
D R A F T — UUCS-96-005
Flexible Multi-Policy Scheduling based on CPU Inheritance

Bryan A. Ford Sai R. Susarla

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

flux@cs.utah.edu

http://www.cs.utah.edu/projects/flux/

May 10, 1996

Abstract

Traditional processor scheduling mechanisms in operat-
ing systems are fairly rigid, often supporting only one fixed
scheduling policy, or, at most, a few “scheduling classes”
whose implementations are closely tied together in the OS
kernel. This paper presentsCPU inheritance scheduling, a
novel processor scheduling framework in which arbitrary
threads can act as schedulers for other threads. Widely dif-
ferent scheduling policies can be implemented under the
framework, and many different policies can coexist in a
single system, providing much greater scheduling flexibil-
ity. Modular, hierarchical control can be provided over the
processor utilization of arbitrary administrative domains,
such as processes, jobs, users, and groups, and the CPU
resources consumed can be accounted for and attributed
accurately. Applications as well as the OS can imple-
ment customized local scheduling policies; the framework
ensures that all the different policies work together logi-
cally and predictably. As a side effect, the framework also
cleanly addresses priority inversion by providinga general-
ized form of priority inheritance that automatically works
within and among multiple diverse scheduling policies.
CPU inheritance scheduling extends naturally to multipro-
cessors, and supports processor management techniques
such as processor affinity [7] and scheduler activations
[1]. Experimental results and simulations indicate that this
framework can be provided with negligible overhead in
typical situations, and fairly small (5-10%) performance
degradation even in scheduling-intensive situations.

1 Introduction

Traditional operating systems control the sharing of the
machine’s CPU� resources among threads using a fixed
scheduling scheme, typically based on priorities. Some-
times a few variants on the basic policy are provided, such
as support for fixed-priority (non-degrading) threads [?,?],
or several “scheduling classes” to which threads with dif-
ferent purposes can be assigned (e.g. real-time, interactive,
background). [?]. However, even these variants are gener-
ally hard-coded into the system implementation and cannot
easily be adapted to the specific needs of individual appli-
cations.

In this paper we develop a novel processor scheduling
framework based on a generalized notion of priority in-
heritance. In this framework, known asCPU inheritance
scheduling, arbitrary threads can act as schedulers for other
threads by temporarilydonating their CPU time to selected
other threads while waiting on events of interest such as
clock/timer interrupts. The receiving threads can further
donate their CPU time to other threads, and so on, form-
ing a logical hierarchy of schedulers, as illustrated in Fig-
ure 1. Scheduler threads can be notified when the thread
to which they donated their CPU time no longer needs it
(e.g., because the target thread has blocked), so that they
can reassign their CPU to other target threads. The basic
thread dispatching mechanism necessary to implement this
framework does not have any notionof thread priority, CPU
usage, or clocks and timers; all of these functions, when
needed, are implemented by threads acting as schedulers.

Under this framework, arbitrary scheduling policies can
be implemented by ordinary threads cooperating with each

�We use the terms CPU and processor synonymously.

1


