Direct Deposit:
A Basic User-Level Protocol for Carpet Clusters !

Mark R. Swanson
Leigh B. Stoller

E-mail: {swanson stoller}@cs.utah.edu
UUCS-95-003

Department of Computer Science
University of Utah
Salt Lake City, UT 84112, USA

January 23, 1996

Abstract

This note describes the Direct Deposit Protocol (DDP), a simple protocol for multicomputing
on a carpet cluster. This protocol is an example of a user-level protocol to be layered on top of the
low-level, sender-based protocols for the Protocol Processing Engine. The protocol will be described
in terms of its system call interface and an operational decription.

'This work was supported by a grant from Hewlett-Packard, and by the Space and Naval Warfare Systems Command
(SPAWAR) and Advanced Research Projects Agency (ARPA), Communication and Memory Architectures for Scalable
Parallel Computing, ARPA order #B990 under SPAWAR contract #N00039-95-C-0018

Contents

1 Introduction

2 Concepts and Definitions

3 System Call Interface
3.1 ddserve() e
3.2 ddconn() e
3.3 ddclose() L e
3.4 ddunserve() e
3.0 ddsend() ... e
3.6 ddsendwithmetadata() e
3.7 dddone() e
3.8 ddflush() e e e e e e e
3.9 ddrecv() . .. e
3.10 ddcall() . . . o
3.11 ddconninfo() L L e e e
312 ddpoll() . . o e
3.13 ddalloc() . . . o v o e
3.14 ddpeek() . . . e
3.15 ddready () e e e
3.16 ddmynode() and ddmaxnodes()o e
3.17 ddpacketsize() e

3.18 dderror() e e e

4 Sample Program 1
4.1 Echo Server e e e e
4.2 Echo Client e e

5 Sample Program 2
5.1 Multiple-Service Server L L e e e e e e e
5.2 Multiple-Service Client L L e e

10
11
11
12
12
12
13
13
13

13
14
14

1 Introduction

This note describes the Direct Deposit Protocol (DDP), a simple protocol for multicomputing on a
carpet cluster. This protocol is an example of a user-level protocol to be layered on top of low-level,
sender-based protocols (SBP) [1]. Its salient feature is the ability to transmit message data directly
into a receiving process’ address space with neither OS involvement nor memory-to-memory copies.
The particular SBP which DDP is being targetted at is implemented by a Protocol Processing FEngine
DDP will be described in terms of its system call interface and an operational decription, including a
number of examples.

2 Concepts and Definitions

DDP is service and connection oriented. A process wishing to provide a service or, more generally, to
accept connections, registers a service with the kernel. The process registering the service provides a
name, specified by a string, by which the service is known. Other processes may establish a connection
to the service named by that string. Communications can only occur via such connections. All
connections are bidirectional, since the participating processes are responsible for high-level flow control.
Each bidirectional connection is comprised of two unidirectional channels.

A server may wish to accept more than one connection to a particular service. At registration, it
informs the kernel of the maximum number of connections to be allowed for the service.

A server may also register more than one service. Each registered service is associated by the kernel
with a unique service identifier, referred to hereafter as a servid, which the kernel returns to the server
as a result of service registration.

Servers are normally not notified directly of connections to their registered services. Fach message
received by a process is accompanied by the identifier of the connection it arrived on. This may be the
first indication to a server of the existence of a given connection. Alternatively, the server may discover
the existing connections by using a system call to obtain a list of the current connection identifiers.

To allow servers to listen conveniently for incoming messages in the (possible) presence of multiple
services and multiple connections per service, a notification list (identified by a noteid) is associated
with each incoming connection. The same notification list may be associated with several connections
and/or services. Note that a given notification list belongs to a particular process. If the service
registration call does not specify a notification list, the kernel allocates one and returns it’s identifier
as one result of the registration. Notification lists that become unreferenced are quietly deallocated.

At registration of a service, the process must also specify buffer space for incoming messages and
for outgoing replies, as well as a size for each kind of buffer. The amount of space must be sufficient to
support the specified maximum number of connections. The buffers must be previously allocated, as
the registration process causes the physical memory for the buffer space to be composed of contiguous
“wired” pages to allow messages to be copied directly into and out of the process’” address space.

Connection to a service requires the name of the service and the logical node number on which it
can be found. Once again, buffers for incoming and outgoing messages, as well as their sizes, must be
provided; this buffer space must also be previously allocated, as it too will be “wired”.

Connections are typed; currently the two types are synchronous RPC and “split-phase” RPC.

Connection establishment returns a connection identifier, hereafter referred to as a connid, which is
used to specify the connection to the kernel when a message is sent on it. A noteid is associated with
the return portion of the connection. For synchronous RPC connections, the kernel always generates
a new notification list and does not return its noteid. For split-phase connections, the kernel will
generate a noteid if the process does not provide one (from a previous connect call).

Information about a connection is available via a system call. The information includes buffer
addresses and sizes, including the size of the connection’s remote buffer. Also provided, for fault
recovery purposes, are counts of incoming and outgoing messages for the connection. For access control
purposes, the connection information also includes the node number, process id, and user id of the
process holding the other end of the connection.

Generic send and receive system calls are provided for message transmission. Servers may use
these directly while “clients” of RPC-type services can use an RPC-like system call that combines the
semantics of send and receive. In addition, there is support for “split-phase” RPC, wherein the “client”
can send a message and return immediately; modulo buffer management considerations, the client must
only determine that the message has been completely received before sending another message on the
connection. Explicit buffer management and/or flow control is the responsibility of the user for such
connections.

Many applications need to send information (metadata) about a message along with the actual data.
Since the goal of DDP is to deposit incoming messages directly in the locations where they will be
used, it is not always convenient or even possible to bundle the metadata in the message body. Hence,
varaints of the send and receive operations are provided that provide for transmitting modest amounts
of metadata: a separate source location is used for specifying the metadata to the send operation and
the receive operation allows specification of a location for the metadata which is separate from the
message itself.

The name spaces for all of the identifiers described in this section (serviceid, noteid, and connid)
are process specific; they only have meaning within the context of the owning process.

3 System Call Interface

3.1 ddserve()

int

ddserve(char *name,
int flags,
int maxconn,
address_t recvbase,
size_t recvsize,
address_t replybase,
size_t replysize,

noteid_t *noteid,
servid_t *servid);

ddserve registers a service with the given name; the kernel generates and returns, in the location
pointed to by *servid, a service identifier which is used in future kernel-process interactions to specify

the service. The buffer area for incoming requests is specified in recvbase and it’s size by recvsize.
The buffer area that the process will use to compose replies is specified as replybase, and its size is
given in replysize. The kernel divides both of these areas into equal size blocks among the possible
maximum number of connections. Both buffer areas must be allocated with ddalloc(). At the moment
there are no provisions for creating unique service names, so the user is responsible for ensuring that
name is not already in use on the node. The default value for flags is SERVE_NOOPTS.

If flags contains SERVE_NOTELIST, the kernel will associate the notification object specified in noteid
with the new service. This allows multiple servers to share a single notification object (see ddrecv()).
Otherwise, the kernel will allocate and return, in noteid, the identifier of a new notification object.

If flags contains SERVE DOACCEPT, each new connection to the service will result in the allocation of
a new notification object; such connections will be reported to the server (on the original notification
object) as connection notifications. The program must then use the ddconninfo() call to determine
the noteid of the new notification object for the connection. This is similar in style to how the Unix
system call accept() operates in that a single, master noteid (file descriptor for accept()) is used to
accept new connections, while each new connection results in a new noteid (again, file descriptor).

ddserve returns zero on success and -1 otherwise.
ERRORS:

EBADID The noteid provided was not valid.
ENOCMP The kernel thread servicing DD requests is not running.
ENORESOURCE The kernel is unable to allocate some required data structure.

3.2 ddconn()

int

ddconn(char *name,
int node,
int type,
int flags,

address_t *sendbase,
size_t sendsize,
address_t *replybase,
size_t replysize,
connid_t *connid,
noteid_t *noteid);

ddconn establishes the client side of a client-server connection by attempting to connect to a service
created with ddserve on logical node number node. name is the string associated with the service.
The kernel generates and returns, in the location pointed to by *connid, a connection identifier which
is used in future kernel-process interactions (such as sending a message) to specify the connection. At
present, there is no name service available, so it is up to the user to keep track of name,node pairs, and
to ensure that the pairings are unique. The buffer area for outgoing requests is specified in sendbase
and it’s size by sendsize. The buffer area that the process will use to receive replies is specified as
replybase, and its size is given in replysize. Both buffer areas must be allocated with ddalloc().

The type argument must be specified as either TYPE RPC, TYPE SPLIT, or TYPE_SSTREAM. If type is

TYPE_RPC, an RPC style connection is established (see ddcall()) in which requests block until a reply
is received. A notification object is not returned since there is no need to do a separate receive operation
on the connection. If type is TYPE_SPLIT, a split-phase connection is established (see ddsend() and
ddrecv()) in which requests return immediately, and replies must be explicitly requested from the
system. An example of a split-phase client and server follows in Section 5.

If the type is TYPE_SPLIT, a split-phase connection is established in which link level acknowledgements
are generated each time a message is completely received. These acknowledgements indicate only that
the message arrived and was placed in the target address space, not that the receiver has processed the
message. For that information, a program level reply is still required. Since user level replies are not
required for each message, it is up to the user to ensure that target buffers are not overwritten before
they are consumed by the receiver. If the sending process attempts to send a message before the link
level acknowledgement has been received for the previous message, an error is returned.

If flags contains CONN_NOTELIST, and the type is TYPE_SPLIT, the kernel will associate the notification
object specified in *noteid with the new connection. This allows multiple split-phase connections to
share a single notification object (see ddrecv()). Otherwise, the kernel will allocate and return, in
*noteid, the identifier of a new notification object.

ddconn returns zero on success and -1 otherwise.
ERRORS:

EBADID The noteid provided was not valid.
EBADSERVER The service name was not registered on the node specified.
ENOCMP The kernel thread servicing DD requests is not running.
ENORESOURCE The kernel is unable to allocate some required data structure.

3.3 ddclose()
int

ddclose(connid_t connid);

ddclose terminates the connection specified by connid, freeing any kernel resources associated with
it. ddclose can be applied to either the client or the server side of a connection. The “other” end of
of the connection is closed as well.

ddclose returns zero on success and -1 otherwise.
ERRORS:

EBADID The connid provided was not valid.

3.4 ddunserve()
int

ddunserve(servid_t servid);

ddunserve terminates a server established with ddserve, freeing any kernel resources—except for the
buffers— associated with it. All existing connections to the server are terminated. The client side of

established connections are marked as closed, and subsequent use of those connections results in an
error being returned to the client.

ddunserve returns zero on success and -1 otherwise.

ERRORS:

EBADID The servid provided was not valid.

3.5 ddsend()

int

ddsend(connid_t connid,
address_t addr,
size_t len,
offset_t roffset,
option_t options);

ddsend sends a message on the connection referred to by connid. The message begins at addr and
is len bytes in length. The message is deposited at roffset bytes into the destination buffer. The
default value for options is SEND_NOOPTS. ddsend returns immediately, possibly before the message has
been completely sent. The process must be careful not to alter the message buffer until the message
transmission is known to have completed, as data corruption could otherwise occur. The dddone system
call should be used to determine when the message has been completely sent, and the buffer can safely
be reused.

The connection cannot be of type TYPE_RPC (see ddconn) since that implies synchronous RPC operation.
If the connection type is of TYPE_SPLIT, the program must follow a request/response model. That
is, only 1 request can be outstanding at a time; the process must consume the reply (via ddrecv)
before the next request can be sent. Communication can be overlapped with computation by delaying
consumption of the reply until another message is ready to be sent on the connection.

If the connection type is of TYPE_STREAM, then multiple message can be sent on a connection without
waiting for program level replies (see ddrecv). This allows greater overlap of communication with
computation, and avoids unnecessary synchronization. The program must be careful to avoid overwrit-
ting the target buffer before it has been consumed by the receiver. Although program level replies are
required for each send, it is often the case that some number of replies will be necessary in order for
the sender and receiver to agree on how much data has been exhanged, and consumed.

If options includes SEND BLOCK, ddsend does not return until the message has been completely sent.
At this point, the buffer can safely be reused to compose a new message.

If options includes SEND_UNWIRED, ddsend forces the data to be sent by the CPU. Instead of sending
the data using a DMA transfer, the message data is written directly by the CPU. This option is helpful
when the program cannot easily arrange for message data to be within a wired buffer.

If options includes SEND DMA, ddsend forces the data to be sent using a DMA transfer. The data must
reside in a wired down buffer (see ddalloc()).

that the message buffer provided is not within the preallocated message area, and is thus unwired.
Instead of sending the data using a DMA transfer, the message data is written directly by the CPU.

This option is helpful when the program cannot easily arrange for message data to be within a wired

buffer.
ddsend returns zero on success and -1 otherwise.

ERRORS:

EBADID The connid provided was not valid.
ECONNCLOSE The connection is no longer valid since the other side has been closed.
ESLOTBUSY A request is still outstanding; the reply has not been consumed.
EBADTYPE The connid refers to a connection that has a type of TYPE_RPC.

EBADRANGE The message is not contained within the buffer that was specified with ddserve or
ddconn.

ENOTREADY An attempt was made to send before the link level acknowledgement was received
(TYPE_STREAM).

3.6 ddsend with metadata()

int

ddsend_with_metadata(connid_t connid,
address_t addr,
size_t size,
offset_t roffset,
option_t options,
address_t metap,
size_t metacount);

ddsend with metadata is identical to ddsend, with the exception that data pointed to by metap is
transmitted along with the normal message payload. This data appears in the receiver’s notification.
metacount specifies the number of (4 byte) words of metadata to be sent; it is currently limited to 4.

3.7 dddone()

int

dddone(connid_t connid,
int flags);

dddomne is used to determine when the last message sent on connid has been completely sent, and
the corresponding data buffer can safely be reused. dddone is normally used in conjunction with
ddsend_async to ensure that the data buffer is ready for reuse. By default, dddone returns a status
value immediately. If options includes SDONE_SLEEP, and the message has not been completely sent,
dddone will block in the kernel until the message has been completely sent.

dddomne returns -1 on error. 1 is returned when the message has been completely sent, and 0 otherwise.
ERRORS:

EBADID The connid provided was not valid.
EINVAL Improper options were specified.

3.8 ddflush()

int

ddflush(address_t addr,
size_t len);

ddflush is used to maintain consistency between cache and main memory. Systems that possess
coherent 1O subsystems may need to take no action at all to maintain this coherence, while others will
need to explicitly flush the address range from the cache.

ddflush should be used to flush a receive buffer after the program has consumed the data within it
and before the program informs the sender that the buffer can be reused, so that subsequent messages
sent to the buffer will not be shadowed by any residual cache contents.

ddflush always returns 0.

3.9 ddrecv()

int

ddrecv(noteid_t noteid,
ddrecv_desc_t recvblk;
option_t options,
timeout_t timeout);

typedef struct {

address_t msgaddr;
int msgsize;
connid_t connid;
servid_t servid;
unsigned metad[4];
int metacount;

} ddrecv_desc_t;

ddrecv consumes the next available incoming message for any of the connections associated with
noteid. The second argument, a a pointer to a ddrecv_desc_t structure, is used to collect various
return values. *servid is set to the unique service identifier associated with the connection (this value
is generally only meaningful for the server side of connections). *msg is set to the byte address of the
start of the message, and *length is set to the number of bytes in the message. The default value
for options is RECV_SPIN, which causes ddrecv to spin in the kernel, waiting for a notification to be
posted. The process may be context switched by the kernel as appropriate, but is otherwise capable
of receiving a message as soon as it arrives, without any kernel intervention. This is in contrast to
specifying RECV_SLEEP, which causes the process to sleep in the kernel until a notification is posted.
The RECV_SPIN option, while resulting in faster notifications, is only appropriate for single-application
or lightly loaded systems, due to its potential for consuming CPU resources.

If options includes RECV_NOBLOCK, ddrecv always returns immediately. If a message is not pending,
ddrecv returns -1, and the global variable errno is set to ENOULDBLOCK.

If options includes RECV_TIMEQUT, ddrecv, will block for the amount of time specified by timeout.

The kernel expects timeout to be in the format timeout * SBP_HZ. Note: The value of SBP_HZ is equal
to the system clock rate; 100 ticks per second in HPUX and BSDA4.3.

If the incoming message contains metadata, it is returned in the unsigned metad array, and the count
of (4 byte) words of metadata is placed in metacount. The current implementation limits the amount
of metadata to 4 words. If the incoming message does not contain metadata, metacount is set to zero,
and the metad array is left untouched.

ddrecv returns -1 on error, and 0 otherwise.
ERRORS:

EBADID The noteid provided was invalid.
EINVAL Improper options were specified.
EWOULDBLOCK RECV_NOBLOCK was specified, and no message is pending.

3.10 ddcall()

int

ddcall(connid_t connid,
address_t saddr,

size_t ssize,
address_t *repaddr,
size_t *repsize,

option_t options,
timeout_t timeout);

ddcall combines the send and receive operations into a single, synchronous operation on the connection
referred to by connid. The request message begins at saddr, and is ssize bytes in length. Unlike
ddsend, the request message is always placed at the beginning of the receive buffer on the target
processor. ddcall then blocks until a reply message is received, at which time, *repaddr is set to the
byte address of the start of the reply message, and *repsize is set to the number of bytes in the reply
message. ddcall thus implements a form of remote procedure call.

If options includes RECV_TIMEOUT, ddcall, will block waiting for a reply for the amount of time
specified by timeout. The kernel expects timeout to be in the format timeout * SBP_HZ. At the end
of the timeout, ddcall will return -1, and the global value errno will be set to ETIMEDQUT. It is up to
the application program to recover from this error.

ddcall returns -1 on error, and 0 otherwise.

ERRORS:

EBADID The connid provided was invalid.
EINVAL Improper options were specified.
ECONNCLOSE The connection is no longer valid since the other side has been closed.
EBADTYPE The connid refers to a connection that does not have a type of TYPE_RPC.
EBADRANGE The message is not contained within the buffer that was specified with ddconn.
ETIMEDOUT Options included RECV_TIMEQUT, and the timeout expired.

10

typedef struct conninfo {
int node;
noteid_t noteid;
address_t sendbase;

size_t sendsize;
address_t recvbase;
size_t recvsize;
int msgid_send;
int msgid_recv;

} conninfo_t;

Figure 1: conninfo_t data structure.

3.11 ddconninfo()

int
ddconninfo(connid_t connid,
conninfo_t *conninfo);

ddconninfo returns information about connid. *conninfo should point to the address of a conninfo_t
structure(see Figure 1), and is defined below. The ddconninfo call is most useful when used in
conjunction with ddserv to determine the addresses at which buffers have been placed for each new
connection(see example code in Section 5).

node The logical node number of the processor the connection is established with.
noteid The notification object for receiving messages.
sendbase The starting address of the outgoing message buffer.
sendsize The size of the outgoing message buffer.
recvbase The starting address of the incoming message buffer.
recvsize The size of the incoming message buffer.
msgid_send The total number of messages sent.
msgid_recv The total number of messages received.

ddconninfo returns -1 on error, and 0 otherwise.

ERRORS:

EBADID The connid provided is invalid.
EINVAL *conninfo is an invalid pointer.

3.12 ddpoll()

int

ddpoll(int count,
noteid_t *notelist,
timeval_t *timeout);

ddpoll examines each of the noteids contained in the vector pointed to by *notelist to see if any of

11

them have unconsumed messages pending. count is the number noteids contained in notelist. On
return, ddpoll replaces the contents of *notelist with the subset of noteids that have unconsumed
messages pending. ddpoll returns the number of ready noteids contained in the new set.

If timeout is a non-NULL pointer, it specifies a maximum interval to wait for the ddpoll operation
to complete. If timeout is a NULL pointer, ddpoll blocks indefinitely. To affect a poll, the timeout
argument should be non-NULL, pointing to a zero-valued timeval structure.

ddpoll returns -1 on error. Otherwise, the number of noteids with unconsumed messages is returned.
ERRORS:

EBADID One of the noteids provided is invalid.
EINVAL *timeout or *notelist is an invalid pointer.

3.13 ddalloc()

address_t
ddalloc(size_t size);

ddalloc allocates a new memory region for use with either ddconn or ddserve. The region is size
bytes in length. Memory allocated with ddalloc is special in that the kernel will permanently wire the
memory down so that DMA operation to and from the region will work properly. The memory region
returned by ddalloc is always aligned on a 128 byte boundry.

ddalloc returns the starting address of the new memory region. If the memory cannot be allocated,
NULL is returned.

3.14 ddpeek()
int
ddpeek(noteid_t noteid,

size_t *length,
connid_t *connid);

ddpeek is used to determine if there are any unconsumed incoming messages on noteid. For the first
unconsumed message, *connid is set to the connection identifier of the message, and *length is set to
the number of bytes contained in the message. If there are no unconsumed messages, *connid is set
to -1, and length is set to 0. Should this be encoded in the return value instead?

ddpeek returns -1 on error, and 0 otherwise.
ERRORS:

EBADID The noteid provided was invalid.

3.15 ddready()
int
ddready(noteid_t mnoteid);

12

ddready is used to determine if there are any unconsumed incoming messages on noteid.

ddready returns -1 on error, 1 if the noteid has an unconsumed message pending, and 0 if there are no
unconsumed messages pending.

ERRORS:

EBADID The noteid provided was invalid.

3.16 ddmynode() and ddmaxnodes()
int

ddmynode(void);

ddmynode returns the logical node number of the current procesor. The node number is a integer value
between 0 (inclusive) and the value returned by ddmaxnodes (non-inclusive).

int
ddmaxnodes(void);

ddmaxnodes returns the total number of processors in the system, as determined by the kernel at boot
time.

3.17 ddpacketsize()
int

ddpacketsize(void);

ddpacketsize returns the maximum packet size supported by the interface and interconnect fabric.

3.18 dderror()

void
dderror(char #*string, ...);

dderror finds the error message corresponding to the current value of the global variable errno,
and writes a desciptive message to stderr. The argument string should be a format string, followed
by optional arguments. The resulting message is prepended to the system message. dderror is similar
in operation to the C library function perror, but works with SBP error values as well as system error
values.

4 Sample Program 1

The first sample program is a simple “echo” client and server in which the server responds to messages
from its clients by returning the data it receives.

13

4.1 Echo Server

The main lines of a very simple server program is presented in Figure 2 . Initially, a service with the
name “foobar” is registered. It is capable of concurrently supporting two connections and has incoming
and outgoing buffer space of 4096 bytes. Each connection will, therefore, be allocated buffer space of
2048 bytes in each direction. Next, the server simply loops, receiving a message, copying it to the
appropriate reply buffer, and sending it back to the caller. The server must discover the address of the
reply buffer associated with the connection that the request message arrived upon in order to copy the
data into it.

4.2 Echo Client

Correspondingly, a very simple client of the echo server is presented in Figure 3. First, it connects
to the echo server (which it knows is on node 1). Note that it passes NULL in place of the noteid
parameter, since the notification list for a TYPE RPC connection is always anonymous. it sends a 128
byte “request”, which the server simply returns. ddcall waits for the reply, enforcing a synchronous
form of RPC. The client then exits.

5 Sample Program 2

Sample program two is an exmample of a multiple-service server and client, and demontrates the use
of split-phase connections.

5.1 Multiple-Service Server

A server program that offers two services is shown in Figure 4. Note that in registering the second
service, the noteid value provided is the one returned from the registration of the first service. This
allows the server to use a single ddrecv call to listen for requests to either service. In order to
differentiate between requests, which can be for either service, it remembers the serviceid’s returned
at registration. ddrecv passes back the serviceid with which the incoming message is associated and
the server uses this to pick the right action.

5.2 Multiple-Service Client

Here, a split-phase client of the echo server is presented in Figure 5. In connecting to the echo service,
it provides a pointer to a null notification, which the kernel will replace. In connecting to the reverse
service, it passes this noteid, so that it can listen for respones from either service with a single ddrecv
call. Tt sends a message to each of the services, performs some other task and eventually uses ddrecv
to read a response. The serviceid parameter is not meaningful in this context, so the client supplies
a null pointer. It uses the value returned in conn to determine which service the response is from.

14

#include "fedex.h"

main()
{
noteid_t noteid;
address_t foo, bar;
servid_t thisserv;
ddrecv_desc_t frd;
conninfo_t finfo;
/*
* Establish a server.
*/
foo = ddalloc(0x1000);
bar = ddalloc(0x1000);

if (ddserve('"echo", SERVE_NOOPTS, 2, foo, 0x1000,
bar, 0x1000, ¬eid, &thisserv) < 0) {

dderror("ddserve");

if (ddrecv(noteid, &frd, RECV_SLEEP, NULL) < 0) {

bcopy(frd.msgaddr, finfo.sendbase, frd.msgsize) ;
if (ddsend(frd.connid, finfo.sendbase, frd.msgsize,

exit(1);
}
for (;;) {
dderror("ddrecv");
exit(1);
}
if (ddconninfo(frd.connid, &finfo) < 0) {
dderror("ddconninfo");
exit(1);
}
0, SEND_NOOPTS) < 0) {
dderror("ddsend") ;
exit (1)
}
}

Figure 2: Echo server program.

15

#include "fedex.h"

main()
{
int i;
address_t foo, bar, msg;
connid_t connid;
size_t size;
/*
* Establish a connection to a server.
*/
foo = (addr_t)ddalloc(0x1000);
bar = (addr_t)ddalloc(0x1000);

if (ddconn("echo", 1, TYPE_RPC, CONN_NOOPTS,
foo, 0x1000, bar, 0x1000, &connid, NULL) < 0) {
dderror("ddconnect");

exit(1);
b
/*
* Fill in the message contents;
*/
for (1 = 0; i < 32; i++)
fool[i] = i;
/*
* Do an RPC.
*/

if (ddcall(connid, 0, 128, &msg, &size) < 0) {
dderror("ddcall");
exit(1);

Figure 3: A simple client program.

16

main()

{
noteid_t noteid = 0;
address_t foo, bar;
servid_t echoid, reverseid;
ddrecv_desc_t frd;
conninfo_t finfo;
foo = ddalloc(0x1000);
bar = ddalloc(0x1000);
if (ddserve("echo", SERVE_NOOPTS, 2,
foo, 0x1000, bar, 0x1000, ¬eid, &echoid) < 0) {
dderror('"ddserve");
exit(1);
}
foo = ddalloc(0x1000);
bar = ddalloc(0x1000);
if (ddserve('"reverse'", SERVE_NOOPTS, 2,
foo, 0x1000, bar, 0x1000, ¬eid, &reverseid) < 0) {
dderror('"ddserve");
exit(1);
}
for (;;) {
if (ddrecv(noteid, &frd, RECV_SLEEP, NULL) < 0) {
dderror("ddrecv");
exit(1);
}
if (ddconninfo(frd.connid, &finfo) < 0) {
dderror("ddconninfo"); exit(1);
}
if (frd.servid == echoid)
bcopy(frd.msgaddr, finfo.sendbase, frd.msgsize);
else
reverse(frd.msgaddr, finfo.sendbase, frd.msgsize);
if (ddsend(frd.connid, finfo.sendbase, frd.msgsize,
0, SEND_NOOPTS) < 0) {
dderror("ddsend") ;
exit(1);
}
}
}

Figure 4: Multiple-Service server program.

17

main()

{
int i;
address_t reql, req2, respl, resp2;
connid_t connidl, connid2;
ddrecv_desc_t frd;
noteid_t noteid = 0;

reql ddalloc(0x1000);
respl = ddalloc(0x1000);
if (ddconn("echo'", 1, TYPE_SPLIT, CONN_NOOPTS,
reql, 0x1000, respl, 0x1000, &connidl, ¬eid) < 0) {
dderror("ddconn");

req2 = ddalloc(0x1000);
resp2 = ddalloc(0x1000);
if (ddconn("reverse'", 1, TYPE_SPLIT, CONN_NOOPTS,
req2, 0x1000, resp2, 0x1000, &connid2, ¬eid) < 0) {
dderror("ddconn");

for (i = 0; i < 32; i++)
reqil[i] = = req2[i] = i;

if (ddsend(connidl, reql, 128, 0, SEND_NOOPTS) < 0)
dderror("ddsend") ;

}

if (ddsend(connid2, req2, 128, 0, SEND_NOOPTS) < 0)
dderror("ddsend") ;}

do_something_else();

if (ddrecv(noteid, &frd, RECV_SLEEP, NULL) < 0) {
dderror("ddsend") ;

+

if (frd.connid == connidl)
process_echo_response();

else
process_reverse_response();

Figure 5: Multiple-Service client program.

18

References

[1] WILKES, J. Hamlyn - an interface for sender-based communication. Tech. Rep. HPL-OSR-92-13,
Hewlett-Packard Research Laboratory, Nov. 1992.

19

