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Abstract

Fast and small squarers are needed in many applications such as image compression� A new family

of high performance parallel squarers based on the divide�and�conquer method is reported� Our

main result was realizing the basis cases of the divide�and�conquer recursion by using optimized

n�bit primitive squarers� where n is in the range of � to �� This method reduced the gate count and

provided shorter critical paths� A chip implementing an ��bit squarer was designed� fabricated and

successfully tested� resulting in �� MOPS using a ��� CMOS fabrication technology� This squarer

had two additional features� increased number of squaring operations per unit circuit area� and the

potential for reduced power consumption per squaring operation�

�



� Introduction

The need to square numbers arises in a large number of image processing algorithms� For example�
in many subband vector quantization systems �e�g� ����� the L��norm calculations in the vector
quantizer can involve the order of �		 million squaring operations per second �MOPS� to process
HDTV image data� Usually these L��norm calculations need to be done only on short words
 e�g�
	�� ���� or ���bits wide� Such short word sizes may allow parallel implementations of squarers with
O�n�� area requirements� where n represents the number of bits of an input data�

Dadda designed bit�serial parallel squarers ��� based on his conceptually parallel scheme shown
in Figure �� Figure � �b� illustrates that the required number of bit�products are only half when
reduced from a CSA array shown in Figure � �a�� Dadda implemented bit�serial version of the
scheme for general purpose squarers since area requirement grows fast with O�n��� In contrast to
Dadda�s design� the recent trend in the design of this class of circuits closely related to squarers �
namely multipliers � is to move away from bit�serial operations� and instead use parallel schemes
such as mutibit recording to improve computation speed� Sam et al� �
� showed that recoding over
a larger number of bits resulted in better computation speed� and suggested that ��bit recoding
is desirable since it strikes a good compromise between computation speed and circuit complexity�
In ��bit recoding� �ve rows of partial products are added at a time� thus reducing the number
of clock cycles to complete an operation to one��fth in comparison with its bit�serial version�
Meanwhile� what we consider to be short words� i�e� 	�bits� are only marginally above the ��bit
limit suggested by Sam et� al� Thus� implementing direct parallel squarers with short input words
is not unreasonable� In addition� the fact that the partial product array for a CSA squarer can be
folded also helps reduce the area�

a) A CSA squarer array b) Reduced CSA squarer array

represents free one bit by a hard wired shift
represents one bit partial product by AND 

Figure �
 CSA squarers

The main idea presented in this paper is that when the parallel scheme is directly implemented�
its CSA array can be reduced further by employing a divide�and�conquer technique� A new set
of parallel CSA�based squarers based on divide�and�conquer have resulted in less number of bit
products than in Dadda�s conceptually parallel scheme� This squarer needs fewer gates and has
shorter critical paths than in previously reported squarers�

� Divide�and�Conquer Squarer

A parallel squarer is simpler than a parallel multiplier owing to the fact that in squaring A �
an�� � � � a�� terms such as ai � aj � aj � ai arise� which can be reduced to � � �ai � aj� which is
�ai � aj� shifted left� as opposed to terms such as ai � bj � aj � bi that arise in multiplying A by
B � bn�� � � � b� which cannot be reduced� This saving is illustrated in Figure �� We now show that
a careful implementation of the circuits� designed by a divide�and�conquer scheme� can result in
additional circuit area�reductions and delay�reductions�
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In the following� we denote subvectors of A by Am�n for various m and n� and the individual
bits of A by ai� for various i� All of our discussions consider the problem of squaring an 	�bit vector
A� The �rst step of the divide�and�conquer recursion equation is
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In equation ���� we assume that A��� is a vector of bits � through � of A shifted four positions to
the left� �As will be clear from the following� such scalings by powers of two do not change our
algorithm�their only e�ect is to decide where A��� gets added in�� Equation ��� can be further
re�ned into the following
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All the equations have di�erent base cases
 ��bit squaring to ��bit� Figure � shows all three possible
designs� The question now is which of these equations represents a better hardware implementation�
A more general question is what grain size for the implementation to pick for these equations�

The following summarizes our observations


� Taking equation ��� as the basis for implementation� we need four two�bit squarer primitives�
two two�bit multipliers� and one four�bit multiplier� as illustrated in Figure � �b�� A two�bit
squarer converts �� �� �� or 
 to �� �� �� or �� respectively� Figure 
 �a� shows how to directly
achieve this e�ect� while Figure 
 �b� shows what would result if the two�bit squaring were
to be carried further down� to involve one�bit squarings and additions� Clearly� stopping the
divide�and�conquer recursion at the two�bit size seems to pay o�� This circuit shown in Figure
� �b� involves 
� and�gates� �� full�adders� and 	 half�adders� and involves a critical path of
� full�adder and � half�adder delays�

� Taking equation ��� as the basis for implementation results in the circuit of Figure � �a�� This
involves 
� and�gates� � exor�gates� �� full�adders� and 	 half�adders� and involves a critical
path of � full�adder and � half�adder delays� This shows an improvement over the case of
using equation ����

� Taking equation �
� results a direct realization of an 	�bit squarer
 Figure � �c� uses the
same scheme as in Figure � �b�� This would result in �	 and�gates� �� full�adders� and ��
half�adders� and have �� full�adder delays�

The above analysis shows that the optimum primitive squarer size is four bits for 	�bit squaring�
Another possible primitive squarer is a 
�bit squarer� which provides base case computation for
���bit squaring �which can be divided into two ��bit squaring� one of which can be divided into
two 
�bit squaring�� A 
�bit primitive squarer is as shown in Figure 
 �c� which has fewer gates
than the parallel version of Dadda�s scheme as shown in Figure 
 �d�� An optimized ��bit primitive
squarer was designed similarly by directly optimizing its logic� Theoretical limits of this approach
depends on the basic divide�and�conquer equation as

�number�� � �MSB number�� � �LSB number�� ���MSB number � LSB number��






The last term of this equation shows that the complexity of a squarer is bounded from below by
the size of a half�sized multiplier� Following section discusses implementation issues�

(a) with 4-bit primitive squarer

(c) with 1-bit primitive squarer

represents one bit 
partial product.

(b) with 2-bit primitive squarer

Figure �
 	�bit squarers

c) Minimized 3-bit squarer d) 3-bit squarer

(Output)

a) Minimized 2-bit squarer
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Figure 

 Primitive squarers

� Experiments and Additional Features

Figure � shows the parallel design of an 	�bit divide�and�conquer squarer based on equation ��� of
previous section� This design employs a carry save addition for the �rst stage and a ripple�carry
addition for the second stage �similar to that done in ��� which favored the addition with short
input words for their fast multipliers�� This achieves one squaring operation per clock cycle� The
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design was implemented in ��� CMOS using a design system known as ACME ���� Figure � also
shows the regularity �higher replication factor� in primitive squarer placement as shown in the top
row of bit�products� This leads us to believe that all members of the divide�and�conquer family
of squarers will have regular layouts� Its implementation including input�output pads is shown in
Figure �� This squarer chip was tested and operates at the maximum speed of �� MHz �MOPS�
and occupies area of ���mm � ��	mm �excluding extra latches for testability� which is 
�� of a
MOSIS �tiny� chip� Using this squarer� we have also built and tested a �di�erence�square�and�
accumulation� unit� the function of which arises during L� norm calculation� This unit operated
at �
 MOPS in ��� CMOS technology�

CSA Array

A Ripple-Carry Adder

(  8-bit Input )

(16-bit Output )

Latches

Figure �
 Design of an 	�bit squarer
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Figure �
 Implementation of the 	�bit squarer in a tiny chip frame

All squarers will� theoretically� have the same order of performance �Normalized�OPS to the

circuit area�
 O�n�� area using O��� time for ours versus O�n� area using O�n� time for Dadda�s
bit�serial design� But there is a signi�cant di�erence in the constant factor depending on its
implementation� Figure � shows a design of Dadda�s ��� �a bit�serial version� with 	�bit positive
integer inputs �the same input�size used in our parallel squarer design in Figure ��� Figure �
shows ��� that the area for latches and registers is relatively large in comparison to its area for

�



partial product generation and its addition and ��� that eight iterations are needed to complete an
operation� If� to make a comparison with the parallel version which does an operation per clock
cycle� we unroll the iteration structure of the bit�serial version to achieve an operation per clock
cycle� the resulting structure will still contain many latches and registers that take up a considerable
percentage of the overall area� In contrast to this� the parallel version includes only three latch
rows in addition to the CSA adder area� which is more compact than the above unrolled structure�
Meanwhile� the cycle times of both versions will be about the same since the critical path in the
bit�serial one is in the adders and that of the parallel one is in the ripple�carry adder� both of which
are about the same size and result in about the same speed� These area and cycle time arguments
conclude that the normalized�OPS to the circuit area of a parallel version with short input words
is higher than that of its serial version� In addition to this� the use of a smaller number of clock
cycles per operation has become important with the move into subhalf�micrometer fabrication ���
and higher clock speed exposing clock skew problems�

6-bit Register

7-bit Adder

8-bit Shift Register
bit-serial

6-bit Register output
partial products

serial input bit

latch

* 2-bit output per cycle
except first 3 cycles

* 8-bit output at the 8th cycle
including output from 6-bit register

input

Figure �
 Serial design of Dadda�s scheme

Power consumption per squaring operation can be approximated by the number of transitions

per operation based on the transition density ���� Assuming that the number of transitions due
to arithmetic calculations are the same for both versions� the trade�o�s between the two versions
are additional transitions caused by increased latching �for the bit�serial version� versus extra
transitions due to glitches occurring in the CSA array �for the parallel version�� The bit�serial
one will induce many transitions due to the eight latch and register activations� But the parallel
one will generate glitches during the simultaneous �ring of CSA adder activities at the �rst stage�
Fortunately� the parallel one has �ve rows of partial products� resulting in three serial adder rows�
When we use a tree topology� e�g� Wallace tree �	�� the logic depth of adders will be as low as
two� which will result in extremely low number of glitches per squaring operation� This transition
density argument illustrates the potential for lower power consumption per squaring operation of
our parallel version compared to a bit�serial version�

� Conclusions

To build fast and e�ective squarers especially for short input words� a new divide�and�conquer tech�
nique is applied to Dadda�s conceptually parallel scheme� An 	�bit parallel squarer implementing
a new method based on divide�and�conquer was developed and demonstrated� The squarer chip
fabricated in ��� CMOS operates at a maximum rate of �� million OPS� The regularity in placing
primitive squarers made VLSI layout easy�

�



This paper concludes that the new method is an e�ective approach for high performance squaring
applications such as L� norm calculations in very high rate of image processing� etc� The merits
of this method are
 ��� reduction of bit�products from Dadda�s parallel scheme� ��� reduced gate
count and shorter critical path than its parallel version� and �
� potentially less power per squaring
operation in comparison to its serial version�

We estimate that� although the area grows as O�n��� parallel implementations of squarers using
divide and conquer may be cost�e�ective up to ���bits with base cases of 
�bit� ��bit or ��bit
primitive squarers�
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