
Direct Deposit�
A Basic User�Level Protocol for Carpet Clusters �

Mark R� Swanson
Leigh B� Stoller

E�mail� �swanson�stoller��cs�utah�edu

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

January ��� ����

Abstract

This note describes the Direct Deposit Protocol 	DDP
� a simple protocol for multicomputing
on a carpet cluster� This protocol is an example of a user�level protocol to be layered on top of the
low�level� sender�based protocols for the Protocol Processing Engine� The protocol will be described
in terms of its system call interface and an operational decription�

�This work was supported by a grant from Hewlett�Packard� and by the Space and Naval Warfare Systems Command
�SPAWAR� and Advanced Research Projects Agency �ARPA�� Communication and Memory Architectures for Scalable
Parallel Computing� ARPA order �B��� under SPAWAR contract �N���������C���	


�



Contents

� Introduction �

� Concepts and De�nitions �

� System Call Interface �

��� ddserve�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddconn�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddclose�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddunserve�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddsend�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� ddsend with metadata�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� dddone�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddflush�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� ddrecv�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� ddcall�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddconninfo�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddpoll�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddalloc�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddpeek�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddready�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ddmynode�� and ddmaxnodes�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ddpacketsize�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� dderror�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Sample Program � ��

��� Echo Server � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Echo Client � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Sample Program � ��

��� Multiple�Service Server � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Multiple�Service Client � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



� Introduction

This note describes the Direct Deposit Protocol 	DDP
� a simple protocol for multicomputing on a
carpet cluster� This protocol is an example of a user�level protocol to be layered on top of low�level�
sender�based protocols 	SBP
 ���� Its salient feature is the ability to transmit message data directly
into a receiving process� address space with neither OS involvement nor memory�to�memory copies�
The particular SBP which DDP is being targetted at is implemented by a Protocol Processing Engine
DDP will be described in terms of its system call interface and an operational decription� including a
number of examples�

� Concepts and De�nitions

DDP is service and connection oriented� A process wishing to provide a service or� more generally� to
accept connections� registers a service with the kernel� The process registering the service provides a
name� speci�ed by a string� by which the service is known� Other processes may establish a connection
to the service named by that string� Communications can only occur via such connections� All
connections are bidirectional� since the participating processes are responsible for high�level �ow control�
Each bidirectional connection is comprised of two unidirectional channels�

A server may wish to accept more than one connection to a particular service� At registration� it
informs the kernel of the maximum number of connections to be allowed for the service�

A server may also register more than one service� Each registered service is associated by the kernel
with a unique service identi�er� referred to hereafter as a servid� which the kernel returns to the server
as a result of service registration�

Servers are normally not noti�ed directly of connections to their registered services� Each message
received by a process is accompanied by the identi�er of the connection it arrived on� This may be the
�rst indication to a server of the existence of a given connection� Alternatively� the server may discover
the existing connections by using a system call to obtain a list of the current connection identi�ers�

To allow servers to listen conveniently for incoming messages in the 	possible
 presence of multiple
services and multiple connections per service� a noti�cation list 	identi�ed by a noteid
 is associated
with each incoming connection� The same noti�cation list may be associated with several connections
and�or services� Note that a given noti�cation list belongs to a particular process� If the service
registration call does not specify a noti�cation list� the kernel allocates one and returns it�s identi�er
as one result of the registration� Noti�cation lists that become unreferenced are quietly deallocated�

At registration of a service� the process must also specify bu�er space for incoming messages and
for outgoing replies� as well as a size for each kind of bu�er� The amount of space must be su�cient to
support the speci�ed maximum number of connections� The bu�ers must be previously allocated� as
the registration process causes the physical memory for the bu�er space to be composed of contiguous
�wired� pages to allow messages to be copied directly into and out of the process� address space�

Connection to a service requires the name of the service and the logical node number on which it
can be found� Once again� bu�ers for incoming and outgoing messages� as well as their sizes� must be
provided� this bu�er space must also be previously allocated� as it too will be �wired��

Connections are typed� currently the two types are synchronous RPC and �split�phase� RPC�

�



Connection establishment returns a connection identi�er� hereafter referred to as a connid� which is
used to specify the connection to the kernel when a message is sent on it� A noteid is associated with
the return portion of the connection� For synchronous RPC connections� the kernel always generates
a new noti�cation list and does not return its noteid� For split�phase connections� the kernel will
generate a noteid if the process does not provide one 	from a previous connect call
�

Information about a connection is available via a system call� The information includes bu�er
addresses and sizes� including the size of the connection�s remote bu�er� Also provided� for fault
recovery purposes� are counts of incoming and outgoing messages for the connection� For access control
purposes� the connection information also includes the node number� process id� and user id of the
process holding the other end of the connection�

Generic send and receive system calls are provided for message transmission� Servers may use
these directly while �clients� of RPC�type services can use an RPC�like system call that combines the
semantics of send and receive� In addition� there is support for �split�phase� RPC� wherein the �client�
can send a message and return immediately� modulo bu�er management considerations� the client must
only determine that the message has been completely received before sending another message on the
connection� Explicit bu�er management and�or �ow control is the responsibility of the user for such
connections�

Many applications need to send information 	metadata
 about a message along with the actual data�
Since the goal of DDP is to deposit incoming messages directly in the locations where they will be
used� it is not always convenient or even possible to bundle the metadata in the message body� Hence�
varaints of the send and receive operations are provided that provide for transmitting modest amounts
of metadata� a separate source location is used for specifying the metadata to the send operation and
the receive operation allows speci�cation of a location for the metadata which is separate from the
message itself�

The name spaces for all of the identi�ers described in this section 	serviceid� noteid� and connid

are process speci�c� they only have meaning within the context of the owning process�

� System Call Interface

��� ddserve��

int

ddserve� char �name�

int flags�

int maxconn�

address�t recvbase�

size�t recvsize�

address�t replybase�

size�t replysize�

noteid�t �noteid�

servid�t �servid ��

ddserve registers a service with the given name� the kernel generates and returns� in the location
pointed to by �servid� a service identi�er which is used in future kernel�process interactions to specify

�



the service� The bu�er area for incoming requests is speci�ed in recvbase and it�s size by recvsize�
The bu�er area that the process will use to compose replies is speci�ed as replybase� and its size is
given in replysize� The kernel divides both of these areas into equal size blocks among the possible
maximum number of connections� Both bu�er areas must be allocated with ddalloc��� At the moment
there are no provisions for creating unique service names� so the user is responsible for ensuring that
name is not already in use on the node� The default value for flags is SERVE NOOPTS�

If flags contains SERVE NOTELIST� the kernel will associate the noti�cation object speci�ed in noteid

with the new service� This allows multiple servers to share a single noti�cation object 	see ddrecv��
�
Otherwise� the kernel will allocate and return� in noteid� the identi�er of a new noti�cation object�

If flags contains SERVE DOACCEPT� each new connection to the service will result in the allocation of
a new noti�cation object� such connections will be reported to the server 	on the original noti�cation
object
 as connection noti�cations� The program must then use the ddconninfo�� call to determine
the noteid of the new noti�cation object for the connection� This is similar in style to how the Unix
system call accept�� operates in that a single� master noteid 	�le descriptor for accept��
 is used to
accept new connections� while each new connection results in a new noteid 	again� �le descriptor
�

ddserve returns zero on success and �� otherwise�

ERRORS�

EBADID The noteid provided was not valid�
ENOCMP The kernel thread servicing DD requests is not running�

ENORESOURCE The kernel is unable to allocate some required data structure�

��� ddconn��

int

ddconn� char �name�

int node�

int type�

int flags�

address�t �sendbase�

size�t sendsize�

address�t �replybase�

size�t replysize�

connid�t �connid�

noteid�t �noteid ��

ddconn establishes the client side of a client�server connection by attempting to connect to a service
created with ddserve on logical node number node� name is the string associated with the service�
The kernel generates and returns� in the location pointed to by �connid� a connection identi�er which
is used in future kernel�process interactions 	such as sending a message
 to specify the connection� At
present� there is no name service available� so it is up to the user to keep track of name�node pairs� and
to ensure that the pairings are unique� The bu�er area for outgoing requests is speci�ed in sendbase

and it�s size by sendsize� The bu�er area that the process will use to receive replies is speci�ed as
replybase� and its size is given in replysize� Both bu�er areas must be allocated with ddalloc���

The type argument must be speci�ed as either TYPE RPC� TYPE SPLIT� or TYPE SSTREAM� If type is

�



TYPE RPC� an RPC style connection is established 	see ddcall��
 in which requests block until a reply
is received� A noti�cation object is not returned since there is no need to do a separate receive operation
on the connection� If type is TYPE SPLIT� a split�phase connection is established 	see ddsend�� and
ddrecv��
 in which requests return immediately� and replies must be explicitly requested from the
system� An example of a split�phase client and server follows in Section ��

If the type is TYPE SPLIT� a split�phase connection is established in which link level acknowledgements
are generated each time a message is completely received� These acknowledgements indicate only that
the message arrived and was placed in the target address space� not that the receiver has processed the
message� For that information� a program level reply is still required� Since user level replies are not
required for each message� it is up to the user to ensure that target bu�ers are not overwritten before
they are consumed by the receiver� If the sending process attempts to send a message before the link
level acknowledgement has been received for the previous message� an error is returned�

If flags contains CONN NOTELIST� and the type is TYPE SPLIT� the kernel will associate the noti�cation
object speci�ed in �noteid with the new connection� This allows multiple split�phase connections to
share a single noti�cation object 	see ddrecv��
� Otherwise� the kernel will allocate and return� in
�noteid� the identi�er of a new noti�cation object�

ddconn returns zero on success and �� otherwise�

ERRORS�

EBADID The noteid provided was not valid�
EBADSERVER The service name was not registered on the node speci�ed�

ENOCMP The kernel thread servicing DD requests is not running�
ENORESOURCE The kernel is unable to allocate some required data structure�

��� ddclose��

int

ddclose� connid�t connid ��

ddclose terminates the connection speci�ed by connid� freeing any kernel resources associated with
it� ddclose can be applied to either the client or the server side of a connection� The �other� end of
of the connection is closed as well�

ddclose returns zero on success and �� otherwise�

ERRORS�

EBADID The connid provided was not valid�

��� ddunserve��

int

ddunserve� servid�t servid ��

ddunserve terminates a server established with ddserve� freeing any kernel resources�except for the
bu�ers� associated with it� All existing connections to the server are terminated� The client side of

�



established connections are marked as closed� and subsequent use of those connections results in an
error being returned to the client�

ddunserve returns zero on success and �� otherwise�

ERRORS�

EBADID The servid provided was not valid�

��� ddsend��

int

ddsend� connid�t connid�

address�t addr�

size�t len�

offset�t roffset�

option�t options ��

ddsend sends a message on the connection referred to by connid� The message begins at addr and
is len bytes in length� The message is deposited at roffset bytes into the destination bu�er� The
default value for options is SEND NOOPTS� ddsend returns immediately� possibly before the message has
been completely sent� The process must be careful not to alter the message bu�er until the message
transmission is known to have completed� as data corruption could otherwise occur� The dddone system
call should be used to determine when the message has been completely sent� and the bu�er can safely
be reused�

The connection cannot be of type TYPE RPC 	see ddconn
 since that implies synchronous RPC operation�
If the connection type is of TYPE SPLIT� the program must follow a request�response model� That
is� only � request can be outstanding at a time� the process must consume the reply 	via ddrecv

before the next request can be sent� Communication can be overlapped with computation by delaying
consumption of the reply until another message is ready to be sent on the connection�

If the connection type is of TYPE STREAM� then multiple message can be sent on a connection without
waiting for program level replies 	see ddrecv
� This allows greater overlap of communication with
computation� and avoids unnecessary synchronization� The program must be careful to avoid overwrit�
ting the target bu�er before it has been consumed by the receiver� Although program level replies are
required for each send� it is often the case that some number of replies will be necessary in order for
the sender and receiver to agree on how much data has been exhanged� and consumed�

If options includes SEND BLOCK� ddsend does not return until the message has been completely sent�
At this point� the bu�er can safely be reused to compose a new message�

If options includes SEND UNWIRED� ddsend forces the data to be sent by the CPU� Instead of sending
the data using a DMA transfer� the message data is written directly by the CPU� This option is helpful
when the program cannot easily arrange for message data to be within a wired bu�er�

If options includes SEND DMA� ddsend forces the data to be sent using a DMA transfer� The data must
reside in a wired down bu�er 	see ddalloc��
�

that the message bu�er provided is not within the preallocated message area� and is thus unwired�
Instead of sending the data using a DMA transfer� the message data is written directly by the CPU�





This option is helpful when the program cannot easily arrange for message data to be within a wired
bu�er�

ddsend returns zero on success and �� otherwise�

ERRORS�

EBADID The connid provided was not valid�
ECONNCLOSE The connection is no longer valid since the other side has been closed�
ESLOTBUSY A request is still outstanding� the reply has not been consumed�
EBADTYPE The connid refers to a connection that has a type of TYPE RPC�
EBADRANGE The message is not contained within the bu�er that was speci�ed with ddserve or

ddconn�
ENOTREADY An attempt was made to send before the link level acknowledgement was received

	TYPE STREAM
�

��� ddsend with metadata��

int

ddsend�with�metadata� connid�t connid�

address�t addr�

size�t size�

offset�t roffset�

option�t options�

address�t metap�

size�t metacount ��

ddsend with metadata is identical to ddsend� with the exception that data pointed to by metap is
transmitted along with the normal message payload� This data appears in the receiver�s noti�cation�
metacount speci�es the number of 	� byte
 words of metadata to be sent� it is currently limited to ��

��� dddone��

int

dddone� connid�t connid�

int flags ��

dddone is used to determine when the last message sent on connid has been completely sent� and
the corresponding data bu�er can safely be reused� dddone is normally used in conjunction with
ddsend async to ensure that the data bu�er is ready for reuse� By default� dddone returns a status
value immediately� If options includes SDONE SLEEP� and the message has not been completely sent�
dddone will block in the kernel until the message has been completely sent�

dddone returns �� on error� � is returned when the message has been completely sent� and � otherwise�

ERRORS�

EBADID The connid provided was not valid�
EINVAL Improper options were speci�ed�

�



��� ddflush��

int

ddflush� address�t addr�

size�t len ��

ddflush is used to maintain consistency between cache and main memory� Systems that possess
coherent IO subsystems may need to take no action at all to maintain this coherence� while others will
need to explicitly �ush the address range from the cache�

ddflush should be used to �ush a receive bu�er after the program has consumed the data within it
and before the program informs the sender that the bu�er can be reused� so that subsequent messages
sent to the bu�er will not be shadowed by any residual cache contents�

ddflush always returns ��

��	 ddrecv��

int

ddrecv� noteid�t noteid�

ddrecv�desc�t recvblk�

option�t options�

timeout�t timeout ��

typedef struct �

address�t msgaddr�

int msgsize�

connid�t connid�

servid�t servid�

unsigned metad��	�

int metacount�


 ddrecv�desc�t�

ddrecv consumes the next available incoming message for any of the connections associated with
noteid� The second argument� a a pointer to a ddrecv desc t structure� is used to collect various
return values� �servid is set to the unique service identi�er associated with the connection 	this value
is generally only meaningful for the server side of connections
� �msg is set to the byte address of the
start of the message� and �length is set to the number of bytes in the message� The default value
for options is RECV SPIN� which causes ddrecv to spin in the kernel� waiting for a noti�cation to be
posted� The process may be context switched by the kernel as appropriate� but is otherwise capable
of receiving a message as soon as it arrives� without any kernel intervention� This is in contrast to
specifying RECV SLEEP� which causes the process to sleep in the kernel until a noti�cation is posted�
The RECV SPIN option� while resulting in faster noti�cations� is only appropriate for single�application
or lightly loaded systems� due to its potential for consuming CPU resources�

If options includes RECV NOBLOCK� ddrecv always returns immediately� If a message is not pending�
ddrecv returns ��� and the global variable errno is set to EWOULDBLOCK�

If options includes RECV TIMEOUT� ddrecv� will block for the amount of time speci�ed by timeout�

�



The kernel expects timeout to be in the format timeout � SBP HZ� Note� The value of SBP HZ is equal
to the system clock rate� ��� ticks per second in HPUX and BSD����

If the incoming message contains metadata� it is returned in the unsigned metad array� and the count
of 	� byte
 words of metadata is placed in metacount� The current implementation limits the amount
of metadata to � words� If the incoming message does not contain metadata� metacount is set to zero�
and the metad array is left untouched�

ddrecv returns �� on error� and � otherwise�

ERRORS�

EBADID The noteid provided was invalid�
EINVAL Improper options were speci�ed�

EWOULDBLOCK RECV NOBLOCK was speci�ed� and no message is pending�

���
 ddcall��

int

ddcall� connid�t connid�

address�t saddr�

size�t ssize�

address�t �repaddr�

size�t �repsize�

option�t options�

timeout�t timeout ��

ddcall combines the send and receive operations into a single� synchronous operation on the connection
referred to by connid� The request message begins at saddr� and is ssize bytes in length� Unlike
ddsend� the request message is always placed at the beginning of the receive bu�er on the target
processor� ddcall then blocks until a reply message is received� at which time� �repaddr is set to the
byte address of the start of the reply message� and �repsize is set to the number of bytes in the reply
message� ddcall thus implements a form of remote procedure call�

If options includes RECV TIMEOUT� ddcall� will block waiting for a reply for the amount of time
speci�ed by timeout� The kernel expects timeout to be in the format timeout � SBP HZ� At the end
of the timeout� ddcall will return ��� and the global value errno will be set to ETIMEDOUT� It is up to
the application program to recover from this error�

ddcall returns �� on error� and � otherwise�

ERRORS�

EBADID The connid provided was invalid�
EINVAL Improper options were speci�ed�

ECONNCLOSE The connection is no longer valid since the other side has been closed�
EBADTYPE The connid refers to a connection that does not have a type of TYPE RPC�
EBADRANGE The message is not contained within the bu�er that was speci�ed with ddconn�
ETIMEDOUT Options included RECV TIMEOUT� and the timeout expired�

��



typedef struct conninfo �

int node�

noteid�t noteid�

address�t sendbase�

size�t sendsize�

address�t recvbase�

size�t recvsize�

int msgid�send�

int msgid�recv�


 conninfo�t�

Figure �� conninfo t data structure�

���� ddconninfo��

int

ddconninfo� connid�t connid�

conninfo�t �conninfo ��

ddconninfo returns information about connid� �conninfo should point to the address of a conninfo t

structure	see Figure �
� and is de�ned below� The ddconninfo call is most useful when used in
conjunction with ddserv to determine the addresses at which bu�ers have been placed for each new
connection	see example code in Section �
�

node The logical node number of the processor the connection is established with�
noteid The noti�cation object for receiving messages�

sendbase The starting address of the outgoing message bu�er�
sendsize The size of the outgoing message bu�er�
recvbase The starting address of the incoming message bu�er�
recvsize The size of the incoming message bu�er�

msgid send The total number of messages sent�
msgid recv The total number of messages received�

ddconninfo returns �� on error� and � otherwise�

ERRORS�

EBADID The connid provided is invalid�
EINVAL �conninfo is an invalid pointer�

���� ddpoll��

int

ddpoll� int count�

noteid�t �notelist�

timeval�t �timeout ��

ddpoll examines each of the noteids contained in the vector pointed to by �notelist to see if any of

��



them have unconsumed messages pending� count is the number noteids contained in notelist� On
return� ddpoll replaces the contents of �notelist with the subset of noteids that have unconsumed
messages pending� ddpoll returns the number of ready noteids contained in the new set�

If timeout is a non�NULL pointer� it speci�es a maximum interval to wait for the ddpoll operation
to complete� If timeout is a NULL pointer� ddpoll blocks inde�nitely� To a�ect a poll� the timeout
argument should be non�NULL� pointing to a zero�valued timeval structure�

ddpoll returns �� on error� Otherwise� the number of noteids with unconsumed messages is returned�

ERRORS�

EBADID One of the noteids provided is invalid�
EINVAL �timeout or �notelist is an invalid pointer�

���� ddalloc��

address�t

ddalloc� size�t size ��

ddalloc allocates a new memory region for use with either ddconn or ddserve� The region is size

bytes in length� Memory allocated with ddalloc is special in that the kernel will permanently wire the
memory down so that DMA operation to and from the region will work properly� The memory region
returned by ddalloc is always aligned on a ��� byte boundry�

ddalloc returns the starting address of the new memory region� If the memory cannot be allocated�
NULL is returned�

���� ddpeek��

int

ddpeek� noteid�t noteid�

size�t �length�

connid�t �connid ��

ddpeek is used to determine if there are any unconsumed incoming messages on noteid� For the �rst
unconsumed message� �connid is set to the connection identi�er of the message� and �length is set to
the number of bytes contained in the message� If there are no unconsumed messages� �connid is set
to ��� and length is set to �� Should this be encoded in the return value instead�

ddpeek returns �� on error� and � otherwise�

ERRORS�

EBADID The noteid provided was invalid�

���� ddready��

int

ddready� noteid�t noteid ��

��



ddready is used to determine if there are any unconsumed incoming messages on noteid�

ddready returns �� on error� � if the noteid has an unconsumed message pending� and � if there are no
unconsumed messages pending�

ERRORS�

EBADID The noteid provided was invalid�

���� ddmynode�� and ddmaxnodes��

int

ddmynode� void ��

ddmynode returns the logical node number of the current procesor� The node number is a integer value
between � 	inclusive
 and the value returned by ddmaxnodes 	non�inclusive
�

int

ddmaxnodes� void ��

ddmaxnodes returns the total number of processors in the system� as determined by the kernel at boot
time�

���� ddpacketsize��

int

ddpacketsize� void ��

ddpacketsize returns the maximum packet size supported by the interface and interconnect fabric�

���� dderror��

void

dderror� char �string� ��� ��

dderror �nds the error message corresponding to the current value of the global variable errno�
and writes a desciptive message to stderr� The argument string should be a format string� followed
by optional arguments� The resulting message is prepended to the system message� dderror is similar
in operation to the C library function perror� but works with SBP error values as well as system error
values�

� Sample Program �

The �rst sample program is a simple �echo� client and server in which the server responds to messages
from its clients by returning the data it receives�

��



��� Echo Server

The main lines of a very simple server program is presented in Figure � � Initially� a service with the
name �foobar� is registered� It is capable of concurrently supporting two connections and has incoming
and outgoing bu�er space of ���� bytes� Each connection will� therefore� be allocated bu�er space of
���� bytes in each direction� Next� the server simply loops� receiving a message� copying it to the
appropriate reply bu�er� and sending it back to the caller� The server must discover the address of the
reply bu�er associated with the connection that the request message arrived upon in order to copy the
data into it�

��� Echo Client

Correspondingly� a very simple client of the echo server is presented in Figure �� First� it connects
to the echo server 	which it knows is on node �
� Note that it passes NULL in place of the noteid

parameter� since the noti�cation list for a TYPE RPC connection is always anonymous� it sends a ���
byte �request�� which the server simply returns� ddcall waits for the reply� enforcing a synchronous
form of RPC� The client then exits�

� Sample Program �

Sample program two is an exmample of a multiple�service server and client� and demontrates the use
of split�phase connections�

��� Multiple�Service Server

A server program that o�ers two services is shown in Figure �� Note that in registering the second
service� the noteid value provided is the one returned from the registration of the �rst service� This
allows the server to use a single ddrecv call to listen for requests to either service� In order to
di�erentiate between requests� which can be for either service� it remembers the serviceid�s returned
at registration� ddrecv passes back the serviceid with which the incoming message is associated and
the server uses this to pick the right action�

��� Multiple�Service Client

Here� a split�phase client of the echo server is presented in Figure �� In connecting to the echo service�
it provides a pointer to a null noti�cation� which the kernel will replace� In connecting to the reverse
service� it passes this noteid� so that it can listen for respones from either service with a single ddrecv
call� It sends a message to each of the services� performs some other task and eventually uses ddrecv
to read a response� The serviceid parameter is not meaningful in this context� so the client supplies
a null pointer� It uses the value returned in conn to determine which service the response is from�

��



�include fedex�h

main��

�

noteid�t noteid�

address�t foo� bar�

servid�t thisserv�

ddrecv�desc�t frd�

conninfo�t finfo�

��

� Establish a server�

��

foo � ddalloc��x������

bar � ddalloc��x������

if �ddserve�echo� SERVE�NOOPTS� �� foo� �x�����

bar� �x����� �noteid� �thisserv� � �� �

dderror�ddserve��

exit����




for ���� �

if �ddrecv�noteid� �frd� RECV�SLEEP� NULL� � �� �

dderror�ddrecv��

exit����




if �ddconninfo�frd�connid� �finfo� � �� �

dderror�ddconninfo��

exit����




bcopy�frd�msgaddr� finfo�sendbase� frd�msgsize��

if �ddsend�frd�connid� finfo�sendbase� frd�msgsize�

�� SEND�NOOPTS� � �� �

dderror�ddsend��

exit���










Figure �� Echo server program�

��



�include fedex�h

main��

�

int i�

address�t foo� bar� msg�

connid�t connid�

size�t size�

��

� Establish a connection to a server�

��

foo � �addr�t�ddalloc��x������

bar � �addr�t�ddalloc��x������

if �ddconn�echo� �� TYPE�RPC� CONN�NOOPTS�

foo� �x����� bar� �x����� �connid� NULL� � �� �

dderror�ddconnect��

exit����




��

� Fill in the message contents�

��

for �i � �� i � ��� i���

foo�i	 � i�

��

� Do an RPC�

��

if �ddcall�connid� �� ���� �msg� �size� � �� �

dderror�ddcall��

exit����







Figure �� A simple client program�

��



main��

�

noteid�t noteid � ��

address�t foo� bar�

servid�t echoid� reverseid�

ddrecv�desc�t frd�

conninfo�t finfo�

foo � ddalloc��x������

bar � ddalloc��x������

if �ddserve�echo� SERVE�NOOPTS� ��

foo� �x����� bar� �x����� �noteid� �echoid� � �� �

dderror�ddserve��

exit����




foo � ddalloc��x������

bar � ddalloc��x������

if �ddserve�reverse� SERVE�NOOPTS� ��

foo� �x����� bar� �x����� �noteid� �reverseid� � �� �

dderror�ddserve��

exit����




for ���� �

if �ddrecv�noteid� �frd� RECV�SLEEP� NULL� � �� �

dderror�ddrecv��

exit����




if �ddconninfo�frd�connid� �finfo� � �� �

dderror�ddconninfo�� exit����




if �frd�servid �� echoid�

bcopy�frd�msgaddr� finfo�sendbase� frd�msgsize��

else

reverse�frd�msgaddr� finfo�sendbase� frd�msgsize��

if �ddsend�frd�connid� finfo�sendbase� frd�msgsize�

�� SEND�NOOPTS� � �� �

dderror�ddsend��

exit����










Figure �� Multiple�Service server program�

�



main��

�

int i�

address�t req�� req�� resp�� resp��

connid�t connid�� connid��

ddrecv�desc�t frd�

noteid�t noteid � ��

req� � ddalloc��x������

resp� � ddalloc��x������

if �ddconn�echo� �� TYPE�SPLIT� CONN�NOOPTS�

req�� �x����� resp�� �x����� �connid�� �noteid� � �� �

dderror�ddconn��




req� � ddalloc��x������

resp� � ddalloc��x������

if �ddconn�reverse� �� TYPE�SPLIT� CONN�NOOPTS�

req�� �x����� resp�� �x����� �connid�� �noteid� � �� �

dderror�ddconn��




for �i � �� i � ��� i���

req��i	 � � req��i	 � i�

if �ddsend�connid�� req�� ���� �� SEND�NOOPTS� � ��

dderror�ddsend��




if �ddsend�connid�� req�� ���� �� SEND�NOOPTS� � ��

dderror�ddsend��


do�something�else���

if �ddrecv�noteid� �frd� RECV�SLEEP� NULL� � �� �

dderror�ddsend��




if �frd�connid �� connid��

process�echo�response���

else

process�reverse�response���




Figure �� Multiple�Service client program�

��



References

��� Wilkes� J� Hamlyn � an interface for sender�based communication� Tech� Rep� HPL�OSR�������
Hewlett�Packard Research Laboratory� Nov� �����

��


