
Reducing Consistency Tra�c and Cache Misses
in the Avalanche Multiprocessor

John B� Carter� Ravindra Kuramkote� Chen�Chi Kuo

UUCS�������

Computer Systems Laboratory

University of Utah

Abstract

For a parallel architecture to scale e�ectively� communication latency between processors must be
avoided� We have found that the source of a large number of avoidable cache misses is the use of
hardwired write�invalidate coherency protocols� which often exhibit high cache miss rates due to
excessive invalidations and subsequent reloading of shared data� In the Avalanche project at the
University of Utah� we are building a ���node multiprocessor designed to reduce the end�to�end
communication latency of both shared memory and message passing programs� As part of our de�
sign e�orts� we are evaluating the potential performance bene�ts and implementation complexity
of providing hardware support for multiple coherency protocols � Using a detailed architecture sim�
ulation of Avalanche� we have found that support for multiple consistency protocols can reduce the
time parallel applications spend stalled on memory operations by up to ��� and overall execution
time by up to �	�� Most of this reduction in memory stall time is due to a novel release�consistent
multiple�writer write�update protocol implemented using a write state bu�er�

	



Reducing Consistency Tra�c and Cache Misses
in the Avalanche Multiprocessor

John B� Carter� Ravindra Kuramkote� Chen�Chi Kuo

Computer Systems Laboratory

University of Utah

� Introduction

Existing 
scalable� parallel architectures fail to address several critical design issues� Commercial
microprocessors o�er very impressive raw performance and seem to be attractive options for as�
sembly into cost�e�ective parallel machines� However� the communication delay between tasks on
di�erent processors rapidly becomes the bottleneck� In the Avalanche project at the University of
Utah� we are building a ���node multiprocessor designed to reduce the end�to�end communication
latency of both shared memory and message passing programs� This paper concentrates on the
shared memory aspect of Avalanche� In shared memory multiprocessors� communication latency
includes the time spent manipulating the hardware data structures used to manage the shared
address space� the e�ect of contention between the local processor and remote processors for the
local cache controller and memory busses� and the time spent servicing cache misses for data that
has been invalidated as part of the coherence mechanism�

We have found that the source of a large number of avoidable cache misses is the use of hardwired
write�invalidate coherency protocols� Conventional invalidation�based consistency protocols often
exhibit high cache miss rates due to excessive invalidations and subsequent reloading of write�
shared �or falsely shared data� As deepening memory hierarchies cause main memory latencies to
increase from 	��s to 	���s of cycles� these avoidable cache misses will seriously impede performance�
Although scalability has been an important research theme over the past �ve years� achievement of
this goal remains elusive� Evidence of this situation can be seen in the signi�cant di�erences between
the peak performance of today�s fast multiprocessing systems and the achieved performance� For
example� even highly�tuned applications often achieve well under ��� of peak performance on
multiprocessors such as the CM������ and Cray T�D�		� despite their powerful communication
fabrics����

For a parallel architecture to scale e�ectively into the tera� and peta�op range� high latency cache
misses must be avoided� Thus� cache controller designs and consistency protocols that reduce the
frequency of cache misses must be developed� As part of the Avalanche project� we are modifying
the memory architecture of a commercial RISC microprocessor� the HP PA�RISC �	��� to include
a new multi�level context sensitive cache that is tightly coupled to the communication fabric �see
Figure 	� At the core of our system is a �exible communication and cache controller unit �CCU
that will support multiple cache consistency protocols� exploit processor context information to
avoid con�ict misses between active tasks and incoming data� and allow dynamic prefetching of
data to any level of the memory hierarchy� This paper concentrates on the �rst of these features
of Avalanche�s cache design � the use of multiple consistency protocols to reduce cache miss rates
and improve overall memory utilization�

This research was supported in part by the Space and Naval Warfare Systems Command �SPAWAR� and the Advanced
Research Projects Agency �ARPA�� under SPAWAR contract No� N��������C���	
 and ARPA Order No� B�� �

�



Bus arbiter
Memory bus

state buffer)

engine)

state

(and write

control

CPU

Network

information)
(and directory

Controller
Directory

Controller
Cache

SRAM

To/From

Controller
Network

(and protocol

Figure � Overview of Avalanche Memory and Communication Architecture

To maximize performance� we believe that it is important for computer architects to provide

hooks� into their hardware to allow the software to tune the hardware�s behavior at a low level �e�g��
via compiler�generated or user�speci�ed pragmas� One such 
hook� that we are investigating is the
ability to specify the coherency protocol that should be used to keep a shared memory program�s
data consistent� Using a detailed architecture simulation of Avalanche�s modi�ed CPU� memory
system� and interconnect� we found that Avalanche�s support for multiple consistency protocols can
reduce the time parallel applications spend stalled on memory operations signi�cantly � up to ����
Most of this reduction in memory stall time is due to a novel release�consistent�	�� multiple�writer
write�update protocol implemented using a write state bu�er� In addition� memory stall time can
be further reduced by up to �� if the protocol used to keep a particular program�s data consistent
can be varied on a per�page�basis� rather than on a per�program basis� via a simple TLB extension�

The remainder of this paper is organized as follows� Section � contains a more detailed overview
of the Avalanche architecture� A description of the experimental setup used to evaluate the
Avalanche CCU design �e�g�� simulation environment� parameters explored� programs studied� and
limitations and the results of our simulations on a variety of workloads are presented in Section ��
Section � compares Avalanche with a number of related research e�orts� Finally� in Section � we
draw conclusions and outline our future endeavors�

� Avalanche Cache Design

��� Basic Avalanche Architecture

The goal of the Avalanche project is to develop a communication and memory architecture that sup�
ports signi�cantly higher e�ective scalability than existing multiprocessors by attacking all sources
of end�to�end communication latency for both shared memory and message passing architectures�
Our approach for achieving this goal is to design a �exible cache and communication controller that
tightly integrates the multiprocessor�s communication and memory systems� incorporates features

�



designed speci�cally to attack the problem of excessive latency in current multiprocessor architec�
tures� and makes extensive provisions for exploiting processor context information and software
guidance�

A conceptual block diagram of an Avalanche node is given in Figure 	� Each Avalanche node
contains a modi�ed PA�	�� processor� cache controller unit �CCU� directory controller �DC�
network controller �NWC and local memory� The CCU is the core 
brains� of Avalanche � it
manages the memory hierarchy and performs the protocol actions needed to maintain consistency
between the various levels of the hierarchy and between separate nodes in the case of shared memory
operation� The DC maintains the state of the distributed shared memory � each block of global
physical memory has a 
home� node and the DC on this home node keeps track of state information
such as the protocol being used to manage that block of data and the nodes that have a copy of the
data� The NWC transmits and receives messages from the inter�node network� queuing outgoing
messages as necessary and routing incoming messages to the appropriate functional unit� The
MMU and L	 cache controller have been stripped from the modi�ed PA�	�� and are incorporated
in the CCU� The CCU� DC� and NWC are connected using separate FIFO input�output message
bu�ers �IOMB� Messages are used to communicate between independent control units� both within
a single node and across nodes� Messages contain commands �e�g�� as part of handling a cache miss�
the CCU may request that the DC managing the state of the required data modify its state and to
transmit data �e�g�� as part of handling an incoming cache �ll message� the NWC sends a message to
the CCU requesting that the data be placed in the appropriate location in the memory hierarchy�
Finally� the DC and CCU are connected to local memory through a local bus arbiter�

Our project di�ers from related related research projects �	�� 	�� �	� in a number of important
ways� First� we do not treat the CPU as an unmodi�able black box � we are modifying the HP
PA�RISC �	�� to give us complete control over all levels of the cache hierarchy and to allow us
to export �import additional control lines from �to the processor to �from the cache controller�
In conjunction with Hewlett�Packard� we are designing a version of the HP PA�RISC �	�� chip
with the cache controller and MMU moved o� chip� Minor changes to the control path of the CPU
and the pipeline stall blocks will be required to export the necessary context state information and
maintain proper pipeline synchronization� but the processor core will not be modi�ed� Modifying
a complex chip such as the �	�� is not without its risks� However� doing so permits us to explore
a wide set of design options and to determine what small set of modi�cations are cost e�ective for
commodity microprocessor vendors should they desire to make their memory architectures better
support highly scalable multiprocessing in addition to their core uniprocessor markets� A second
di�erence between Avalanche and other similar research e�orts is our degree of emphasis on giving
the programmer�compiler the ability to tune at a �ne grained level the low level actions of the
cache and network controllers� and conversely the addition of hardware to collect runtime statistics
�e�g�� the virtual addresses causing the majority of con�ict misses that can be used to tune the
software� An important aspect of this �exibility is Avalanche�s support for multiple hardware
coherency protocols� which we will discuss in detail in the following section�

To minimize our design e�ort and exploit existing commercial technology whenever possible�
we are using the Myrinet��� network as our multiprocessor backplane� Myrinet� which derived
from the Caltech router project� is a high�speed mesh�connected network fabric designed for use
both as a LAN network and as a multiprocessor backplane� As part of the Avalanche project we
are developing an intelligent protocol processing engine �PPE that will handle both conventional
message passing tra�c as well as consistency management tra�c sent by the cache and directory
controllers� We use Myrinet as the basis for our network model because even though it has a
relatively high latency when compared to proprietary interconnects such as that found in the CM�

�



�� the Myrinet interconnect is the fastest commercially available interconnect suitable for our needs�
While Myrinet�s performance is slow compared to a fast special purpose interconnect like that found
in the CM��� we believe that we can mitigate this potential performance bottleneck limitation by
reducing the amount of communication required to maintain coherence� Myrinet�s performance
characteristics are discussed in detail in Section ����

��� Consistency Management

Spurred by scalable shared memory architectures developed in academia �	� 	��� the next generation
of massively parallel systems will support shared memory in hardware �e�g�� machines by Convex�
Cray� and IBM� However� current shared memory multiprocessors all support only a single� hard�
wired write�invalidate consistency protocol� and do not provide any reasonable hooks with which
the compiler or runtime system can guide the hardware�s behavior� Using traces of shared memory
parallel programs� researchers have found there are a small number of characteristic ways in which
shared memory is accessed ��� 	�� ���� These characteristic 
patterns� are su�ciently di�erent from
one another that any protocol designed to optimize one will not perform particularly well for the
others� In particular� the exclusive use of write�invalidate protocols can lead to a large number
of avoidable cache misses when data that is being actively shared is invalidated and subsequently
reloaded� The in�exibility of existing machines� cache implementations limits the range of programs
that can achieve scalable performance regardless of the speed of the individual processing elements
and provides no mechanism for tuning by the compiler or runtime system�

These observations have led a number of researchers to propose building cache controllers that
can execute a variety of caching protocols ��� ���� support multiple communication models �	�� 	���
or accept guidance from software �	�� �	�� We are investigating cache designs that will implement
a variety of caching protocols� support both shared memory and message passing e�ciently� accept
guidance from software to tune its behavior� and directly support e�cient high�level synchroniza�
tion primitives� Our goal is to signi�cantly reduce the number of messages required to maintain
coherence� the number of cache misses taken by applications due to memory con�icts� and the
overhead of interprocess synchronization� We propose to do this by allowing shared data to be
maintained using the consistency or synchronization protocol best�suited to the way the program�
ming is accessing the data� For example� data that is being accessed primarily by a single processor
would likely be handled by a conventional write�invalidate protocol ���� while data being heavily
shared by multiple processes� such as global counters or edge elements in �nite di�erencing codes�
would likely be handled using a delayed write�update protocol ���� Similarly� locks will be handled
using conventional distributed locking protocols� while more complex synchronization operations
like barriers and reduction operators for vector sums will be handled using specialized protocols�
By handling data with a �exible protocol that can be customized for its expected use� the number
of cache misses and messages required to maintain consistency drop dramatically� as illustrated in
the following section�

� Performance Evaluation

The Avalanche multiprocessor design e�ort is a large ongoing project with many aspects� including
the cache design and simulation e�ort discussed herein and a concurrent VSLI design e�ort involving
the design of a stripped down version of the HP PA�RISC �	�� �as discussed in Section � and a

�Except in the case of the Cray� which does not cache shared data�

�



VLSI implementation of the CCU� Currently our performance results are based on a highly detailed
architecture simulation system� but we will validate these results via an actual implementation of
a ���node prototype in due course�

��� MINT Multiprocessor Simulator

We used the Mint memory hierarchy simulator ���� running on Silicon Graphics and Hewlett�
Packard workstations to perform our simulations� Mint simulates a collection of processors and
provides support for spinlocks� semaphores� barriers� shared memory� and most Unix system calls�
We augmented it to support message passing and multiple processes per node� Mint generates
multiple streams of memory reference events� which we used to drive our detailed simulation model
of the Avalanche multiprocessor� Depending on the number of processors and the complexity of
the cache controllers being simulated� our simulation runs took between twenty minutes and �ve
hours to complete�

��� Network Model

To accurately model network delays and contention� we have developed a very detailed� �it�by��it
model of the Myrinet fabric���� The Myrinet fabric is mesh�connected� with one crossbar at the core
of each switching node� To ensure that the results of our architecture evaluation experiments are
not excessively biased by the relatively high latency of the Myrinet interface� we also measured the
performance of Avalanche for a network with one�tenth the latency of Myrinet �
fast Myrinet�� In
this network model� we account for all sources of delay and contention within the network for each
�it of data� including per�switching�node fall through times� link propagation delays� contention
for the crossbar in switching nodes and for FIFOs at the input and output ports of both compute
and switching nodes� With this model� we were able to perform very detailed measurements of the
amount of contention in the interconnect� The parameters that we use are presented in Table 	 in
terms of 	�ns CPU clock cycles�

��� Memory Model

Figure 	 illustrates the high�level organization of Avalanche�s memory hierarchy� The three major
components are the cache controller� the directory controller� and the network controller� The
cache controller is responsible for handling the local CPU�s requests for data and cooperating with
the directory controller to ensure that data in the local cache hierarchy is kept coherent� The
directory controller maintains the memory state information associated the local physical memory
and handles coherence requests sent by remote nodes� in cooperation with the cache controller� The

Network Characteristics

Parameter Myrinet Fast Myrinet

Link Delay 	� 	
Fall Through �� �
Bu�er size per stage �� ��
Topology ��� �� switch nodes same

Table � Parameters Used In Network Models �in 	�ns CPU clock cycles

�



network controller is responsible for handling incoming and outgoing interconnect tra�c� including
DMA and certain high level synchronization primitives� In particular� for incoming coherence
messages� the network controller is responsible for forwarding them to the directory controller or
the cache controller� as appropriate� Space constraints make it impossible to discuss all of the details
of the simulation environment herein � a more detailed description of the Avalanche architecture
can be found elsewhere����

We used the following model in our architecture simulations� We modeled a sixteen�node system�
where each node was con�gured as illustrated in Figure 	� Each node contained a ����kilobyte
�rst level cache and no second level cache� which is consistent with how the HP PA�RISC �	��
processor is normally con�gured� This design philosophy will continue to be used in future HP
products �e�g�� the PA������ which is expected to ship in 	���� The use of a second level cache
should have negligible impact on the work presented herein� as this work is primarily intended to
reduce coherency misses� which are largely independent of a node�s internal cache organization� In
addition� we assume that each of the three control units can handle only one request at a time and
model the contention that this design entails� For example� if the directory controller receives a
remote data request from a remote node for data that resides in the local cache� it sends a request
to the cache controller to invalidate that cache line� While the cache controller is performing this
invalidation and before it forwards the invalidation message�s to the network controller� memory
requests from the CPU stall� Similarly� if the local CPU accesses a word of local memory that is
not in the cache� the cache controller sends a request message to the local directory controller to
ensure that coherence is maintained �i�e�� it does not read the data from the local DRAM until it is
assured that a remote node is not caching a dirty copy of the data� While the directory controller is
handling this request� it will not handle additional requests� In addition to these protocol processing
delays� we also measured the contention between the cache controller and the directory controller
for access to the DRAM bus� the former for processing local requests and the latter for processing
remote requests� Between each pair of the controllers is a pair of FIFOs that are used to store
requests for some action �e�g�� invalidate a cache line� send a message� or update a directory entry�
When requests are pending in both of a controller�s input FIFOs� it handles them in a round robin
fashion� The operations performed by each controller depend on which coherence protocol is being
used� as brie�y described in the following section� Table � lists the delay characteristics that we
used in our model on a preliminary hardware design� We based these times on the existing PA�
RISC �	�� implementation and our estimate of the time to perform operations within the CCU�

��� Protocols Investigated

We evaluated the performance of four basic coherence protocols� �i a sequentially consistent mul�
tiple reader� singler writer� write invalidate protocol �sc�wi� �ii a no�replicate migratory protocol
�mig� �iii a release consistent �	�� implementation of a conventional multiple reader� single writer�
write invalidate protocol �rc�wi� and �iv a release consistent multiple reader� multiple writer� write
update protocol �rc�wu� We selected these four protocols because they covered a wide spectrum

�However� the cache controller remains busy for a second cycle updating state information� Therefore� if the processor
performs a second memory request immediately after the �rst write� it will be delayed an extra cycle�
�This one cycle only includes the time to copy the 
�byte message header into the receiving controller�s input FIFO�
after which time the sending controller is free to process another request� The data associated with the message�
if any� is located in a shared �three�ported� data buer array used by all three controllers �not shown in Figure 	��
Data is read�written from�to this buer at a rate of 
 bytes per cycle�

�



Operation Delay

Local read hit 	 cycle
Local write hit 	 cycle�

DRAM read setup time � cycles
DRAM write setup time � cycles
Time to transfer each subsequent word to�from DRAM 	 cycle
DRAM refresh �time between DRAM requests � cycles
Enqueue a message in a FIFO between controllers 	 cycle�

Dequeue a message from a controller�s input FIFO 	 cycle
Update directory entry � cycles

Table � Delay Characteristics

of options available to system designers� In all of our experiments� we simulated an implementation
that used a conventional directory�based management scheme� with a �xed home node per cache
block based on a function of the block�s address� Due to space constraints� we have not included a
detailed description of the protocols in this paper� but instead refer the interested reader to a more
detailed technical report ���� For each application program� we explored the potential of allowing
software to specify the coherence protocol to be used to maintain shared data for an application by
evaluating the performance of each individual protocol on the application� In addition� we explored
the implication of allowing software to specify the coherence protocol of individual pages or cache
lines by using an o��line algorithm to determine the optimal protocol for each block of data� The
opt pseudo�protocol represents the performance achievable if the optimal protocol is used for each
data block �cache line or page� depending on the simulation�

The sc�wi protocol represents a direct extension of a conventional bus�based write�invalidate
consistency protocol to a directory�based implementation� A node can only write to a shared cache
line when it is the owner and has the sole copy of the block in the system� To service a write miss
�or a write hit when the block is in read�shared mode� the faulting node sends an ownership request
to the block�s home node� If the block is not being used or is only being used on the home node�
the home node gives the requesting node ownership of the block� If the data is dirty in a remote
cache� the home node sends a message to the owner� and the owner sends the dirty cache line back
to the home node� which in turn forwards a copy of the data to the requesting node� If the block is
read shared� the home sends invalidate messages to all other nodes that still have cached copies of
the block� collects the invalidations� and forwards a message to the requesting node indicating that
all of the nodes that had a copy of the data have now invalidated it� To service a read miss� the
local processor requests a copy of the block from the block�s home node� If the home node has a
clean copy of the block� it responds directly� If not� the home node sends a message to the current
owner requesting an up to date copy of the data� which it forwards to the requesting node�

Cache blocks being kept consistent using the mig protocol are never replicated� even when read
by multiple processors with no intervening writes� Thus� both read and write misses are treated
identically� When a processor misses on a cache block� it requests a copy of the block from the home
node� If the home node has a copy� it returns it directly� otherwise it requests the data and forwards
it to the requester� This protocol is optimal for data that is only used by a single processor at a time�
such as data always accessed via exclusive RW locks� because it avoids unnecessary invalidations
or updates when the data is written after it is read�

�



For the two release consistent protocols �rc�wi and rc�wu� we assume the presence of a write
state bu�er that contains a small number of entries� Each entry is associated with a local dirty
cache line and is used to keep track of which words are dirty in that line� Write state bu�er entries
are allocated on demand when the local cache writes to a shared cache line� Unlike a conventional
write bu�er�	��� which contains the modi�ed data as well as its address� the write state bu�er
contains only an indication of what words have been modi�ed� The modi�ed data itself is stored
in the cache� This state information is used to improve the performance of writes to shared data�
albeit in di�erent ways for each protocol�

The rc�wi protocol performs identically to the sc�wi protocol on reads� but the write state
bu�er improves write performance� When a processor writes to shared memory� it may continue
executing as soon as an entry has been allocated in the write state bu�er� without waiting to
receive ownership from the home node� The entry cannot be �ushed until the local node has
received ownership of the cache line� In the mean time� reads to the dirty words can be satis�ed
from the local cache� and reads to other words in a dirty cache line can be performed if the line
was present in the cache before the write occurred� Only if the write state bu�er becomes full�
which is infrequent� or the processor reaches a 
release� point and the controller has not received
ownership of the cache lines in the write state bu�er� does the processor need to stall� This can
signi�cantly reduce the overhead of handling shared writes� This optimization assumes that the
program is written using su�cient synchronization to avoid data races� which is most often the
case� The details of why this results in correct behavior is beyond the scope of this paper � a
detailed explanation can be found elsewhere �	���

The rc�wu protocol uses the write state bu�er in a di�erent way� When a node writes to a word
of shared data� it allocates an entry in the write bu�er for the associated cache line and marks
that word as dirty� When the processor reaches a release point or the number of entries in the
write bu�er exceeds some threshold �in this case� four out of the eight entries� the local cache
controller �ushes the dirty words to the home node� Until that point� the processor delays the
sending of the update� The home node forwards the update message to other nodes with a copy
of that cache line� which incorporate the changes on a word�by�word basis� In this way� multiple
processors can simultaneously modify a single cache line as long as they do not modify the same
words� which would represent a race condition and likely a bug in the program� The rc�wu exploits
release consistency�s �exibility by bu�ering writes to shared data� thereby mitigating the normal
problem of write update protocols and excessive bandwidth requirements� Furthermore� the use of
a write update protocol can signi�cantly reduce the number of read misses that a write�invalidate
protocol induces as a side e�ect of maintaining coherence when the degree of sharing is high���� For
example� if processors a and b are both reading and writing data from a particular cache line� a
write invalidate protocol will result in a large number of invalidations and subsequent read misses
when the invalidated processor reloads the data that it needs� The invalidations are relatively
cheap� because they can be pipelined� but the read misses can seriously degrade performance�
because while the data is being fetched� the processor must either stall or context switch� Both
rc�wu and rc�wimust perform memory consistency operations when the program arrives at release
points� which can degrade performance if the application synchronizes frequently�

Finally� we also measured what we will refer to as the opt or optimal pseudo�protocol� In the
previous experiments� we assumed that the CCU could support multiple coherence protocols� but
that only a single coherence protocol was used by any given program� In Section ��� we show that
the choice of coherence protocol has a large e�ect on performance for the di�erent applications� We
also explored the potential additional bene�t that could be derived by allowing software� e�g��the
compiler or programmer� to specify to the CCU the base protocol that should be used for individual

�



blocks of data� rather than for the entire program� This experiment measures the value of adding
two additional protocol state bits per page table and TLB entry �for page�grained speci�cations or
cache line �for cache line grained speci�cations� We measure the performance of the opt pseudo�
protocol by determining o��line which protocol induced the least cache overhead per data block� and
using this optimal protocol for that block when calculating total cache stall and execution times�
opt represents a near best case measurement of the potential value of the adding protocol bits
because it assumes that software is able to perfectly specify in advance how each block of memory
should be handled� although it does not measure the potential value of changing the choice of
protocol dynamically during runtime nor of reorganizing the data layout to exploit the particular
features of a given protocol� While it is probably not reasonable to assume that this performance is
achievable in general� it provides us with some insight into the value of allowing software to specify
the coherence protocol at a small grain�

��� Benchmark Programs

We used �ve programs from the SPLASH benchmark suite ���� in our study� mp�d� water� barnes�
LocusRoute� and cholesky� Table � contains the inputs for each test program� mp�d is a three�
dimensional particle simulator used to simulated rari�ed hypersonic air�ow� Its primary data
structure is an array of records� each corresponding to a particular molecule in the system� mp�d

displays a high degree of migratory write sharing� water is a molecular dynamics simulator that
solves a short range N�body problem to simulate the evolution of a system of water molecules� The
primary data structure in water is a large array of records� each representing a single water molecule
and a set of forces on it� water is fairly coarse�grained compared to mp�d� barnes simulates the
evolution of galaxies by solving a hierarchical N�body problem� Its data structures and access
granularities are similar to that of water� but its program decomposition is quite di�erent� locus
evaluates standard cell circuit placements by routing them e�ciently� The main data structure
is a cost array that keeps track of the number of wires running through the routing cell� locus

is relatively �ne�grained� and the granularity deviates by no more than �� for all problem sizes�
Finally� cholesky performs a sparse Cholesky matrix factorization� It uses a task queue model of
parallelism� which results in very little true sharing of data� although there is a moderate degree of
false sharing when the cache lines are fairly large�

Program Input parameters

mp�d ������ particles� 	� time steps� test�geom

water LWI��� 	�� molecules� � time steps

cholesky bcsstk��

barnes sample�in

locus bnrE�grin

Table � Programs and Problem Sizes Used in Experiments

	�



��� Experimental Results

We simulated the performance of the �ve application programs running on a detailed model of
an eight�processor Avalanche system� Figures �� �� and � are for the Myrinet interconnect� while
Figures �� �� and � are for the 
fast Myrinet� interconnect� To avoid cluttering the graphs with
irrelevant data� we factored out non�shared memory references� which add negligible overhead due
to the large cache size relative to the working set size�

Figures � and � show the total cache stall times for each of the protocols as a percentage of
the conventional sc�wi protocol� The height of each vertical bar represents the relative number
of cycles that the processor spends stalled waiting for memory requests to be satis�ed� Note
that the mig protocol graphs have been scaled down for barnes� locus� and water so that mig�s
poor performance on these program did not overwhelm the other results� The performance of
the individual coherence protocols varied dramatically from application to application� For the
Myrinet interconnect �Figure �� the rc�wu protocol performed best for every application except
mp�d� which is known to have mostly migratory data� rc�wu performed particularly well for barnes
and locus� removing over ��� of the cache stall time compared to the conventional sc�wi protocol
and over ��� compared to rc�wi protocol used as the base protocol in FLASH�	��� For the faster
interconnect �Figure �� the results were more varied� rc�wu continues to perform very well for
barnes and locus� while mig continues to perform best for mp�d� but with the use of a faster
interconnect� FLASH�s rc�wi protocol performs best for cholesky and water� The large variance
in each application between the most e�cient protocol and the other protocols and the fact that
the protocol that performs best di�ers from application to application is strong evidence that
Avalanche�s ability to support multiple coherence protocols will result in a signi�cant performance
payo��

Each bar is subdivided into the individual components that account for the overall cache stall
time� read represents the overhead of read misses� which accounts for the majority of the cache
stall time for the write�invalidate protocols �sc�wi� mig� and rc�wi� The large reduction in read
miss penalties accounts for rc�wu�s signi�cant performance bene�ts for barnes and locus� which
contain a high degree of write sharing� write represents the time spent stalled due to writes�
which comes from a number of sources depending on the protocol� including the time to acquire
ownership and the time to free up a write�state entry� The write�state bu�er allows write times
to be largely masked for the release consistent protocols� except in barnes and water� where the
write time represents ��� of the cache stall time even for the release consistent protocols� The
reason that the write stall time is signi�cant in these two applications is that they perform a
large number of writes to shared data between synchronization points� which overwhelms the small
�eight�entry write�state bu�er used in the simulations� Finally� synch represents the time spent
stalled at synchronization points while �ushing the write�state bu�er� This delay component was
only signi�cant for the two release consistent protocols� rc�wi and rc�wu� where it represents the
time spent �ushing the write�state bu�er entries �acquiring ownership or propagating updates for
rc�wi and rc�wu respectively�

Tables � and � present the average read� write� and synchronization times �measured in CPU
cycles for the various protocols on the di�erent applications� These results include local reads and
writes� which are almost always satis�ed in a single cycle� Ideally the average read and write times
would be one cycle� and the average synchronization time would be zero� However� the impact
of coherence can dramatically increase the average memory access times� mp�d�s reputation as a
poorly structured program is borne out by the fact that its average read cycle time varies from
� to �� cycles� The reason for rc�wu�s good performance in most of the applications is apparent
� its average read cycle time is always the lowest of the four protocols measured� Since read

		



100

44.3

55.7

0.0

69

15.5

47.0

6.9

1371

16.0

1349.7

5.4

39

15.4

11.5

12.3

100

34.9

65.1

0.0

68

6.0

53.6

8.3

115

5.8

109.1

0.4

61

5.3

30.0

25.7

100

41.0

59.0

0.0

64

2.1

50.7

11.3

230

3.3

220.5

5.8

36

1.8

17.3

17.2

100

36.7

63.3

0.0

76

1.2

46.9

27.9

61

1.1

60.1

0.2

74

0.8

23.8

49.2

100

42.7

57.3

0.0

74

14.7

44.9

14.7

337

14.9

322.0

0.0

68

14.2

9.0

44.6

sc-wi

rc-wi

Barnes

mig

rc-wu

sc-wi

rc-wi

Cholesky

mig

rc-wu

sc-wi

rc-wi

Locus

mig

rc-wu

sc-wi

rc-wi

MP3D

mig

rc-wu

sc-wi

rc-wi

Water

mig

rc-wu

WRITE

READ

SYNCH

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

C
a
c
h
e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure � Cache stall time �Myrinet

	�



100

45.0

55.0

0.0

70

20.8

43.2

5.7

1277

21.7

1249.5

6.3

46

20.7

11.7

14.0

100

28.3

71.7

0.0

68

9.4

52.6

6.1

121

9.2

111.7

0.4

73

8.4

33.5

31.6

100

36.9

63.1

0.0

62

2.8

50.0

9.1

230

3.5

221.4

4.7

33

2.5

17.2

13.1

100

31.3

68.7

0.0

67

1.8

44.0

21.2

61

1.6

58.7

0.1

69

1.1

25.4

42.1

100

39.4

60.6

0.0

69

23.2

40.5

5.7

356

23.5

332.5

0.0

76

22.3

9.7

43.6

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

WRITE

READ

SYNCH

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

C
a
c
h
e
-S

ta
ll
-C

y
c
le

-T
im

e

Figure � Cache stall time �	��Myrinet

	�



misses account for the largest component of the overall cache stall time for most applications� this
is an important bene�t� However� the tradeo� is rc�wu�s high synchronization time� when it is
required to �ush the write�state bu�er by performing or completing pending update operations�
Thus� for programs with very frequent synchronization� rc�wu�s good read miss performance can
be overwhelmed by its high overhead at synchronization points�

Figures � and � show the overall execution times for each of the protocols as a percentage of the
conventional sc�wi protocol� which follow the same trends observed above� Overall� Avalanche�s
support for multiple coherency protocols shows a clear improvement over conventional designs that
employ the sc�wi protocol� reducing the overall execution times by as much as ���� In addition� the
use of a write state bu�er improves Avalanche�s performance compared to even a release�consistent
write�invalidate protocol such as that employed in FLASH �rc�wi � reducing execution time by
as much as 	�� �for barnes�

This improvement in performance did not come without some tradeo�� Figures � and � show the
bandwidth consumed by each of the protocols as a percentage of the conventional sc�wi protocol�
For the most part� they follow the same trends as before with the exception that the rc�wu protocol
tends to consume more bandwidth than the other protocols despite its good performance in terms
of stall cycles� For the programs that we examined� the bandwidth requirements were a small
fraction of the bandwidth provided by the Myrinet interconnect� so it is not an issue� However�
for applications with higher bandwidth requirements or lower bandwidth interconnects� this might
become a problem�

The previous results assumed that the cache controller used the same consistency protocol for
all of the shared data of a given program� Table � presents an approximation of the performance
that can be obtained by adding extra state bit per page table entry to give software control over
the coherency protocol used for each page of shared data and using the protocol best suited to the

Average read cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi 	��� 	�� ��� ��� ���
rc�wu ��� 	�	 	�� ��� ���
mig ���� ��	 ���� ��� ���	
sc�wi ���� 	�� ��� ��� 	���

Average write cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ��� 	�� 	�� ��� ���
rc�wu 	�� 	�� 	�� ��� 	��
mig ��	 	�� 	�� ��� ��	
sc�wi ���� ��	 ��� ��� 	���

Average synch cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ����� ����� ����� ����� �����
rc�wu ����� ����� ��	�� 	��	�� �����
mig ��� ��	 ����� ���� 	����
sc�wi n�a n�a n�a n�a n�a

Table � Average operation cycle time �Myrinet

	�



100

10.9

89.1

89

8.8

80.0

485

8.8

475.8

76

8.7

66.8

100

34.2

65.8

78

26.0

52.3

97

26.0

70.8

75

27.4

47.7

100

17.0

83.0

75

14.8

59.7

132

14.8

117.3
69

14.7

54.3

100

29.9

70.1

80

26.5

54.0

72

26.5

45.7

79

26.7

51.8

100

38.8

61.2

95

38.6

56.4

143

38.6

104.8

99

43.8

54.8

sc-wi
rc-wi

Barnes

mig
rc-wu

sc-wi
rc-wi

Cholesky

mig
rc-wu

sc-wi
rc-wi

Locus

mig
rc-wu

sc-wi
rc-wi

MP3D

mig
rc-wu

sc-wi
rc-wi

Water

mig
rc-wu

seq

parallel

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

120

140

160

180

200

E
la

p
s
e
d
-T

im
e

Figure � Execution time �Myrinet

	�



100

10.9

89.1

90

9.8

80.6

398

9.8

387.9

82

9.3

72.2

100

38.0

62.0

83

31.7

51.0

99

31.7

67.1

85

32.7

52.1

100

20.1

79.9

78

18.6

59.9

131

18.6

112.0
72

18.3

53.4

100

36.1

63.9

78

33.5

44.2

75

33.5

41.1

78

33.6

44.8

100

41.6

58.4

96

41.6

54.4

132

41.6

90.8

100

44.5

55.1

sc-wi

rc-wi

Barnes

mig

rc-wu

sc-wi

rc-wi

Cholesky

mig

rc-wu

sc-wi

rc-wi

Locus

mig

rc-wu

sc-wi

rc-wi

MP3D

mig

rc-wu

sc-wi

rc-wi

Water

mig

rc-wu

seq

parallel

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

120

140

160

180

200

E
la

p
s
e
d
-T

im
e

Figure � Execution time �	��Myrinet

	�



100

74

1245

53

100

114

150
155

100

75

173

64

100

73 73

87

100

88

343

114

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

Bandwidth

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

T
o
ta

l-
M

e
s
s
a
g
e
-B

a
n
d
w

id
th

Figure � Bandwidth �Myrinet

	�



100

74

1249

52

100

114

153150

100

73

166

60

100

73 72

86

100

88

354

113

sc-wi
rc-wi
Barnes

mig
rc-wu

sc-wi
rc-wi
Cholesky

mig
rc-wu

sc-wi
rc-wi
Locus

mig
rc-wu

sc-wi
rc-wi
MP3D

mig
rc-wu

sc-wi
rc-wi
Water

mig
rc-wu

Bandwidth

-
-
-
-
-
-
-
-
-
-

0

20

40

60

80

100

T
o

ta
l-
M

e
s
s
a

g
e

-B
a

n
d

w
id

th

Figure � Bandwidth �	��Myrinet

	�



Average read cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi 	��	 	�� 	�� ��� ��	
rc�wu ��� 	�	 	�� ��� ���
mig 	��� ��� ���� ��� ����
sc�wi 	��� 	�� ��� ��� ���

Average write cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi ��� 	�� 	�� ��� ���
rc�wu 	�� 	�� 	�� ��� 	��
mig ��	 	�� 	�� ��� ��	
sc�wi 	��� ��� ��� ��	 		��

Average synch cycle time

Protocol mp�d water barnes cholesky locusroute

rc�wi 	���� ���� ����� 	���� �	���
rc�wu ����	 ����� ��	�� 	����� �	���
mig 	�� ��	 �	��� 	��� 		���
sc�wi n�a n�a n�a n�a n�a

Table � Average operation cycle time �fast Myrinet

way each page is used� These results are only approximate in that they do not accurately account
for synchronization and secondary e�ects� but they are su�cient to provide an estimate of the value
of providing this extra hardware� As expected� the impact is limited� but for cholesky and locus

even simple page�level support can reduce the cache stall time by ����� Table � presents the same
information for the situation where the software is given control at the cache�line level through the
use of extra state bits per cache line� The improvements are somewhat better ���	��� However�
these results are conservative in that the �ve programs studied each have a single dominant data
structure that accounts for most of the shared memory accesses performed by the program� Thus�
it is not surprising that �ne tuning the cache behavior for di�erent parts of the shared address
space does not have a large impact on performance� Larger programs with more diverse uses of
shared data should exhibit larger improvements� Overall� these results indicate that further study
is worthwhile�

The results presented in this section provide strong evidence that the �exible memory controller
being designed for Avalanche can lead to signi�cant performance improvements� even for relatively
�ne�grained applications such as the ones that we studied� We are continuing to evaluate our

Protocol mp�d water barnes cholesky locusroute

Myrinet � � � �� ��

Fast� Myrinet � � � �� ��

Table � Reduction in memory overhead using 
optimal� protocol �page granularity

	�



Protocol mp�d water barnes cholesky locusroute

Myrinet 	� � � 	�� 	��

Fast� Myrinet �� � 	� 	�� ��

Table � Reduction in memory overhead using 
optimal� protocol �cache line granularity

design and are in the process of adding more applications to our application benchmark suite and
modifying our simulation environment to allow larger working sets to be evaluated�

� Related Work

There are a number of ongoing e�orts whose goal is to design a scalable high�performance multipro�
cessor� Our approach di�ers from the approaches taken in these systems in a number of important
aspects� as described below�

The Stanford DASH multiprocessor �	�� uses a novel directory�based cache design to intercon�
nect a collection of ��processor SGI boards based on the MIPS ���� RISC processor� The Convex
Exemplar employs a similar design based around the HP�	�� PA�RISC� Avalanche will employ
a similar directory�based cache design� However� our cache controller will be tightly integrated
with the communication controller� support a variety of consistency protocols and synchronization
primitives� exploit a limited degree of context sensitivity� and allow software to tune the cache con�
troller�s behavior� A second generation DASH multiprocessor is being developed that introduces
a limited amount of processing power and state at the distributed directories to add �exibility to
the consistency implementation� This machine� called FLASH �	��� is currently being designed to
support both DASH�like shared memory and e�cient message passing� However� their plans for
exploiting the �exibility of their controller�s operation have not been revealed�

The MIT Alewife machine �	� 	�� also uses a directory�based cache design that supports both low
latency message passing and shared memory based on an invalidation�based consistency protocol�
Alewife incorporates a limited amount of �exibility by allowing the controller to invoke special�
ized low�level software trap handlers to handle uncommon consistency operations� but currently
the Alewife designers are only planning to use this capability to support an arbitrary number of

replica� pointers�

The MIT M�Machine work ���� contains a context cache similar to previous designs such as the
HP May�y system �	��� This context cache provides dynamic binding of variable names to register
contents to permit rapid task switching and promote the interesting processor coupling mechanism
of the M�machine� However� it does not provide the tight integration of communication fabric
and protocol into a realistic memory hierarchy� nor does it exploit context sensitivity to tune its
behavior�

The Motorola and MIT �T machine ��� has many interesting components that o�er excellent
support to exploit data�ow style parallelism� The �T architecture provides tight coupling between
the processor registers and the interconnect fabric� but isolates the memory hierarchy by placing the
CPU between the interconnect fabric and the memory� The result is that the CPU must mediate
message and�or DSM communication events� The level of primary processor cycle stealing that
this implies will seriously impede scalability on conventional style applications based on DSM or
message passing that do not exploit the �T�s powerful support for data �ow languages�

��



Like Avalanche� the user level shared memory in the Tempest and Typhoon systems ��	� will
support cooperation between software and hardware to implement both scalable shared memory and
message passing abstractions� Like the Alewife system� will support low level interaction between
software and hardware to provide �exibility� As such� it currently requires extensive program
modi�cation or user e�ort to achieve scalable performance� although the designers are working on
a number of compilation and performance debugging tools to help automate this process� The
tradeo�s between the software and hardware approaches are being studied�

The SHRIMP Multicomputer ��� employs a custom designed network interface to provide both
shared memory and low�latency message passing� A virtual memory�mapped interface provides a
constrained form of shared memory in which a process can map in pages that are physically located
on another node� Since the network controller is not tightly coupled with the processor� the cache
must be put into write�through mode so that stores to memory can be snooped by the network
interface� which results in added bus tra�c between the cache and main memory� In addition�
incoming messages are placed into main memory via a DMA engine� using invalidation to maintain
consistency� which results in cache misses that would not occur if the network controller was more
tightly coupled with the memory system�

The Thinking Machines CM�� ���� did not directly support DSM or a multilevel external memory
hierarchy� and as such the excellent communication fabric of the CM�� is not well integrated into
the memory architecture� Thus� the on�chip cache miss penalties discussed earlier have proven
problematic in terms of achieving a reasonable percentage of the impressive peak performance of
the CM�� on real applications� Another commercial scalable supercomputer of interest is the Intel
Paragon �	��� The interconnect is a high performance mesh routing device� The fabric does not
support direct DMA into the Paragon�s memory hierarchy but utilizes a second i���XP CPU for
this purpose on each processing element� In addition� the interconnect is not tightly integrated into
the memory hierarchy� so messages are only placed into main memory rather than the processor
cache�

� Conclusions

In the Avalanche project at the University of Utah� our goal is to build a ���node multiprocessor
designed to reduce the end�to�end communication latency of both shared memory and message
passing programs� As part of our design e�orts� we are evaluating the potential performance bene�ts
and implementation complexity of providing a means for software to guide the cache controller�s
behavior� In this paper� we have discussed one particular aspect of this e�ort � support for multiple
hardware cache coherency protocols� Using a detailed architecture simulation of Avalanche� we
have found that support for multiple consistency protocols can reduce the time parallel applications
spend stalled on memory operations by up to ��� and overall execution time by up to �	�� Most of
this reduction in memory stall time is due to a novel release�consistent multiple�writer write�update
protocol implemented using a write state bu�er�

However� much work remains to be done before the Avalanche prototype is constructed� We are
currently working with Hewlett�Packard to create a version of the PA�RISC �	�� which exports an
interface for a new CCU which will be fabricated as a separate chip� We also are improving our
simulation environment� testing the high�level CCU design on more and larger applications �both
shared memory as reported upon in this paper and a variety of message passing programs� develop�
ing a set of protocol veri�cation tools to reduce the debugging time needed to implement the CCU�
and considering compiler�based techniques for fully exploiting Avalanche�s �exibility� In summary�
although the challenges that face us are considerable� we believe that the Avalanche design outlined

�	



here will result in the development of a memory architecture for commercial microprocessors that
will signi�cantly improve their performance utility in scalable multiprocessor con�gurations�

References

�	� A� Agarwal and D� Chaiken et al� The MIT Alewife Machine� A large�scale distributed�memory
multiprocessor� Technical Report Technical Memp ���� MIT�LCS� 	��	�

��� J� Archibald and J��L� Baer� Cache coherence protocols� Evaluation using a multiprocessor
simulation model� ACM Transactions on Computer Systems� ������������ November 	����

��� David Beazley� 	���� Member of 	��� Gordon Bell Prize winning team� personal communica�
tion�

��� M� J� Beckerle� An Overview of the START ��T Computer System� MCRC Technical Report
MCRC�TR���� Motorola Cambridge Research Center� 	����

��� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for
distributed shared memory architectures� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages 	���	��� May 	����

��� M�A� Blumrich� K� Li� R� Alpert� C� Dubnicki� E�W� Felten� and J� Sandberg� Virtual memory
mapped network interface for the SHRIMP multicomputer� In Proceedings of the ��st Annual
International Symposium on Computer Architecture� pages 	���	��� April 	����

��� N�J� Boden� D� Cohen� R�E� Felderman� A�E� Kulawik� C�L� Seitz� J�N� Seizovic� and W��K�
Su� Myrinet � A gigabit�per�second local�area network� IEEE MICRO� 	��February�������
February 	����

��� J�B� Carter� E�cient Distributed Shared Memory Based On Multi�Protocol Release Consis�

tency� PhD thesis� Rice University� August 	����

��� J�B� Carter and R� Kuramkote� Avalanche� Cache and DSM protocol design� Technical report�
University of Utah� April 	����

�	�� D� Chaiken and A� Agarwal� Software�extended coherent shared memory� Performance and
cost� In Proceedings of the ��st Annual International Symposium on Computer Architecture�
pages �	������ April 	����

�		� Cray Research� Inc� CRAY T�D System Architecture Overview� hr������ edition� September
	����

�	�� A� L� Davis� May�y� A General�Purpose� Scalable� Parallel Processing Architecture� Lisp and
Symbolic Computation� ��	�������� May 	����

�	�� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory
consistency and event ordering in scalable shared�memory multiprocessors� In Proceedings of

the ��th Annual International Symposium on Computer Architecture� pages 	����� Seattle�
Washington� May 	����

�	�� A� Gupta and W��D� Weber� Cache invalidation patterns in shared�memory multiprocessors�
IEEE Transactions on Computers� �	��������	�� July 	����

��



�	�� M� Heinrich and J� Kuskin et al� The performance impact of �exibility in the Stanford FLASH
multiprocessor� In Proceedings of the �th Symposium on Architectural Support for Programming

Languages and Operating Systems� pages �������� October 	����

�	�� Intel Supercomputer Systems Division� Paragon XP�S Product Overview� 	��	�

�	�� N�P� Jouppi� Cache write policies and performance� In Proceedings of the �	th Annual Inter�

national Symposium on Computer Architecture� pages 	�	���	� May 	����

�	�� J� Kuskin and D� Ofelt et al� The Stanford FLASH multiprocessor� In Proceedings of the ��st

Annual International Symposium on Computer Architecture� pages �����	�� May 	����

�	�� D� Lenoski� J� Laudon� K� Gharachorloo� W��D� Weber� A� Gupta� J� Hennessy� M� Horowitz�
and M� S� Lam� The Stanford DASH multiprocessor� IEEE Computer� ����������� March
	����

���� P� Nuth and W� J� Dally� A Mechanism for E�cient Context Switching� In Proceedings of the

IEEE International Conference on Computer Design� pages ��	����� 	��	�

��	� S�K� Reinhardt� J�R� Larus� and D�A� Wood� Tempest and Typhoon� User�level shared mem�
ory� In Proceedings of the ��st Annual International Symposium on Computer Architecture�
pages �������� April 	����

���� J�P� Singh� W��D� Weber� and A� Gupta� SPLASH� Stanford parallel applications for shared�
memory� Technical Report CSL�TR��	����� Stanford University� April 	��	�

���� Thinking Machines Corporation� The Connection Machine CM�� technical summary� 	��	�

���� J�E� Veenstra and R�J� Fowler� A performance evaluation of optimal hybrid cache coherency
protocols� In Proceedings of the 
th Symposium on Architectural Support for Programming
Languages and Operating Systems� pages 	���	��� September 	����

���� J�E� Veenstra and R�J� Fowler� Mint� A front end for e�cient simulation of shared�memory
multiprocessors� In MASCOTS ����� January 	����

���� A� Wilson and R� LaRowe� Hiding shared memory reference latency on the GalacticaNet
distributed shared memory architecture� Journal of Parallel and Distributed Computing�
	������	����� August 	����

��


