� Obsolete a granule
update granual use�� Update usage statistics for granule
update granual flags�� Update granule �ags
granuals for fmigid�� Find all granules for a �le
granuals for fmigid on dev�� Find granules for a �le on a device
obsolete granual list�� Obsolete a list of granules
next obsolete granual�� Find the next obsolete granule
add inprocess�� Add an inprocess entry
delete inprocess�� Delete an inprocess entry
update inprocess�� Update an inprocess entry
next inprocess�� Find next inprocess entry
total inprocess bytes�� Calculate total of all inprocess entries
add migratable�� Add a migratable entry
readel migratable�� Find and delete next migratable entry
add releasable�� Add a releasable entry
update releasable�� Update releasable entry
first releasable�� Find highest valued releasable entry
total releasable bytes�� Calculate total of all releasable entries
add forced�� Add a �le to forced migration list
readel forced�� Find and delete next forced entry
get current volume�� Get current target volume
get next available volume�� Get next free volume
set current volume�� Set the current target volume
update volume use�� Update volume use statistics
update volume freespace�� Update volume space statistics
lock volume db ent�� Mark a volume as active
unlock volume db ent�� Mark a volume as inactive
unlock all volumes�� Mark all volumes as inactive
next fmigid�� Get next available fmigid value
find path for fmigid�� Find �le name associated with fmigid

APPENDIX I

MISCELLANEOUS TRISH PROGRAMS

A few additional commands and utilities have been provided by TrISH to enable

the end user to set process �ags and to help the system administrator manage the

TrISH system� They are discussed in this section�

I�� Setting File Migration Process Flags

As discussed in section
�	�	� a process can customize the behavior of the �le

migration system by setting a number of process �ags� The trflags command is

used to set these process �ags�

trflags set�get" retry�notransp�cancel" pid �on�off�

I�� Filesystem Analysis

To help the system administrator determine if a �lesystem is a good candidate

for enabling �le migration� the trfsanal program has been provided� This program

gathers information about a �lesystem and outputs a �le that can be graphed� An

example output �le is shown in Figure I�� and a graph of the data is shown in

Figure I�	�

I�� Retrieving Migration System Statistics

The �le migration system routines in the kernel maintain a number of counters

so that the activity of both migrated and nonmigrated �les can be tracked� These

routines count the number of open��� close��� and read requests� as well as a

number of other requests� against both migrated and nonmigrated �les� These

routines also keep track of the delays incurred by processes that access migrated

�les�

���

�

� File system statistics

� Total number of directories scanned� �	
��

� Total number of files scanned� ���	
�

� Total Kilobytes in files scanned� ���
�
	K

�

� Average days since last access� ��	 days

� Average days since last modification� ��	� days

� Average days not accessed since modified� �

� days

�

� Files that are active� ��� �
�

� Files that are actively modified� �	� �
�

� Files that have not been used since created� ���� � 	�

�

�filename size�dat

�

�File Size

�

� Number � of Cumm � Space � of Cumm �

� Size �K� of files files of files in K Space of Space

������������ �������� ����� �������� ������� ����� ��������

 	�
�� �� ��

� 	���� �� 	� 	���� � �

� ��	�� �� �� ����� � �

� ����� �� �� ���	� 	 �

� ���
� �	 �� ����
� � ��

�� �
��� �
 �� ���
�� � ��

	� ��	�� � �	 		

�� �� 	�

�� ���
 	 �� 			��� �� ��

��� ���� � �� ��
�
	 � ��

��� �
��
 �� ���
	� � ��

��� ���
 �� ��
�
� � ��

�
�� ��	
 �� ������ � ��

�
�� �	
 �� �	���� � ��

�
�� ��
 �� ���	�� � ��

���� ��
 �� ���

	 � ��

��	�� �	
 �� �	���� � ��

	���� 	
 �� ���
	 � ��

���	� �
 �

 ���	� � �

�	�
��

 �

 �

������

 �

 �

������

 �

 �

�
�����

 �

 �

�
�����

 �

 �

������	���

 �

 �

Figure I��� Filesystem Analysis Graph

���

0%

20%

40%

60%

80%

100%

2K 16K 128K 1M 8M 64M 512M

P
er

ce
nt

Size of File in Kilobytes

Percentages by Size

Number of Files
Space in Files

Cummulative Number of Files
Cummulative Space in Files

Figure I��� Filesystem Analysis Graph

�	�

The trkstat command retrieves and displays the �le migration kernel statistics�

Below is an example of output from the trkstat command�

� saaz� trkstat

 Regular Stats

 ����
��
	� �����������

open � 	�
���

close � 	�
���

read � ��	��
�

read�odrl � �

read�odnrl � �

read�blk � �

write � ��
���

write�odrl � �

write�odnrl � �

write�blk � �

trunc � ���	

unlink � ���

chown �

demigrated � �

select � �

lowspace � �

nospace � �

getattr � ����
�

iinactive � �

exec � ��

 Migrated Stats

 ����
��
	� ����������	

open � �

close � 	�	

read �
�	��

read�odrl � ����

read�odnrl � �	���

read�blk � 	���

write � �

write�odrl � �

write�odnrl � �

write�blk � �

trunc � �

unlink � ��

chown � �

demigrated � �

select � �

lowspace � �

nospace � �

getattr � 	�		��

iinactive � �

exec � �

�	�

 Delay Stats

 ����
��
	� �����������

���� � �

���	 � �

���� ���
��
 �

��� ����	
� ��

��	 ������ 	��

��� ������� �
��

��

���	� ��	

�	
������ ��

�� ��	���� 	�

� ������
 �

	
������

� � �

�� � �

	� ������� �

�� � �

��� � �

	�� � �

��� � �

���� � �

	��� � �

���� � �

����� � �

	���� � �

����� � �

APPENDIX J

THE TRCTL COMMAND

The TrISH control program� trctl� is used to control the TrISH migration

daemon and its reload servers� Using it a system administrator can do the following�

� Start a reload server

� Stop a reload server

� Retrieve information about reload servers

� Shutdown the TrISH system

� Retrieve the status of trishd

Using the trctl program a user can do the following�

� Initiate batch priority reloads

� Cancel pending and in�process reload requests

� Check on the status of reload requests

The trctl command options are shown in Figure J���

�	�

USAGE� trctl cmd

where cmd is one of�

sh �shutdown�

st �status�

dt devname ��� �device start�

dd devname ��� �device drain�

ds �all�devname���� �device status�

rl file ��� �reload file�

ca file ��� �cancel file reload�

cf fsid�fmigid ��� �cancel fmigid reload�

rs �reload status�

Figure J��� trctl Command Options

APPENDIX K

DEVICE MANAGEMENT

The UNIX system provides mechanisms for serializing access to some devices�

like printers� but has no mechanism for serializing access to o�ine devices� like tape

drives� Since an o�ine device may be shared between the TrISH system and� for

example� the backup system� a serialization mechanism is needed�

K�� The TrISH Device Manager

A standard part of the TrISH system is a device manager that guarantees

serialized access to o�ine devices� When a process requires the use of an o�ine

device� it sends a request to the device manager� If the device is available� it is

allocated to the process� If it is already allocated to another process� the requesting

process can choose to wait for the device to become available or it can try for another

device�

The device manager provides generic device allocation� If a process needs an

�mm tape drive and there are four of them on the system� any one of the tape

drives can be allocated to the requesting process� Only when all devices in a

generic group are allocated does the request fail�

The grouping of generic devices is also supported� For instance� a system has

four optical disk drives in two di�erent jukebox� A process requires access to an

optical disk in the storage slot of jukebox A� Since the robot mechanism only has

access to the optical disks in its own storage slots� the requesting process must be

able to specify that it needs an optical disk drive in jukebox A�

�	�

K�� Allocating and Releasing A Device

The device management system has both command line and C library access

mechanisms� The command line interface consists of the devalloc and devrelease

commands� These commands can be easily integrated into UNIX shell scripts� since

they print shell commands to set environment variables� The output of devalloc

can be given to the eval command to set these environment variables� which are

then used in the shell script� A simple example is shown below�

��� saaz� set devcmds�#devalloc hpmo�box�#

��	 saaz� echo �devcmds

setenv DEV�NAME hpmo�drive�!

setenv DEV�TYPE hpmoac!

setenv DEV�OPER�NAME hpmo�drive�!

setenv DEV�PATH �dev�sd�c!

��� saaz� eval �devcmds

��
 saaz� tar
cvf �DEV�PATH

��� saaz� devrelease �DEV�NAME

The C library interface consists of two routines that are analogous to the com�

mand line routines� They are the devmgr devalloc�� and devmgr devrelease��

routines� They are used in a similar manner to the command line interface pro�

grams�

APPENDIX L

COMMUNICATING WITH THE

OPERATOR

On some occasions� a daemon process may need to send a message to and get a

reply from the computer operator or the system administrator� For instance� if a

reload server needs a tape loaded into a tape drive� there should be a simple way

it can correspond with the operator� The operator should be able to cancel the

request without killing the daemon if� for instance� the tape is lost or damaged�

On MVS�ESA� IBM�s mainframe operating system� a process can send and

receive messages from the operator via a standard mechanism� There is no such

mechanism in UNIX�

L�� The oprq Command

The operator question�and�answer utility �oprq� has been provided with TrISH

to �ll the requirement� It has a number of ways to communicate with the operator�

such as sending mail� writing messages to a tty port like the system console� and

opening an X�Window on any X�server� It can be con�gured to try a number of

communication paths all at once� and if an answer is not received in a speci�ed

amount of time� it will try a di�erent set of communication paths�

Below is an example oprq command� The X�window message it displayed is

shown in Figure L���

oprq
yn
y Continue
n Cancel �Please mount tape �	�
 in drive ABC�

�	�

Figure L��� Sample X�window from the oprq Command

REFERENCES

��� Ann Louise Chervenak� Tertiary Storage	 An Evaluation of New Applications�
PhD thesis� University of California at Berkeley� ���
�

�	� David A� Patterson� Terabytes �� Tera�ops �Or Why Work on Processors
When I�O is Where the Action Is! Abstract from Keynote address at the
ACM SIGMETRICS Conference in Santa Clara� CA on May ��� ������ May
�����

��� General Atomics� The UniTree Virtual Disk System
 An Overview�

�
� Jonathan Hahn� Bob Henderson� Ruth Iverson� Shri Lohia� Alan Poston�
Tom Proett� Bill Ross� Mark Tangney� and Dave Tweten� NAStore External
Reference Speci�cation� NAStore Speci�cation Document� September �����

��� Robert L� Henderson and Alan Poston� MSS�II and RASH� A Mainframe
UNIX Based Mass Storage System with a Rapid Access Storage Hierarchy File
Management System� In Proceedings of the Winter ��
� USENIX Conference�
The USENIX Association� �����

�
� International Business Machines Corporation� Data Facility Hierarchical Stor�
age Manager	 Version �� Release ���� General Information� Publication
Number GH������	�
�

��� International Business Machines Corporation� Licensed Program Speci�cations
for Data Facility Hierarchical Storage Manager	 Version �� Release �� Modi��
cation Level �� Publication Number GH������
��
�

��� Irlam� Usenet community trust� Unix File Size Survey� Internet Unix File Size
Survey� October �����

��� Samuel J� Le�er� Marshall Kirk McKusick� Michael J� Karels� and John S�
Quarterman� The Design and Implementation of the ���BSD UNIX Operating
System� Addison�Wesley Publishing Company� November �����

���� Jane Majkiewicz� Building a Storage Strategy� RS�Magazine� pages ���

�
April ���
�

���� Ethan L� Miller and Randy H� Katz� An Analysis of File Migration in a Unix
Supercomputing Environment� In USENIX Technical Conference Proceedings
� Winter ����� pages
	��
��� University of California� Berkeley� The USENIX
Association� �����

�	�

��	� Michael John Muuss� Terry Slattery� and Donald F� Merritt� BUMP� The
BRL�USNA Migration Project� Description Included in BUMP Distribution�

