
PPE Interface and Functional Speci�cation �

Mark R� Swanson
L� Brad Stoller

Terry T� Tateyama

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

August �� ����

Abstract

This document describes the interface and functional speci�cation of a Protocol Processing Engine
	PPE
 for workstation clusters� The PPE is intended to provide the support necessary to implement
low latency protocols requiring only low resource 	cpu and bus bandwidth
 consumption�

� Introduction

We describe the function of and the interface to a device to aid in protocol processing for workstation
cluster multicomputers� the device is referred to 	perhaps a bit inappropriately
 as the Protocol
Processing Engine 	PPE
� The protocol base which we envision the PPE supporting is a sender�
based protocol� The bulk of the actual protocol implementation is intended to be done in 	kernel�
level
 software�

� Overview

The speci�cation will begin with short descriptions of the majority of the control and status registers
of the PPE� The function of these registers will be explained in greater detail in later sections�
Next we deal with message transmission� de�ning the set	s
 of registers used to initiate a particular
transmission� the data structures that the PPE must interpret� and the expected software�visible
behavior entailed in a transmission� A similar discussion of message reception follows� Following
this are sections dealing with initialization and fault handling which complete the speci�cation�

�This work was supported by a contract from Hewlett Packard� and by the Space and Naval Warfare Systems
Command �SPAWAR� and Advanced Research Projects Agency �ARPA�� Communication and Memory Architectures
for Scalable Parallel Computing� ARPA order �B��� under SPAWAR contract �N���������C���	

�

struct ppe�csr� �

unsigned

reset � ��

enable � ��

reserved ����

incarnation � ��

local�node�num ����

	�

Figure �� The PPE control register�

� Global PPE Control Registers

A number of registers are used by the software to con�gure the PPE and to provide global addresses
to it� Unless otherwise speci�ed� the registers are assumed to be � bits in width� Speci�c bit
assignments within control registers are intended merely as suggestions� aggregation of functions
within control registers is also merely suggestive�

Note that additional registers were speci�ed as described in Section A����

��� PPE control register �PCSR��

The PPE control register 	see Figure �
 is set by the kernel and is read�only to the PPE� The �elds
of PCSR� have the following meanings�

� reset � when set by the kernel� the PPE should reset to its initial state� see Section ��

� enable � when set by the kernel� the PPE should process incoming and outgoing messages�
when not set� the PPE should refuse any packets ejected from the fabric and refrain from
injecting any packets into the fabric� the PPE will complete any injection or ejection ongoing
at the time enable is reset�

� incarnation � a quantity speci�ed by the kernel which the PPE uses as part of incoming
packet validation� see Section ����

� local node num � contains the node�s unique number within the cluster 	�� bits should be
adequate
�

��� PPE status register �PCSR��

All �elds in the PCSR� 	see Figure �
 are to be written by the PPE and are read�only to the kernel
	except where noted
� The �elds have the following meanings�

� ready � the network interface is ready to accept packets from the PPE and the PPE itself is
ready to process incoming and outgoing messages�

�

struct ppe�csr� �

unsigned

ready ���

int�hi ���

int�lo ���

idle ���

nbqr�empty ���

nbqr�full ���

reserved�� ���

send�desc�cnt ���

reserved�
 ����

	�

Figure �� The PPE status register�

� int hi � set by the PPE when the AQR transitions from empty to non�empty� cleared by the
software when it is ready to accept more interrupts� this is both a status and control �eld�

� int lo � set by the PPE when the NQR transitions from empty to non�empty� cleared by the
software when it is ready to accept more interrupts� this is both a status and control �eld�

� idle � set by the PPE when it is neither injecting nor ejecting a packet� used in conjunction
with enable in PCSR� to allow the software to determine when shared state in PPE memory
may be safely modi�ed�

� nbqr empty � set by the PPE when the NBQR goes empty� An interrupt should be generated
as a signal to the kernel to check this register and replenish the pointers in the NBQR�

� nbqr full � set by the PPE when the NBQR reaches its maximum capacity� Writes to a full
NBQR on the PPE are ignored�

� send desc cnt � the number of send descriptors 	see Section ���
 provided by the PPE�

��� Noti�cation List Heads Register �NLHR�

The Noti�cation List Heads Register 	NLHR
 � contains the base physical address 	in PPE memory

of the table of pointers to noti�cation lists�

��� PPE�Maintained Queues �NQR�AQR�

The PPE will also present two registers which represent the heads of PPE�maintained queues of
interrupt �tokens�� The width of the registers and the size of the �tokens� are both � bits� The
two registers are�

� message event Noti�cation Queue Register 	NQR
� the size of the queue backing NQR should
be ��� entries�

� message Acknowledgment Queue Register 	AQR
� the size of the queue backing AQR should be
��� entries�

The PPE will place items on these queues on the occurrence of events described in later sections�
Whenever the enqueuing of an item causes a queue to transition from empty to non�empty and the
corresponding interrupt bit in PCSR� is o�� the PPE must interrupt the host� A read of one of these
queue registers serves to remove the item read from the queue� I�e�� reads by the software are the
mechanism for draining these queues� Reading from an empty queue should return zero and not
otherwise change the state of the queue� The PPE is allowed to stall on an attempt to enqueue an
item onto a full queue� it is not allowed to discard queue entries� The queues should all be empty
on a reset of the PPE�

��	 The Software Maintained Queue �NBQR�

The PPE will provide a Noti�cation Block Queue Register 	NBQR
� writable by the software� which
should be backed by a queue on the PPE� The size of this queue should be ��� entries� This queue
will hold the physical addresses of empty noti�cation structures in host memory�

� Noti�cation

The PPE provides a general noti�cation mechanism to inform the processor of several kinds of
events� The general mechanism is described here� speci�c details for each case can be found in�

� Section ���� 	Transmission Completion
�

� Section ��� 	Message Reception
�

� Section ����� 	Ack Packets
�

� Section � 	Faults
�

� Section A���� 	Miscellaneous Packets
�

The PPE uses a note index to index into a table of noti�cation list heads 	see Figure
�
The software initializes the entries of this table to contain unique tokens and pointers to empty
noti�cation objects� The software never subsequently writes the head �elds of the table entries�
those pointers are strictly changed only by the PPE thereafter� The software will occasionally
change the token �elds� The software may read the head �elds of the entries to detect when the
PPE has added an item to a noti�cation list�

Although the noti�cation list heads are in PPE memory� the actual noti�cation objects are
located in host main memory� The PPE should be able to write an entire noti�cation object in one
bus transaction� whereas the cpu 	and hence the software
 would likely require a transaction per
word to read the noti�cation from PPE memory�

�

struct ppe�notelist�t �

note�t � head�

struct �

unsigned token ����

unsigned enqueue ���

	

	�

Figure � An entry in the noti�cation list table�

struct notification �

short type�specific�

struct �note�control �

type�specific ����

software �
�

	 control�

unsigned type�specific�

unsigned type�specific�

note�t � next�

unsigned metadata��� �� optional ��

	 �note�t�

Figure �� The common noti�cation entry structure�

The source of the note index varies with the type of event causing the noti�cation� The base
of the table is at the address speci�ed in the NLHR� The table entry includes a pointer� in the head
�eld� to an empty noti�cation object 	see Figure �
�

The PPE forms a noti�cation object as follows�

� The �elds labeled type specific are �lled according to the type of event�

� the next �eld is a pointer to a new empty noti�cation object� it comes from the PPE�s
noti�cation block queue� The address of this empty noti�cation must also be written back to
the location in the PPE Notetable speci�ed by node index�

The PPE procedure described above maintains the invariant that the table entries always point to
empty noti�cation objects at the end of the noti�cation lists�

The software views any noti�cation with a zero next �eld as empty� When the PPE �lls a
next �eld with a pointer to a new empty object� the software assumes it can process the now
non�empty noti�cation object� Thus� it is required that the PPE always �ll in the next �eld of
a noti�cation last � when the rest of the �elds are valid� The software maintains its own table of
noti�cation list heads that parallels the PPE�s table� but may point at earlier entries in the lists�
Noti�cations on a given list are always processed in the order in which the PPE posts them� The

�

0
0

0
0

0
0

0
0

0x00F00128

0x00F00256

0x00F00512

0x00F01024

0xdeadbeef

0

1
2
3

N

INT NN

... ...

0

0

0

PPE
Notetable 0

0

0
0
A C

0
0

0

0x00000000

D

B

0x
00

F0
00

00

0x
00

F0
00

32

0x
00

F0
00

64

....

PPE
Note Queue

0x00F00000 0x00F00032 0x00F00064

QHead QTail

NLHR

NBQR

Next
Note

Figure �� An empty noti�cation list

only synchronization necessary between the software and the PPE is provided by the setting of the
next �eld� The software �consumes� noti�cations� it performs the following actions after processing
a given noti�cation�

� the pointer in the object�s next �eld is stored into the appropriate slot of the software�s
noti�cation list table�

� the object�s next slot is zeroed�

� the address of the object is enqueued on the PPE�s noti�cation object queue by writing it to
the NBQR register�

Finally� the PPE pushes the token �eld of the note list hdr onto the message event noti�ca�
tion queue i� enqueue is set in the note list hdr� If this causes the queue to become non�empty�
and if int lo in the PCSR� is not already set� the PPE issues an interrupt to the CPU� The software
will subsequently read NQR to remove entries from the queue for processing� As noted earlier� the
software may change these token �elds as necessary to obtain correct interrupt behavior�

��� An Example of Posting and Consuming a Noti�cation

In Figure �� the noti�cation list head at index in the table 	labeled �PPE Notetable�
 points
at an �empty� noti�cation object� labeled D� At the head of the noti�cation object queue 	labeled
�PPE Note Queue�
 is a pointer to another �empty� noti�cation object� labeled A�

�

NBQR

NLHR

0
0

0
0

0
0

0
0
CB

0x
00

F0
00

32

0x
00

F0
00

64

0x
00

00
00

00

....

PPE
Note Queue

0x00F00032 0x00F00064

0
0

0

0x00F00000

0x00000169

0x00090045

0x00001024

0x00000000

0x00F00000

0x00F00256

0x00F00512

0x00F01024

0xdeadbeef

0

1
2
3

N

INT NN

... ...

0

0

0

PPE
Notetable

AD

QHead QTail

Next
Note

Figure �� A noti�cation list with one entry

In Figure �� the PPE has added a noti�cation object to the list at index � It formed the
noti�cation in the previously empty object� D� The next �eld contains the pointer to A� the empty
object that was previously at the head of the noti�cation object queue� A has been removed from
that queue by the PPE� Also note that the entry in the rd slot of the PPE Notetable has been
updated to point at the empty object A�

In Figure �� the software has consumed the noti�cation� It has returned the object it consumed
	D
 to the noti�cation object queue� after zeroing its next �eld�

�

NBQR

NLHR

0x00F00000

0x00F00256

0x00F00512

0x00F01024

0xdeadbeef

0

1
2
3

N

INT NN

... ...

0

0

0

PPE
Notetable

A

0
0

0

0x00000000

0x
00

F0
00

64

0x
00

F0
00

32

0x
00

F0
01

28

....

PPE
Note Queue

D

0
0

0
0

0x00F00128

0
0

0
0
B

0x00F00032

0
0

0
0
C

0x00F00064

QHead QTail

Next
Note

Figure �� The noti�cation list after the entry is consumed

�

� Message Transmission

At the highest level� the PPE should provide the functionality of accepting a pointer 	in the form
of a physical address
 to a message body� a message length in word�aligned bytes� and packet
header information� It should then packetize that message as necessary� inject the packets into the
network with properly formed headers� and �nally notify the sender when the entire message has
been injected�

We begin with a proposed format for the packets� since the information it carries is central
to the discussions that follow� We then describe the send descriptor sets used to control the
packet�message transmission processes� Finally� we describe the details of typical message trans�
mission sequences for the DMA� DIO� and special cases�

	�� Packet Format

The packet header must transport all of the information necessary to implement the sender�based
protocols� An example format is given in Figure �� The size of some �elds is open to debate and
the location of most �elds within the header is immaterial to the protocol implementation� More
detailed discussion of the use of the packet header �elds will appear in later sections�

	�� Send Descriptor Register Sets

The interface for message transmission should be implemented by a number of send descriptor reg�
ister sets� We encourage the inclusion of more than one set� and urge the implementation of at least
four� We expect fairness in the allocation of packet injection opportunities when multiple sets are
provided� For example� round robin injection of one packet from each active send descriptor would
be acceptable� More complex scheduling�prioritization of message transmission is the responsibility
of the software�

Each descriptor set consists of �� registers� 	see Figure �
 The control registers supply all of
the information describing a message to be transmitted�

� The msg address register receives the physical address of the message body to be transmitted�
This is either a pointer into main memory 	in the DMA case
 or a pointer into PPEmemory 	in
the DIO case
 depending upon the direct io bit in the send descriptor�s control� register�

� The address� register gets the slot number 	dst slot
 used by the receiving PPE to uniquely
identify the receiver channel� It also stores the note index the PPEmust use when con�gured
to post a noti�cation object after the entire message has been injected into the interconnect
fabric�

� The control� register receives initial values for certain packet header �elds� which are used
by the receiving PPE� as well as the offset within the receiving bu�er�

� The control� register contains �elds controlling the sending PPE�s handling of the message�
as well as the message size in bytes� Note that both the msg size and receiving bu�er offset
are limited to �� Mbytes�

�

struct pkt�hdr �

struct �

unsigned fab�bits ��

dst�node ��
�

more�fab�bits ����

	 address��

struct �

unsigned dst�slot ����

src�node ��
�

reserved � ��

	 address��

struct �

unsigned use�msg�size � ��

use�msg�offset � ��

ack�pkt � ��

reserved � ��

incarnation � ��

remote�offset �
��

	 control��

struct �

unsigned reserved � ��

meta�data�flag � ��

meta�len � ��

msg�size �
��

	 control��

struct �

unsigned hdr�checksum ����

reserved ����

	 control
�

unsigned long meta�data��� �� optional ��

	

unsigned pkt�data����
�� �� arbitrary length ��

unsigned short pkt�checksum�

unsigned short padding�

Figure �� The packet format�

��

The one�bit control de�nitions 	in the control� register
 are as follows�

� direct io � the PPE should function in a DIO manner� see Section ���

� control pkt � used to form special payload�free packets� see Section �����

� notify � when set� the PPE is instructed to form a noti�cation and enqueue it after it
sets the done bit� see Section �����

� go � when set� the PPE is expected to use the send descriptor for transmitting� when
not set� the PPE should ignore the send descriptor�

� meta data � when set� the PPE is expected to include the data from the four metadata
�elds of the send descriptor in the �rst outgoing packet� The metadata is to be stored in
the receiving PPE�s appropriate rslot and included in a �message received noti�cation�
when the entire message has been reassembled in the receiver�s main memory�

� The metadata registers can be used to convey additional information about the message 	for
example� a message type
 to be interpreted by the receiver�

� The status registers are associated with each send descriptor by which the PPE communicates
status back to the software� The status �eld de�nitions are as follows�

� bytes to go � the number of bytes of the message not yet injected�

� busy � the PPE sets busy when it is actively using the send descriptor to inject a packet�
it is set at the initiation of each packet injection and reset when the packet injection
completes or aborts�

� stalled � the PPE sets stalledwhenever the ongoing send has been stalled by the fabric
for �ow control reasons� the PPE resets it when it again attempts to inject a packet� the
PPE must also reset stalled whenever the software sets go in the associated control
register�

� done � the PPE sets done when it has �nished injecting all packets speci�ed by the
send descriptor� the PPE will never inject any packets using a send descriptor with done

set� the PPE must reset done whenever the software sets go in the associated control�

register�

The remaining registers are reserved for future use�

	�� Message Transmission Mechanisms

There are two mechanisms for con�guring the send descriptors to transmit messages 	and two
special forms of data�less messages� in which case either mechanism can be used
� The software
can con�gure the PPE to operate in Direct Memory Access 	DMA
 mode or DIO mode�

In DMA mode� the software writes a pointer to the message body 	in the host�s main memory

to the msg address of an available send descriptor� The PPE is then responsible for pulling the
data across the host�s data bus to be packetized and injected into the network fabric�

In DIO mode� the software downloads the message body into PPE memory before initiating the
packetization�injection process through an available send descriptor� While the msg address �eld

��

still points to the address of the message body� in this case� the message body has already been
downloaded to the PPE�s private memory� DIO mode is actually a misnomer� It is more properly
viewed as PPE�bu�ered output mode�

Thus� a message transmission sequence is as follows�

�� 	DIO mode only
 the kernel allocates a region of PPE memory and copies the message body
there�

�� the kernel selects an available send descriptor� the PPE provides no direct support for this�
the software performs all necessary accounting�

� the kernel initializes the appropriate registers of the send descriptor�

�� the kernel writes the control� register last� setting go and� if appropriate� notify� The
msg size �eld must be set with the same write�

The order given is mandatory� the last step only makes sense after all of the other registers are set�
When go is set by the kernel� both stalled and done must be reset by the PPE� It is an error for
the software to set go when busy is in the set state�

The PPE must also be able to accommodate data�less messages 	see Section ���
� which should
result in the formation and injection of a packet consisting only of a header�

����� Packet Formation

The PPE is expected to packetize messages� inserting appropriate headers and checksums� The
bulk of the information needed for the packet header comes from the send descriptor registers�

� dst node� dst slot� and msg size come directly from the send descriptor�

� remote offset is initialized from the offset �eld of the control� register for the initial
packet of the message� as each packet is sent� remote offset must be incremented by the
PPE by the size of that packet� the PPE may keep this incremented value in private state or
it may use the control� register itself�

� use msg size and use msg offset of control� are used only for the like�named �elds of
the �rst packet of a message� the PPE should send zeroes for subsequent packets� this may
be accomplished by having the PPE zero these bits in the control� register after the �rst
packet is injected�

� ack pkt in the packet header is simply a copy of that �eld in the control� register� the PPE
should never modify this bit�

The other information necessary to form a complete packet header comes from other sources�

� src node comes from local node num in PCSR�

��

� hdr checksum is generated by the PPE on a per�packet basis� � Header checksums are neither

seen nor generated by the software� While we think they are a good idea� we leave them entirely
in the hands of the PPE implementors� �

Depending upon the direct io bit� the body of the packet will either be pulled from the host�s
main memory across the data bus 	DMA mode
 or simply read from the PPE�s own memory 	DIO
mode
�

As packets are successfully injected� the PPE is responsible for updating the msg address� control��
status�� and status
 registers in the corresponding send descriptor�

In order to minimize communication overhead� packets should be as large as the network can
reasonably accept�

����� Transmission Completion

When a message transmission completes� the PPE is expected to post a noti�cation if notify is
set in the control� register� The PPE should use note index �eld of the send descriptor to locate
the appropriate noti�cation list head� 	See also Section A�����

There is currently no type�speci�c information in a transmission completion noti�cation object�

����� Control of Ongoing DMA Transmissions

The kernel may reset go while DMA is in progress� The kernel might do this to�

� timeshare the available send descriptors�

� to safely free up a wired send bu�er�

� or as part of the termination actions for a process�

The PPEmay complete sending any partially sent packet or it may abort it� In order to facilitate
saving the state of an interrupted message transmission� the kernel must be able to determine how
much of the message has been transmitted� We de�ne the situation where the kernel requires this
information be correct as� when busy is reset 	and go has been reset by the kernel
 by the PPE
on completion 	or abortion
 of the current packet injection� The kernel needs �message progress
state�� we suggest that this information be provided via the bytes to go �eld of the send descriptor
status register�

It is the kernel�s responsibility to wait for busy to be in the reset state before utilizing the
message progress state and before manipulating other control bits� This information would also be
useful to the kernel in monitoring the progress of very long transmissions� serving this purpose would
require updating the message progress state more frequently� perhaps on every packet injection�
The software depends on one assumption about the packetization process� Packets must be formed
from data from monotonically increasing addresses� i�e�� if packet I was taken from address X�
packet I�� will start at location X�N� where N is the size of a packet�

�

If the software resets go while busy is in the set state� it is possible that injection of the current
packet completes and done is set� In that case� the PPE should perform all normal transmission
completion actions described in Section �����

When the go bit is reset and busy is set� it is possible that injection of the current packet is�will
be stalled� In that case� when the stalled attempt to inject a packet terminates� stalled should
be set at the same time that busy is reset� The PPE should make no further attempts to inject
the packet until go is once again set� � This allows the kernel to perform whatever higher level �ow
control actions it might implement� Simply allowing busy to be be reset might lead the kernel to

attempt continuing a stalled transmission prematurely� �

	�� Data�Less Packets

This section describes the two anticipated types of data�less packets the sender�based protocols will
use�

����� Control Packets

When control pkt is set in the send descriptor� the PPE should form a packet header in the normal
manner from the send descriptor registers� but it should transmit only the header� regardless of the
speci�ed msg size� and immediately set done in the status register�

The software currently uses control pkt for only one purpose� when the transmission of a
message actually consisted of a number of DMA transmissions and an empty packet with the
total message size 	along with the use msg size bit
 must be sent to complete transmission of the
message�

����� Ack Packets

The ack�packet is a part of the fast message reception�acknowledgment mechanism� It has no pay�
load� but may carry general data in the remote offset and msg size �elds of its header� Reception
of such a packet should immediately result in the posting of a �message received noti�cation� 	see
Figure ��
 using ack note index of the rslot and �lling in the msg offset and msg size �elds
from the packet header� The ack pkt bit in the noti�cation should be set to ��

It is possible that an ack packet will arrive in the middle of another message reception destined
for the same rslot� The processing of the ack packet should not disturb the message reception by
causing changes to rslot state�

��

unsigned �msg�address�

struct �

unsigned fab�bits � �

dst�node ��
�

more�fab�bits ����

	 address�� �� fabric destination ��

struct �

unsigned dst�slot ����

note�index ����

	 address�� �� node destination ��

struct �

unsigned use�msg�size � ��

use�msg�offset � ��

ack�pkt � ��

reserved � ��

incarnation � ��

offset �
��

	 control��

struct �

unsigned reserved � ��

bytes�to�go �
��

	 status��

struct �

unsigned direct�io � ��

control�pkt � ��

notify � ��

go � ��

meta�data � ��

meta�cnt � ��

msg�size� �
��

	 control��

struct �

unsigned busy � ��

stalled � ��

done � ��

reserved �
��

	 status
�

unsigned reserved�

unsigned metadata���

unsigned reserved���

Figure �� A PPE send descriptor control register set�

��

struct rslot �

unsigned buffer�base�phys�

unsigned buffer�size�

short note�index�

struct �r�control �

u�short valid ���

indirect ���

do�acks ���

notify ���

reserve ��
�

	 control�

signed bytes�to�go�

unsigned msg�size�

unsigned msg�offset�

short ack�note�index�

	

Figure ��� The receive slot�

� Message Reception Mechanisms

At a high level� the function of the PPE for message reception is to accept a 	possibly misordered

stream of packets� validate each packet header� and� based on information in the packet header
and additional information fetched from PPE memory� deposit the payloads of those packets into
appropriate locations in host memory� The PPE is expected to determine when a complete message
has arrived and to perform appropriate noti�cation actions� We will �rst discuss packet reception
and then describe message reception and noti�cation�

�� Packet Reception

When a packet is received by the PPE� its payload is to be deposited into host memory at a location
speci�ed by an rslot 	see Figure ��
�

The dst slot �eld of the packet header is used as an index into the table of rslots in PPE
memory� The rslot contains state of interest to the PPE for the message in progress as well as
information of a more static nature provided by the software� The inclusion of the per�message
information within the rslot is allowable because the software guarantees that at most one message
will be in �ight to a given rslot at any time�

The speci�c tasks performed by the PPE on packet arrival are�

�� the PPE reads the packet header from the fabric� computes the checksum� and compares it
to the packet header checksum� if they are unequal� the packet is an error packet�

�� it checks whether the dst node is equal to the local node num in PCSR�� if they are not

��

equal� the packet is an error packet�

� it range checks the rslot index 	dst slot in the packet header
� if it is greater than the the
con�gured number of rslots� the packet is an error packet�

�� it reads the rslot� selected by dst slot in the packet header� from PPE�resident memory�

�� it checks whether valid is set in the rslot� if it is zero� the rslot is invalid and the packet
is an error packet�

�� it checks whether incarnation in the packet header is equal to incarnation in the PCSR��
if they are not equal� it is an error packet�

�� it checks whether ack pkt is set in the packet header� if it is� the PPE forms and posts a
noti�cation and does no further processing with the packet� in particular� the following range
checks are not performed� see Section ������

�� it compares remote offset from the packet header against buffer size in the rslot� if the
remote offset is greater� the packet is an error packet�

�� it compares the sum of remote offset and pkt size from the packet header against buffer size

in the rslot� if the sum is greater� the packet is an error packet�

��� it copies the packet data into main memory at the location formed by the sum of remote offset

from the packet header and buffer base phys from the rslot�

��� if use msg size is set in the packet header� msg size from the packet header is stored into
the msg size in the rslot� also� msg size is added to bytes to go of the rslot�

��� if use msg offset is set in the packet header� offset from the packet header is stored into
the msg offset in the rslot�

�� bytes to go in the rslot is decremented by the incoming packet�s size and is written back
to the rslot� when it becomes zero� a complete message has arrived and noti�cation action
must be taken 	see Section ���
� bytes to go must be written back to the rslot even when
it goes to zero� This ensures that bytes to go has the proper initial value� zero� for the next
message�

�� Message Reception

When a complete message has arrived� the PPE is responsible for notifying the host� The noti�ca�
tion can involve one or both of the following actions�

�� If do acks is set in the rslot of the completed message� the PPE must enqueue the rslot

index onto the AQR�

�� If notify is set in the rslot� the PPE should form and post a noti�cation object�

��

struct notification �

short dst�slot�

struct �note�control �

unsigned

src�node ��
�

reserved � ��

	 control�

struct �

unsigned

reserved � ��

incarnation � ��

offset �
��

	 control��

struct �

unsigned

reserved � ��

meta�data � ��

meta�len � ��

msg�size �
��

	 control��

note�t � next�

unsigned metadata��� �� optional ��

	 �note�t�

Figure ��� The message reception noti�cation object structure�

The PPE posts a noti�cation using note index of the rslot� The speci�c structure of a message
reception noti�cation object is shown in Figure ��� The PPE should form the type�speci�c parts
of the noti�cation object as follows�

� the dst slot �eld can come from the last 	or any
 packet of the message�

� the msg offset and msg size must come from the rslot�

� The ack pkt bit in the noti�cation should be ��

��

� Reset and Initial State

When the kernel sets reset in the PCSR�� the PPE should initialize itself� Any internal copies of
control registers should be refreshed from the software visible registers� Internal state relating to
messages in progress� either incoming or outgoing� should be discarded� The queues of interrupt
tokens should be reset to an empty state� The status registers for all send descriptors should have
busy and stalled reset and done set� Only when all these actions are completed should the PPE
set ready in the PCSR�� Software will be responsible for reinitializing rslots and the noti�cation
list heads table�

� Faults

Whenever an error packet is detected� the PPE is expected to post a noti�cation� using zero 	�
 as
the note index� The packet should be discarded without further processing� The speci�c format
for an error packet noti�cation is shown in Figure ��� The PPE should form the type�speci�c parts
of the noti�cation object as follows�

�� error status � status bits set by the PPE to indicate the type of error�

�� dst node � for error packets� this may not be the local node and thus must be supplied in the
noti�cation�

� src node � used in error handling to return error messages to the sender�

The software is responsible for taking appropriate actions based on the kind of error the packet
represents�

��

struct notification �

short dst�slot�

struct �

invalid�rslot ���

rslot�range ���

bad�dst�node ���

bad�offset ���

bad�size ���

bad�hdr�chksum ���

bad�body�chksum ���

bad�incarnation ���

reserved ���

	 error�status�

unsigned filler�

short dst�node�

short src�node�

note�t � next�

unsigned metadata��� �� unused ��

	 �note�t�

Figure ��� The individual error noti�cation entry structure�

��

Structure Count�Entries Size Space

rslots ���� � �K

dio bufs �� ��� �K

noti�cation list heads table ���� � �K

PPE queues ��K

other �K

Total ��K

Figure �� Example partition of ��K of PPE resident memory�

A Appendixes

A�� On�board Memory

The provision of a modest amount of memory on�board the PPE appears to o�er noticeable per�
formance advantages� The advantages come from three sources�

�� reduced waiting by the PPE for GSC��host memory bus cycles�

�� reduced consumption of host memory bus cycles by the PPE�

� avoidance of cache interactions for structures shared by PPE and software�

Figure � is one possible partition of ��K of memory into pools�tables of structures described
in this document� The numbers in the �gure would be adequate for a cluster of modest size�
perhaps � or �� nodes� The allocations are also somewhat �exible� for example� the sizes of the
rslot table and noti�cation list heads table may� in practice� be modi�ed from those shown here�
dio bufs have not previously been discussed� they are part of an alternative approach to direct
output outlined in Section A����

A���� Rslots

The inclusion of rslots on the PPE simpli�es both the PPE and the software� The PPE would
otherwise be required to cache some rslots� this� in turn� would necessitate some mechanism to
allow the kernel to force the PPE to refresh its cache from host memory resident rslots� This also
simpli�es kernel software� since the kernel can write directly to the PPE�resident rslots without
concern for cache interactions� The frequency and scope of changes to rslots is such that the cost
of having to do single word writes to IO space should not be a problem� On the other hand� the
frequency with which the PPE must access rslots � one read of the entire structure and 	at least

one write� per packet received � is a powerful motivation for putting rslots on the PPE�

A���� Noti�cation List Heads

This table is primarily used by the PPE� after being initialized by the kernel� The PPE will read
and write the table on every message complete reception� The kernel will occasionally 	infrequently

��

change the token �eld of an entry� it should never need to read or write the head �eld after the
initialization phase�

A���� Bu�ered Direct Output

This may potentially result in greater latency for the direct output case� since the copy to PPE
memory and the injection of the packet are inherently serialized� We expect� however� that direct
output will be useful primarily for short messages 	in the range of � to � data cache lines
� so the
non�overlapped injection time should be insigni�cant and the bus cycles to write the data to the
PPE should remain constant 	as compared to the other direct output design
�

��

A�� Implementation Notes

This section describes the re�nements� compromises� and actual parameters used in the physical
realization of the PPE�

A���� Multicomputer Architecture

The PPE prototype was designed to interface HP��� workstations with a new interconnect fabric
from HP Labs called FedEx�

The HP��� o�ers a high�capacity� multi�mastered internal bus with an expansion slot�

The FedEx interconnect interface provides two bi�directional high�bandwidth I�O ports which
we use as dedicated one�way transmission and reception channels�

A���� PPE Functional Partitioning

This document was primarily partitioned into three main functional blocks for implementation
in three separate Actel Field Programmable Gate Arrays 	FPGAs
� The partitions are shown in
Figure ���

Descriptions for the main functional blocks can be found in

� Section � 	Message Transmission

� Section � 	Noti�cation

� Section � 	Message Reception

The other functional blocks include�

� Slipstream � another HP proprietary ASIC which implements the necessary HPPA functions
and protocols over the GSC� bus�

� Sender Dual�Port RAM � contains the Send Descriptors as well as DIO Bu�ers�

� Receiver Dual�Port RAM � contains the Rslots� the Noti�cation Table� and some scratch
pad locations for processing received packets�

� Sync FIFO � adds speed matching for the FedEx network� The CRC�� checksums are calcu�
lated in this block because the Actel FPGA used to implement the sender function was too
slow�

� RCV Pkt � deposits packets into the Receiver dual�port RAM to be copied into the host�s
main memory� The CRC�� checksums are checked in this block�

�

GSC+

Send Desc.

CRC16
Stream
Slip

Notify

Copy

Sender

RSlots
Note Tbl

DIO Buffer

(packetize)

(reassy)

Sync FIFO

RCV Pkt
(crc check)PPE

Dual-Port RAM

Dual-Port RAM

ExFed

Figure ��� The functional partitions

��

A���� The Implemented Register	Memory Interface

Because the Slipstream ASIC only passes � usable bits of address information to the PPE while
the PPE uses ��KB of on�board memory� we added some additional registers and pseudo�registers
to allow the kernel software to address the entire PPE memory�

The host accesses the PPE�s XMT RAM by writing a pointer in the PXR Ptr register 	at o�set
address �x���
� Once this pointer is set� there are three methods to access the XMT RAM�

� Static Address 	through PXR MEM at o�set �x���

� Auto�Increment 	through PXR MEM INC at o�set �x���
 for copying large blocks of contiguous
data�

� Paged Addresses 	at o�sets �x��� through �x�FC
 in which the PPE uses bits �� through
� 	of PXR Ptr
 as a page number and splices in the low byte of the address 	the o�set
 to
generate the e�ective address into the XMT RAM�

The RCV RAM works much the same way using registers PRR Ptr� PRR MEM� PRR MEM INC� and
addresses �x����xFC�

Because much of the kernel interaction will involve the maintenance of the send descriptors
we�ve nailed down a page in the XMT RAM exclusively for paged access to them through o�set
addresses �x�����x�FC�

��

���

�x��� �R�E�� � � � � � � � � ��incrntn� local�node�num � PCSR�

� ���

�x��� �R�H�L�I�E�F�� � � � � ��dsc�cnt�� � � � � � � � � � � � � � � �� PCSR�

� ���

�x��� �� � � � � � � � � � � � � � � ��Notification List Heads Reg�� �� NLHR

 ���

�x��� �� �� NQR

� ���

�x��� �� �� AQR

� ���

�x��C �� �� NBQR

� ���

�

���

�x��� �� � � � � � � � � � � � � � � �� � �� �� PXR�Ptr

�� ��� �Page

�x��� �� ��� �� PXR�MEM

�� ���

�x��� �� ��� �� PXR�MEM

�
 ��� �INC

�

���

�x��� �� � � � � � � � � � � � � � � �� � �� �� PRR�Ptr

� ��� �Page

�x��� �� ��� �� PRR�MEM

� ���

�x��� �� ��� �� PRR�MEM

 ��� �INC

�

���

�x��� �� �� Send

�� � Desc�s

�x�FC �� �� �x��

�F ���

�x
�� �� ��

�� � XMT�RAM

�x
FC �� ��

BF ���

�x��� �� ��

C� � RCV�RAM

�x�FC �� ��

FF ���

��

A���� PPE XMT RAM Memory Map

The PPE XMT RAM Map has been speci�ed as follows�

�x���� � �x���C Send Descriptor �

�x���� � �x���C Send Descriptor �

�x���� � �x��BC Send Descriptor

�x��C� � �x��FC Send Descriptor �

�x���� � �x�FFC DIO Buffers

Address Map�

� � � � � � � � � � � � � � � �

� � �
 � � � � � � � � �
 � �

���������������������������������

�� � � ��� � � ��� ��� � � ��� �� SD�

���������������������������������

�� � � ��� � � ��� ��� � � ��� �� SD�

���������������������������������

�� � � ��� � � ��� ��� � � ��� �� SD

���������������������������������

�� � � ��� � � ��� ��� � � ��� �� SD�

���������������������������������

��� else �� �� DIO Buffers

���������������������������������

��

A���� PPE RCV RAM Memory Map

The PPE RCV RAM Map has been speci�ed as follows�

�x���� � �xEFFC RSlots�NLHR �Note List Heads table�

�size to be configured by software�

�xF��� � �xF�FC NQR �
�� entries� message Notification Queue

�xF��� � �xF�FC AQR �
�� entries� message Acknowledgment Queue

�xF��� � �xFBFC NBQR �
�� entries� Notification Block Queue

�xFC�� � �xFF�C

�xFF�� � �xFFFC RCV�PKT

NOTE� The �xF��� registers have been reserved for use by the hardware�

Address Map�

� � � � � � � � � � � � � � � �

� � �
 � � � � � � � � �
 � �

���������������������������������

� dst�slot � off �� �� RSlots

���������������������������������

� NLHR � note�index � �� �� NLHR

���������������������������������

�� � � ��� �� �� �� NQR �
���

���������������������������������

�� � � ��� �� �� �� AQR �
���

���������������������������������

�� � � ��� �� �� �� NBQR �
���

���������������������������������

�

���������������������������������

�� � � ��� � � ��� � � � � ��� �� RCV�PKT�HEADER ���� words�

���������������������������������

�� � � ��� � � ��� � � � � ��� �� RCV�PKT�PAYLOAD �up to �
�

���������������������������������

��

A���
 Miscellaneous Packets

In order to handle non�data type incoming FedEx packets� we�ve agreed that after the packet has
been received in the RCV RAM packet bu�er� the PPE should�

� Post an Error Noti�cation 	which contains the packet type from the FedEx header
�

� Signal an interrupt through the SlipStream interface�

� Reset the PCSR��enable bit 	to prevent additional incoming packets from overwriting the
packet bu�er before the software processes it
�

The software will be able to �nd the non�data packet payload 	without the associated FedEx
header
 at RCV RAM locations �xFF�� �� �xFFFC� 	The header will be in the initial noti�cation�
and can be found at RCV RAM location �xFF��
�

A���� Send Descriptor note index Restriction

One �nal implementation compromise was made to accommodate the pinout limitations of the
chosen Actel FPGAs in the interface between the sender FPGA and the noti�cation FPGA� Since
there were only � otherwise unused pins between the FPGAs� only ��bit note indexes can be used�

Rslot note indexes are only limited by the size of the noti�cation table in the PPE�s RCV RAM�

��

