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ABSTRACT

Online disk space is a valuable, relatively expensive, and frequently scarce re-
source that is often abused by users who squander it on large quantities of inactive
data. Large inactive files should instead be moved to cheaper and more abundantly
available offline or near-line storage. Users, however, are often reluctant to utilize
offline storage because it is difficult to use. An extension to the UNIX operating
system that transparently migrates inactive data between online and offline storage

is examined, enhanced, and evaluated.
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CHAPTER 1

INTRODUCTION

Over the last few years, we have seen an enormous increase in the storage
capacity of computer disk drives. An average disk drive a few years ago held
10 to 40 megabytes of data and cost about $25.00 per megabyte. Today disk drives
hold up to 9,000 megabytes of data and cost about $.30 per megabyte.

1.1 Disk Storage

Amazingly enough, as the amount of available disk space has grown, so has the
amount of data that needs to be stored. The space requirements of graphical images,
scientific data, and even business data have kept pace with, and even outstripped,
advances in disk drive technologies. The need for more, inexpensive storage space
is as much of a need today as it was 10 years ago. A study conducted for Epoch
Peripheral Strategies found that storage increased on average of 60% to 80% per
year. “The usage of disk space is going up faster than the price of disk is going
down”[10, p. 46].

An informal survey|[8] of internet sites revealed some surprising facts about disk
space usage. This survey asked sites to voluntarily run a program that gathered
data about the sizes of files on their systems. Data for over 1000 file systems
containing 12 million files with 250 gigabytes of data were gathered. The data are
summarized into Table 1.1 and graphed in Figure 1.1

By examining the graph in Figure 1.1, it becomes evident that 90% of the files
are less than 16K in size and that the remaining 10% (which are larger than 16K)
consume 90% of the disk space. Thus, 10% of the files consume 90% of the disk

space.



Table 1.1. UNIX File Sizes

File Size | Number of | % of | Cumm % Disk Space | % of | Cumm %
(Maz. Bytes) Files | Files of Files | in Megabytes | Space | of Space
0 147479 1.2 1.2 0.0 0.0 0.0

1 3288 0.0 1.2 0.0 0.0 0.0

2 5740 0.0 1.3 0.0 0.0 0.0

4 10234 0.1 1.4 0.0 0.0 0.0

8 21217 0.2 1.5 0.1 0.0 0.0

16 67144 0.6 2.1 0.9 0.0 0.0

32 231970 1.9 4.0 5.8 0.0 0.0

64 282079 2.3 6.3 14.3 0.0 0.0

128 278731 2.3 8.6 26.1 0.0 0.0

256 512897 4.2 12.9 95.1 0.0 0.1

512 1284617 | 10.6 23.5 566.7 0.2 0.3

1024 1808526 | 14.9 38.4 1442.8 0.6 0.8

2048 2397908 | 19.8 58.1 3554.1 1.4 2.2

4096 1717869 | 14.2 72.3 4966.8 1.9 4.1

8192 1144688 9.4 81.7 6646.6 2.6 6.7
16384 865126 7.1 88.9 10114.5 3.9 10.6
32768 574651 4.7 93.6 13420.4 5.2 15.8
65536 348280 2.9 96.5 16162.6 6.2 22.0
131072 194864 1.6 98.1 18079.7 7.0 29.0
262144 112967 0.9 99.0 21055.8 8.1 37.1
524288 58644 0.5 99.5 21523.9 8.3 45.4
1048576 32286 0.3 99.8 23652.5 9.1 54.5
2097152 16140 0.1 99.9 23230.4 9.0 63.5
4194304 7221 0.1 100.0 20850.3 8.0 71.5
8388608 2475 0.0 100.0 14042.0 5.4 77.0
16777216 991 0.0 100.0 11378.8 4.4 81.3
33554432 479 0.0 100.0 11456.1 4.4 85.8
67108864 258 0.0 100.0 12555.9 4.8 90.6
134217728 61 0.0 100.0 5633.3 2.2 92.8
268435456 29 0.0 100.0 5649.2 2.2 95.0
536870912 12 0.0 100.0 4419.1 1.7 96.7
1073741824 71 0.0 100.0 5004.5 1.9 98.6
2147483648 3 0.0 100.0 3620.8 1.4 100.0
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Figure 1.1. UNIX File Size Graph

Similar results were obtained at the National Center for Atmospheric Research
(NCAR). An analysis of NCAR’s mass storage system (MSS) showed that about
half of the files contained 98% of the data[ll]. Given that their MSS limited file
sizes to 200 MB and that files larger than this were broken up into multiple 200
MB files, a storage system that would allow larger sized files would have an even
smaller ratio of files to data.

NCAR also concluded that “only 5% of all files are referenced more than 10
times, 50% of the files in the trace were never read at all, and another 25% were
read only once”[11, p. 429]. Additionally “for files which were referenced, the
second reference came soon after the first”[11, p. 429], and “about one third of all
requests came within eight hours of another request for the same file”[11, p. 430].
They concluded that “files can be migrated to a less costly storage medium if they

are unreferenced for only a few days”[11, p. 431].



These conclusions clearly indicate that if the relatively few, very large, inactive
files could be moved to less expensive storage, fewer disk drives would be needed.
Even a 50% reduction in disk drive needs would save an organization a considerable

amount of money.

1.2 Offline Storage

The storage capacity of offline storage devices such as tape drives and optical
disk drives has also been increasing at a tremendous pace over the last few years.
The old 1/4-inch tape drives of a few years ago held less than 250 megabytes of
data. Today helical scan tapes, such as 8mm and 4mm tape drives, can hold up to
10,000 megabytes of data [1]. The cost for 8mm offline storage space is less than 1
cent per megabyte [1], far less than even the cheapest disk drive.

Sadly, these offline storage devices are deficient in two major areas: they are
slow and inconvenient to use. The data transfer rate of a disk drive is around 10
megabytes per second, whereas the transfer rate of an 8mm tape drive is less than
1/2 megabyte per second. Human intervention is often required when accessing
offline storage. For instance, when a user wants to access data on a tape, the tape
must be manually loaded into the tape drive. Because UNIX does not provide a
way to automatically keep track of what data are on which tape, the user is left
with this tedious and error prone task. Additionally, since filesystems are not built
on tapes, the access to data on tapes is only through UNIX utilities such as tar.
Because of this, data on a tape are not directly accessible by a program. It must
first be extracted from the tape before it can be used. The risk of losing data on a
tape is high, especially when writing data to a tape that already has data on it. It
is no wonder that few users actually use offline storage.

Near-line storage devices are a relatively new technology. A near-line device
consists of an offline device, such as a tape drive or optical disk drive with removable
media and a robot mechanism that can insert and remove media from the drive
without human intervention. Tape and optical disk juke-boxes are examples of

near-line storage devices. These devices do not require human intervention, but



they are difficult to use directly, because the user is still left with the responsibility
of keeping track of what data are on which media. For the purposes of this paper,
when referring to offline devices, both near-line and offline devices are implied unless

explicitly stated otherwise.

1.3 Storage Hierarchy

A Storage Hierarchy (see Figure 1.2) can be constructed out of online, near-line,
and offline storage. Speed and cost increase going up the hierarchy and storage
size increases going down the hierarchy. At the top of the hierarchy is online disk
storage. It is expensive and fast and has limited availability. In the middle of
the hierarchy is near-line storage. It is moderately inexpensive and somewhat slow
when compared to online storage. At the bottom of the hierarchy is offline storage.
It is very inexpensive, abundantly available, and slow.

As evident in the file size analysis discussed earlier, if the few large files in the file
system could be moved through the storage hierarchy to near-line or offline storage,
less of the expensive online storage space would be required to support more data.
The problem is making near-line and offline storage easily usable.

All users of the UNIX operating system are familiar with the filesystem. The

UNIX filesystem has a hierarchical directory tree structure where users can organize

Online

Speed
and
Cost

Near-line Size

Figure 1.2. Storage Hierarchy



their data into files and groups of files. Since most file manipulation utilities
and user programs only access data that are in the UNIX filesystem, the user
must (manually) move any data that are on offline storage to the filesystem before
processing it. If offline storage could be transparently integrated into the UNIX
filesystem, users could begin using offline storage without changing the way they

access and manage their data.

1.4 Hierarchical Storage Management

A system that enables the automatic movement of data through the storage
hierarchy is the topic of this thesis. The system is named TrISH, short for Trans-
parent Integrated Storage Hierarchy. TrISH is integrated into the UNIX file system
and transparently manages near-line and offline storage as an extension to online
storage space.

TrISH is based on BUMP, the BRL/USNA Migration Project[12]. The BUMP
system was extensively modified, extended, and enhanced. The base set of features

and enhancements that were to be added to the TrISH system include the following:

o Add NF'S server capabilities.

o Refine migration system architecture.

e Enhance migration system performance.

e Improve interactive access to migrated files by reducing the access latency.

e Develop support to reduce “out migrations” by reusing valid offline copies of

files that have been previously migrated.
e Develop better offline device handling.
e Add support for robot mounted (near-line) devices.
e Enhance migration system databases.

o Add support for the UNIX quota system.



o Develop system administrator migration tools.

e Develop user migration tools.

As the system was designed, other features were also added. These are discussed

in Chapter 3.

1.5 Thesis Outline

A complete description of the BUMP system is provided in Chapter 2. At
the end of that chapter, I draw some conclusions about BUMP, its strengths, its
weaknesses, and its possible future enhancements. In Chapter 3, I explain how the
TrISH system improves on the BUMP system. I compare and contrast the two
systems and explain, in general terms, the goals behind the improvements made in
the TrISH system.

A detailed description of TrISH is contained in Chapter 4, including a general
operational description, extensions made to the operating system and to a few of
the UNIX system utilities to support TrISH. T also discuss in detail the TrISH
supporting programs and daemons. In Chapter 5, I analyze the specific features
of TrISH and draw some conclusions about how successful TrISH is at addressing
the problems raised in Chapter 2. A quick survey of a few hierarchical storage
management systems, including a comparison of them to TrISH, is presented in
Chapter 6.

The appendixes are full of grungy and boring details for those interested in
reading about the modifications to the operating system, the structure of messages
between different components of TrISH, abstracted interface functions, and the

TrISH configuration file.



CHAPTER 2

THE BUMP MIGRATION SYSTEM

The US Army Ballistics Research Laboratory and the US Naval Academy de-
veloped a system they named The BRL/USNA Migration Project, or “BUMP” for
short. The BUMP system is the starting point for the work done on TrISH.

2.1 Background and Goals

The BUMP system was originally designed to address two specific issues. First
they wanted to utilize online disk space efficiently, and second they tried to eliminate
errors due to full filesystems. There were a number of goals defined for the system
to address these issues.

There were two primary design goals of the BUMP project. The first goal was
to develop a UNIX-based file migration system that would cause a filesystem to
appear as though it had much more storage than the device (disk drive) on which
it was created. The second goal was to do it transparently so that no unmodified
programs would be able to tell the difference between a migrated file and a regular
file, except for possible delays in the completion of the open() system call[12].

To accomplish these two primary goals, the following specific goals were used as

guidelines in designing the BUMP system:

o Separate the migration policy from the migration mechanism so that a site can

change the policy without having to also change the mechanism.

o Keep modification of the UNIX kernel to a minimum. Implement in user-level

code as much of the migration system functionality as possible.

e Preserve the size of the on-disk inode structure. This would allow easier imple-



mentation of the system in existing sites and keep system utility modifications

to a minimum.

e Provide the ability to support a variety of secondary storage devices without

changing the internal structure of the migration system.

e Provide robust system operation, even under adverse conditions such as a
heavily loaded system or operating system crashes. The reliability and avail-

ability of a system running BUMP should be similar to a system not running

BUMP.
o Allow multiple copies of data on offline storage to enhance reliability.

e Provide the capability of having data online and offline at the same time so

that space reclamation or in-migration can be performed quickly.

e Support different types of secondary storage devices by providing access meth-

ods for moving data between them.

It is also important to acknowledge the “consciously chosen limitations” of the

BUMP system. These limitations included the following:

e Only regular files would be considered for migration. No directories or special

files would be migrated.

o File migration services would be provided only to the machine connected to

the disk system. Remote file access through NFS would not be supported.

e No support was to be provided for creating files that are larger than the

filesystem in which they were created.

2.2 How BUMP Accomplished Its Goals

The BUMP system provides facilities to migrate data transparently between the
standard UNIX file system and offline storage. It consists of some UNIX kernel

modifications to create and support migrated files, a daemon that communicates
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with the kernel and performs migration system tasks for the kernel, a few UNIX

system utility modifications, and a set of tools to manage migrated files.

2.2.1 Migrating Files to Offline Storage

In order to migrate a file, a number of things need to happen. The file must
be identified as one that can be migrated. The algorithm used to determine if a
file can be migrated compares the product of the file size and number of days since
last accessed with a system administrator defined badness value. If the file has a
badness value larger than the filesystem’s limit, the file is eligible to be migrated.

All eligible files are premigrated. This is the process of transferring all of a file’s
data block pointers (the filesystem data structures that link a files data to the
file) to another file, assigning the file a unique number, called the file handle and
stamping it with the machine’s identifier. The file and its offline data are linked
using the file handle and the machine id. The inode (file) that was the target of
the data block pointer copy is called the staging file. 1t exists in a special directory
in the filesystem called the staging area. The database is updated to show that the
premigrated files have copies of their data in the staging area.

Premigrated files are then copied to offline storage, and the database is updated
to show that the files have copies of their data on offline storage. An important

detail is that the data are actually read from the staging area files.

2.2.2 Out of Space Error Handling

When the free space in a filesystem drops below a predetermined limit, the kernel
notifies the migration daemon. The migration daemon forks a process which releases
the storage held by all premigrated files; that is, all of the data in the staging area
are released. If filesystem free space never falls below the limit, premigrated files
retain their online data.

A process that is writing data when a filesystem becomes full will block until
the migration system can create more free space. If no free space can be created,

the blocked process may wait forever.
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2.2.3 Reloading Migrated Files

When a process attempts to open a migrated file, it is blocked in the open()
system call while the migration daemon restores the file’s data. If the file cannot
be restored, the open system call returns an open error to the calling process.

When a migrated file is accessed, the migration daemon is notified by the
kernel. The migration daemon forks a reload process which has the responsibility
of reloading the file’s data. The reload process consults the database to determine
the offline media that will be used to restore the data. The data are copied from
offline storage to a staging area file. The data block pointers from the staging area
inode are transferred to the migrated file’s inode. The migrated file’s inode type is
changed from migrated to reqgular and the staging area file is deleted. Of course if

the staging area data were never released, no access to offline storage is needed.

2.2.4 UNIX Process Flags

A process can set a few different process flags to modify the behavior of the
migration system. One process flag causes the system to return an error when
opening migrated files. Another causes the migration system to reload files in the
background after returning an open error. The last process flag will cause the system
to return an out-of-space error when writing to a full filesystem rather than blocking
the process. The default is to block the processes when it opens a migrated files

and when it attempts to write to a full filesystem.

2.2.5 Kernel and Migration Daemon Communication

A virtual communication link, implemented by a migration system device driver,
is used by the UNIX kernel and migration daemon to send and receive messages.
Over this link the kernel sends out-of-space and reload requests to the daemon, and
the daemon sends back the status of reload requests. This communication link is
also used by the BUMP system calls to request services and information from the

kernel.
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2.2.6 UNIX Kernel Modifications
To support migrated files the following changes were made to the UNIX kernel:

e A new migrated inode type was created

e Two fields were added to the on-disk inode. They store the file handle and

machine id for migrated files.

e A system call to migrate a file (transfer its data block pointers to a file in

the staging area and update the file handle and machine id inode fields) was
added.

e A system call to unmigrate a file (transfer data blocks from the staging area

file back to the original file) was added.
o Process flags to support customization of the migration system were added.
e System calls to query and set the new process flags were added.

e A virtual communication device driver was added to allow the kernel and the
migration daemon to send and receive messages from each other and to support

the new BUMP system calls.

The following kernel routines were modified to support migrated files in the

following ways:

ufs_open() Notifies the migration daemon when a migrated file is opened. The
requesting process is blocked (unless the nonblocking process flag is set) until

the file has been successfully restored.

dirremove() Informs the migration daemon when migrated files are deleted. The

migration daemon invalidates the database entries of deleted files.

ufs_create() Notifies the migration daemon when a migrated file is re-created so

it can invalidate the database entries for the file.
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ufs_setattr() Sends a message to the daemon when a migrated file is being trun-
cated to length zero so it can invalidate the database entries. If a migrated
file is being truncated to a length other than zero the file is restored as usual

before the requesting process may continue.

execve() Checks that migrated files are restored correctly before attempting to

execute them.
newproc() Passes the migration process flags to child processes.

ufs_getattr() Changes the status of migrated files to regular files so that the

requesting process does not know that the file has been migrated.

alloc() Notifies the migration daemon when filesystem free space drops below the

allowed minimum.

realloccg() Blocks the requesting process when the filesystem is out of space until

free space has been created by the daemon.

2.2.7 UNIX System Utility Modifications

In general the user does not need to know if a file is migrated, but there are
circumstances in which the user will want or need this information. The following
system tools have been modified to recognize and work with migrated files and,

where appropriate, provide file migration information to the user.

Changes to fsck When fsck encounters an inode type it does not recognize, it
resets it to a regular inode. Since fsck does not normally know about migrated
inodes, it was modified to recognize and perform integrity checks on migrated

inodes.

Changes to 1s When a long listing of a migrated file is requested, the file type
flag is set to ‘m’, indicating a migrated file. The file handle and machine id
fields are listed along with the file name, providing a way to identify the file

handles and machine ids of migrated files.
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Changes to find Another file type (-type m, indicating a migrated file) was added
to the find utility since migrated files do not test true as regular files (-type f).
Also the -1s option was modified to display an ‘m’ for migrated files, similar

to the [s command.

Changes to restore When the restore program encounters a migrated file, it
creates a new (regular) file, ensures that the inode entries are valid and converts
this regular file into a migrated file. (The dump program was not modified since

it does not interpret the inode fields.)

2.2.8 BUMP System Tools

The tools to manage migrated files include:
o Nightly jobs that migrate files from the filesystem to offline storage
e Programs that restore files from offline storage to online storage

e Scripts to reclaim online storage when free space in a filesystem drops to an

unacceptable level.

2.2.9 BUMP Databases

The BUMP system was built to be portable and self-contained; it could not
assume there would be any particular database system available at all sites. Con-
sequently a database system was built into it. The data are stored in ASCII text
files with newlines separating records. Normal UNIX text processing commands
may be used to process and create reports from the database files.

The two permanent databases in the BUMP system are the file handle database
and the volume database. The file handle database relates file handles to offline
storage media. It is used to locate a file’s data on offline storage. The volume
database stores the device type, location, size and other information about offline

volumes.
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2.2.10 System Administrator and User Tools

The BUMP system suffers from a chronic lack of system administrator tools. The
only tools provided by the system are the out-migration and out-of-space utilities.
There are no system administrator planning tools.

There are no user tools to force a file to migrate, nor are there any tools to
“batch” reload migrated files. There is no way to release manually the staging area

space of files that will not be needed again.

2.3 Analysis of BUMP
2.3.1 Full Filesystem Errors

BUMP adequately addresses the issue of eliminating out of space errors in the
filesystem. When the kernel notifies the migration daemon that disk space is low,
the daemon is usually able to create free space. When it cannot, the reason is
frequently that there are large active files still in the filesystem.

Since the BUMP system creates free space by simply deleting data in the staging
area, free space can be created quickly. Often, however, more free space is created
than is necessary, since all premigrated files in the staging area are deleted. A
system administrator has to carefully balance the number of files that are premi-
grated. A large number of premigrated files allows for fast free space creation, but
the penalty is more files that must be restored from slow offline storage.

A better approach would be to have high and low free space values, called the
free space high and low water marks. When free space drops below the low water
mark, staging area files are deleted until the free space again reaches the high
water mark. In addition, if large numbers of files are premigrated, the free space
creation process has a deep reservoir of quickly obtainable free space. The system
administrator should be able to adjust the high and low water marks to balance

free space with free space creation processing.

2.3.2 Offline Device Support
The BUMP system successfully provides the ability to add support for many

offline devices. When support for a new offline device is needed, new device access
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method functions are written to mount and unmount the media, read and write a
block of data, write file labels, etc.

BUMP does not, however, provide the ability to effectively support various types
of devices, like online and near-line devices. The device abstraction should be at
a higher level, rather than its current low-level implementation. For instance, all
BUMP routines assume that media must be mounted before it can be opened,
but online devices are never unmounted, and near-line devices may already be
mounted. If the abstraction level were to be raised to a higher level, (for instance
at the opening, closing, reading and writing level), then the device access methods
would be able to provide more efficient handling of the specific device and its media.

An unfortunate side effect of the way in which BUMP deals with offline storage is
the fact that the offline media are mounted and unmounted for each reload request.
If a number of files all reside on the same offline tape and these files are to be
reloaded, the BUMP system would mount and unmount the tape for each file. A
better approach would be to restore all files from the tape while it is mounted.

Offline devices must be dedicated to the BUMP reload processes excluding them
from being used by other processes and even from use by other BUMP processes.
The offline devices should be able to be moved between processes. A device manager
would be the best way to handle detachable devices.

Much of the offline storage management functions, like tape and device man-
agement, have been built into the BUMP system. If a site already has a tape
management system, it is unusable by the BUMP system. The offline management

functions should be abstracted out of the BUMP system.

2.3.3 BUMP’s Database System

The BUMP system had an implied goal of not being dependent on any particular
third party database system. This is an admirable goal, but there are a number of
problems with the way it was implemented. First, the database was built into the
migration system, rather than being a separate entity. Consequently the database
interfaces were also built into the system instead of being abstracted out. This

makes it impossible to add support for a site’s favorite database system without
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rewriting most of BUMP. Secondly, the database provided by BUMP is very slow
and inefficient. It has been determined that database updates are in fact one of the
worst bottlenecks in the system.

A well-defined interface between the BUMP system and the database would
allow a site to use its favorite database. Of course a database system should be

provided with the system just in case a site does not have one.

2.3.4 Data Integrity and Reliability

Data integrity is guaranteed by the offline device access methods. These software
routines generate and add CRC codes to the data as they are written to the offline
device. This may be in addition to any CRC and ECC codes generated by the
device itself. The CRC codes are validated as the data are read from the offline
device, and bad data are discarded.

By allowing multiple copies of a file to exist on different offline media and device
types, the system may shield itself from single point failures. It also enhances this
reliability by dividing a file into data chunks called granules. Data are written to
and read from offline storage in granules. If a granule is unreadable, another copy
of the granule can be used instead. Some near-line devices, however, have better
reliability than the online storage from which the data were migrated. On these
devices the overhead of granule management is inappropriate.

Granules are also used to deal with files that are larger than the offline storage
media. If, while writing a granule, the end of the volume is reached, the data
written up to that point are discarded and a new copy of the granule is written to
a new volume.

The data integrity and reliability features of BUMP are beneficial and should
be retained. However, they should be implemented in the device access methods
rather than in the BUMP system routines. If it is appropriate for a device to use
granules to improve reliability, then the method can implement them. If a style
of media management other than granules is more appropriate, then the device’s
method can provide it. BUMP forces CRC checking for all offline copies. However,
many offline devices perform CRC checks already. This additional CRC checking
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adds overhead without improving upon the reliability or integrity of the system.
Options like CRC checking should be optionally implemented in the device access
methods.

2.3.5 Efficiency and Usability

As a user searches through a directory looking for a particular file, many files are
accessed. If a significant number of the files in the directory are migrated, many of
them will inevitably be reloaded. Most of these files are not needed by the user and
will probably not be modified. In the BUMP system these reloaded files have to
go through the migration process all over again by being copied to offline storage.
If offline copies of unmodified files could instead be reused, the efficiency of the
migration system would be greatly improved. Additionally if a feature could be
designed and implemented such that these “false reloads,” could be eliminated, the
interactive feel of the system would improve dramatically.

When BUMP restores a file, the entire file is restored to the staging area and
then moved into the original file. The requesting process cannot access any of the
data in the file until the entire file has been restored. If instead the data were made
available to the requesting process as soon as they was read from offline storage, the
available data could be processed while the rest of the data continue to be restored.
This becomes especially attractive when accessing very large files.

Another efficiency problem with BUMP is rooted in the way the database is
updated. When the database needs to be updated, a new process is created to
perform the update. When only a few update processes are attempting to access
the database at the same time, they collide and must wait for each other. A
significant amount of time is spent by these processes waiting for the database to
become available.

Every time a file is reloaded three processes are created: a reload process, a copy
process and a database update process. Process creation in UNIX is relatively fast,
but when a large number of files are reloaded at the same time, process creation
can consume a significant amount of computer resources and time.

For instance, reloading 15 premigrated files (files that have copies of their data in
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the online staging area) takes about 20 seconds. Since restoring these files does not
require that offline storage be accessed, these files should be reloaded in less than
1 second. All of the time needed to restore these files is spent in process creation
and database update collision waits. By eliminating the process creation time and

database update collisions, the system’s throughput would increase dramatically.

2.3.6 Chosen Limitations

Since almost all of the inactive data in the UNIX filesystem are occupied by
regular files, migrating only regular files does not limit the space saving benefits of
BUMP.

NF'S file servers would benefit enormously from the use of the BUMP system.
However, since BUMP provides migration services only to processes running on the
local machine, an NFS file server cannot provide the migration system services to
its clients. A remote host can access the BUMP system only through UNIX system
utilities such as ftp and rep, which do not provide the same transparency that
NF'S provides. Extending the BUMP system to provide NFS support for migrated
filesystems would increase its usability.

Providing support to create files larger than the filesystem in which they live
would require extensive UNIX kernel and on-disk inode structure modifications.
The primary goal of minimizing kernel modifications is probably more important
than providing this feature, especially since 2 Gigabyte disk drives, the maximum

size of a file in UNIX, are readily available and relatively inexpensive.

2.3.7 Miscellaneous

The UNIX kernel modifications are well-defined, concise, and few. They are
nonobtrusive and easy to install.

The algorithm that determines when a file can be migrated to offline storage is
very limited; its only inputs are the age and size of the file. If enhanced, a system
administrator could better manage online storage. It should include the number of
days since last accessed, a minimum size, a maximum size, current size, location,

file access patterns and how much data the user already has on offline storage.
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The BUMP system suffers from an acute lack of system administrator tools.
Tools should be created that facilitate the movement of data through the storage
hierarchy, analyze online data for planning purposes, and generate reports on
migration system use.

If a user knows that a file will not be accessed in the near future, he may wish
to force the file to migrate to offline storage. BUMP does not provide a way to do
this. Similarly if a user knows that a file that has been migrated to offline storage
will be accessed soon, he or she may wish to reload it before it is needed. The
BUMP system does not provide a way for users to “batch” reload files.

BUMP’s UNIX kernel modifications do not support the standard UNIX “quota”
system. If a site needs to use the BUMP system because it is low on disk space,
it is probably already using the quota system. Support should be added for the
UNIX quota system.



CHAPTER 3

TRISH ENHANCEMENTS AND
EXTENSIONS TO BUMP

The BUMP system was developed to test the feasibility of migrating data from
the UNIX filesystem to offline storage. As such it was not overly concerned with
system performance or usability. However, in order for a file migration system to
be accepted by the user community it must provide good performance, be easy to
use, and provide essential features.

The TrISH system was created to address these issues. It takes the fundamental
principles developed by the BUMP system to new levels of performance, usability,
and reliability. This chapter highlights some of the features of TrISH.

3.1 Goals of the TrISH System

The TrISH system was designed with a number of goals in mind. As was
discussed in the introduction, the main goal of TrISH is to provide access to
offline storage in a usable way. This implies that it must be integrated into the
operating system, transparent to the user, reliable, not add excessive overhead to
the access time for the offline devices it manages, and be maintainable by the system
administrator.

The base features that were to be added to TrISH are listed in section 1.4.
As the changes and enhancements for these features were added to the operating
system, other necessary and desirable features became apparent. The merit of
these features was compared to the cost of implementing them. If the value of
the feature outweighed the cost of implementation, the feature was added (with

the understanding that this is a master’s thesis and needed to end at some point).
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Even though keeping modifications to the kernel at a minimum was not a major
concern, they did end up being relatively minor, well-defined, and intuitive.
Features that added performance and reliability were chosen before features that
provided usability or bells and whistles, the thought being that, if the data are not
safe or if accessing it is miserably slow, then the system will not be used. That
said, there were a number of usability enhancements made to the system, both for

the end user and for the system administrator.

3.2 Performance Enhancements
System performance is the greatest obstacle to placing BUMP into a production
environment. As discussed in section 2.3.5, the BUMP system has some serious
performance problems. The TrISH system improves upon the performance of the

BUMP system in a number of ways.

3.2.1 Restructuring the System

One of the most serious bottlenecks in the BUMP system is process creation.
Every time a file is restored three processes are created: a reload process, a copy
process, and a database update process. The UNIX operating system is very good at
process creation; nevertheless it is still a time consuming activity. TrISH eliminates
most of the process creation overhead through the use of server processes. These
processes are always available and waiting for requests from the migration daemon.
The most important server processes are the TrISH daemon and the reload servers.
The TrISH daemon coordinates the activities of the reload servers, which perform
the actual work of reloading files from offline storage.

Not only do these server processes eliminate the extra overhead of process
creation, but they also provide other, even greater, performance improvements. In
the BUMP system, since every offline restore is performed by a separate process, the
offline device must always be returned to a “known” state when the process ends.
In the TrISH system, the reload server stores state information about the device.
With this state information the reload server performs device access optimizations,

such as leaving recently accessed media in the device with the assumption that it
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will be used again soon. For offline devices like optical disk, this results in a big
performance gain.

The TrISH migration daemon (trishd) listens for requests from the operating
system. When a file needs to be restored, trishd routes the request to an available
reload process. Information, such as the currently mounted offline volume, is
communicated between trishd and the reload processes. Using this knowledge, the
request dispatching algorithms intelligently schedule requests to the appropriate
reload process. For instance, if a reload process has the desired offline volume
currently mounted, it will receive the reload request. Requests are also prioritized,
and all high priority reload requests are processed first. This feature allows low

priority “batch” reloads without impacting high priority interactive reload requests.

3.2.2 Concurrent Restore and User Access

While the BUMP system is restoring a migrated file to online disk, the requesting
process is blocked from executing. It cannot continue until the entire file has been
restored to disk. If the file is large, the process will wait a substantial amount of
time. In the TrISH system, the file’s data are available to the requesting process as
soon as they have been read from the offline device and written to the filesystem.
This optimization significantly improves the responsiveness of the TrISH system.

Additionally, if the data are read soon after they have been restored, the read
request will be satisfied from the filesystem buffer cache. This improves the re-
sponsiveness and performance of the system even more because the number of 1/0O
operations are reduced. This benefits not only the requesting process, but also

every process on the system.

3.2.3 On-Disk Data for Migrated Files

The TrISH implementation of concurrent restore facilitates another equally im-
portant feature. In the TrISH system, a migrated file can retain a variable amount
of data at the front of the file in the online filesystem, even after it has been migrated

and gone through the free space creation process. Three benefits of this feature are
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o Reuse of offline data. When a file is restored to online disk, it is left in a
migrated state with all of its data on-disk. If the file is not modified, the offline
data remain valid, and the file does not need to be remigrated (recopied) to
offline storage. It is also immediately available for release by the free space

creation process.

o Fewer false restores. When a user is searching through a directory using the
head and file commands, migrated files with enough on-disk data will not
have to be restored from offline storage if they already contain the necessary
piece of the file. Experience has shown that only 8 K-bytes of data must be in
the file to prevent the entire file from being restored when using the head and

file commands.

o Improved interactive performance. The on-disk data feature can also improve
the interactive feel of the system as well. For instance, if the system editors
were enhanced to allow the user access to the on-disk data immediately, while
the rest of the file is being restored in the background, the user may never
know that the file was migrated. This type of service could be especially
useful for graphical image files, where the first few thousand bytes of the file
would contain a very low resolution markup of the image. The user could view
the low resolution image and, if so desired, request that the high resolution

image be restored from offline storage.

This single feature (the implementation of on-disk data) has proven to be a very
important part of the TrISH system. The ability to reuse offline data and the ability
to concurrently access a file as it is being restored are the most important benefits

of this feature.

3.2.4 Replacing the Database
The BUMP system uses its own sequential access database. The enormous
amount of time required to search sequentially through a large database slows

down the whole system, making it impossible for the migration daemon to respond
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to reload requests in a timely manner.

To make matters worse, whenever the database needs to be updated, a database
update process is created. When an update process attempts to access the database
and another process is currently using it, it waits an arbitrary amount of time (up
to 8 seconds) and attempts to access the database again. If the database is still
busy, the process waits again. This wait and try loop continues until the database
is successfully updated. When a large number of processes are trying to update the
database at once, more time is spent waiting for the database than updating it.

The database for the TrISH system has been isolated to well-defined routines that
can call any existing database, including commercial, high performance databases.
The database access routines allow the TrISH migration daemon to directly update
the database without the overhead of creating a new process or the arbitrary waiting
involved in the BUMP system. Currently, access routines for an indexed database
manager called IDBM have been written. Only a small number of access routines

would need to be rewritten to support a different database system.

3.2.5 Better Free Space Management

When a file is migrated in the BUMP system, its data are temporarily stored in
the staging area. When the filesystem is low on space, all of the data in the staging
area are deleted, thus creating free space in the filesystem. Given these constraints
a system administrator has the difficult job of balancing migration parameters.

If too few files are migrated and stored in the staging area, free space creation
can be very slow. The reason is that rather than just releasing the online space
occupied by migrated files in the staging area, the entire migration process, from
identifying files to copying them to offline storage, must be performed whenever
space is needed in the filesystem. If, again, too few files were migrated, the whole
process would need to be performed over again.

If too many files are migrated and stored in the staging area, then when the
staging area space is released, more free space would be created than is needed to

fulfill the request at hand. The problem lies in the fact that all of the files whose
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staging area data were deleted will need to be restored from offline storage next
time they are accessed.

Moreover, BUMP selects files for migration based solely on the value of the file’s
eligibility and not on the space needs of the filesystem. If the migration process
finds an old file in the filesystem, it will be migrated regardless of the current
amount of free space. Unless the data stored in the filesystem are very regular and
predictable, tuning the migration eligibility algorithm is very difficult.

To address these problems, TrISH includes three additional system administrator
defined parameters: the high watermark, the low watermark, and the migrated

target. These values are used as follows:

The high watermark When the amount of used space in the filesystem reaches

the high watermark, the free space creation process is started.

The low watermark The free space creation process releases space in filesystem

until the amount used space in the filesystem is at or below the low watermark.

The releasable watermark The nightly migration process attempts to migrate a
sufficient number of files so that the amount of used space minus the amount of
“releasable” space in the filesystem is at most this value. (Given the migration

eligibility algorithm, this may or may not be possible.)

These values are expressed as a percentage of the total space in the filesystem.
These three values can be tuned by the system administrator to meet the needs of
the site. If a filesystem’s free-space is off, either too low or too high, the high and
low watermark values can be adjusted so that the free-space creation process creates
just the right amount of free space. If a system generally converts a large amount
of migrated space into free space, then the releasable watermark value should be
lowered. If a system rarely converts migrated data to free space, this value can be

increased.
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3.3 Usability Enhancements
A system that solves only half of a site’s storage needs is only marginally better
than no system at all. The TrISH system builds upon the solutions provided by
the BUMP system to provide a more functional, extendable, and integrated storage

management system.

3.3.1 NFS Support

As workstations continue to become more powerful and less expensive, more and
more sites are moving away from a central computer environment to a distributed
computing environment. Increasing network speeds and availability accelerates and
encourages this trend. These distributed environments commonly use centralized
file servers which are accessed through the use of network file access protocols such
as NF'S to store their data. These file servers would benefit greatly from the services

a file migration system can provide. The TrISH system supports access to migrated

files through NF'S.

3.3.2 Offline Device Support

One of the goals of the old BUMP project was to facilitate easily the addition of
new offline device types into the storage hierarchy. BUMP was only marginally suc-
cessful in reaching this goal. Online and near-line devices do not fit into the BUMP
device abstraction which was designed with the assumption that only magnetic tape
devices would be used. Many of the device specific functions are performed by the
BUMP system utilities rather than the device access method routines. For instance,
CRC checking and granule processing is performed by all BUMP system utilities.
Because of this, if functions other than CRC checking and granule processing would
be more appropriate for a particular device, they cannot be provided. Additionally,
because device state information is kept by the BUMP applications rather than by
the device access routines, some state information required by robotic auto-loaders
is not available. For these reasons it is difficult to add support for near-line devices
to the BUMP system.

The TrISH system uses a higher level of abstraction for offline storage devices. It
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is the responsibility of the device support routines to perform CRC checks, granule
allocations, and other data processing that is appropriate for the device. The TrISH
utility programs use these high-level device access routines and, hence, can use new
storage devices without modification. This higher level of abstraction also enables
the device support routines to perform intelligent media management. For instance,
keeping the last used tape in the drive until it is known that it is no longer required.

Initially, device access routines have been written for an “online compression” de-
vice, an “online copy” device, and the Hewlett-Packard rewritable magneto-optical
disk autochanger. The optical disk device access routines can optionally perform

software data compression as the data are written to the device.

3.3.3 Site Integration Support

The TrISH migration system requires a number of services that may or may not
be presently available at a particular site. For instance, TrISH requires the services
of a database system to store information about migrated files. If a site has an
existing database system they are familiar with, then TrISH should be able to use
it. If, on the other hand, the site does not have one, one should be provided by
the TrISH system. The ability to integrate existing services into the TrISH system
improves the probability that it will be accepted by the support staff.

TrISH has separated the required services from itself so that a site may easily
“plug in” their own services to replace the TrISH provided ones. A well-defined
and separate interface has been provided so that integration with existing systems
will be painless.

The replaceable services that TrISH requires are as follows:

e Modified kernel. A small set of kernel support routines provides the interface
between the migration daemon (trishd) and the operating system. Any
operating system kernel that supports these routines will be able to use the

TrISH migration system.

e Database server. The database provides the information storage and retrieval

functionality necessary to keep track of migrated files and their offline data.
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TrISH comes with support for the IDBM database, but support for other

databases would be easy to add.

Media manager. The media manager provides a way for TrISH to request
another unit of offline media (such as another blank tape). TrISH has a simple

media allocation system. Access to another system would be easy to add.

Device manager. The device manager controls access to offline devices. If
TrISH needs to read a tape, it must first acquire the exclusive use of a tape
drive. The device manager provides this service by serializing access to offline
devices. The device manager also provides the support necessary for TrISH
to use nondedicated offline devices. The device manager only allocates and
assigns devices to processes; it does not perform the actual I/O to the device.
The device manager service eliminates the restriction in BUMP that all devices

must be dedicated to the BUMP system and cannot be used by other processes.

Message manager. When a message needs to be sent to the operator or to the
system administrator, the message manager is used. The message manager
may log the message or distribute copies of the message to various people.
An X-windows-based message system has been provided with TrISH, but

integrating a new system would be easy to do.

3.3.4 Eligibility Algorithm

To give the system administrator control over which files are chosen for migra-

tion, the eligibility algorithm was written as a C language routine that can be easily

modified to meet the needs of the site. The eligibility algorithm is used to decide

not only which files to migrate but also which files to release during the free space

creation process. The eligibility algorithm has access to the following data:

e Name of the file

o The fstat data for the file, including userid, user group, size of file and last

access times
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o The TrISH file system configuration parameters. Additionally these parame-
ters can be extended to include custom values defined by the system adminis-

trator

e The amount of on-disk data for files that have already been migrated (used by

the free space creation process)

With access to these data, the eligibility algorithm can be modified to implement
any number of site-specified migration policies. Some potential site policies are as

follows:

o Larger files should be migrated before smaller files.
o If a file is smaller than some minimum size, do not bother to migrate it.
o Active files stay; inactive files are migrated.

o Files that are infrequently modified, even though they may be frequently read,

are migrated whereas files that are frequently modified are not.

o A particular user or group gets preferential treatment. Their files will be larger

and older than another group’s files before they are migrated.

o Certain types of files should be migrated before other types of files. For

example, object files should be migrated before source files.

o Files with a given name or within a given directory tree should be migrated

before others. Files in another directory tree should never be migrated.

The eligibility algorithm assigns a “badness value” to each file in the filesystem.
The files are then ranked and sorted by their badness values, with the largest
badness value ranking first and the smallest badness value ranking last. The
ordering of files by their badness value is used during both the the migration process
and the free space creation processes. These processes are be described in section

4.1.
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3.3.5 System Administrator Tools

TrISH, unlike the BUMP system, has a number of tools designed to be used by
the system administrator. With these tools the administrator can analyze the needs
of a filesystem before enabling file migration, gather statistics on the effectiveness
of the migration system, monitor the work load of the system, and forecast future
needs.

A filesystem analysis and graphing tool will help an administrator choose ap-
propriate migration system parameters. This tool gathers information about the
number, age, and size of files in the filesystem. This tool would be used to
define initial values for migration system parameters and to verify and tune those
parameters on an ongoing basis.

A tool that examines migration system statistics within the UNIX kernel and
shows access patterns to migrated and nonmigrated files will help an administrator
maintain good migration system parameters. These kernel statistics include calls
to the open, read, write, trunc, unlink, and getattr operating system calls for
both migrated and nonmigrated files. For migrated files, the amount of time spent
waiting for file reloads is also tracked. This information can be used to analyze the
effectiveness of TrISH.

The trishd process logs all requests. A log processing program enables the
system administrator to analyze the type and volume of migration system requests.
These data will give the administrator even more detailed information on how the

migration system is being used.

3.3.6 User Tools

The users of the system will often know when they will or will not be using a
particular file in the near future. TrISH provides a few tools that enable the user
to control and direct the handling of files. The following tools and commands were
not provided by the BUMP system.

A user has the ability to force the migration of files to offline storage using the
trforce command. This is very useful if a large file has just been created and it is

known that the file will not be needed in the near future. By forcing such a file to
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migrate, the user will create free space in the filesystem and will reduce the chance
of the user’s other files, which may be needed soon, from being migrated.

The user also has the ability to release on-disk space being held by migrated files.
Remember that migrated files can have data in them waiting to be released when
needed. Using the trelease command, the user can release the space in migrated
files. Using this command, the user can free up space in the filesystem and possibly
keep another file from having its data released.

Using the trctl command, a user can perform batch reloads of migrated files.
This is very useful if it is known that the user will be needing a set of files and
wants them to be reloaded in advance. The batched reload requests are placed on
a low priority queue and are processed in the background when there are no other
higher priority requests.

TrISH also implements the migration system process flags discussed in Chapter
2. Using these flags, the user can tailor the way certain conditions are handled. For
instance, the user can tell the system to return an error, rather than automatically
reloading migrated files, when the process attempts to read past the on-disk data.
The user can also request that his or her process never receive an out-of-space error
message but rather blocks until the migration system has a chance to free some

disk space for it to use.

3.3.7 Miscellaneous

The UNIX Quota system is used by system administrators to help manage online
disk usage. With it a system administrator can limit the amount of disk space each
user may consume. Considering that a site which is currently short on storage
space is in all likelihood using the quota system and considering that these are the
very sites that would benefit most from implementing the TrISH system, support
has been added for the quota system. Data residing in the filesystem are deducted
from the user’s quota. When a migrated file’s data are released, that space is no
longer counted against their quota.

The TrISH system has one central configuration file where system parameters are

stored and can be easily maintained by the system administrator. This contrasts
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with the BUMP system in which many configuration parameters are hard-coded
into the source code. An additional feature is that the configuration file can be
extended. If a site adds a new feature to the TrISH system, the configuration file
can be extended to contain the site specific values used by the new extentions to
TrISH. The TrISH configuration file is described it detail in Appendix A.

Key algorithms, like the badness calculation function used to order files for
migration, have been separated from the rest of the source code to enable easy
customization of the system. These algorithms can be quickly located and easily
modified to meet site specific needs. Combined with extensions to the configuration
file, this enables the system to be highly tuned and customized for a site’s special
needs.

The operating system calls ioctl and select are used by programs to gather
information about the status of open files. These system calls have been modified
to understand and return information about migrated files. The ioctl system call
returns the amount of on-disk data available to be read from the file. The select

system call returns true when an open migrated file has data available to read.

3.4 Reliability Enhancements

The data reliability of the BUMP system is quite good. Much thought and effort
were put into constructing a system that would protect and keep safe the user’s
data. It runs CRC checks on all data written to and read from offline storage.
It provides effective recovery techniques to deal with media errors. Its databases
were built so that even if the BUMP system was totally destroyed, the system
administrator could, by hand, rebuild the system and recover all of the data.

TrISH has retained all of the reliability features of BUMP (CRC checking,
granule processing, multiple offline copies, error recovery) and has added one more
reliability enhancement.

The only problem with the BUMP system’s reliability is the centralized database.
If the database is corrupted or lost, the entire BUMP system is useless. In the
TrISH system there are separate databases for each of the managed filesystems,

rather than one monolithic database. The databases for each filesystem hold only



34

the information for the files migrated from that filesystem. When one filesystem’s
database is unavailable, no other filesystems are affected. An added benefit to this
architecture is that a filesystem is self-contained. It, along with its database, can
be moved to another machine with very little work. If a filesystem’s databases
are located within itself, the backup and restore process is also simplified. This
also prevents the database from being out of date with the filesystem, should a

filesystem need to be restored from its backups.

3.5 Summary of Enhancements to BUMP
A number of enhancements over the BUMP system have been added to TrISH.

A summary of the major enhancements in the TrISH system are listed below.

e Eliminated excessive and unnecessary process creation.
o Created intelligent reload servers.
e Created an intelligent migration daemon (trishd).

e Enhanced device access routines and methods, enabling smarter handling of

near-line devices.
e Implemented concurrent restore and user access.
o Facilitated the reuse of offline data.
e Provided support for on-disk data.
e Improved interactive performance.
o [solated database access routines from the TrISH system.

o Implemented better free space management through the use of high, low and

releasable watermarks.
e Provided support for NFS server functions.

o Implemented a media manager.
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Provided a device manager.
Furnished an operator messaging manager.
Enhanced badness value calculation function.

Implemented filesystem analysis tools to determine if file migration is appro-

priate for a particular filesystem.

Provided kernel statistics gathering tools.

Enabled migration log analysis facilities.

Enhanced the migration daemon

Provided the reloader control program.

Enabled a file to be forced to migrate.

Forced release of migrated file.

Implemented batch reloading of migrated and released files.
Facilitated support for the standard quota system.
Designed the central extensible configuration file.
Enhanced system to work with distributed database system.

Extended system calls to understand migrated files.



CHAPTER 4

TRISH IMPLEMENTATION DETAILS

The goals of the TrISH system were discussed in detail in Chapters 1 and 3. To
summarize, they are to provide easier access to offline storage through the method
of automatically and transparently moving large inactive files from expensive online
storage to inexpensive offline storage and to provide this functionality in an efficient,

reliable, integrated, and feature-rich way.

4.1 TrISH Operation
To accomplish the goals set out for it, the TrISH system transparently migrates
a file’s data to offline storage when they are not being used and transparently
restores the data when they are again being used. The steps involved in migrating

and restoring a file’s data are described below.

1. Identify a file that should be migrated.

2. Make the file into a migrated file.

3. Copy the file’s data to offline storage.

4. Mark the file as being releasable.

5. Release the file’s online storage when space is needed.

6. Restore the file’s data from offline storage when they are accessed.

7. De-migrate the file when it is modified.

To identify files that can and should be migrated, the target filesystem is scanned

and its files are assigned a “badness value” using a system administrator defined
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badness function (explained in detail in section 3.3.4). The files are then ordered
by their badness values and the files at the top of the list are migrated. Files are
migrated until the releasable watermark value has been achieved or until no more
files meet the minimum requirements. The initial state for newly migrated files is
nonreleasable with all on-disk data. Because the file’s data have not yet been copied
to offline storage, its data cannot be released for use by another file. Furthermore
since none of the file’s data have been released, they all reside on-disk.

At this point, the file’'s data are copied to offline storage. The system admin-
istrator, through configuration file parameters, specifies which offline devices the
data are copied to and the number of copies to be made. After the file’s data are
successfully copied to offline storage, they are marked releasable, meaning its data
can be released by the free-space creation process and made available to other files.

When the used space in the filesystem rises above the high watermark, the free
space creation process is started. The releasable files in the filesystem are ordered
by their badness values. Files at the top of the list are selected and their on-disk
data are released until the low watermark value is reached or until there are no more
releasable files. If, during the migration and copy-out processes above, a sufficient
number of files have been migrated and copied to offline storage, the free space
creation process can occur a number of times before the migration process (steps
1-4 above) must be dispatched again. The idea is to migrate a large amount of
space during off peak hours so that it can be easily released and used during peak
hours when it is needed.

As alluded to above, when a migrated file is accessed, the offline data must be
restored to the online filesystem. The responsibility of restoring the file belongs
to the TrISH migration daemon and its reload processes. When a file needs to be
restored, the kernel notifies the migration daemon, which in turn dispatches the
reload request to an available reload process.

If a migrated file is modified, it is changed from a migrated file back to a regular
file. The old offline copies are no longer valid and can be discarded. To become

a migrated file again, it must once again go through the migration process. If,
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however, the file is not modified, it retains its status as a migrated and releasable
file. Its disk space can be released at any time since the existing offline copies are
still valid.

These processes are described in greater detail in the appendixes. The identify,
migrate, and copy-out processes are described in Appendix B. The free space
creation process is described in Appendix C. The restore process is described in

Appendix D.

4.2 TUNIX Kernel Support

A number of enhancements were made to the UNIX operating system kernel
to support the process of file migration. The modifications are independent of the
migration system, allowing any migration daemon to use the same operating system
interface. The changes and enhancements to the UNIX kernel can be categorized

as follows:

e Enhanced the filesystem to support migrated files.

o Created new system calls and enhanced existing system calls to create, manage,
and monitor migrated files. The new and enhanced system calls are discussed

in detail in Appendix E.

e Provided a communication path between the UNIX kernel and the migration

daemon.

e Enabled special migration system process flags to control the level of trans-

parency.

e Provided support for NFS access.

Added support for the quota system.

The changes are described in greater detail in the following sections.
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4.2.1 Filesystem Support

To support migrated files, the standard UNIX filesystem data structures were
enhanced. A field was added to the filesystem super block that contains the
filesystem’s high watermark. When the amount of used space in the filesystem
reaches this point, the free space creation process is started.

A new file type, IFMIG, was created and the on-disk inode structure was enhanced
to include two additional fields. The new fields are i fmigid and i_ondisk. The
i_fmigid field holds the file’s migration identifier. This identifier is used to track
the file’s data through offline storage and to identify it in the migration system
databases. The i_ondisk field contains the amount of on-disk space in the file.
Additionally, the previously unused on-disk inode field, i_flags, is now used to
hold the IFMIGREL and IFMIGMOD flags. They indicate that the file is releasable or
contains modified data, respectively.

In addition to changes to the filesystem data structures, changes were made to
the filesystem modules in the operating system. When a migrated file is opened,
the operating system notifies the migration daemon by sending it the file migration
identifier, the “fmigid,” of the file. The migration daemon can choose to begin
reloading the file immediately, or it can postpone reloading the file until a read
request is made for data that do not reside on-disk.

When a process tries to access data that do not reside on-disk, the process is
blocked and a message indicating that the process is waiting for the file to be
reloaded is sent to the migration daemon. The migration daemon is responsible
for reloading the file as soon as possible, so that the blocked process can resume
execution. As the file’s data are restored, the blocked process is allowed to continue
so that the recently restored data can be processed. If more than one process is
reading the file at a time, only one reload request is sent to the migration daemon,
and all processes are unblocked when data are available.

When a migrated file is closed, the migration daemon is notified. It has the
option of canceling any pending or in-progress reload request for the file. This

could happen if the file was opened but never read or if only the first part of the
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file was read.

When a write request is made to a migrated file, the write is allowed to complete
when the on-disk data include the part of the file that is being written. The
IFMIGMOD flag, in the i _flags field is set, indicating that the file’s data have changed
and that it should be de-migrated (made into a regular file) when it has been
completely restored. A file that is truncated to a nonzero length is handled the
same way. When a file is truncated to zero length, it is immediately made into a
regular, zero length file.

When a file is modified, truncated, or deleted, the offline copies of the data are
no longer needed. A message is sent to the migration daemon notifying it that it
can discard the offline data and invalidate or delete the file’s database entries.

If a migrated file containing an executable program is to be run, the process is
blocked until the entire file, or program, has be restored to on-disk storage. It is
necessary to wait until the entire program is reloaded because the UNIX kernel will
demand page the program directly out of the filesystem and into main memory[9],
bypassing the standard filesystem code.

The filesystem’s space allocation routines were also modified. These changes
effect not only migrated files but regular files as well. When an allocation request
causes the used space in the filesystem to rise above the high watermark, the
migration daemon is notified so that it can start the free space creation process.
Additionally, when an allocation request would normally return with an ENOSPACE
error message because the free space in the filesystem has been exhausted, the
requesting process is instead blocked. An urgent out-of-space message is sent to
the migration daemon. The process remains blocked until enough space has been
created to honor the allocation request. If the free space creation process was
unable to create some free space, the allocation request fails with an ENOSPACE

€rror message.

4.2.2 Controlling Transparency
By default, migrated files appear to be regular files. Except for possible access

delays, unmodified programs cannot tell when they are accessing a migrated file.
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A process can customize the default behavior of the system when accessing
migrated files by setting new process flags. These process flags are passed from
parent processes to their child processes, and, of course, the child process can

modify them as well. The process flags are as follows:

FMIG_FLAG_NOTRANSP By setting this flag, a process will be notified with
an error message whenever a read or write request to a migrated file would
have blocked. Additionally, a background reload request for the file is sent to

the migration daemon.

FMIG_FLAG_CANCEL If this flag is set, the background reload request nor-
mally generated when the FMIG_FLAG NOTRANSP flag is set is suppressed. This
flag only has meaning when used in conjunction with the FMIG FLAG NOTRANSP

flag.

FMIG_FLAG_SPACERETRY By setting this flag, the process will be blocked
rather than receive an ENOSPACE error when the filesystem does not have
enough free space to satisfy an allocation request. The process will remain
blocked until enough free space has been created in the filesystem to satisfy

the request.

4.2.3 Migration Daemon Communication Path

A communication path, implemented as a pseudo device driver in the kernel, is
used by the file migration routines in the UNIX kernel and the migration daemon
to send and receive messages. The regular UNIX system calls, open(), read(),
write(), and select (), are used by the migration daemon to open communica-
tions, receive messages, send messages, and test for messages from the kernel.

When the migration daemon is running and operational, the communication
path is open. The kernel assumes that when the path is open a migration daemon
is waiting to process requests, and when it is not open, no migration daemon
is running. With this assumption, file migration activities are enabled while the

communication path is open. When it is not open, some of the file migration
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activities are disabled. For instance, if an attempt is made to delete a migrated
file while no migration daemon is running, the request is denied, since the migra-
tion daemon needs to be notified when a migrated file is deleted. On the other
hand, a migrated file’s on-disk space can be released when no daemon is running
because the migration daemon does not need to be notified. An errno value of
EFMIGOFF is returned when a request is canceled or aborted because the migration
communication path is closed.

The structure of the messages sent across this communication path is discussed
in greater detail in Appendix F. Included in this discussion is a list of the valid

operations.

4.2.4 NFS Server Support

Because of the structure of the TrISH operating system modifications, no change
to the NFS server code was required to enable NFS access to migrated files. When a
request is made from NFS to the UNIX filesystem, the standard filesystem routines
are used. Since these standard routines were already enhanced to handle migrated
files, the NFS server had immediate access to migrated files.

A few restrictions, however, exist on the method and the level of access to
migrated files through NFS. NFS clients must use hard, rather than soft, mounts
when mounting TrISH enabled filesystems via NFS. This restriction is required
because the length of time needed to reload a migrated file is often greater than
the time-out limit for soft-mounted filesystems. Hard-mounted NF'S filesystems, on
the other hand, do not time-out NFS requests and hence can deal with long delays.

Because process flags are not passed between the NFS client and the NFS server,
the transparency controls discussed in section 4.2.2 are not supported on NFS
mounted filesystems.

The NFS protocol has specified the information that is sent between the client
and the server when, for instance, performing a stat system call. The specification
precludes appending additional information for migrated files. As a result, migrated
files always look like regular files to NFS clients, and they are unable to use the

select () and ioctl() system calls discussed in Appendix E.
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A hidden benefit, however, is lurking in these restrictions. Because the NFS
client machines do not need and, in fact, cannot get any information about migrated
files they are guaranteed transparent access to them. This allows an NFS client,
whose operating system does not contain the TrISH enhancements, access to the
migrated files on a TrISH-enabled NFS server.

In a future project, enhanced access to migrated files via NFS could be developed.
At this time, however, it is beyond the scope of this project to modify the NFS
protocol to provide these enhancements. Transparent access to migrated files is
sufficient for this project and is, in fact, a giant step beyond what the BUMP

system provided.

4.2.5 Quota System Support

Like the NFS server support discussed above, support for the quota system
required no kernel changes. This is because the TrISH kernel modifications make
use of the standard filesystem routines, which already contain support for the quota

system.

4.3 Device Access Methods

One of the goals of the TrISH system is to allow the easy integration of new
offline devices into the storage hierarchy. To this end a small set of well-defined
access routines has been implemented. Integration of a new device into the TrISH
storage hierarchy simply requires definition of the access routines and an update to
the configuration file. No programs need to be changed. The migration and reload
processes will access the new devices through their access methods.

Another goal of the TrISH system is to reliably and efficiently manage offline
storage. To aid in achieving this goal, offline data are organized into “granules.”
A file may be broken down into multiple granules, and one given granules may be
written to one or more offline storage devices. Granule size is determined by the
access method routines and is defined to optimize both the use of the media and
the performance of the device.

Using granules increases the reliability of the system by providing an easy
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mechanism of recovering from media and device failure. If an offline granule is
unusable, another granule containing the same piece of data can be used instead.
Granules also make the task of writing access methods easier. Because the size of
a single chunk of offline data is reduced, the access method is liberated from the
difficult task of handling multivolume datasets. The granule implementation has
already provided the mechanism for splitting a file’s data into manageable pieces.

The device access routines can be grouped into the following categories: config-
uration functions, initialization and cleanup functions, volume handling functions,
granule handling functions, and data block functions. Some functions, if they are
not needed or are not applicable for the device, do not need to be defined. For
instance, the compress method does not mount or unmount any media and does
not have those functions defined. The TrISH device access routines are discussed
in further detail in Appendix G.

To date, access method routines for copying data to another filesystem auto-
matically compressing data inside the filesystem, and copying data to the Hewlett-
Packard magneto optical jukebox has been developed. Providing access routines for
either robot or operator mounted magnetic tape devices would be a straight-forward

addition to the system.

4.4 Database Access Functions

Database system independence is another one of the goals of the TrISH system.
Because there are many types of database systems, including relational databases,
indexed files, and sequential files, access to the database has been abstracted into
functional units of work. For instance, when the reload process needs a list of
granules containing a file’s data, it calls the granuals for fmigid() function.
Using the database system on the host, this routine creates a list of the granules
containing the required data.

There are database access functions for initializing and closing the database,
adding, deleting, updating, querying, and sorting various database entries. The

types of database entries include granule entries, volume entries, releasable file
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entries, migratable file entries, and forced migration file entries. A list of the
database access functions can be found in Appendix H.

Database system reliability is another design goal of the TrISH system. This
is accomplished, in part, by separating the database entries for each migrated file
system. If the database for one file system is damaged, the other file systems on
the machine can still be used while the damaged database is reconstructed. The
database access functions have been designed and implemented with the expectation
that each filesystem has its own database.

A side benefit of this technique is that, depending on the implementation of the
database, the performance of the overall system increases. Since each filesystem
has its own database, it is smaller, easier to maintain, and easier to optimize. Ad-
ditionally, since there are multiple databases on the system, the database accesses
have inherent parallelism.

A filesystem’s database is divided into two different logical databases, the main
TrISH database and the “out-migration” database. The main TrISH database is
where permanent information is stored, such as the granule and volume database
entries. The out-migration database holds the list of files to migrate along with
their badness values. These databases are separated because the out-migration
database is deleted and re-created on a regular basis to reflect updated badness

values as well as new files in the filesystem.

4.5 The TrISH Migration Daemon

The TrISH migration daemon, trishd, orchestrates the activities of a number of
different entities. It listens for requests from the kernel, the system administrator,
and the users. It dictates the activities of the reload and free space creation
processes. It sets parameters in the filesystems and enables the file migration
activities of the UNIX kernel. In short it is the heart and brains of the migration

system.
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4.5.1 Request Management

The TrISH daemon keeps track of requests on three different priority queues.
The highest priority queue is where kernel requests are placed, the lowest priority
queue is for general user requests, and the medium queue is for high priority user
requests. Lower priority requests are dispatched only if no higher priority request is
dispatchable. Once a request is dispatched it will not be interrupted or preempted,
even if a higher priority request is dispatchable.

In the TrISH system, each offline device has its own reload server, and each
reload server services only one device. In order for TrISH to start using a device,
the corresponding reload server must be started. The reload server is shutdown to
stop using a device. To trishd, there is no distinction between a device and reload
server.

The file migration routines in the UNIX kernel send reload and out-of-space
requests to trishd. Reload requests are placed on the high priority work queue
and dispatched when a reload server is available. If a reload server is not able to
successfully reload a file, the reload request is requeued, and a new reload server is
given the chance to restore the file. By doing this, all possible ways of reloading a
file are explored before returning a reload failed message to the kernel.

Out-of-space requests are immediately handled by starting a free space creation
process. When the process sends back a message indicating that some space was
created in the filesystem, trishd sends a message to the kernel informing it that free
space was created and that any blocked processes should be restarted. If the freer
process is not successful at creating space in the filesystem, a failure message is sent
to the kernel, and the kernel in turn returns error messages to processes waiting for
space to be created. Because a single filesystem can potentially generate a number
of out-of-space requests in a short amount of time, trishd must keep track of
current free space processes, and only create a new process if one does not already
exist for the filesystem. The free space creation process is discussed in further detail
in Appendix C.

Every request that is sent to trishd is forwarded to the TrISH log filter program.
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The current filter program just logs all of the requests to a file, but future intelligent
log filters could analyze the requests and watch for patterns of access. For instance,
if more than a few files were accessed in the same directory, the log filter could
generate reload requests for all of the migrated files in the directory under the
assumption that the user will probably request the files in the near future.

The system administrator manages trishd by querying the state of reload
servers, starting and stopping reload servers, querying the progress of reload re-
quests, cancelling reload requests, and shutting down the TrISH system. When
a device is started, its controlling reload process is created. The reload process
is responsible for sending regular status reports to trishd so the current state of
the reload process and the device is known. This information is displayed when
a query is received concerning the state of a reload process. When a request is
made to shutdown a reload server, trishd removes the reloader from the available
queue and sends it a shutdown message. The reloader is then responsible for ending
gracefully.

If a reload request is currently dispatched when a cancel reload request is re-
ceived, the request is forwarded on to the reload server. When the server reports
back to trishd that the cancel request was completed, the original reload request is
deleted from the queue. If the reload request was not dispatched, then the original
reload request is just deleted.

A user can query the state of reload requests, cancel reload requests, and initiate
batch reload requests for files. These requests are handled the same way that system
administrator requests are handled, except a user can only cancel reload requests
for his or her own files and can only initiate reload requests for files he or she has
access to.

The system administrator and the system users communicate with trishd with
the trctl program. It is how the system administrator starts, stops, and retrieves
information about reload servers and shuts down the TrISH system. It is also how
a user initiates batch reloads, cancels pending and in-process reload requests, and

checks on the status of reload requests. The trctl program is discussed in further
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detail in Appendix J.

4.5.2 TrISH Reload Servers

The TrISH reload servers are responsible for listening for, and responding to,
control messages from trishd. These messages include reload requests, cancel
reload requests, status update requests, shutdown requests, and regular “pings” to
make sure that the reload server is still alive. The reload server must be able to
accept requests at any time, even when it is busy responding to a previous request.
For instance, a cancel request could arrive while the reloader is busy restoring a
file. The list of the valid reloader requests is in Appendix D.

There are a number of tasks performed by trishd in the management of reload
servers beside just starting and stopping them. For instance, reload servers are
responsible for sending periodic status information. Included in this information is
the current volume mounted on the device, the current file being reloaded including
its fmigid, the owner and group of the file, the total size of the file, and the amount
of data that have been restored to the file.

The name of the currently mounted volume is used by trishd to perform
dispatching optimizations. Since most offline devices, including robot controlled
devices, typically suffer from long delays when mounting new volumes, trishd
groups reload requests for the same offline volume to the same device. This
enables full utilization of a volume once it is mounted. As mentioned above, high
priority requests are serviced before low priority requests, even when the low priority
requests are on the same volume as one of the high priority requests.

Occasionally, a reload server will be unable to reload the requested file. When
this happens, trishd will automatically requeue the request, and send it to another
reload server that may have access to other offline copies of the file. A pathological
case for optical disk juke-boxes that trishd must deal with is the situation where
two CD drives are available for use, one drive has volume 1A mounted and the
other drive attempts to mount volume 1B. Unfortunately, volume 1B is on the
flip-side of volume 1A. So even though volume 1B is not mounted, this request can

only be serviced when volume 1A is dismounted. Trishd handles this situation by
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requeuing the reload request when the reload process returns a “volume busy” error
message and only dispatching when the conflicting volume is unmounted.

A feature called “nondedicated devices” enables TrISH only to use a device when
it is needed. The nondedicated reload server is not started when trishd initializes
but rather remains in a dormant state until a reload request is to be dispatched
to it. The reload server is started and given the reload request. When no more
reload requests exist for the device and it has been idle for a short period of time
(configurable by the system administrator), the reload server is again shutdown and
placed in the dormant state waiting for another reload request. While the server
is in the dormant state, the device is unallocated and available for use by other,
non-TrISH, processes on the computer system. This feature is especially useful
when more than one device of a particular type exists and some of these devices
should, for most of the time, be available for non-TrISH system work, but should

also be used by TrISH when a large number of reload requests are received.

4.6 Enhancements to Standard Utilities
A few of the standard UNIX utilities that access and provide information about
files and filesystems have been enhanced to return information about migrated files.

The enhanced utilities are discussed in this section.

4.6.1 The 1s Command

There are situations where users will need to know information about migrated
files. For instance, a user may want to know how much of a file’s data resides in
on-disk space. The 1s command has been enhanced to return the fmigid value,
and the amount of on-disk space when the “~1” flag is specified.

The example below shows three migrated files. The first file’s data all resides in
on-disk space, the second has 1K of on-disk data, and the last has none. The type

Y

of these files is listed as “m,” meaning migrated, and their fmigid is listed along

with the on-disk space.

65 saaz> 1ls -1 big* test*
mrw-rw-r-- 1 bytheway 18186872 Jan 30 18:59 bigfilel [102-13582 18186872]
mrw-rw-r-- 1 bytheway 34615296 Jan 30 20:49 bigfile2 [102-13590 1024]
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mrw-rw-r-- 1 bytheway 4111128 Jan 28 01:57 testing [102-13581 0]

4.6.2 The find Command

A new -type m flag has been added to the find command to locate migrated
files. The -type £ flag only finds regular, nonmigrated files. When the -1s flag is
set, the output lists a file type of “m” for migrated files. The -1s flag to find, unlike

the 1s command, does not list the file’s fmigid or the amount of on-disk space.

4.6.3 The fsck Command

The fsck command was modified to ignore the high watermark value in the
filesystem super block. It was enhanced to know that the migrated file type (IFMIG)
is a valid type and that migrated files should be treated the same as regular files.
Since migrated files use the data block pointers in the inode the same way that

regular files do, only these simple changes were needed for the fsck program.

4.6.4 The df Command

A new flag “-m” was added to the df command. When this flag is specified, the
df command queries the database of the filesystem to get the amount of releasable
space in the filesystem. The amount of releasable space is added to the amount of
available space. This value is then subtracted from the amount of used space. By
specifying the -m flag, a user can see the true amount of available space in the file

system. Below is an example of df with and without the -m flag.

86 saaz> df /u
Filesystem kbytes used avail capacity Mounted on
/dev/sd0f 193870 126731 47752 73% /u

87 saaz> df -m /u
Filesystem kbytes used avail capacity Mounted on
/dev/sdOf 193870 23778 150705 147, /u

4.6.5 The du command
A new flag “-m” was added to the du command. When this flag is specified,
another column is printed containing the amount of space in the file/directory that

is not releasable. By using this flag the user can find out how much nonreleasable
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space is being used by files. Below is an example of du with and without the -m

flag.

99 saaz> du -s *

17788  bigfilel

1 bigfile2

23 trishlog

2028 trishlog-11-11-93
1688 trishlog-11-25
2408 trishlog-11-9-93
4020 trishlog-9-17-93

100 saaz> du -s -m *

17788 0 bigfilel

1 0 bigfile2

23 23 trishlog

2028 0 trishlog-11-11-93
1688 0 trishlog-11-25
2408 0 trishlog-11-9-93
4020 0 trishlog-9-17-93

4.6.6 The dump Command
The dump command was enhanced so that it would treat migrated files the same

way it treats regular files. No other changes were necessary to support migrated

files.

4.6.7 The restore Command

The restore command was enhanced so that it will correctly restore migrated
files. To restore correctly a migrated file, the fmigid field, the releasable flag
(IFMIGREL), and the modified flag (IFMIGMOD) must be set correctly. Additionally,
if part of the file was not on-disk when the dump tape was created, that part of
the file must be released since the dump tape does not contain valid data for that
part of the file.

The steps to restore a migrated files are as follows

1. If the on-disk space was less than the size of the file, then extend the file to

the correct length by seeking to the end of the file and writing a dummy byte
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of data (these data will be released later). If this is not done, the file’s length
would be incorrectly set to the length of only the on-disk data.

. Use the fmig migrate() system call to make the file into a migrated file. Use
the same fmigid that was used in the old file. With the fmigid in place, the

offline data are again associated with the file.

. If the releasable flag (IFMIGREL) was turned on in the old file, set it on in the

newly restored file using the fmig releasable() system call.

. If the on-disk space was less than the size of the file, then release the file’s

on-disk space using the fmig release() system call.

. If the modified data flag (IFMIGMOD) was set, cause the kernel to reset this flag

by reading and rewriting the first byte of the file.



CHAPTER 5

ANALYSIS OF TRISH

Many of the problems (described in Chapter 2) with the BUMP system are a
result of design decisions that limited the capabilities of the system. The TrISH
system was redesigned in a number of fundamental areas to address these problems.
As a result of the improved design, the TrISH system does not have many of
the limitations that the BUMP system suffered. Some of the original limitations
went away with no extra work. Interestingly, requirements for some of the solved
problems, like the quota system support, were not fed into the design phase. This
gives validity to the design of the TrISH system and gives some assurance that
it is well-integrated with and conforms to the fundamental design of the UNIX

operating system.

5.1 TrISH Design

As was mentioned in Chapter 3, the design decision to allow a file to have
both on-disk data, and offline data, had a number of system performance benefits.
Interestingly enough, the performance gains were not in the area first thought to
be most important. These performance gains will be discussed in section 5.2.

Redesigning the offline device access method routines was a formidable but
successful undertaking. The task of identifying and abstracting the minimum basic
functions was difficult. However, by using the TrISH access method routines, pro-
grams that access data on offline media are greatly simplified, and more importantly,
they are more generic. They no longer have to worry about mounting offline media,
recovering from media error, generating CRC check sums, and handling device
specific routines; the access method routines perform these tasks. Additionally,

since the abstraction boils down to easily understood and implemented pieces,
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writing new device access methods is also simplified. Unlike the BUMP device
access routines, which often required applications to do “special case” coding for
devices that did not quite fit the abstraction model, the TrISH device access routines
require no application level special case coding.

The decision to base the TrISH enabled filesystem on the standard UNIX filesys-
tem and its inodes simplified the design of the system greatly. The underlying
filesystem provides the directory structure, the data block allocation routines, the
online device access routines, and special functions like enforcement of quotas.
On the other hand, this decision also implies some limits on the implementation.
For instance, because TrISH is inode-based, the maximum number of files in the
filesystem is limited to the number of inodes that were allocated in the filesystem
when it was created. Another approach would be to create a “new” filesystem type
that is not inode-based. In such a system, a database would hold the information
that the inode currently holds. This approach would not be limited by the number
of inodes initially created in a filesystem; however, many other parts of the system
would be more difficult to implement, and the existing filesystem code could not

be leveraged to ease the implementation.

5.2 Performance Features

Given the number of changes between the BUMP system and the TrISH system,
it is hard to know which changes are contributing the most to the performance
improvements. However, some logical conclusions can be drawn.

On-disk data feature was initially designed to help prevent files from being
restored when a user searches through a directory for a particular file. However, in
practice when a file is read it is read from beginning to end, making the effectiveness
of leaving a small portion of the file in on-disk space dubious. Also, if all migrated
files kept the 8 K-bytes of on-disk space required (see section 3.2.3) to prevent false
reloads when being accessed with file or head commands, they could consume a
large amount of disk space, especially if there are a large number of migrated files.

For instance, if 20,000 migrated files retained 8 K-bytes of data, they would hold 160
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M-Bytes of data. This results in the conclusion that filesystem wide nonreleased
on-disk data are, most likely, not a good idea. On the other hand, if the few
files with a high probability of only having their first 8 K-bytes of data accessed
could be identified, this feature would be useful. In practice this is hard to do and
should probably be done by a user who knows what the future access patterns of
the file will be. There are also certain applications and data formats that could
take advantage of the on-disk data feature to allow quick access to rough data or
directory information with slower access to more detailed data. For instance image
files, account history files, mail logs, and backup files have potential for taking
advantage of on-disk data.

The real performance gains from the implementation of on-disk data come from
four areas. First, a file can be accessed while it is being restored from offline storage.
Second, a file’s offline data remain valid until the file is modified, thus preventing
unnecessary copies to offline storage. Third, the on-disk data are immediately
available to the requesting process without intervention from the reload servers.
Fourth, the free space management processes are intelligent about releasing space
and retaining on-disk staging area data. A few of these will be discussed below.

In the BUMP system, a migrated file’s data may reside in a “staging area.”
When a migrated file that has data in the staging area is accessed, a reload process
is created to actually move the data from the staging area to the file. This process is
faster than going to offline storage for the data, but it still involves creating a reload
process, checking the database, and moving the data to the file. The TrISH system
implements the same functionality with on-disk data. This has many benefits. Since
on-disk data are already in the file, it is not necessary to create a reload process.
This greatly improves the access latency for files with on-disk data. If the migration
daemon is unavailable, files with on-disk data can still be accessed as if they were
nonmigrated files. In the BUMP system, all migrated files are unaccessible when
the migration daemon is unavailable.

When free space is required in the filesystem, the TrISH system releases only
enough space to satisfy the immediate need. By doing this, many files keep their
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on-disk data. In contrast, the BUMP system releases all staging area data whenever
space is required. In most cases, more data are released than is necessary, and any
hope of accessing data from the staging area is gone.

In the BUMP system, whenever a file is restored from offline storage, a new
process is created. This reload process mounts the offline media, restores the file,
unmounts the offline media, and goes away. In the TrISH system, when a reload
server restores a file, it keeps the offline media in the device. When another request
for offline data on the same media is received, the media is already mounted and
ready to use. If the average time to mount an offline volume is about 6 seconds and
10 migrated files whose offline data reside on the same offline volume are restored,
the BUMP system would spend 60 seconds just mounting and unmounting the
media. The TrISH system would spend only 6 seconds, a significant improvement.

The database access methods in the BUMP system are extremely slow. For
instance, it could take up to 30 or 40 seconds to delete 10 migrated files. In the
TrISH system, with its intelligent database access methods, it takes only 1.3 seconds
to delete 10 files.

The BUMP system selects files for migration based solely on their badness value.
When files are assigned a badness value, their value is compared to a system
administrator-defined value. If the file’s value is greater, it is migrated. It is a
very difficult task for the system administrator to fine-tune this value so that just
enough, but not too much, free space is created. The TrISH system takes a different
approach. Rather than using the badness value to define when a file is migrated,
it is used to define what order files are migrated. The system administrator just
defines the amount of free space he would like in the filesystem. TrISH migrates files
until the free space target is reached. This greatly simplifies the task of defining
system parameters and also achieves the real goal of guaranteeing free space in the
filesystem.

The examples below show the benefit of intelligent reload servers and the TrISH
implementation of the staging area data through on-disk data. The file being
accessed is a 36 K-byte text file. The application is we, the UNIX word count utility.
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The csh built-in command time is used to track the amount of time required to
execute the command. The third column in the output is the elapsed time used by
the wc command.

The following is the output from the 1s -1 command, which shows that the file

has no on-disk data.

127 saaz> 1s -1 test.03
mrw-ru-r-- 1 bytheway 36568 Jun 8 01:25 test.03 [102-13595 0]

The file is accessed with the we command. The offline media must be mounted
by the reload server and the data reloaded into the filesystem. This takes 12 seconds

to complete.

128 saaz> time wc test.03
877 882 36568 test.03
0.1u 0.0s 0:12 1% 2+3k 2+1io Opf+0w

The output of the 1s -1 command shows that the file is still a migrated file and
that it has all on-disk data. A file in this same state in the BUMP system would

be migrated with its data in the staging area.

129 saaz> 1ls -1 test.03
mryv-rw-r-- 1 bytheway 36568 Jun 8 01:25 test.03 [102-13595 36568]

When the file is read, it is accessed in less than 1 second. The TrISH system
simply allows the file to be read as if it was not migrated. The BUMP system

would have had to create a reload server to move the data from the staging area to

the file.

130 saaz> time wc test.03
877 882 36568 test.03
0.0u 0.0s 0:00 50% 3+3k 10+0io Opf+0w

Using the trelease program, the file is released so it has no on-disk data. The
file is again accessed with the we command. At this point the reload process still
has the offline media mounted; it simply reloads the file. This access took only 1
second. The BUMP system would have taken at least 12 seconds to reload the file,

just like the first example above.
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131 saaz> trelease -keep 0 test.03
132 saaz> time wc test.03

677 882 36568 test.03
0.0u 0.0s 0:01 7% 3+3k 2+1lio Opf+0w

5.3 TrISH Simulation
The TrISH system has been running dependably for over 2 years on a test

machine. However, due to extenuating circumstances it was never deployed into
production use. As a result, usage and performance statistics are not available for
production work loads. To analyze the effectiveness of the TrISH system, I will
present simulated TrISH activities that were generated using the TrISH simulator.
It should be noted that all of the features discussed in this paper are actually
implemented in the TrISH system. Also, statistics presented in other parts of this
paper are from the running TrISH system. Only the numbers in this section are
simulated.

Using the simulator to assess the value of file migration has some values over
using a production system. With the simulator [ was able to change filesystem sizes
and TrISH parameters like the high, low, and target watermarks and add additional
trace values to the simulator as they were identified across multiple simulations.
These incremental changes, refinements, and “what if” runs would not have been
possible with activity logs from a production system.

The TrISH simulator works by creating a virtual filesystem that is smaller than
the real filesystem. It migrates and releases files to fit in the virtual filesystem
and then uses filesystem inode dump logs to recreate file activity in the virtual
filesystem. The simulator very closely resembles the actual activities of the TrISH
system. The results of simulating three different filesystems are presented in this

section.

5.3.1 Simulation of sunset:/home/grad

The /home/grad file system, on the file-server sunset, is a 7 Gigabyte filesystem,
with about 5 Gigabytes of used space. It holds the home directories of graduate
students in the Department of Computer Science at the University of Utah. To
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determine the size of the virtual disk, an analysis of the size and number of files in
the filesystem was done. Figure 5.1 shows the results.

This graph clearly shows that about 90% of the files consume only 20% of the
space. The other 80% of the space in consumed by about 10% of the files. If one
migrated all of the big files one could reduce the amount of used space by 80%.
However, I would like to migrate just the old big files, since they will most likely
not be accessed again soon. Figure 5.2 shows the relationship between the age,
number, and size of files in the /home/grad filesystem.

This shows that there is no real relationship between the age of a file and the
size of a file. That is, a large file is just as likely to be created today as it was a
few months ago. The TrISH system combines the age and size of the file to come
up with the badness value (discussed in section 3.3.4). Files with larger badness
values are migrated first. Figure 5.3 shows the relationship between badness value,
number, and size of files.

This graph is much steeper, showing that there are relatively few old large files.
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When it comes to migrating files, the fewer that have to be migrated the better.
This graph shows that by migrating 10% of the files, one could reduce the filesystem
to 30% of its original size. However, this is very close to the edge of the knee in the
Number of Files curve, meaning that if an unexpected need for space came along,
a large number of files would need to be migrated to satisfy the requirement. If the
knee of the graph is moved up slightly, then the filesystem can be safely reduce to
35 to 40% of its original size.

The real filesystem has 5 Gigabytes of used space; 40% of this is 2 Gigabytes.
Figure 5.4 shows what would have happened to the used space and the nonmigrated
space in the filesystem had TrISH been enabled on a 2 Gigabyte filesystem holding
these files.

The space between the Used Space curve and the Nonmigrated Space curve
consists of data that have been copied to offline storage and are in the on-disk
area of the migrated files. The ability of the TrISH system to keep free space in the
filesystem is clearly shown by the Used Space curve. When the used space reaches
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the high watermark, the free space creation process converts migrated on-disk space
to free space, bringing the amount of free space down to the low watermark. This
can be seen on days 4, 6, and 7. When there is no more on-disk space available
for free space creation, the outmigration process starts and creates more on-disk
migrated space.

To show the impact on the system and to the user, Figure 5.5 plots the total
number of files, the number of migrated files, the number of files that were accessed,
and the number of accessed files that were migrated and had to be restored or were
on-disk and did not need to be restored. A similar graph could be drawn for the
amount of space that was migrated, accessed, and restored, but the real impact
comes from the number of files, not their size.

The figure shows that, indeed, roughly 10% of the files were migrated. It also
shows that between 1 and 4% of the files are accessed on any given day. It shows
that on average, only about 50 files had to be restored, with a peak of 200 files on
day 7. Also the on-disk space saved a number of restores. On days 4, 5, and 6, it
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saved over 10 reloads each day, with day 4 saving 20 reloads. The BUMP system
would have had to restore these files from offline media.

By impacting only a very small number of file accesses, the TrISH system is able
to squeeze this 5 Gigabytes of used space into a 2 Gigabyte filesystem, saving at
least 3 Gigabytes of disk space and possibly more, since free space management
is handled by TrISH rather than overallocating the size of the filesystem. This

filesystem seems to be a good candidate for the TrISH system.

5.3.2 Simulation of geronimo:/u

Geronimo is the file server for the Utah Supercomputing Institute (USI). The /u
filesystem is the home directory (permanent) space for users of the USI computing
facilities. During the following analysis /u was an 8 Gigabyte filesystem and was
95% full. About 20 days into the statistics gathering process, the filesystem was
rebuilt into a 12 Gigabyte filesystem. This effectively rendered the remaining traces
unusable. However, some interesting facts can be observed during the first 20 days
of data gathering.

Each of the USI machines has a large filesystem set aside for big temporary
files; these files are not usually written into the /u filesystem. At various times
in the past, some users have had up to 6 Gigabytes of space in these temporary
filesystems. Rather than use the UNIX quota system to control space usage in the
/u filesystem, users are billed for their space at a small monthly rate, giving them
some incentive to keep there accounts clean of large dead files.

The same figures that were presented for the sunset :/home/grad filesystem will
be presented for this filesystem. Figure 5.6 shows that in spite of the incentives for
the users to keep their accounts free of large files, this filesystem has a proliferation
of very large files. In fact, 5% of the files occupy 90% of the space.

By examining the age distribution of the files, shown in Figure 5.7, one can
see that this is a young filesystem, at least compared to the sunset:/home/grad
filesystem. Very few files have not been accessed in the last year. Like the last
filesystem, there is no strong correlation between the size of a file and the age of a

file, although there are a number of large files that are about 30 days old.
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By again staying on the upper side of the knee on the Number of Files curve,
shown in Figure 5.8, it can be observed that 95% of the files, as mapped by the
badness value, occupy only between 15 and 20% of the used space. By taking 18%
of 8 Gigabytes, a virtual filesystem of 1.5 Gigabytes is calculated.

As shown in Figure 5.9, this filesystem is quite active. Free space creation
occurred every few days, and outmigration occurred regularly. In fact, to prevent
constant free space creation and outmigration processing, the low watermark was
lowered to 85% and the migrated target watermark was lowered to 55% of the
virtual filesystem size. With all this filesystem activity, one would expect that
there would also be a lot of migrated file reloads.

In fact there are surprisingly few reloads, as shown in Figure 5.10. The number
of reloads peaked at about 40, and, happily, the on-disk space prevents almost as
many reloads as there were reloads. As predicted, between 5 and 10% of the files
were migrated, and like the /home/grad filesystem, around 1 and 3% of the files

were accessed on any given day.
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This 8 Gigabyte filesystem was easily squashed to a 1.5 Gigabyte filesystem, an
80% savings in disk space usage. Very few files needed to be reloaded, and the
on-disk space saved between 50 and 100% of the potential reloads. This filesystem
also appears to be a good candidate for the TrISH system.

5.3.3 Simulation of fast:/usr/lsrc/avalanche

The /usr/lsrc/avalanche filesystem contains the source code for a software
project under development in the Computer Systems Laboratory in the Department
of Computer Science. It is a 1 Gigabyte filesystem and is about 75% full.

Once again, it appears to have roughly the same file size characteristics as the
other filesystems examined. This is shown in Figure 5.11.

Figure 5.12 shows that this is a very young filesystem. Whereas 55 to 65% of
the files in the other filesystems have not been accessed in 90 days, only 5% of the
files in this filesystem have not been accessed in the last 90 days.

The badness curve in Figure 5.13 shows that about 10% of the files could be
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migrated, reducing the size of the filesystem to about 35% of its original size. A
350 Megabyte filesystem will hold 35% of this 1 Gigabyte filesystem.

What appeared in this static analysis to be a “so-so” filesystem for migration
turned out to be a really bad choice. Figure 5.14 shows that free space creation
is occurring many times each day, and out-migration is happening on a frequent
basis.

The initial out-migration of files, shown in Figure 5.15, looks like what was
expected; about 10% of the files were migrated. Unfortunately, everything went
down hill from there. On days 4, 5, and 6, an ever increasing number of files had
to be migrated to create the enormous amount of free space required by the new
files being created in the filesystem. By day 6, 70% of the files were migrated. On
day 7, 1575 files were accessed, and a staggering 1040 of them had to be reloaded.
On other days, less than 200 files had to be reloaded, but only 400 to 800 files were
accessed on those days.

This is not a good candidate for the TrISH system. It is a young, very active
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Simulated access for fast:/usr/Isrc/avalanche
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filesystem with no large inactive files to migrate. Also since it started out quite
small (1 Gigabyte), the opportunity to save a lot of space did not exist.

This simulation also points out a weakness in the TrISH simulator. The filesys-
tem traces were run nightly. In an active filesystem like this one, a lot of files are
created one day and deleted the next. The simulator can only look for deleted files
after the entire daily trace file has been processed. Because of this, the simulator
will wrongly see that the filesystem is out of space, perform free space creation,
finish the trace file, and delete files that did not appear in the trace file. This effect
can be seen clearly on the Simulated Disk figure for fast:/usr/lsrc/avalanche
on day 7. TrISH worked very hard to create free space by migrating and releasing
files. After the deleted files were removed, the free space in the filesystem dropped
down to 63%. The TrISH simulator performs a worst case analysis, which for this

filesystem is pretty bad.
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5.3.4 Simulation Conclusions

One weakness of the simulator is that it only knows that a file was accessed
sometime during the day. It does not know how many times the file was accessed
nor what order they were accessed. Since a file’s data remain on-disk after they
are reloaded, the number of reloads to accesses reported by the simulator is an
absolute worst case. It assumes a file is accessed only once. If the true number
of file accesses was known, it is very likely that the number of reloads to total file
accesses would be a miniscule amount.

These simulations show that a hierarchical storage management system is a
viable option for the sunset:/home/grad and geronimo: /u filesystems. It reduced
the disk space requirements of these filesystems and only impacted a small number
of files. The fast:/usr/lsrc/avalanche filesystem would not benefit from an
HSM system, but since it is the source directory for an active development project,

one could have predicted this outcome.

5.4 Usability Features

From a user perspective the most important feature of the TrISH system is the
ability to actively manage migrated files. A user has the ability to force a file to
migrate, to release a file’s on-disk data, and to “batch” reload any number of files.
He or she also has the ability to prevent the normal automatic file migration process
from migrating a file. The user has ultimate control over files and can choose when,
where, and why they are migrated.

Users may also be interested in application programs that have the ability to
detect migrated files and the amount of on-disk data they hold and to watch for
data being restored into them. These applications can provide a more interactive
feel to migrated files and allow the user more control over when a file is restored
from offline data.

From a system administrator’s point of view, the ability to manage the TrISH
system is very good, especially compared to BUMP. TrISH has tools to analyze
filesystems to determine if they are a good match for being managed by TrISH.

The system administrator has the tools to start, stop, drain, and cancel reload
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servers. He can get kernel-level statistics to determine the impact TrISH has on
file access times. New file migration policies are easy to implement, thanks to the
modifiable badness value functions and free-space tuning parameters.

Before implementing TrISH on a system, the system administrator can gather
statistics on the types of files in the filesystems. If a filesystem looks promising, he
can run the TrISH simulator for a few weeks or months to see if the filesystem is
actually a good fit for file migration. These preanalysis tools are very important
when implementing the system. They help prevent user dissatisfaction by identi-
fying filesystems that are not appropriate for file migration. It is also a useful tool
for predicting good starting values for parameters and sizes. Example output from
the TrISH simulator is in section 5.3

The TrISH device manager provides a way to manage offline devices and share
them between TrISH processes and other processes, such as backups and individual
user requests. Through the use of the device manager, TrISH can automatically
activate reload servers to meet peak demands and yet return idle devices back to
system for use by others. This limits the impact of the TrISH system on the rest of
the system. The device manager is very stable and has proven to be very useful. It
has been used at the Utah Supercomputing Institute for the last 3 years to manage
tape devices for backup purposes.

The TrISH operator messaging system provides a convenient and robust way to
communicate with someone when human intervention is required. The X-window
system support has proven to be extremely useful and hardy. Even if the X-server
hangs or is rebooted, the operator messaging system recovers and is successful at
contacting an operator. The operator messaging system has also been used at the
Utah Supercomputing Institute for the last 3 years to coordinate the activities of

the operations staff.

5.5 What Did Not Work

There was one initial design goal that was dropped because it was technically

infeasible. Initially, I wanted to eliminate the need for the file migration identifier.
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Both BUMP and TrISH use this field to associate a migrated file’s offline data with
the file’s inode located in the filesystem. This field consumes most of the remaining
unused space in the on-disk area of the inode structure. I was hoping that since
the inode number is already unique and since the migration database can be stored
with the filesystem (eliminating duplicate inode entries between file systems), yet
another unique number was unnecessary. This might be the case if migrated files
are never restored from backup tapes, but in fact migrated files are restored, and
when they are, their inode number changes. If the offline data are referenced by the
inode number, the restored file will no longer have access to its offline data. Even
worse, the migration system might be confused and restore another file’s data into
the file when it is reloaded. Because of this, the file migration identifier field was
kept in the inode.

The informal analysis that I have done leads me to believe that once a file is
read, it is read from the beginning to the end. There are a few notable exceptions,
such as the file and head commands, but generally, when a file is read, it is read
from beginning to end. In the TrISH simulations I performed, retaining on-disk
data usually caused more problems than it solved. The bottom line conclusion is
that on-disk data should not be used across the board for all filesystems. Of course,

there are a few exceptions to this rule, as was discussed above in section 5.2.

5.6 Future Enhancements

Since every file migration request is passed on to the logging task, there is a
potential for performing some intelligent monitoring and processing of events. For
instance, it could keep a history of reload requests and automatically de-migrate
active migrated files. Doing so would prevent them from being released when space
was needed in the filesystem. It could reload all of the files in a directory, if the
directory was part of a program source tree. The assumption would be that, if a
compile accesses one file, it will most likely access most, if not all, of the files in the
same directory.

When a file is updated or deleted, the offline data becomes invalid. When a
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large number of files have been updated and deleted the offline media becomes full
of invalid data. A space reclamation process should be developed. It must be able
to handle near-line devices such as optical disk, as well as offline devices such as
8mm tape.

Since backups are performed nightly, the ability to use backup tapes for the
offline source would reduce the time spent copying data to offline storage. In general
this is a very difficult thing to manage. Since TrISH does not control the backup
system or its media, it is not reasonable for it to place any confidence in the offline
data or the ability to recover a migrated file using the backup media.

It would be beneficial for an NFS client to have the ability to get migrated file
information, such as the amount of on-disk data. The ability to control the actions
of the NFS server through process flags would also be useful. In order to provide
these capabilites, either the NFS protocol would need to be modified or another

ancillary server, similar to lockd, would need to be implemented.

5.7 Lines of Code in TrISH

The TrISH system as a whole ended up being much larger than I had anticipated,
totaling roughly 47,000 lines of code. Most of the code was in implementing
library routines (17,900 lines) and TrISH daemons and utilities (17,200 lines).
The operating system modifications required 8,400 lines of code, with most of the
code (8,000 lines) being used to implement the communication mechanism between
trishd and the UNIX kernel. The modified system utilities only required 420 lines.

Although TrISH is a large and complicated system, the bulk of the code as
well as the complexity has been implemented in user space daemons and programs
rather than the UNIX kernel. Because most of the code is in user space, the task

of adding features and solving program bugs is more readily accomplished.

5.8 Conclusions
I have shown that by using a hierarchical storage management system, inexpen-
sive offline devices can be effectively used to store large, inactive files, with minimal

impact on the general use of the system. By doing so, space is made available for



75

smaller more active files, ultimately saving money that would otherwise need to be
spent on an ever increasing amount of online disk space.

The TrISH hierarchical storage management system provides a well-integrated,
well-designed, and easily extendable system for managing the movement of data
between online and offline storage.

TrISH has improved on the foundation laid by its predecessor, the BUMP system,
in a number of ways. TrISH has improved performance through the implementation
of concurrent reload and access, the reuse of offline data, and the redesign of
filesystem procedures to eliminate delays to staging area data. It provides improved
reliability through the use of distributed data bases and redundant offline copies.
It has improved manageability by providing utilities to control the TrISH servers.
It is more usable because it allows user controlled migration, reload, and release.

In short, it is a robust and effective hierarchical storage management system.



CHAPTER 6

RELATED WORK

Hierarchical storage management (HSM) systems have recently become an area
of intense research and development. When this thesis was started, only a small
handful of HSM systems existed. Now there are a number of HSM systems, both
commercial and research.

In the April 1994 issue of RS/Magazine[10], there were 21 commercial HSM
vendors listed. Peripheral Strategies, a marketing research company, predicts that
by 1998, $120 million will be spent on HSM systems, compared to $3.5 million in
1993[10].

Government and industry are both supporting research on HSM and other
storage management systems, such as the “Robo-line” project [2], being conducted
at the University of California at Berkeley. Dr. David A. Patterson from Berkeley
said “My thesis is that a factor of 1000 increase in storage capacity available on
most Ethernets will have a much greater impact than a factor of 1000 increase in
processing speed for a gaggle of scientists”[2, p. 1]. Clearly, storage management
is, and will continue to be, an interesting area of research and development. In this
chapter, three of the HSM systems available at the time this thesis was started, are

reviewed and compared to TrISH.

6.1 RASH
The NASA Ames Research Center has developed a UNIX-based mass storage
system named “NAStore”—short for NAS Mass Storage Subsystem[4]. NAStore

includes a file migration system titled Rapid Access Storage Hierarchy (RASH).
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6.1.1 The Goals of RASH
RASH’s purpose, as stated by the authors, was to

“... transparently and optimally ... manage the use of the various types
of storage media in the Mass Storage System. This includes the movement
of files between levels of storage; the archiving of files from disk to higher
levels; the restoration ... of files ...; and the movement of volumes

between the higher levels of the hierarchy. RASH will act to maintain
a defined amount of free space on the file systems”[4, p. 16].

Other goals listed for RASH include[5]:
e Ensure that no single media error will result in data loss.

e Provide the ability to turn over to the user the offline media containing the

user’s data.

e The UNIX kernel modifications should be kept to a minimum and “made as
cleanly as possible.” However, if there is a conflict between performance and

“cleanliness,” performance wins.
e Use a commercial database system.
o Archive only regular files. No directories or special files are archived.

e Offline data must be kept on removable media in standard interchange format.

6.1.2 How RASH Accomplished These Goals

To accomplish these goals the RASH system provided a three-level storage
hierarchy. Level 0 is magnetic disk, Level 1 is tape cartridges in an auto-loader, and
Level 2 is tape cartridges on the shelf. The granularity of data movement between
levels of the hierarchy is a file, and a file can exist in only one stage of the hierarchy
at a time.

Data are moved between the level 0 (disk) and the level 1 (tape) hierarchies by
a set of nightly batch processes. One process identifies the files that can be moved
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from disk to tape. Another process orders the list, using a system administrator
defined formula, and begins moving the files from disk to tape (files at the top of
the list are moved first). It continues to move data to tape until the amount of free
space in the filesystem reaches a predetermined value, at which point the movement
of data to tape stops. If during the day a filesystem becomes full, the list is again
consulted and data are moved from disk to tape until the free space value is once
more achieved.

When a file is accessed that is not stored on disk, the UNIX kernel sends a
message to the RASH daemon process. The daemon forks a process which copies
the data from a higher level of storage (tape in an auto-loader, tape on the shelf)
to disk. As the data are copied to disk, they are immediately available to the
process that was accessing the file. The RASH paper says that if a file spanned
tape volumes, the data could be coped from each volume in parallel[5], but no

reference is made as to whether this feature was actually implemented.

6.1.3 RASH System Calls
A few system calls were added to the UNIX kernel to support the RASH daemon
and system utility programs such as ls, backup, and restore. The added system calls

are as fTollows:

rashopen() Open a file using a device and inode pair. (A device/inode pair is the
information sent from the kernel to the RASH daemon to identify a file that

needs to be copied to disk).

rashwrite() Write data into a file that is not completely resident on disk. This
system call is used to bypass the normal checks against writing past the disk

resident data.

rashclose() Close a file that was opened with rashopen(). Wakes up any process
waiting for this file and clears the RASH flags in the inode.

rashentl() Updates and queries the RASH fields in the inode.
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The rashopen, rashwrite and rashclose system calls are only used by the RASH

daemon.

6.1.4 RASH UNIX Kernel Modifications
In order to provide this storage hierarchy the UNIX kernel needed to be modified.

The routines that were modified include the following:
alloc() If free space drops below a minimum, inform the RASH daemon.

ialloc(), iread(), iupdate() Handle RASH flags in the inode.

iput() If the reference count on an archived file goes to zero (meaning the file has

been deleted), inform the RASH daemon.

core() Clear the RASH inode flags and inform the RASH daemon if the core file

has been archived.
gethead() Wait for archived files to be completely restored.

rdwr() Delay read if the data being accessed has not yet been restored. Clear the
RASH inode flags and inform the RASH daemon of writes to archived files.

copen() Inform the RASH daemon to start the reload process for archived files.

close() If an archived file was modified, delay execution until the restore process

has completed.

6.1.5 Similarities Between RASH and TrISH
Some of the goals of RASH are similar to the goals of TrISH. They are as follows:

e Run under the UNIX operating system.

e Provide transparent access to offline storage through the use of the existing

UNIX filesystem.

o Ensure data integrity.
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e Provide high performance.
o Keep UNIX kernel modifications to a minimum.

e Provide a way for the system to automatically create free space in a full

filesystem.

Because of these similarities the TrISH file migration system has many of the

features found in RASH. Most notable are the following:

o Allowing data to be available to the user process as soon as they are restored

to the file.
e Providing a storage hierarchy.

o Attempting to create free space when the filesystem is full.

6.1.6 Differences Between RASH and TrISH
In spite of these similarities, the goals of TrISH and RASH differ in the following

ways:

o TrISH is expected to run on any machine that runs 4.3BSD UNIX. This means
any type of offline device could be attached to the system. The TrISH system

was designed to accommodate this diverse offline storage pool.

o TrISH cannot assume a common commercial database system will exist on the

machine. It was designed so that it can use any database system.

o Where RASH was designed with the intent of providing many tera-bytes of
storage, TrISH is designed to provide a more convenient way of accessing offline
storage. As such it was designed in an attempt to keep the same interactive
feel of online storage. Although there is a slightly different emphasis, TrISH
should also be able to provide mass storage capabilities in the multi-Gigabyte

range.
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o A direct result of the goal to provide a more interactive offline storage system
is the added goal that the system must be customizable at the user-level. A
user should have the option of modifying the way the migration system handles

the reading and writing of migrated data.

o Another subtle point is that RASH seems to be designed for dealing with
relatively few very large files, whereas TrISH is designed for large numbers of
“small” files. This design will also provide the same level of service as RASH

for large files.

e TrISH is not overly concerned about the policies associated with file migration
and with offline storage management. These policies will be provided by the
system administrator. The TrISH system just provides a mechanism to enforce

the policies of the system administrator.

Because of these differences, the TrISH file migration system provides features

not found in RASH. Most notable are the following:

e An arbitrary amount of data may be behind in the filesystem when a file is
migrated to secondary storage. This will provide a more interactive feel to

migrated files.

o Reload servers run constantly, waiting to provide instantaneous restore service,

and saving the process startup time for more useful work.

e Database access has been abstracted out to access routines. New access
routines can be written to take advantage of any particular database a system

may have.

o Offline devices access has been abstracted. When a new offline storage device
is added to the system, only the well-defined interface routines need to be

written.
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o The routines that define policy, like the file migration ordering routine, are

well-defined and modifiable by the system administrator.

6.2 UniTree
UniTree is a commercially available mass storage system from the DISCOS
Division of General Atomics. It runs on many UNIX and UNIX-based machines
including Alliant, Amdahl, CDC Convex, Dec, Fugitsu, IBM and Sun][3].

6.2.1 The Virtual Disk System

The UniTree mass storage system provides what appears to be unlimited disk
space to the user. This virtual disk is actually implemented as a storage hierarchy
that can contain online disk, offline tape, optical disk, tape silos, or other storage
devices. Once the user stores data onto the virtual disk, the data move around the
storage hierarchy under control of the UniTree system according to site configurable
parameters. Data are managed by UniTree only when the data have been explicitly
moved to the UniTree virtual disk. UniTree defines the low-level storage hierarchy
as online disk space and the high-level storage hierarchy as offline tapes. (This may
seem reversed, but UniTree’s terminology will be used throughout this section.)

The virtual disk and its storage space can only be accessed through the NFS and
FTP network file access protocols. To access the virtual disk through NFS, a client
machine must mount the virtual disk into its own file tree using the NFS mount
command. Once this is done, users can access data stored on the UniTree virtual
disk the same as any other NFS-mounted disk. To access the virtual disk using the
FTP protocol, a user executes the FTP command to connect to the UniTree server.
He or she then uses the standard FTP commands to store, recall, list, and delete
files on the virtual disk.

The UNIX filesystem is not used to store data on UniTree-managed online disk;
instead UniTree uses its own storage access mechanisms. This was done to bypass
some of the limitations of the UNIX filesystem such as limits on file size, number of
files, and filesystem size. The UniTree virtual disk, however, when accessed through

NFS or FTP, appears to the user as though it were a regular UNIX file system. All
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of the normal UNIX filesystem semantics are supported through the NFS access
protocol.

When data are first stored on the virtual disk, they are physically stored in
online disk space. After a specified amount of time, the data are copied to higher
levels in the storage hierarchy. When free space in a given level of the hierarchy
drops below a low watermark, files are ordered using a site configurable function.
Files at the top of the list are purged from that level of the hierarchy until the free
space again reaches a high watermark. A file is not purged from one level of the
hierarchy until a copy exists in a higher level. To improve the speed at which free
space can be created, files are regularly copied to higher levels of the hierarchy.

When a file is accessed it must exist on first-level storage (disk). If the data do
not exist on first-level storage, they must be retrieved from a higher level of the
storage hierarchy. This is true for all file accesses whether they be through NF'S or
FTP.

Because multiple copies of migrated files can exist in the storage hierarchy
and these copies may exist in the same or across multiple levels of the hierarchy,
reliability is greatly enhanced. If one level of the storage hierarchy fails, another
level can be used to retrieve the data. System databases and directories are
shadowed on separate disk drives and backed up regularly, also improving the
reliability of the system.

Since access to data stored in the UniTree virtual disk can only happen through
network protocols (NFS and FTP), file access speed is limited by the speed of
the connecting network. However, since UniTree supports many different types of
networks, including 100 megabyte per second HIPPI and UltraNet, network speed
may or may not be the limiting factor at a given site. File access speed is also
limited by the rate at which data can be restored to level one storage. UniTree
recommends that files which are heavily accessed should be copied to unmanaged
client disk rather than being accessed directly from the UniTree virtual disk through
NFS.

A future enhancement to UniTree is the UniTree Client Disk Manager (UCDM).
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The UCDM product will manage client machine file systems and automatically
move data from the client disks to the UniTree virtual disk. When the user accesses
a file that has been moved to the virtual disk, UCDM will transparently restore the
file to the client disk from the UniTree virtual disk.

6.2.2 Similarities Between UniTree and TrISH

UniTree and TrISH have a number of similarities. Most notable are the following:

e They both run under the UNIX operating system.
o They provide transparent access to a storage hierarchy.
e They both manage free space for online devices.

o They provide NFS access to data in the storage hierarchy.

6.2.3 Differences Between UniTree and TrISH

In spite of the similarities, there is one significant fundamental difference between
UniTree and TrISH; UniTree only provides access to its virtual disk through NFS
and FTP, whereas TrISH is integrated into the UNIX filesystem. Some of the

implications of this are as follows:

e UniTree provides no automatic relief for out-of-space error conditions in the

standard UNIX filesystem.

o A user must explicitly move data to the UniTree virtual disk. As a result, it

cannot manage much of the inactive data in a UNIX filesystem.

o When a UniTree stored file is to be accessed, it is copied from offline storage to
UniTree’s online storage and (per UniTree’s recommendations) copied to the
local client disk where it will be accessed. During this process three different
storage devices are accessed, and the file is read or written five times. The
TrISH system, on the other hand, copies data directly from offline storage to

online storage where they are accessed. Since TrISH allows the data to be
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accessed as soon as they are restored and since it uses the standard UNIX
filesystem, the requesting process will very likely find the requested data in
the filesystem data cache. If data requests are satisfied from the cache, the

data are read or written only twice, a significant performance improvement.

e Kven the machine where the UniTree virtual disk resides must use the network

access mechanisms (NFS and FTP).

Another difference is that UniTree does not provide a way for the user to modify
its behavior, whereas a process running on a UNIX system with TrISH can set

various process flags to modify TrISH’s behavior.

6.3 DFHSM under MVS

The MVS operating system has a space management system named Data Fa-
cility Hierarchical Storage Manager (DFHSM). It provides a number of functions
for managing online and offline storage including free space management, data
migration through a hierarchy of storage levels, and data availability management.
(The relevant differences between the MVS operating system the UNIX operating

system are listed in subsection 6.3.2.)

6.3.1 DFHSM Storage Management Functions

DFHSM attempts to provide total online and offline storage management. As
such it is very complicated and provides a high-level of integration with other
storage management activities, such as backups and restores. Significant planning

and administration are required to get the most from DFHSM.

The DFHSM system provides the following functions to the MVS user[7]:

o I'ree space management for online storage. This is accomplished by releasing
unused space from the end of overallocated data sets (files) and deleting data

sets that meet criteria defined by the system administrator.

o Migration of eligible data sets. The migration can be from level 1 storage

(disk) to level 2 storage (tape) or from level 2 storage to level 1 storage. The
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migration of data from one level to another is automated by the system; there

is no user involvement.

o Restoration of data from level 2 storage to level 1 storage. The restoration
occurs through reference of the data set or through user command. The
restoration of data from level 2 storage to level 1 storage requires user in-

volvement.

e Data availability by managing disaster backup and recovery functions, au-
tomatic physical disk backup and restore functions, and automatic data set

backup and restore functions.

The DFHSM system also provides an interactive facility for users to request
processing for their data sets. It provides bad tape error recovery, data compression,
optimum reblocking of data sets during restore processing and internal control data
set reconstruction from journal and checkpoint files[7].

The space management tasks performed by DFHSM can be broken down into
the following categories|6]:

e Daily space management

e Space-saving functions

e Automatic recall

o Interval migration

e Command space migration.

The daily space management tasks are performed once a day with the goal of
creating enough free space on online storage to handle the day’s workload. The

tasks performed include the following:
e Delete temporary data sets.

o Release overallocated space in data sets.
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Delete any data set whose explicit expiration date has passed.

Reduce the number of data set fragments so that the data are stored contigu-
ously on the disk. This is accomplished by migrating then restoring the data

set.

Migrate data sets from disk to tape based on last reference date until the

amount of desired free space is achieved.

Most of the space saving functions that are performed by DFHSM are closely

tied to the way files are managed in MVS; they include the following:

Compaction of data written to level 1 and level 2 storage.

Small data set packing. This involves combining multiple level 0 data sets into
one level 1 or 2 data set. If the files are small, this saves space because the

size of storage allocation in MVS is about 64 kilobytes.

Partitioned data set compression. When members of a partitioned data set
are modified, the old space where the member used to be becomes unusable.

DFHSM makes this unusable space in partitioned data sets usable again.

Automatic blocking of data for maximum storage capacity. MVS data sets do
not have a fixed block size like the UNIX file system. The block size can be

manipulated to provide the most efficient use of disk space.

The automatic recall process restores a data set from level 1 or 2 storage to online

storage. When a file is referenced, the system catalog is searched. If the volume

the data are stored on is “MIGRAT,” DFHSM copies the data from offline storage

to disk and updates the catalog. The system then allows normal file processing to

continue.

The interval migration process deals with out-of-space conditions during system

execution. When a predefined minimum free space limit is exceeded, DFHSM

begins migrating data to level 1 and level 2 storage. When the minimum free space
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limit is again reached, migration stops.
Command space migration is the way a user can manually control the otherwise
automatic functions of DFHSM. For instance, using a DFHSM command, a user

can force the restoration of a data set from level 1 or level 2 storage.

6.3.2 Differences Between MVS and UNIX

There are a number of differences between the UNIX operating system, where
TrISH was designed to run, and the MVS operating system, where DFHSM was
designed to run.

Most of the interactive work in MVS is done within a transaction processing
monitor (TP monitor') which opens all of the files it will need as an initialization
step when it first starts. The TP monitor is started in the morning and runs all
day. As transactions are processed the files are already open, so data are just read
from or written to the file.

This is very different from UNIX where interactive programs open and close files
frequently. As a result very few files would need to be restored on demand under
MVS, whereas UNIX would require a large number of on demand restores.

In MVS, files are located by their name, volume label, and unit type. Because
this is a lot of information to keep track of, the system provides a central catalog
that stores this information. The catalog is indexed by file name, and it stores the
volume label and unit type of the media where the file is stored. When a program
wants to open a file, it specifies the file name. The operating system uses the catalog
to determine the volume and device type. The program does not know which disk
or tape the data are being retrieved from or even, in the case of sequential data
sets, whether it is being retrieved from disk or tape. When a file is moved between
one volume and another, the catalog is updated with the new volume name and
unit type. A program accessing the data need not know where a file is stored since

it uses the catalog to find it.

LCustomer Information Control System (CICS) is the most common TP monitor for MVS.
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In UNIX, files are named and located through the filesystem, which only supports
online devices. If data are stored offline, the user is responsible for keeping track of
the media and the devices that can read it. When data are moved from online to
offline storage, all programs that access the data need to be changed to access the
data from the offline storage.

Since MVS is a proprietary operating system that runs on proprietary hardware,
it can be changed without having to worry about unknown side effects. UNIX is
an open operating system that runs on many different kinds and types of hardware
and uses many different types of online and offline storage devices. Any features
added to UNIX must take into account the fact that they will be used on devices
that were not available on the development system.

Files in MVS are statically allocated by telling the system how big the file will
be when it is created. If the user misjudges the amount of storage needed to
store the data and overallocates storage, the extra space is unavailable for use in
other files. In UNIX, data space is given to files on an as-needed basis, eliminating
overallocation waste. A storage management system in UNIX does not need to deal
with this issue.

When a file is created in MVS, an explicit expiration date may be specified which
tells the system when the file can be automatically deleted. UNIX does not provide
this capability.

In an MVS system, files are generally very large, but they are relatively few in
number. In a UNIX system the opposite is true; there are generally large numbers
of small files. A migration system designed for UNIX must be able to deal with

large numbers of files.

6.3.3 Similarities Between DFHSM and TrISH
DFHSM and TrISH both provide the following features:

e Storage hierarchy containing both online and offline storage.

o I'ree space management where the system tries to keep the amount of free

space on online storage within a range defined by the system administrator.
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e Transparent access to the offline storage hierarchy.

6.3.4 Differences Between DFHSM and TrISH

There are many differences between DFHSM and TrISH. The reason for most
of these differences is the fact that DFHSM was developed for use under MVS,
whereas TrISH was developed for use under UNIX.

o TrISH does not provide any of the MVS specific storage management fea-
tures found in DFHSM, for instance, partitioned dataset compression, release
of overallocated space, deletion of expired files, small file packing, and the

reblocking of files.

e Because DFHSM is meant to be a total storage management system, it has
been integrated with backup and restore functions. TrISH is not meant to

replace the regular UNIX backup and restore processes.

o In DFHSM data sets are migrated from level 0 to level 1 or 2 based solely
on the length of time since last reference. In TrISH the algorithm to decide
when files are migrated can take into account any number of factors, since it

is written by the system administrator.

e DFHSM was designed to work well with a fixed set of offline storage devices,

whereas TrISH will be designed to work well with an open-ended set.
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TRISH CONFIGURATION FILE

The TrISH configuration file is where all configurable values are kept. The TrISH
configuration file is extendable so that it can meet the needs of the system. For ex-
ample, badness functions, defined by the system administrator, store configuration

parameters here.

A.1 The Configuration Access Routines

A set of library routines has been provided that allow easily retrieval of informa-
tion from the configuration file. These routines automatically validate parameter
types and parse the parameter list. With these routines the device access methods,
the database access routines, the badness functions, or any other part of the system
can easily retrieve configuration information from the TrISH configuration file.

Figure A.1 contains the code that retrieves the configuration parameters for the
Hewlett-Packard optical disk jukebox access method routines. As can be seen, to

add another configuration parameter is a trivial task.

A.2 Example TrISH Configuration File
To facilitate a discussion about the TrISH configuration file parameters and
options, a sample configuration file is investigated. The first group of items in the
TrISH configuration file is the systemwide parameters that are needed by trishd

to start everything up. They are as follows:

#
# General information.

type = sysparms



logger_path = /usr/local/trish/bin/trlogger
log_file = /usr/local/trish/trishlog
freer_path = /usr/local/trish/bin/trfreer
kern_interface = /dev/fmig0

run_dir = /usr/local/trish

stop_file /usr/local/trish/stop_file
ping_time 30 minutes

logger_path Specifies the location of the TrISH log filter program dis-
cussed in section 4.5.1.

log_file Defines the location of the systemwide log file.
freer_path The location of the free space creation program.

kern_interface The name of the kernel communication special file dis-
cussed in section 4.2.3.

run_dir The directory where the TrISH daemons and servers should run.
If one of the servers crashes, the core file will be written to this
directory.

stop_file The location of the global stop file discussed in section B.1.

ping_time The time interval at which trishd sends ping requests to the
reload servers to verify that they are still alive.

static int mnt_£fnd=0, acpath_fnd=0, drnum_fnd=0, dc_£fnd=0,
cmp_fnd=0, cmpp_fnd=0, ucmpp_£fnd=0;
static hpmoac_conf +tmp_conf;

sid_stnzparse_desc desc_list[NUM_DESC] = {
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{"mount_point", SPD_DSTRING, &mnt_fnd, &tmp_conf .dhc.mount_point},
{”changer_path”, SPD_SSTRING, &acpath_fnd,tmp_conf.dhc.changer_path, 807},
{"drive_number", SPD_INT, &drnum_fnd, &tmp_conf.dhc.drive_number},
{"data_check", SPD_TF, &dc_£fnd, &tmp_conf.data_check},
{"compress", SPD_TF, &cmp_fnd,  &tmp_conf.compressl},

{"compress_pgm'", SPD_DSTRING,&cmpp_fnd, &tmp_conf.compress_path},
{"uncompress_pgm",SPD_DSTRING, &ucmpp_£fnd, &tmp_conf.uncompress_path}
s

/* Parse the stanza into the appropriate variables */

num_unmatched = sid_stnzparse( desc_list, NUM_DESC, pairs,
*num_pairs, unmatched );

Figure A.1. Sample Code to Retrieve Configuration Parameters
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To enable file migration in a filesystem, the filesystem is simply listed in the

configuration file with all of its migration parameters. The parameters for filesystem

entries are as follows.

#

# Migrated Filesystem information.

type = filesystem

mount_point = /u

database_dir = /u/TrISH
filesystem_id = 102
high_watermark = 95}
low_watermark = 85
releasable_watermark = 50}
keep_bytes = 4096

levels = level_cmp, level_hpmo

/gradpub:

type = filesystem
mount_point = /gradpub
database_dir = /gradpub/TrISH
filesystem_id = 101
high_watermark = 95}
low_watermark = 85
releasable_watermark = 30}
keep_bytes = 4096

levels = level_hpmo

mount_point Tells TrISH where to find the filesystem in the filesystem

hierarchy.

database_dir Tells where to locate the database that contains the entries

for the filesystem.

filesystem_id This is a unique, organization-wide, filesystem identifier.

If a filesystem is moved from one machine to another, this identifier
will link the filesystem’s migrated files to their offline data.

high_watermark When the used space in the filesystem goes over this

percentage, trishd is sent a low space message

low_watermark The free space creation process stops creating free space

when it successfully brings the used space in the filesystem below this
percentage.



94

releasable_watermark The migration process stops creating migrated
files when the amount of used space less the amount of releasable
space in the filesystem falls below this percentage.

keep_bytes This tells the free space creation process how much of a file’s
space should be left on-disk after it is released.

levels This parameter defines the devices in the filesystem’s storage hier-
archy. When a file is first migrated, it is copied to one of the first-level
devices. Although filesystems can share offline devices, they can only
share the media in those devices if they also share the same database.

The filesystem entries point to storage levels. Each storage level is composed of
one or more devices. Each device in a level must have access to the same set of
offline volumes. The parameters for level entries are as follows:

#
# Storage level information.

level_hpmo:
type = level
devices = hpmo_1.1, hpmo_1.2
copies = 2

level_cmp:
type = level
devices = compl, comp2, comp3
copies =1

devices The name of the devices for this level.

copies The number of offline copies that should be made for this level
of the hierarchy. Any number of copies may be made at each level.
A file is not made releasable until this number of copies has been
successfully created.

In order for a device to be usable by the TrISH system, it must have a device
entry in the configuration file. For each device entry, trishd will create a reload
server. If a device is sharable, it can have multiple device entries. This will cause

trishd to create multiple reload servers that will access the same offline device.
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For example, the automatic compress access methods use a sharable directory in a

filesystem and can have multiple reload servers using the same device.

The device configuration entries contain the following information:

#

# Device information.

type = device

device_type = hpmoac

device_name = hpmo_box1
initial_state = STARTED | DEDICATED
path = /dev/sd2c

mount_point = /mnt2

changer_path = /dev/acO
drive_number = 2

data_check = TRUE

compress = TRUE

compress_pgm = /usr/ucb/compress
uncompress_pgm = /usr/ucb/uncompress

hpmo_1.2:

#

type = device

device_type = hpmoac

device_name = hpmo_box1

initial_state = STARTED | NON_DEDICATED | ALLOCATE
idle_time = 3min

data_check = TRUE

compress = TRUE

compress_pgm = /usr/ucb/compress

uncompress_pgm = /usr/ucb/uncompress

# The following three compress devices service the same filesystem.

#
compl:

type = device

device_type = compress

device_name = fmigcomp

initial_state = STARTED | DEDICATED | SHARED
compress_dir = /fmig/TrISH/CMPDIR

path = /dev/null



comp2:
type = device
device_type = compress
device_name = fmigcomp
initial_state = STARTED | NON_DEDICATED | SHARED
idle_time = bmin
compress_dir = /fmig/TrISH/CMPDIR
path = /dev/null

comp3:
type = device
device_type = compress
device_name = fmigcomp
initial_state = STARTED | NON_DEDICATED | SHARED
idle_time = bmin
compress_dir = /fmig/TrISH/CMPDIR
path = /dev/null

device_type This field contains the name of the device-type configura-
tion entry that will be discussed below. This is used primarily to link
the device access methods to the device.

device_ name When a file is copied to offline storage, the volume and
device name are included in the database entry. This parameter
specifies the name that should be stored in the database. This name
is not unique to this device but rather is shared between all devices
that have access to the same set of media. For instance, the Hewlett
Packard optical disk jukebox has two drives in it, and they both have
access to the same set of optical disk volumes. These two drives will
share the same device name.

initial state This parameter contains flags to indicate the initial state of
the device and reload server when trishd starts up. The valid flags
and their meaning are as follows.

STARTED When trishd starts up, it also starts up reload servers
for devices whose initial state is STARTED.

DRAINED The opposite of STARTED.
NON_DEDICATED Nondedicated devices are initially placed in a

dormant state. When trishd receives more reload requests than
it has reload servers, it automatically starts a dormant reload
server and starts sending it requests. When the server has been
inactive for a short amount of time (defined by the idle_time pa-
rameter discussed below), it is automatically shutdown by trishd
and again placed in the dormant state.
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DEDICATED Opposite of the NON_DEDICATED state. The reload
servers for DEDICATED devices will not be automatically shut-
down, rather they must be explicitly shutdown by the system
administrator.

SHARED Most offline devices can only be used by one processes
at a time. SHARED devices, however, can be used by multiple
processes at the same time.

ALLOCATE Devices marked ALLOCATE are allocated using the sim-
ple device management system supplied with TrISH. Allocated
device entries do not need to specify many parameters that non-
allocated devices must specify, for instance, the name of the device
special file.

idle_time This is the amount of time this device should be idle before
it is automatically shutdown and placed in a dormant state. This
parameter is required only if the device is NON_DEDICATED.

path This is the path name for the device special file. This parameter is
required for devices that are not dynamically allocated.

The other parameters in the example configuration file above are device-specific
parameters. Some of these parameters are only required if the device is not dynam-
ically allocated with the device manager since that information is returned by the
dynamic allocation routines. The Hewlett Packard optical disk jukebox parameters

are as fTollows.

mount_point Optical disks are formated with the regular UNIX filesys-
tem and must be mounted in the directory tree to be accessed. The
mount_point parameter specifies the location to mount this device.

This parameter is required only for nonallocated devices.

changer_path This parameter designates the path of the robotic control
mechanism inside the jukebox. This is required for nonallocated

devices.

drive_number The drive number, along with the changer _path, is used
to move optical disks between the storage slots and the drive. This

is only required for nonallocated devices.
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data_check If set to TRUE, the access methods generate CRC codes to
verify the validity of the offline data.

compress If set to TRUE, the access methods automatically compress the

data as it is being written to the optical disk.

compress_pgm This is the path name of the compress program. This is

required only for devices that are doing compression.

uncompress_pgm This is the path name of the uncompress program.

This is required only for devices that are doing compression.

Devices of the same type are accessed using the same set of access method
routines. The parameters that configure the behavior of the access method routines
are defined in the device_type entries. In the example below, the compress device
type has special parameters similar to the ones discussed above. The device-type

parameters are as follows.

#

# Device type information.

# ________________________

#

#

hpmoac:
type = device_type
media_type = mo_disks
access_method = hpmoac
reloader = /usr/local/trish/bin/treloader
block_size = 8K
granual_size = 5Meg
capacity = 768Meg
mount_time = 7sec
data_rate = 1Meg
ir_gap = 0
cost = 100

compress:

type = device_type

media_type = NONE

access_method = compress
compress_pgm = /usr/ucb/compress
uncompress_pgm = /usr/ucb/uncompress
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reloader = /usr/local/trish/bin/treloader
block_size = 8K

granual_size = 2Meg

mount_time = 0O

data_rate = 256Mb

ir_gap = 0

cost = 500

capacity = 0

media_type Defines the type of media used in the device. This links the
parameters for the media to the device type. The media parameters
are overridden by the device type parameters.

access_method Defines the access method routines that are used to
access this type of device.

reloader Specifies the path of the reload server program for this device.
Currently there is only one reload program which handles all devices.
However, if a special reload server was needed for a particular device,
it would be specified here.

block_size The block size used to read () and write() data blocks to the
device. Defined to optimize throughput to the device and optimize
the utilization of the media.

granual_size Defines the size of granules for this device. Defined to
optimize the trade-off between media space utilization, and error
recovery and volume handling.

capacity Defines the capacity of the device. When a volume runs out-
of-space another volume is used instead.

mount_time Designates the average amount of time necessary to mount
a volume. This parameter is currently ignored, but could be used to
help trishd chose the faster of two reload options.

data_rate Designates the average data rate for the device. This param-
eter is not currently being used, but was intended to be used similar
to mount_time.

ir_gap The amount of data lost between separate files on the device.

cost Used to categorize the cost of the storage space. Currently not used,

but is meant to help determine which files should be moved through
the storage hierarchy.

The media type configuration entries are used to define general parameters for
each media type. This information is overridden by the parameters contained in

the device type parameters described above.
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#

# Media type information.

# _______________________

#

mo_disks:
type = media_type
block_size = 1024
granual_size = 512Meg
capacity = 567K

NONE:

type = media_type
block_size = 0
granual_size = 0
capacity = 0

Using the TrISH control program (trctl), the system administrator and system
operators manages the activities of trishd, the reload servers and reload requests.
The user configuration parameters designate who the system administrators and

operators are and the authority level they have been granted.

#
# User information.
# _________________
#
root
type = user
user_name = root
authority = superuser
bytheway:
type = user
user_name = bytheway
authority = superuser
lepreau:
type = user
user_name = lepreau
authority = superuser
mike:

type = user
user_name = mike
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authority = system

stoller:
type = user
user_name = stoller
authority = operator

user_name The userid of the user.

authority One of three levels of authority to be granted to the user. The
levels of authority are:

operator Users with operator authority can start and stop reload
servers and cancel outstanding reload requests.

system Users with system authority can do anything operators can
do as well as shutdown the TrISH migration system.

superuser Superuser authority is currently the same as system se-
curity, but this level was defined for future use.
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THE OUTMIGRATION PROCESSES

As was introduced in section 4.1, the steps necessary to migrate a file are identify
the files to migrate, migrate them, copy their data to offline storage, mark them as
releasable, and release their space when needed. In this appendix, these processes

will be examined more closely.

B.1 The tridentify Process
The first step to migrating files is to identify which files are eligible to be mi-
grated. The tridentify program does this in the TrISH system. The tridentify
program saves a copy of the out-migration database, deletes the database, and
recreates a new, empty one. It then executes the following commands to load the

new database.

find $FS -xdev -type f -print | trstop | troutdbload $FS

The find command locates and prints all nonmigrated files in the filesystem.
This list of files is filtered by the trstop program, and the final list of files is assigned
badness values and loaded into the out-migration database by the troutdbload
program.

The trstop program is used to stop files from being migrated that should not
be migrated. For instance a user’s dot files (.cshrc, .login, .forward) the
programs needed by the TrISH system to function, and the TrISH database files
should not be migrated. These file names are placed in the systemwide “stop file.”

Below is an example of a systemwide stop file.

#
# Don’t migrate "dot" files (.login, .logout, .plan, etc.)
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~.*/\.trish_stop$
~.*/\.[a-zA-Z0-9_\.-]1+$

# Don’t migrate the files TrISH needs to operate.

~/usr/ucb/compress$

~/usr/ucb/uncompress$

“/usr/local/trish/.*$

#

# Don’t migrate the TrISH migration database files.

~.x/TrISH/.*$
~.x/trishdb.*$
.*/granual . *$
k/volume. *$
.*/inprocess.*$
~.x/nextfid.*$

.k /currvol . *$
“.x/outmigdb.*$
.*/migratable.*$
.*/releasable.*$

In addition to the global stop file, users can have their own personal stop file
in their home directory, named .trish stop. The file names contained in it are
prevented from being migrated. This feature has obvious advantages for a person
who uses a file frequently enough that he does not want it to be migrated but

infrequently enough that the migration system would migrate it anyway.

B.2 The trmigrate Process

Converting regular files into migrated files is the next step in the migration
process. When trmigrate selects a file to be migrated, it is added to the inprocess
database and made into a nonreleasable migrated file using the fmig migrate()
system call. (An “inprocess” file is a migrated file that has not yet been copied to
offline storage.)

The trmigrate program calculates a “target” value by multiplying the total
blocks in the filesystem by the releasable watermark value and subtracting the free

space, the space occupied by releasable files, and the space occupied by inprocess
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migrated files. If the target value has not been reached yet, it proceeds to migrate
the file with the largest badness value. The size of the file is subtracted from the
target value. This process continues until the target is reached or until no more

migratable files exist.

B.3 The trcopyout Process

The migrated files are copied to offline storage by the trcopyout program. There
may be multiple levels in the storage hierarchy, but at this point in the migration
process, the files are only copied to the first-level of the hierarchy. However, the
trcopyout program can be configured to make multiple copies of the file on the
first-level device.

The trcopyout process finds an available first-level storage device. Even though
this device will be the only one used by trcopyout, if the device supports removable
media, like tape drives, multiple volumes may be used.

The first file from the in-process database is selected, and a granual is allocated
using the device’s granual allocation routine. The target volume is mounted if the
device has removable media, and the device and file are opened. Data are copied
from the file to the granual, until the granual is full. If another granual is needed, it
is allocated and its volume is mounted. This continues until the file has been totally
copied to offline storage. The copy counter in the in-process record is incremented.

When no more copies of the file need to be made, the record is deleted from the
in-process database and the file is marked releasable using the fmig releasable()
system call. Furthermore, files that were forced to migrate with the trforce
command are released using the fmig release() system call. An entry is made in
the releasable database so that the free space creation process will know the file’s
space is eligible to be released.

The next file is selected and the process continues until the files are all copied

to offline storage.
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FREE SPACE CREATION

When space in the filesystem is low, the kernel sends a message to the migration
daemon notifying it of the low space condition. The migration daemon starts the
trfreer process, which is responsible for alleviating the space problems.

One activity that the tridentify process performs that was not discussed in
section B.1 is the loading of the releasable database. This database contains the
names and badness values of migrated files with releasable on-disk space.

The trfreer process first calculates a target free-space amount by multiplying
the size of the filesystem with the filesystem’s low watermark and then subtracting
this value from the amount of used space in the filesystem.

The file with the highest badness value is selected from the releasable database
and its space is released with the fmig release() system call. The amount of
space released is subtracted from the target, and the process continues until the
target has been met or until there are no more releasable files.

After the first file is released, the trfreer process sends a message to the
migration daemon informing it that it was able to create some space. The migration
daemon, in turn, sends a message to the kernel that free-space was created in the
filesystem and that any processes which are blocked waiting for space should now
be allowed to run.

A user can force a file’s space to be released by using the trelease command.
This command verifies that the user has permissions on the file and then calls the
fmig release() system call. If the user owns the file or has read access to it, then

he has sufficient authority to release it.
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THE TRISH RELOADER SERVERS

The TrISH reload servers are responsible for listening for and responding to
control messages from trishd. These messages include reload requests, cancel
reload requests, status update requests, shutdown requests, and regular “pings” to
make sure that the reload server is still alive. The reload server must be able to
accept requests at any time, even when it is busy responding to a previous request.
For instance, a cancel request could arrive while the reloader is busy restoring a
file. The list of requests that a reloader must deal with are in Table D.1.

When a reload request is received, the server can either accept or reject it. A
request is rejected if the server is currently in the process of reloading a file or if
the necessary volume is busy. When a request is rejected, trishd will requeue the
request and may, at a later time, send it back to this reloader again. Accepted
reload requests are sometimes failed by the reloader because an unrecoverable error
has occurred. Failed reload requests are also requeued by trishd, except that the
request will not be sent to this server again. A reload request will fail only when
all of the granuals containing data for the file are unaccessable and the file cannot

be fully restored.

Table D.1. Requests for TrISH Reload Servers

Request Action To Perform
RELOAD_IPC_RELOAD Reload a file from my device
RELOAD_IPC_CANCEL Cancel current reload request
RELOAD_IPC_SHUTDOWN | Shutdown after current reload finishes
RELOAD_IPC_PING Return PONG to verify I'm alive
RELOAD_IPC _STATUS Send status information to trishd
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The cancel request will cause the reload server to abort the current reload
request. The ping request will cause the reload server to return a “pong” so that
trishd will know that this server is still alive.

The status request will cause the server to return updated status information.
Status information is sent to trishd when something interesting changes. For
instance, when the reloader mounts a new offline volume, a status update is sent.

Graceful recovery from device, database, and media errors is a key feature of the
TrISH reload servers. If an error occurs while reading a granual, the reload server
will search the database for another granual on an accessible volume. The reload is
restarted from where the error occurred using a new granual. If all offline granuals
are unreadable or if the device fails, the server notifies trishd that the request
failed. The request can then be sent to another reload server. While restoring a
file, the reload server may get an out-of-space error condition. When this occurs,
the reload server waits for about 10 seconds and tries to write the data again. After

about 12 tries, the reload server gives up and returns a failed message to trishd.
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TRISH OPERATING SYSTEM CALLS

In order to set migration system parameters, set process flags, and create,
manage, and reload migrated files, a few system calls were added to the operating

sytem. They are as follows.

fmig_stat() Returns, in addition to the file status information returned by the
stat () system call, information about migrated files. Migrated files look like
regular files to unmodified programs. When a program needs to know if a file

is migrated, it can use this system call instead of the stat () system call.

fmig lstat() Returns, in addition to the file status information returned by the

l1stat () system call, information about migrated files.

fmig fstat() Returns, in addition to the file status information returned by the

l1stat () system call, information about migrated files.

fmig migrate() Converts a regular file into a migrated file by changing its type
to IFMIG, setting the on-disk space field to the size of the file, and placing the

fmigid value in the inode.

fmig_demigrate() Converts a migrated file into a regular file by changing its type
to IFREG and clearing the on-disk and fmigid fields.

fmig releasable() Marks a file as releasable, meaning that its on-disk space can
be released. This is only done after a file’s data have been successfully copied

to offline storage.

fmig release() Releases a migrated file’s on-disk data. This can only be done if



109

the file is releaseable and has no modified data. If specified, a small amount

of data at the begining of the file will be left “on-disk.”

fmig frelease() Releases a migrated file’s on-disk data. This system call is similar
to the fmig release() system call, except the argument is a file handle rather

than a file name.

fmig open() Opens a migrated file for output. When a reload request is sent from
the kernel to the migration daemon, the file’s device and inode numbers are
sent along in the request. The reload process uses those values, along with
this system call, to open the file. The regular open() system call cannot be
used because the migration daemon does not know the name of the file that it

should restore. It only knows the fmigid, the device, and the inode number.

fmig write() Writes data to a migrated file. The standard write() system call
does not allow data to be written past the current on-disk data. This however,
is exactly what the reload process must do to restore a file’s data. This system
call is used by the reload process to write to migrated files. When data are

written to the file the processes that are blocked waiting for data are woken

up.

fmig_Iseek() Repositions the offset of the file descriptor to a specfied location in
the file. This system call is just like 1seek(), except that it performs the
added step of setting i_ondisk to the “seeked to” position if it is greater than
the current value of i_ondisk. This function is used by the reload process to
restore “holes” in files when they are reloaded. Without this call, files that
originally had holes in them would instead have data blocks where the holes

used to be.

fmig_close() Closes a migrated file. This system call is also used by the reload
process. It is like the regular close() system call, except that it wakes up
processes that are blocked waiting for this file to be restored. It also calls

fmig demigrate() for files that are fully restored and have modified data in
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them.
fmig _sethwm() Sets the high watermark for a filesystem.
fmig gethwm() Retrieves the value of the high watermark for a filesystem.
fmig_setflag() Sets the process flags discussed in section 4.2.2

fmig _getflag() Gets the current value of the process flags discussed in section 4.2.2

In order to provide access to more information about migrated files, the following

standard operating system calls were enhanced.

select() The select() system call is used to determine if a file is ready to be
read from or written to. Select usually only supports character special files,
like terminals, printers, and sockets, but it has been enhanced to support
migrated files. When a migrated file has data ready to be read, the file is

“selected.”

ioctl() When used on regular files, the ioct1() system call with the FIONREAD
command returns the number of bytes left to be read from the file. A new
command FIONDREAD will return the number of on-disk bytes available to be
read from the file. By using this call, a program can determine how much data

it can request without being blocked.



APPENDIX F

KERNEL TO DAEMON MESSAGES

The migration messages are of fixed size and are easily decoded using the
fmig msg structure. The items included in the structure are listed in Figure F.1.
A few of these fields are worth discussing.

The ms_op field defines the requested operation. The list of possible operations
and a short description of their meaning is shown in Table F.1. The last two entries,
FMIG_D2K DONE and FMIG D2K _FAIL, are for messages sent from the migration dae-
mon to the kernel; the others are for messages sent from the kernel to the migration
daemon.

Most messages are about migrated files. Migrated files are identified by their
fmigid. The fmigidis the constant value that links a migrated file to its data. This
value is sent to the migration daemon in the ms_fmigid field. Using the fmigid,

the migration system can identify a file’s database entries and find its data in offline

struct fmig_msg {

int ms_magic;  /* FMIG_MSG_MAGIC */
u_long ms_id; /* ID of this message */
int ms_op; /* operation */

uid_t ms_uid; /* UID of process */

int ms_pid; /* PID of process */

int ms_result; /#* may contain errno */
long ms_datal; /* misc data slot 1 */
long ms_data2; /* misc data slot 2 */
fmigid_t ms_fmigid; /* file migration id */

struct fmig_devino ms_devino; /* pass to fmig_open() */

Figure F.1. Contents of fmig msg
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Table F.1. Valid Operations for fmig msg

Operation Code Description

FMIG K2D RELOAD BLOCK Blocking reload of file

FMIG_K2D RELOAD_ASYNC Asynchronous reload of file

FMIG K2D _CANCEL RELOAD | Cancel reload of file

FMIG_K2D_UNLINK File was unlinked (deleted)

FMIG K2D_TRUNC File was truncated

FMIG_K2D DEMIGRATED File was de-migrated by the kernel

FMIG K2D OPENING File is being opened

FMIG K2D CLOSING File is being closed

FMIG_K2D_CHOWN File has a new UID or GID

FMIG_K2D_LOWSPACE Low space condition in filesystem

FMIG_K2D NOSPACE No space condition in filesystem

FMIG K2D_CANCEL NOSPACE | Cancel no space condition

FMIG_D2K_DONE Request to migration daemon successful

FMIGD2K FAIL Request to migration daemon failed
storage.

When the time comes to send a reload request to the migration daemon, the
name of the file is no longer known. To identify the file in such a way that it can
be opened, the ms_devino structure is sent to the daemon with the reload request.
Using this structure and the new system call fmig open() discussed in Appendix
E, the restore process can open the migrated file and reload its data.

The optional fields ms_datal and ms_data2 are only used by a few of the oper-
ations. For instance, the FMIG_K2D_CHOWN operation places the new userid (UID)
and groupid (GID) into these fields.



APPENDIX G

DEVICE ACCESS METHOD ROUTINES

The TrISH access routines and a short description of their function are listed
in Table G.1. These routines can be grouped into the following categories: config-
uration functions, initialization and cleanup functions, volume handling functions,
granule handling functions, and data block functions. Some functions, if they are
not needed or are not applicable for the device, do not need to be defined. For
instance, the compress method does not mount or unmount any media and does
not have those functions defined.

The configuration functions retrieve configuration parameters for the device from
the TrISH configuration file. For instance, the configuration function for the optical
disk jukebox retrieves the path of the robotic changer and the mount point for the
device. The configuration functions are optional.

The optional initialization and cleanup functions place the device in a known
state and initialize access method block values. They are also responsible for retriev-
ing dynamic configuration information for devices that are dynamically allocated.

The volume-handling functions are used to mount and unmount offline media.
Some devices do not have removable media, so for these devices, the media handling
access routines would not be defined.

The granule functions are used to open, close, allocate, and delete granules.
These functions are required for all access methods. The open routine is respon-
sible for positioning the media, starting any helper programs (like compress or
uncompress), and opening the device using the open() system call. The close
routine ends any helper programs and calls close() on the device and any other
necessary function to prepare the device for the next open, mount, or unmount

request. The allocate function is responsible for allocating space on a volume for



Table G.1. Access Method Routines

Access Method

Routine

Description

dev_config
devt_config

Configure functions
Read special config info for a specific device
Read special config info for the device type

init
dynam_init

Initialize /Cleanup functions
Initialize device, state data structures and such
Further initialization of dynamically allocated devices

cleanup Return device to know state, free state data structures
Volume functions
mount Mount a specific volume
unmount Un-mount currently mounted volume
Granule functions
open Open a granule for reading or writing
close Close a granule
allocate Allocate space on a volume for a granule
delete Delete a granule from a volume
Block functions
read Read a block from an open granule
write Write a block to an open granule
seek Seek to a specific block in an open granule
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the granule. It will most likely need to consult and update its database for the
current or next available volume. The delete function is responsible for freeing the
space allocated by invalid granules. For devices like magnetic tape, another process
may be required to consolidate good data onto one volume and free the volume to
be used again.

The block functions are used to read, write, and seek the actual data on the
device. The unit of transfer, the block size, is determined by the access routines
and is defined to optimize the data transfer rate of the device. The read and write
routines can implement optional processing of the data at the block level. For
instance, the optical disk access methods implement CRC checking at the block
level. At the simplest level, the read and write routines just call the operating

system read () and write() system calls.



APPENDIX H

DATABASE ACCESS ROUTINES

There are database access functions for initializing and closing the database and
adding, deleting, updating, querying, and sorting various database entries. These
include granule entries, volume entries, releasable file entries, migratable file entries,
and forced migration file entries. A list of the database access functions can be found

in Table H.1.



Table H.1. Database Access Routines

Database Access Routine

Description

dbinit ()

dbcleanup()

dbinit _outdb()
dbcleanup_outdb()
add_granual ()

delete granual ()
obsolete granual ()
update_granual use()
update_granual flags()
granuals for fmigid()
granuals for fmigid_on_dev()
obsolete granual 1list()
next_obsolete granual ()
add_inprocess()
delete_inprocess()
update_inprocess()
next_inprocess()
total_inprocess bytes()
add migratable()

readel migratable()
add_releasable()

update releasable()
first releasable()

total releasable bytes()
add _forced()

readel forced()
get_current_volume()

get next_available volume()
set_current_volume ()
update_volume use()
update volume freespace()
lock volume db_ent ()
unlock volume db_ent ()
unlock all volumes()
next fmigid()
find_path for fmigid()

Open the TrISH database

Close the TrISH database

Open the outmigration database
Close the outmigration database

Add a granule entry

Delete a granule entry

Obsolete a granule

Update usage statistics for granule
Update granule flags

Find all granules for a file

Find granules for a file on a device
Obsolete a list of granules

Find the next obsolete granule

Add an inprocess entry

Delete an inprocess entry

Update an inprocess entry

Find next inprocess entry

Calculate total of all inprocess entries
Add a migratable entry

Find and delete next migratable entry
Add a releasable entry

Update releasable entry

Find highest valued releasable entry
Calculate total of all releasable entries
Add a file to forced migration list
Find and delete next forced entry
Get current target volume

Get next free volume

Set the current target volume
Update volume use statistics

Update volume space statistics

Mark a volume as active

Mark a volume as inactive

Mark all volumes as inactive

Get next available fmigid value

Find file name associated with fmigid
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APPENDIX I

MISCELLANEOUS TRISH PROGRAMS

A few additional commands and utilities have been provided by TrISH to enable
the end user to set process flags and to help the system administrator manage the

TrISH system. They are discussed in this section.

I.1 Setting File Migration Process Flags
As discussed in section 4.2.2, a process can customize the behavior of the file
migration system by setting a number of process flags. The trflags command is

used to set these process flags.

trflags {set|get} {retrylnotransp|cancel} pid [on]|off]

I[.2 Filesystem Analysis
To help the system administrator determine if a filesystem is a good candidate
for enabling file migration, the trfsanal program has been provided. This program
gathers information about a filesystem and outputs a file that can be graphed. An
example output file is shown in Figure 1.1 and a graph of the data is shown in

Figure 1.2.

I.3 Retrieving Migration System Statistics
The file migration system routines in the kernel maintain a number of counters
so that the activity of both migrated and nonmigrated files can be tracked. These
routines count the number of open(), close(), and read requests, as well as a
number of other requests, against both migrated and nonmigrated files. These

routines also keep track of the delays incurred by processes that access migrated

files.



#
# File system statistics
# Total number of directories scanned:
# Total number of files scanned:
# Total Kilobytes in files scanned: 2
#
# Average days since last access:
# Average days since last modification: 1
# Average days not accessed since modified: 1
#
# Files that are active:
# Files that are actively modified:
# Files that have not been used since created:
#
#filename size.dat
#
#File Size
#
# Number % of Cumm % Space
# Size (K) of files files of files in K
# _______________________________________
0 35014 18 18 0
1 31649 16 34 31649
2 22379 11 46 44758
4 28764 14 61 98438
8 26605 13 75 165504
16 20968 10 85 248024
32 14321 7 93 330084
64 7490 3 97 333247
128 2971 1 98 260403
256 1014 0 99 177039
512 652 0 99 260608
1024 263 0 99 182177
2048 93 0 99 136861
4096 54 0 99 155378
8192 52 0 99 267003
16384 13 0 99 136195
32768 3 0 99 74603
65536 1 0 100 48132
131072 0 0 100 0
262144 0 0 100 0
524288 0 0 100 0
1048576 0 0 100 0
2097152 0 0 100 0
2147483647 0 0 100 0

13049
192306
950103K

523 days
532 days
008 days

869 =

134 =
6896 =

OC O O O OO, NP OO O®OWEOEFL PO WL~ O

Figure I.1. Filesystem Analysis Graph

0%
0%
3%

Cumm %
of Space

100
100
100
100
100
100
100

118



Percent

Percentages by Size

100% B_.VE"'B'”E‘”’B”’B'”B”'"E‘”vag‘;'g Pe—b—Dbe—B<

> Number of Files; -—

Lo i 3 x” Space in Files: -+~

. Cummulative Number of Files; -5--

o Cummulative Space in Files, -
[0 I S — O ,,,,,,,,,,,,, (S [

gl P X
x
60%- B T
40% N O C =
20% rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
I
TN .
0% I T | ¥ ¢ R
2K 16K 128K 1M 8M 64M 512M

Size of File in Kilobytes

Figure 1.2. Filesystem Analysis Graph

119



120

The trkstat command retrieves and displays the file migration kernel statistics.

Below is an example of output from the trkstat command.

40 saaz> trkstat
————— Regular Stats ----- 1995-03-26 11:01:18.09
open = 254676
close = 254675
read = 1028941
read_odrl = O
read_odnrl = O
read_blk = 0O
write = 664881
write_odrl = 0O
write_odnrl = O
write_blk = 0O
trunc = 1552
unlink = 535
chown = 4
demigrated = 0
select = 0O
lowspace = 0
nospace = 0
getattr = 978840
iinactive = 0

exec = 18

————— Migrated Stats ----- 1995-03-26 11:01:18.12
open = 6

close = 272

read = 41213
read_odrl = 5837
read_odnrl = 32761
read_blk = 2615
write = 0
write_odrl = 0O
write_odnrl = O
write_blk = 0O
trunc = 0O
unlink = 18
chown = 0O
demigrated = 0
select = 0O
lowspace = 0
nospace = 0
getattr = 202251
iinactive = 0
exec = 1



121

————— Delay Stats ----- 1995-03-26 11:01:18.13
.001 0 0

.002 00

.005 .014764 3
.01 .633248 83
.02 3.1633 218
.05 56.8865 1476
.1 44.8029 762
.2 4.71357 37
.5 7.20189 23
1 5.59684 8

2 4.59303 4
500

10 0 O

20 15.1961 1
50 00

100 0 O

200 0 O

500 0 O

1000 0 O

2000 0 O

5000 0 O

10000 0 O
20000 0 O
50000 0 O



APPENDIX J

THE TRCTL COMMAND

The TrISH control program, trctl, is used to control the TrISH migration

daemon and its reload servers. Using it a system administrator can do the following:

Start a reload server

Stop a reload server

Retrieve information about reload servers

e Shutdown the TrISH system

o Retrieve the status of trishd

Using the trctl program a user can do the following:
e Initiate batch priority reloads

e Cancel pending and in-process reload requests

e Check on the status of reload requests

The trctl command options are shown in Figure J.1.



USAGE: trctl cmd
where cmd is one of:

sh
st
dt
dd
ds
rl
ca
cf
rs

(shutdown)
(status)
devname ... (device start)
devname ... (device drain)
[allldevname...] (device status)
file ... (reload file)
file ... (cancel file reload)
fsid.fmigid ... (cancel fmigid reload)
(reload status)

Figure J.1. trctl Command Options
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APPENDIX K

DEVICE MANAGEMENT

The UNIX system provides mechanisms for serializing access to some devices,
like printers, but has no mechanism for serializing access to offline devices, like tape
drives. Since an offline device may be shared between the TrISH system and, for

example, the backup system, a serialization mechanism is needed.

K.1 The TrISH Device Manager

A standard part of the TrISH system is a device manager that guarantees
serialized access to offline devices. When a process requires the use of an offline
device, it sends a request to the device manager. If the device is available, it is
allocated to the process. If it is already allocated to another process, the requesting
process can choose to wait for the device to become available or it can try for another
device.

The device manager provides generic device allocation. If a process needs an
8mm tape drive and there are four of them on the system, any one of the tape
drives can be allocated to the requesting process. Only when all devices in a
generic group are allocated does the request fail.

The grouping of generic devices is also supported. For instance, a system has
four optical disk drives in two different jukebox. A process requires access to an
optical disk in the storage slot of jukebox A. Since the robot mechanism only has
access to the optical disks in its own storage slots, the requesting process must be

able to specify that it needs an optical disk drive in jukebox A.
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K.2 Allocating and Releasing A Device
The device management system has both command line and C library access
mechanisms. The command line interface consists of the devalloc and devrelease
commands. These commands can be easily integrated into UNIX shell scripts, since
they print shell commands to set environment variables. The output of devalloc
can be given to the eval command to set these environment variables, which are

then used in the shell script. A simple example is shown below.

101 saaz> set devcmds=‘devalloc hpmo_box1°¢
102 saaz> echo $devcmds

setenv DEV_NAME hpmo_drivel;

setenv DEV_TYPE hpmoac;

setenv DEV_OPER_NAME hpmo_drivel;

setenv DEV_PATH /dev/sdlc;

103 saaz> eval $devcmds

104 saaz> tar -cvf $DEV_PATH

105 saaz> devrelease $DEV_NAME

The C library interface consists of two routines that are analogous to the com-
mand line routines. They are the devmgr devalloc() and devmgr devrelease()
routines. They are used in a similar manner to the command line interface pro-

grams.



APPENDIX L

COMMUNICATING WITH THE
OPERATOR

On some occasions, a daemon process may need to send a message to and get a
reply from the computer operator or the system administrator. For instance, if a
reload server needs a tape loaded into a tape drive, there should be a simple way
it can correspond with the operator. The operator should be able to cancel the
request without killing the daemon if, for instance, the tape is lost or damaged.

On MVS/ESA, IBM’s mainframe operating system, a process can send and
receive messages from the operator via a standard mechanism. There is no such

mechanism in UNIX.

L.1 The oprqg Command

The operator question-and-answer utility (oprq) has been provided with TrISH
to fill the requirement. It has a number of ways to communicate with the operator,
such as sending mail, writing messages to a tty port like the system console, and
opening an X-Window on any X-server. It can be configured to try a number of
communication paths all at once, and if an answer is not received in a specified
amount of time, it will try a different set of communication paths.

Below is an example oprq command. The X-window message it displayed is

shown in Figure L.1.

oprq -yn -y Continue -n Cancel "Please mount tape 1234 in drive ABC"
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Request from udpsid (Sid Bytheway)

FPlease mount tape 1234 in drive ABC
Continue -

Figure L.1. Sample X-window from the oprq Command
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