Cache-Rings for Memory Efficient Isosurface Construction

David M. Weinstein Email: dweinste@cs.utah.edu

 $\rm UUCS\text{-}97\text{-}016$

Department of Computer Science University of Utah Salt Lake City, UT 84112 USA

February 22, 1998

Abstract

Processor speeds continue to increase at faster rates than memory speeds. As this performance gap widens, it becomes increasingly important to develop "memory-conscious" algorithms – programs that still optimize instruction count and algorithmic complexity, but that also integrate optimizations for data locality and cache performance. In this paper we present a topological isosurface extraction algorithm which utilizes a "cache-ring" data structure to optimize memory performance. We compare our algorithm to an analogous edge-hashing algorithm which, though functionally equivalent, gives less priority to memory performance. While our algorithm actually executes more instructions during execution, we nonetheless see a speed-up over the traditional method, as we more-than-compensate for the extra instructions with superior memory performance.