A Fast Parallel Squarer
Based on Divide-and-Conquer

Jae-tack Yoo, Kent F. Smith, Ganesh Gopalakrishnan

UUCS-95-011

Department of Computer Science
MEB 3190, University of Utah
Salt Lake City, UT. 84112

August 4, 1995

Abstract

Fast and small squarers are needed in many applications such as image compression. A new family
of high performance parallel squarers based on the divide-and-conquer method is reported. QOur
main result was realizing the basis cases of the divide-and-conquer recursion by using optimized
n-bit primitive squarers, where n is in the range of 2 to 6. This method reduced the gate count and
provided shorter critical paths. A chip implementing an 8-bit squarer was designed, fabricated and
successfully tested, resulting in 24 MOPS using a 2-up CMOS fabrication technology. This squarer
had two additional features: increased number of squaring operations per unit circuit area, and the
potential for reduced power consumption per squaring operation.

1 Introduction

The need to square numbers arises in a large number of image processing algorithms. For example,
in many subband vector quantization systems (e.g. [1]), the Ly-norm calculations in the vector
quantizer can involve the order of 288 million squaring operations per second (MOPS) to process
HDTYV image data. Usually these Ly-norm calculations need to be done only on short words: e.g.
8-, 12-, or 16-bits wide. Such short word sizes may allow parallel implementations of squarers with
O(n?) area requirements, where n represents the number of bits of an input data.

Dadda designed bit-serial parallel squarers [2] based on his conceptually parallel scheme shown
in Figure 1. Figure 1 (b) illustrates that the required number of bit-products are only half when
reduced from a CSA array shown in Figure 1 (a). Dadda implemented bit-serial version of the
scheme for general purpose squarers since area requirement grows fast with O(n?). In contrast to
Dadda’s design, the recent trend in the design of this class of circuits closely related to squarers -
namely multipliers - is to move away from bit-serial operations, and instead use parallel schemes
such as mutibit recording to improve computation speed. Sam et al. [3] showed that recoding over
a larger number of bits resulted in better computation speed, and suggested that 5-bit recoding
is desirable since it strikes a good compromise between computation speed and circuit complexity.
In 5-bit recoding, five rows of partial products are added at a time, thus reducing the number
of clock cycles to complete an operation to one-fifth in comparison with its bit-serial version.
Meanwhile, what we consider to be short words, i.e. 8-bits, are only marginally above the 5-bit
limit suggested by Sam et. al. Thus, implementing direct parallel squarers with short input words
is not unreasonable. In addition, the fact that the partial product array for a CSA squarer can be
folded also helps reduce the area.

o & 0 0 X o O o o X
o © 6 X o o o o X
o 6 X 0 O [X
e X © 0 o [] X
X © © o o X

a) A CSA squarer array b) Reduced CSA squarer array

@ represents one bit partial product by AND
X represents free one bit by a hard wired shift

Figure 1: CSA squarers

The main idea presented in this paper is that when the parallel scheme is directly implemented,
its CSA array can be reduced further by employing a divide-and-conquer technique. A new set
of parallel CSA-based squarers based on divide-and-conquer have resulted in less number of bit
products than in Dadda’s conceptually parallel scheme. This squarer needs fewer gates and has
shorter critical paths than in previously reported squarers.

2 Divide-and-Conquer Squarer

A parallel squarer is simpler than a parallel multiplier owing to the fact that in squaring A =
An—_1 ...ao, terms such as a; X a; + a; X a; arise, which can be reduced to 2 x (a; X a;) which is
(a; X a;) shifted left, as opposed to terms such as a; X b; + a; x b; that arise in multiplying A by
B =1b,_1...bg which cannot be reduced. This saving is illustrated in Figure 1. We now show that
a careful implementation of the circuits, designed by a divide-and-conquer scheme, can result in
additional circuit area-reductions and delay-reductions.

In the following, we denote subvectors of 4 by A,,_,, for various m and n, and the individual
bits of A by a;, for various ¢. All of our discussions consider the problem of squaring an 8-bit vector
A. The first step of the divide-and-conquer recursion equation is:

A%—O = (A7_4 + A3_0)2 = A%_4 + A%—O + 2(A7_4 X Ag_o) (1)

In equation (1), we assume that A7_4 is a vector of bits 7 through 4 of A shifted four positions to
the left. (As will be clear from the following, such scalings by powers of two do not change our
algorithm—their only effect is to decide where A;_4 gets added in.) Equation (1) can be further
refined into the following;:

AZ = AF g+ A2 4+ A5 5+ AT o+ 2(Ar6 X As_y +A3 9 X A1 o+ Ar_4 X A3 o) .. (2)

A2 j=a2+ a2+ ai+ai+ai+ad+ad +ak+2(ar X ag +as X ay +az X az + ay X ag)
—|—2(A7_6 X A5_4 —|—A3_2 X AI—O + A7_4 X Ag_o) (3)

All the equations have different base cases: 1-bit squaring to 4-bit. Figure 2 shows all three possible

designs. The question now is which of these equations represents a better hardware implementation.

A more general question is what grain size for the implementation to pick for these equations.
The following summarizes our observations:

e Taking equation (2) as the basis for implementation, we need four two-bit squarer primitives,
two two-bit multipliers, and one four-bit multiplier, as illustrated in Figure 2 (b). A two-bit
squarer converts 0, 1, 2, or 3 to 0, 1, 4, or 9, respectively. Figure 3 (a) shows how to directly
achieve this effect, while Figure 3 (b) shows what would result if the two-bit squaring were
to be carried further down, to involve one-bit squarings and additions. Clearly, stopping the
divide-and-conquer recursion at the two-bit size seems to pay off. This circuit shown in Figure
2 (b) involves 32 and-gates, 19 full-adders, and 8 half-adders, and involves a critical path of
7 full-adder and 5 half-adder delays.

e Taking equation (1) as the basis for implementation results in the circuit of Figure 2 (a). This
involves 30 and-gates, 4 exor-gates, 14 full-adders, and 8 half-adders, and involves a critical
path of 6 full-adder and 4 half-adder delays. This shows an improvement over the case of
using equation (2).

e Taking equation (3) results a direct realization of an 8-bit squarer: Figure 2 (c) uses the
same scheme as in Figure 1 (b). This would result in 28 and-gates, 21 full-adders, and 11
half-adders, and have 11 full-adder delays.

The above analysis shows that the optimum primitive squarer size is four bits for 8-bit squaring.
Another possible primitive squarer is a 3-bit squarer, which provides base case computation for
12-bit squaring (which can be divided into two 6-bit squaring, one of which can be divided into
two 3-bit squaring.) A 3-bit primitive squarer is as shown in Figure 3 (¢) which has fewer gates
than the parallel version of Dadda’s scheme as shown in Figure 3 (d). An optimized 4-bit primitive
squarer was designed similarly by directly optimizing its logic. Theoretical limits of this approach
depends on the basic divide-and-conquer equation as

(number)? = (MSB_number)? + (LS B_number)? +2(M S B_number x LSB_number).

The last term of this equation shows that the complexity of a squarer is bounded from below by
the size of a half-sized multiplier. Following section discusses implementation issues.

o0 0 00 o0 X
(a) with 4-bit primitive squarer

® represents one bit
partial product.

(b) with 2-bit primitive squarer

(c) with 1-bit primitive squarer

Figure 2: 8-bit squarers

(I nput) (Input)

0 (Qut put) (Qut put)
a) Mninmized 2-bit squarer b) 2-bit squarer
(I nput) (1nput)
0 0
(Qut put) (Qut put)
c) Mnimzed 3-bit squarer d) 3-bit squarer

Figure 3: Primitive squarers

3 Experiments and Additional Features

Figure 4 shows the parallel design of an 8-bit divide-and-conquer squarer based on equation (2) of
previous section. This design employs a carry save addition for the first stage and a ripple-carry
addition for the second stage (similar to that done in [4] which favored the addition with short
input words for their fast multipliers). This achieves one squaring operation per clock cycle. The

design was implemented in 2-pp CMOS using a design system known as ACME [5]. Figure 4 also
shows the regularity (higher replication factor) in primitive squarer placement as shown in the top
row of bit-products. This leads us to believe that all members of the divide-and-conquer family
of squarers will have regular layouts. Its implementation including input/output pads is shown in
Figure 5. This squarer chip was tested and operates at the maximum speed of 24 MHz (MOPS)
and occupies area of 1.4mm X 0.8mm (excluding extra latches for testability) which is 37% of a
MOSIS “tiny” chip. Using this squarer, we have also built and tested a “difference-square-and-
accumulation” unit, the function of which arises during Ly norm calculation. This unit operated
at 23 MOPS in 2-uy CMOS technology.

(8-bit Input)

N X e @
CSA Array : Latches

‘ A Ripple-Carry Adder ‘

(16-bit Output)

Figure 4: Design of an 8-bit squarer

Figure 5: Implementation of the 8-bit squarer in a tiny chip frame

J=)

All squarers will, theoretically, have the same order of performance (Normalized-OPS to the
circuit area): O(n?) area using O(1) time for ours versus O(n) area using O(n) time for Dadda’s
bit-serial design. But there is a significant difference in the constant factor depending on its
implementation. Figure 6 shows a design of Dadda’s [2] (a bit-serial version) with 8-bit positive
integer inputs (the same input-size used in our parallel squarer design in Figure 4). Figure 6
shows (1) that the area for latches and registers is relatively large in comparison to its area for

partial product generation and its addition and (2) that eight iterations are needed to complete an
operation. If, to make a comparison with the parallel version which does an operation per clock
cycle, we unroll the iteration structure of the bit-serial version to achieve an operation per clock
cycle, the resulting structure will still contain many latches and registers that take up a considerable
percentage of the overall area. In contrast to this, the parallel version includes only three latch
rows in addition to the CSA adder area, which is more compact than the above unrolled structure.
Meanwhile, the cycle times of both versions will be about the same since the critical path in the
bit-serial one is in the adders and that of the parallel one is in the ripple-carry adder, both of which
are about the same size and result in about the same speed. These area and cycle time arguments
conclude that the normalized-OPS to the circuit area of a parallel version with short input words
is higher than that of its serial version. In addition to this, the use of a smaller number of clock
cycles per operation has become important with the move into subhalf-micrometer fabrication [6]
and higher clock speed exposing clock skew problems.

bit-serial
input —J 8-bit Shift Register|

serial input brr‘*';/// ,
e -— partial products
~—— 6-hit Register output

IMCH\\ 7-bit Adder

\ 6-bit Reqister\

* 2-bit output per cycle
except first 3 cycles

* 8-bit output at the 8th cycle _
including output from6-bit register

Figure 6: Serial design of Dadda’s scheme

Power consumption per squaring operation can be approximated by the number of transitions
per operation based on the transition density [7]. Assuming that the number of transitions due
to arithmetic calculations are the same for both versions, the trade-offs between the two versions
are additional transitions caused by increased latching (for the bit-serial version) versus extra
transitions due to glitches occurring in the CSA array (for the parallel version). The bit-serial
one will induce many transitions due to the eight latch and register activations. But the parallel
one will generate glitches during the simultaneous firing of CSA adder activities at the first stage.
Fortunately, the parallel one has five rows of partial products, resulting in three serial adder rows.
When we use a tree topology, e.g. Wallace tree [8], the logic depth of adders will be as low as
two, which will result in extremely low number of glitches per squaring operation. This transition
density argument illustrates the potential for lower power consumption per squaring operation of
our parallel version compared to a bit-serial version.

4 Conclusions

To build fast and effective squarers especially for short input words, a new divide-and-conquer tech-
nique is applied to Dadda’s conceptually parallel scheme. An 8-bit parallel squarer implementing
a new method based on divide-and-conquer was developed and demonstrated. The squarer chip
fabricated in 2-u CMOS operates at a maximum rate of 24 million OPS. The regularity in placing
primitive squarers made VLSI layout easy.

This paper concludes that the new method is an effective approach for high performance squaring
applications such as L, norm calculations in very high rate of image processing, etc. The merits
of this method are: (1) reduction of bit-products from Dadda’s parallel scheme, (2) reduced gate
count and shorter critical path than its parallel version, and (3) potentially less power per squaring
operation in comparison to its serial version.

We estimate that, although the area grows as O(n?), parallel implementations of squarers using
divide and conquer may be cost-effective up to 16-bits with base cases of 3-bit, 4-bit or 6-bit
primitive squarers.

References

[1] R. Jain, A. Madisetti, and R. L. Baker, “An integrated circuit design for pruned tree-search
vector quantization encoding with an off-chip controller,” IEFF Trans. on Circuits and Systems
Jor Video Technology, Vol. 2, No. 2, June 1992.

[2] L. Dadda, “Squares for binary numbers in serial from,” IEEFE 11th Sym. on Computer Arith-
metic, 1985.

[3] H. Sam and A. Gupta, ”A generalized multibit recoding of two’s complement binary numbers
and its proof with application in multiplier implementations,” IFEFE Trans. on Computer, Vol.
39, No. 8, August 1990.

[4] A. Habibi and P. A. Wintz, “Fast multipliers,” IEEFE Trans. on Computers, Vol. C-19, February
1970.

[6] T. M. Carter, K. F. Smith, S. R. Jacobs, and R. M. Neff, “Cell matrix methodologies for
integrated circuit design,” Integration, The VLSI Journal, July, 1989.

[6] G. Tiwary, “Below the half-micrometer mark,” IEEE Spectrum, November, 1994
[7] F. Najm, “Transition density, a stochastic measure of activities in digital circuits,” DAC, 1991

[8] C.S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Comput., Feb. 1964.

