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ABSTRACT

This dissertation presents a framework for the application of compositional

modularity� a module model that facilitates extensive reuse of highly decomposed

software�

Compositional modularity supports not only the traditional notions of program

decomposition and encapsulation but also e�ective mechanisms for module recom�

position� Based on a previously developed model� a suite of operators individually

achieve e�ects of adaptation and combination on a simple notion of modules viewed

as self�referential namespaces� This dissertation extends the previous model by

introducing the notion of hierarchical nesting as a composition operation� Fur�

thermore� this work shows that compositional modularity is unifying in scope�

Important e�ects and idioms of advanced modularity� including several varieties

of inheritance in object�oriented programming� �nd convenient expression within

this model�

Compositional modularity can be applied within a wide range of systems that

manipulate self�referential namespaces� To demonstrate� four distinctively di�ering

systems based on the model are presented� an interpreter for a module extension to

the programming language Scheme� a programmable linker for composing compiled

object �les� a compiler front�end for a compositional interface de�nition language�

and a compositional document processing system� It is shown that systems such as

the above derive important bene�ts from incorporating compositional modularity�

To facilitate the application of compositional modularity� the model is itself

realized as a generic� reusable software architecture 	 an object�oriented appli�

cation framework named Etyma� Etyma comprises a collection of interacting

classes corresponding to the essential concepts of the model� The framework may

be reused to e
ciently build completions� i�e�� tools for compositionally modular



systems� Three of the four systems mentioned previously were built as direct

completions of Etyma� and the fourth evolved in parallel with the framework�

Signi�cant design and code reuse was achieved in the construction of these system

prototypes as completions of the framework�
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CHAPTER �

INTRODUCTION

Modularity is a fundamental facility for controlling complexity in large systems�

via decomposition and abstraction� In particular� software modules allow program�

mers to develop and maintain pieces of a large system relatively independent of each

other� However� decomposition alone does not support software component reuse�

a widely accepted enabler of e
cient construction of large systems� For this� it is

necessary to provide mechanisms for e�ective recomposition� by which conforming

modules can be composed to obtain other modules�

This dissertation focuses on the problem of linguistic mechanisms for� and broad

applications of� module composition that enables a high degree of reuse�

Compositional modularity is a model that supports a simple notion of modules

along with a powerful notion of their composition� The model distills� uni�es�

and further advances many existing notions of modularity� The ultimate goal

of compositional modularity is to enable maximal reuse of software components�

It encourages breaking down software into the smallest possible independently

meaningful units and fosters extensive reuse by providing sophisticated and reliable

mechanisms to build complex programs from these pieces�

Furthermore� the model can itself be realized as a reusable software architecture�

This enables one to e
ciently construct tools for compositionally modular systems�

This dissertation presents a consolidated account of a model of compositional

modularity and its formulation as a reusable software architecture� Additionally�

the dissertation demonstrates that the model is su
ciently general to be applied

across a broad spectrum of computer software systems�
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��� Composition and Reuse

The term �software composition� is a broad one and can be used to mean

any number of ways of putting software together� For instance� in functional

programming� composition of conforming functions is a well�understood concept�

In data �ow programming� conforming data �lters can be composed to process

data in compound ways� In conventional modular programming� a collection of

software modules that interact with each other by calling each others� functions

can be said to be composed to make up a system� This dissertation addresses

software composition of yet another variety� that of composing the interfaces and

implementations of software modules to obtain new modules�

A composition framework typically requires that components meet speci�c cri�

teria in order to be composable� Furthermore� properties of a composition can be

derived from the properties of constituent components� For instance� in the case of

function composition� functions must have conforming types to be composable� and

the type of composite functions can be derived from the types of the constituent

functions� Similarly� in the module composition framework described here� modules

must have conforming types to be composable� and the type of the resultant module

can be derived from the types of the constituent modules� Furthermore� modules

in the present framework are self�referential structures� hence the self�referential

structure of the resultant module can be derived from the self�referential structure

of the constituent modules�

Composable software components can be reused in many situations because

a single component� built for one purpose� can participate in multiple applicable

compositions� From a programmer�s point of view� therefore� an e�ective software

composition mechanism enables incremental programming� New components need

only be developed to support incremental functionality over and above that of

existing components� since these new components can be composed with existing

ones� This dissertation shows how an e�ective module composition mechanism can

enable signi�cant software reuse�

There are important advantages to software reuse� It has the potential to





considerably reduce the cost of program development� Reusing tested code� as

opposed to writing new code� usually results in increased reliability� Reusable soft�

ware helps control problems associated with software maintenance and evolution�

Furthermore� mechanisms of software reuse are a necessary step on the way to the

longstanding dream of o��the�shelf pluggable software parts and their factories�

The traditional notion of software reuse is that of code reuse� such as that

obtained by using function code libraries� However� it is widely agreed that software

design reuse is equally or more important� The design of software is embodied in

its decomposition structure and the interfaces of decomposed units� One is said to

have accomplished software design reuse if one reuses the decomposition structure

and interfaces of existing software�

In order to achieve practical reuse� software must be designed with the speci�c

goal of reuse in mind� The manner of decomposition of a system into modules�

the design of module interfaces� and the manner of implementation of modules are

all factors that dictate the reusability of modules� Moreover� reuse clients often

need to know much more about a module being reused than what is speci�ed in its

interface� such as reuse dependencies� thus informative documentation is needed as

always�

Once a set of modules is designed to be reusable� linguistic mechanisms �such

as those supported by compositional modularity� make it possible to actually reuse

them� In fact� it can be said that the design of reusable software is often con�

strained by the mechanisms by which it can eventually be reused� Thus� although

linguistic mechanisms are not by themselves su�cient for reuse� they nevertheless

greatly in�uence reuse and are certainly necessary for enabling principled� reliable�

and e
cient reuse� For instance� a typing discipline can require programmers to

explicitly declare the interfaces of reusable components� the type system can verify

that the interfaces of reused and client components conform� and the compiler may

be able to generate e
cient code for reused software based on type information�

The following section introduces the model of compositional modularity�
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��� Compositional Modularity

There have been two somewhat independent lines of development in modularity

in programming languages� One is the notion of decomposition of programs into

modules� whose interactions are controlled via traditional module systems and

environment tools� Traditional module systems typically support three important

features� encapsulation� i�e�� the notion of an externally visible interface of a module

separated from its hidden implementation� static checking of type conformity of

module interactions �imports and exports�� and lexical nesting of modules� These

features are widely acknowledged to facilitate independent development and main�

tenance of modules�

The other line of development is the notion of data abstraction to support

programmer de�ned data types� such as abstract data types �ADTs� and classes

in object�oriented programming� ADTs and classes also represent decomposed

program pieces� with support for encapsulation� static type checking� and nesting�

However� classes may also be recomposed into other� usually larger� classes via

mechanisms of inheritance� OO inheritance is thus a linguistic mechanism that

supports reuse via incremental programming� i�e�� one can program by describing

how one software component di�ers from another existing one�

Compositional modularity represents an advancement of the former line of

development to achieve and surpass the goals of the latter one� Compositional

modularity surpasses class inheritance in that it supports a stronger and more

�exible notion of reuse than traditional OO systems�

There are two aspects to the model of compositional modularity� that of mod�

ules and that of their composition� A module is simply a collection of names

associated with bindings� which may in turn have references to names that are

de�ned either within the module itself or external to the module� Such modules

can be adapted and �tted in various ways to compose other modules� which in turn

make up entire systems� much like putting Lego pieces together�

To be more accurate� a module is modeled as an abstracted namespace� i�e��

a namespace that is abstracted over the names referenced within it� Abstracted
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namespaces can be manipulated in many desirable ways before actually instanti�

ating them into concrete namespaces� Manipulation is performed using a suite of

operators� each of which achieves an individual e�ect such as encapsulation� rebind�

ing� or hierarchical nesting� This technique is shown in the rest of this dissertation

to enable a high degree of adaptability and �exibility in their manipulation and�

thus� enhanced reuse�

A signi�cant characteristic of the model is that it is unifying in scope� in

that it captures many existing notions of modularity� including most varieties of

OO programming� One of the �rst tasks undertaken in this dissertation is to

demonstrate in detail the expressive power of this model by emulating various

existing models of modularity�

Another signi�cant characteristic of the model is that it is abstract� That is to

say� the model can be presented and analyzed without committing to the nature

of the actual values that are bound to names within modules� Thus� the model is

independent of particular underlying computational paradigms� This property is

used to advantage in developing an application framework� outlined in Section ����

In introducing the model of compositional modularity� it is important to ac�

knowledge its lineage� The semantic foundations of the model go back to record

calculi pioneered by Cardelli� Mitchell� and others ��� ���� Classes were �rst

modeled as record generators �records abstracted over themselves� by Cook�����

who also introduced some operators to manipulate generators� Based on this�

Bracha and Lindstrom��� promulgated the idea that OO inheritance is really a form

of modularity and introduced a comprehensive suite of operations to manipulate

record generators� Furthermore� Bracha ��� expressed this model abstractly and

suggested that it could be formulated as a framework�

This dissertation further advances the semantic models proposed previously� by

introducing the notion of compositional nesting� A problem with previous models

was that direct lexical nesting of modules restricts reuse of the nested modules�

Compositional nesting makes it possible to retroactively nest an independently

developed module into another conforming module� via a composition operation�



�

This mechanism supports much enhanced compositionality and reuse�

The bulk of the contribution of this research� however� is in the practical

application of the semantic model to various systems and in the engineering of

a reusable software architecture to facilitate such application� as described below�

��� Compositionally Modular Systems

The most important idea put forth in this work is that the model of compo�

sitional modularity is applicable within a wide range of systems� perhaps much

beyond what is explicitly presented here� This stems partly from the simplicity

of the model and partly from the pervasiveness of modularity and namespace

manipulation within software systems�

Compositional modularity supports reuse akin to OO inheritance by means of

operations on self�referential namespaces� A key insight in this work is that there

is indeed a wide range of software artifacts that can be modeled as self�referential

namespaces� For instance� it is well known that recursive interface types can be

viewed as self�referential namespaces ���� ��� A traditional compiled object �le can

also be viewed as a self�referential namespace� Furthermore� structured document

fragments can be modeled as self�referential namespaces� Even other artifacts�

such as GUI components and �le system directories can be regarded as recursive

namespaces�

There currently exists a range of tools that manage the range of artifacts

mentioned above� However� many such tools are usually based on disparate� and

often impoverished� underlying models� It can be argued that it is advantageous to

manage the above artifacts from the viewpoint of a well understood model such as

compositional modularity� and design tools based on this viewpoint� The primary

advantage of such an approach is that the underlying model of such tools can

be signi�cantly enriched� and reuse mechanisms akin to OO inheritance can be

supported on the artifacts they manage� Moreover� the uniformity of the underlying

model of such tools can be exploited to support better interactions between them�

The model of compositional modularity can be easily and e�ectively applied

within systems that manipulate artifacts such as the ones given above� To demon�
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strate� this dissertation considers four radically di�ering systems and describes how

to construct tools for them� The way in which each of these four systems can be

modeled compositionally and the bene�ts to be derived from viewing them as such

are given below�

I� Scheme module composition� In a conventional programming language such

as Scheme� the notion of a module is that of an independent naming scope� A

module comprises a set of identi�ers bound either to locations �variables� or

to any of the various Scheme values� including procedures� Procedures may

contain references to other name bindings within the module� In this manner�

a Scheme module may be modeled as a self�referential namespace�

Several module systems for Scheme have been proposed previously ���� ��� ����

but these systems mainly provide a facility for structuring programs via

decomposition� However� the ability to recompose �rst�class modules can

additionally support design and implementation reuse akin to inheritance

in OO programming� Furthermore� the notion of �rst�class modules and

operations on them is consistent with the uniform use of �rst�class values

and the expression�oriented nature of Scheme� Consequently� we argue that

the incorporation of compositionality into a module system for Scheme can

be very bene�cial�

II� Object module composition� A separately compiled object �le essentially

consists of a set of symbols� each associated with data or code� This set

of symbols is represented as a symbol table within the object module� Fur�

thermore� internal references to these symbols are represented as relocation

information within the object module� Thus� an object �le can be modeled

as a self�referential namespace�

The traditional notion of linking object �les corresponds to a rudimentary

notion of composition� However� the full power of compositional modular�

ity made available via a programmable linker can signi�cantly enhance the
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ability to manage and bind object modules� In particular� facilities such as

function interposition� management of incremental additions of functionality

to libraries� and namespace management can be made more principled and

�exible�

III� Interface composition� An interface is essentially a naming scope� with labels

bound to types� Type constituents of the interface can recursively refer back

to the interface itself� Thus� an interface can be regarded as a self�referential

namespace�

Explicit speci�cation and composition of interfaces� as embodied in interface

de�nition languages �IDLs�� are becoming necessities in modern distributed

systems� Composition of interface speci�cations can help in the reuse and

evolution of interface speci�cations�

IV� Document composition� A document can be regarded as a naming scope�

consisting of section names� each associated with arbitrary text� Furthermore�

there can be cross references from within a textual body to other section

names�

Document composition can be useful in enterprises where several documents

fragments are generated� edited� composed� maintained� and delivered in

various ways� Document fragments generated for one purpose can be reused

for other purposes� For example� a report� such as a user manual� can be

composed from several document fragments� such as design documents�

��� An Application Framework

This dissertation presents a framework for applying the concepts of composi�

tional modularity� It shows how to identify compositionally modular systems� how

to model modules within those systems� and how to build tools for such systems�

In this sense� it provides a conceptual �application framework� for compositional

modularity�

However� the term application framework is used here in a more precise technical
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sense� An OO application framework is an abstract realization of the design of

application software in a particular application domain� A framework captures the

essential concepts in the domain as a set of interacting classes� Individual applica�

tions� called completions� are built by extending the framework in speci�c directions�

i�e�� by �lling in the incomplete parts of the framework� Since OO programming

provides several forms of e�ective software design and reuse mechanisms such as

inheritance and polymorphism� it has been found to be suitable for developing

application frameworks in several domains such as user interfaces and operating

systems� as well as in several commercial and business applications�

The main point of application frameworks is that they enable applications in

a particular application domain to reuse much of the design �and associated code�

that is common to the domain� As argued earlier� this could signi�cantly reduce

the resources spent in developing applications� as well as increase the reliability of

applications� Furthermore� it can be argued that studying an application framework

for a particular domain is an e
cient way to understand the domain� since the

framework represents a �model� of the domain�

Naturally� the implementations of tools mentioned above share much in com�

mon� since they are all based on compositional modularity� It is therefore bene�cial

to abstract their common aspects� and realize them as a reusable software archi�

tecture� This dissertation presents an OO application framework for compositional

modularity� realized in the C�� language� This framework� known as Etyma� con�

sists of several abstract and concrete classes corresponding to concepts commonly

found in compositionally modular systems� For instance� at a very high conceptual

level� such systems primarily consist of a domain of values and a corresponding

domain of types� At a slightly more detailed level� typed values includemodules and

the methods constituting their attributes� The types of these values are known as

interfaces and function types� respectively� Etyma includes classes corresponding

to each of the above concepts and several others�

However�Etyma deliberately stops short of completely specifying all the details

of its concepts� such as the precise nature of module attributes� Such details are
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supplied by individual completions� since these details di�er from completion to

completion� For instance� a module attribute may be a programming language

function in one completion� whereas it may be something completely di�erent such

as a fragment of typesettable text in another completion� Within the framework�

however� the di�erences between these two kinds of module attributes are abstracted

away� both of them are viewed through a single abstract interface�

The architecture of the Etyma framework is documented in this dissertation

using the concept of design patterns ���� The version of Etyma documented

here comprises about �� reusable C�� classes in ���� lines that evolved over six

iterations over two years�

A tool for a system based on compositional modularity can be said to consist of

a front�end that reads in command and data input� a processing engine that per�

forms compositional operations on an internal representation �IR�� and an optional

back�end that transforms the IR into some external representation� The primary

utility of the Etyma framework is that it enables one to easily and rapidly build the

processing engines� but not the front�ends and back�ends� for such tools� However�

a tool front�end can use Etyma classes to construct the IR from the module

source� Module manipulation commands can then be translated into operations

on the IR� In this manner� interpretive processors can directly manipulate the IR�

whereas processors that do compilation must additionally provide a back�end that

appropriately translates the IR into a target representation�

��� Completions

In order to construct a processing engine for a tool for a compositionally modular

system� one must �rst identify the various kinds of name bindings comprising

namespaces in the system� One can then identify generalizations of these concepts

speci�ed as classes in the Etyma framework� For each such general Etyma class�

one must then subclass it to implement the more speci�c concept in the system�

Once specialized classes for all relevant concepts have been de�ned� one is said to

have modeled the system as a completion of Etyma�
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In this dissertation� four completions of Etyma� corresponding to tools for

the four systems mentioned in Section ��� are presented� Three of these were

constructed as direct completions of the framework which resulted in signi�cant

design and code reuse� The fourth evolved in parallel with the framework and is

thus termed as a �parallel completion��

A module extension to Scheme called Compositionally Modular Scheme� or CMS

for short� is presented in Chapters  and �� The implementation of an interpreter

for CMS as a direct completion of Etyma is presented in Chapter ��

A programmable linking tool for compiled C language code that supports com�

positional modularity is presented in Chapter �� This is a parallel completion of

Etyma� in that both the tool and the framework strongly in�uenced each other�s

development� However� although the tool�s class design is the same as that of the

framework� it is not physically derived from the framework�

A compiler front�end to an experimental compositional interface de�nition lan�

guage� derived as a direct completion of Etyma� is presented in Chapter �� Also�

an outline of how to extend a base language such as CORBA�s IDL ���� is given

there�

Finally� a compositionally modular document processing system� called MTEX�

layered on top of the LaTEX document preparation language is presented in Chapter

�� MTEX is also a direct completion of Etyma�

��� Dissertation Organization

The next chapter presents the foundational and motivational concepts of com�

positional modularity� In particular� the starting point of this work� embodied in

the programming language Jigsaw���� is presented in some detail�

Following that� Chapter  demonstrates the expressive power of compositional

modularity via several examples shown in the language CMS� The focus is on

emulating the important idioms and styles of OO programming� This chapter also

illustrates the programming style associated with compositional modularity�

Chapter � treats in detail the new notion of compositional nesting and its

embodiment in CMS� Applications of nesting such as sharing and inheritance
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hierarchy combination are explored� Chapters  and � together should provide

the reader a thorough understanding of the nature and power of compositional

modularity�

The application framework Etyma is described in Chapter �� The design of its

abstract and concrete classes is detailed� Immediately following that� the imple�

mentation of an interpreter for CMS as a completion of Etyma is delineated� The

reuse aspects of Etyma and its evolution over reuse iterations are also explained�

Chapter � describes the application of compositional concepts to object modules�

A software architecture that enables one to construct entire applications from

individual components using these concepts is explained�

Chapter � shows how interfaces can be treated as compositional entities and

describes the design of an IDL compiler as a completion of Etyma� A system for

document module composition is presented in Chapter ��

Chapter � points to some future work� summarizes the accomplishments of this

work� and presents conclusions�

At many points in this dissertation� denotational semantics and other mathe�

matical formalisms are used as expository tools� It should become apparent that

the purpose of formalism in this work is not to develop a complete theory but rather

to express the ideas in a more precise manner� to clarify� or to relate to previous

work in the area�
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SETTING THE STAGE

In this chapter� the basic concepts and problems that motivate the framework

given in this dissertation are presented�

Classical modularity is primarily concerned with support for decomposition�

encapsulation� static typing� and lexical nesting� In addition to these features�

compositional modularity aims to support e�ective software reuse as well� via

notions of module adaptation and composition�

The historical progression of increasing support for modularity in programming

languages and systems is examined in Section ���� leading to the ideas underlying

compositional modularity� In particular� the salient features of classical module

systems and OO programming languages are examined� It is shown that these

module systems fall short of fully supporting reuse�

The notion that compositional modules are abstracted namespaces is developed

in Section ������ The prominent characteristics of the model of compositional

modularity are described concisely in Section ������ Following that� the fundamental

concepts of record generator manipulation and static typing are summarized in

Section ������

��� Modules and Module Systems

Intuitively� a software module is understood to be an independent unit of soft�

ware with a well�de�ned interface� A module system is a model that supports the

de�nition� manipulation� and use of modules� Module manipulation is concerned

with composing modules by adapting them as necessary� in order to maximize their

utility� Modules are used by client software by invoking the interface o�ered by

them� possibly after instantiating them�
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Several module systems have been proposed to date� but their detailed semantics

vary greatly� especially as far as support for module manipulation is concerned�

Classical module systems support a notion of modules mostly as a design�time

program decomposition and structuring mechanism� with barely any support for

module manipulation� At the other extreme� current day OO systems can be viewed

as advanced module systems that support various forms of composition and reuse

via inheritance�

����� Classical Module Systems

The simplest understanding of a module is as an environment that binds names

to values 	 a namespace� All names in the module are directly accessible internally

within the module� but a subset of the names� called the interface� is exported

from the module for external access� An example of such modules is the structure

construct of Standard ML �a generalized �record� with type� value� and structure

components�� whose public interface is given by a signature �����

To enforce stronger separation between modules� some systems require that all

interactions between modules be declared explicitly� by importing names used from

the interfaces of other modules� Examples of such module systems are those of the

Modula family ���� and the Scheme module system given in ref� ����� Typically�

such systems perform some level of static conformance checking �at compile time�

and binding �at link time� between the imports and exports of modules� However�

completely dynamic importation has also been proposed �����

One way to specify modules is to describe each of them completely from scratch�

However� such complete speci�cation does not facilitate reuse of portions of the

module that could potentially be common to several modules� To support reuse

better� modules can be parameterized with the �free� names used within the module�

as in SML functors ���� and ADA generic packages ���� A parameterized module

can be multiply instantiated �usually before run�time� with actual argument values

to produce concrete modules� which are then used in the same manner as completely

speci�ed modules�

Despite support for import�export and parameterization� the above module
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systems are signi�cantly impoverished in their support for our primary goals of

decomposition� encapsulation� and reuse� For instance� decomposition is �xed at

module de�nition time� module boundaries and interactions cannot be modi�ed�

The public interface of a module cannot be changed after the fact� Although

parameterized modules can be reused by instantiating them multiple times with

various argument values� there are no mechanisms to control the bindings of names

other than the module parameters� In fact� the most one can do in these systems

by way of module manipulation is to instantiate a parameterized module�

Clearly� more �exible and expressive module systems are needed� A step in

this direction was taken by Tung ����� by supporting a simple notion of renaming

imported names that con�ict with those de�ned in a module� However� support

for full compositionality and reuse requires the ability to perform several such

operations on modules� as described later�

����� First
Classness

Another dimension of development in modularity in programming languages is

that of what is considered to be a �rst�class run�time entity� A value is called

�rst�class if it can be passed into and out of functions� stored in variables� and used

as part of data structures in a programming language�

Module systems have traditionally been regarded as a design�time facility� Many

languages� such as SML� support a compile�time module language separate from

the core language� In these systems� one does not usually think of modules as

�rst�class run�time values� or even as producing �rst�class run�time values�

However� there are compelling arguments for viewing instances of modules as

�rst�class values� Most languages support some form of data abstraction facility

that can be instantiated into �rst�class values� e�g�� abstract data types �ADTs� and

classes� Given that modules support design�time abstraction� it may be desirable

to use one mechanism uniformly as the primary abstraction facility�

Furthermore� module systems facilitate the manipulation of namespaces� Given

that namespaces exist as environments at run�time� it seems natural to support

modules themselves as �rst�class entities� Additionally� this results in uniformity
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of manipulable values� Languages such as Pebble ����� Rascal ���� ���� and others

���� support �rst�class modules�

�It is worth mentioning that support for higher�order modules does not neces�

sarily mean that modules are �rst�class� For instance� a higher�order SML module

system such as in ref� ��� might support functors with functor parameters� or

higher�order modules� However� functors are not run�time entities and� thus� not

�rst�class� Alternatively� in this case� functors may be considered �rst�class with

respect to the SML module language� although not with respect to the SML core

language��

First�classness can enormously enhance the reusability of modules� For instance�

expressions over modules can allow various module manipulation mechanisms to be

usefully composed to obtain composite e�ects� Moreover� familiar and expressive

base�language mechanisms� such as conditionals and functions� can be used to

create modules dynamically� Examples of such use of �rst�class modules are given

throughout the next two chapters� particularly in Section �����

Object�oriented programming� described in the following section� typically sup�

ports at least �rst�class instances of classes �modules� and occasionally �rst�class

classes as well�

����� Object
Oriented Programming

Support for data abstraction and reuse have been the motivating forces behind

classes and various forms of inheritance in OO programming�

Paradigmatically� an object in OO programming is an abstraction of a real�world

entity� An object implements some behavior� which is exposed via an interface�

Objects collaborate with other objects to perform user�level tasks� by exchanging

messages� Upon receiving a message� the appropriate method that implements the

behavior associated with the message is located and executed�

The common characteristics of a collection of objects is captured by the concept

of a class� which may be instantiated into individual objects� Classes in OO

programming essentially correspond to the notion of modules� since they support
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the same requirements of program decomposition� encapsulation� and reuse �via

inheritance� described below��

Three characteristics distinguish OO programming� encapsulation� the notion

that the implementation details of an object should be hidden from its clients�

inheritance� the mechanism by which a class can reuse the design and code of other

classes� and polymorphism� the notion that an object can be used in any context

that requires �a subset of� the functionality exported by its interface� These three

characteristics interact in important ways� Understanding their interactions and

supporting all of them without compromising their integrity has been a serious

research direction in the past few years�

Encapsulation is a primary requirement for large�scale software development�

An implementor must be free to modify the implementation of a module as long

as the interface� which is the module�s contract with its clients� is not changed�

�The expressiveness of the interface to satisfactorily state the contract is a crucial

issue� present�day techniques typically employ some notion of type speci�cation

to express the contract� although more expressive mechanisms� e�g�� ref� ����� are

being studied��

The mechanism of inheritance supports incremental programming� That is� a

programmer can specify a module by stating how its implementation di�ers from

that of an existing module� As a result� inheritance is a primary implementation

reuse mechanism in OO programming� Inheritance gives rise to an implementation

hierarchy of modules� which is often thought of and implemented as a graph�

structured hierarchy of modules�

Inheritance must not violate encapsulation� That is� the inheritance history of a

module is purely an implementation detail and must not be exposed via its interface�

This can happen if classes are identi�ed with types �described below� or when

ancestors inherited from multiple inheritance paths are shared� In these seemingly

innocuous situations� a class might cease to be valid if the inheritance relationships

between classes �which is an implementation detail� are changed� Furthermore�

if the implementation of a module directly depends on its inherited ancestors by



��

naming them� its reusability will be compromised� For an extended treatment of

these and other problems with violation of encapsulation� the reader is referred to

Bracha�s thesis ���� Chapter ��

The interface supported by objects of a class is called their type� Many OO

programming languages equate the concept of a class with that of a type� However�

a type is an interface �a partial description of the behavior�� whereas a class is the

implementation of the behavior represented by the type�

An interface that supports at least as much functionality as another� possibly

more� is called a subtype of the other� Polymorphism �more accurately� inclusion

polymorphism ����� is a direct consequence of subtyping relationships between

objects� types� Polymorphism is usually implemented by using techniques of late

binding of method calls to the actual code that implements the methods� Poly�

morphism is an important reuse mechanism in OO programming� since functions

written for particular types of objects can be reused for objects having subtypes as

well�

The question arises as to whether inheritance always results in classes that

generate objects of a subtype of the �parent� class� The answer is no� In a

su
ciently expressive language� inheritance does not necessarily result in subtypes�

�The reason for this has to do with contravariant subtyping of binary methods ������

Only recently has inheritance been widely understood as an implementation reuse

mechanism� divorced from subtyping� which de�nes �is�a� relationships between

objects ����

High�performance OO languages that support static typechecking and separate

compilation of classes impose special requirements on the implementation of inher�

itance� It must be possible to typecheck as well as compile a class with knowledge

of only the interfaces of inherited and other classes used in the implementation of

the class� �Typically� object layout information for these classes is also necessary��

Furthermore� it must be ensured that typechecked superclasses of a class continue

to be type correct in the presence of inheritance� without actually re�typechecking

the superclass�
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Inheritance has traditionally been characterized as an operational mechanism�

More recently� there have been some denotational characterizations of the notion

of classes and inheritance ���� ��� ���� The one that is relevant to this work is due

to Cook� in whose original formulation ����� a class is viewed as a record abstracted

over its own notion of what �self� means� References to symbols within the class

are made via the abstracted self parameter� Furthermore� inheritance is viewed as

an operation that appropriately modi�es �self� and references to it�

The following section puts into context this idea of abstracting over self� It

is shown that the what a namespace is abstracted over largely determines how

e�ectively and �exibly modules may be manipulated�

����� What to Abstract Over�

As mentioned earlier� a module is essentially a namespace 	 a set of names

bound to values� This can be modeled as a record in lambda calculus 	 a function

from a �nite set of names to their bindings� Some of the value bindings may be

functions that refer to other names� as shown in box �a� of Figure ���� Some of these

references will be to names within the namespace� others could be free references�

It is crucial to determine how to model these references�

The central issue in this regard is to decide what modules should abstract over�

Consider the following cases�

�i� Abstract over free variables� A module may be abstracted over only the

free names referenced� This results in a parameterized module� In the example

in Figure ��� �b�� the namespace is abstracted over free references to b� and b��

Such parameterized modules may be instantiated with actual argument values to

produce concrete namespaces� In this manner� one gets control over the bindings

of the abstracted names in the namespace�

�ii� Abstract over �self�� Taking the above technique one step further� it may be

desirable to get control not only over a subset of the names but over all the names

in a namespace� For this� it is necessary to abstract over all the names in the

namespace� However� for this notion to be useful� there must be a way to specify

default bindings for abstracted names� which can be subsequently re�bound�
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The above goals can be achieved by having modules abstract over the very

namespace that is generated by the module� its notion of �self�� As mentioned in

the previous section� Cook presented this idea as a lambda abstraction he called

a generator� as shown in Figure ��� �c�� The formal parameter s stands for the

namespace�s notion of �self�� which e�ectively lumps and abstracts over all the

names in the namespace� The namespace contains names a� � � � an with bindings

that refer to other names via the abstracted s parameter� e�g�� s�a�� s�b�� etc�

In such a model� binding and rebinding of names is done via operations over

generators that appropriately manipulate the s parameter� In fact� generators can

be adapted and combined in many useful ways before actually instantiating them�

Several examples of this are shown in Section ������ Bracha ��� shows that this

notion of abstracting over self can be used to achieve a comprehensive array of

individual e�ects of inheritance� Furthermore� a generator is instantiated by taking

its �xpoint by applying the �xpoint operator Y � Such an individual instance is a

concrete namespace� These notions are explained in more detail in Section ������

�iii� Abstract over �self� as well as the surrounding environment� The above

model still restricts reuse of nested modules� since nested modules are not acces�

sible from outside the nesting module prior to instantiation of the outer module�

Furthermore� consider that nested modules may refer to names in their lexically

surrounding environment� It may not be desirable to �hard�wire� these nonlocal

references to a particular environment by actually lexically nesting modules�

One way to further enhance the reusability of nested modules is to provide

control over their nonlocal references as well� This can be done by abstracting a

module further over its surrounding environment� This is shown in Figure ��� �d�

as a lambda abstraction introduced here known as a closed generator� In a closed

generator� references to names in the environment of a module is via the abstracted

e parameter �e�g�� e�c��� At instantiation time� the environment of the namespace

can be bound as desired� Closed generators permit one to retroactively embed a

module into any conforming environment� This notion is developed in Chapter ��
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Figure ���� What to abstract over� �a� A module namespace modeled as a record�
�b� A namespace abstracted over free references� a parameterized module� �c� A
module abstracted over the entire namespace� �self� �shown as s�� a generator� �d�
A module abstracted over �self� as well as the surrounding environment� a closed
generator�

����� Compositionality

The notion of full compositionality of modules uni�es the major ideas from all

the above progressions of module functionality� That is� it supports encapsulation�

�rst�class modules� a variety of inheritance idioms� and compositional nesting via

closed generators� In this section� a concise description of the goals and require�

ments of full compositionality is provided�

As mentioned earlier� the ultimate goal of compositional modularity is simply

to get the maximum possible implementation reuse out of the components of a

program� In order to maximize reuse� a program must �rst be decomposed into

the smallest possible independently meaningful units� If programs are broken down

into such units� then it is advantageous to be able to put them back together in

as many ways as they can be pro�tably reused� In fact� the more powerful the
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mechanisms by which one can meaningfully combine them� the more reuse one can

expect to get� This viewpoint� above all� characterizes the essence of the model of

compositional modularity�

Another way to describe compositional modularity is to articulate a set of

characteristics that are expected of module models that claim to support it� The

desiderata for module systems� given in ref� ���� is a good starting point for such

a list� Below� we �rst describe characteristics of traditional modularity and then

describe how compositional modularity augments them�

Encapsulation is a crucial notion in traditional modularity� Modules must be

able to hide their implementation and expose only an interface� Support for nesting

hierarchy is also central� since decomposition naturally leads to hierarchy� Finally�

static type safety should be attained when it is desirable and possible�

In addition to the above� we add the following two criteria for compositionality�

First� the notion of composability says that one should be able to combine modules

with each other to produce new modules� if they have compatible interfaces� This

notion applies not only for combining modules at the same level but also for

achieving hierarchical nesting� Second� the notion of adaptability means that one

should be able to modify aspects of a module to make it suitable for reuse in new

ways� Examples of adaptability are renaming and removal of attributes�

In practice� satisfying the requirements of composability and adaptability means

at least that a module system supports a �exible form of inheritance� i�e�� one

which supports a large part of the spectrum of e�ects obtainable via single and

multiple inheritance in various OO models� In this work� the above requirements

are shown to be satis�ed by supporting eight primary module operators� each of

which achieves an individual e�ect of composition of modules� These operators can

be used in combination to achieve familiar varieties of OO inheritance� Examples

of their use are described in detail in Chapters  and ��

In contrast� the common semantics of inheritance in OO languages is that

classes and inheritance are composite notions and ful�ll a variety of roles� For

example� a class de�nes a module� the visibility of its attributes� the rebindability
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of its attributes� and also de�nes a type� Similarly� inheritance supports class

combination� method rede�nition� access to overridden methods� name con�ict

resolution� and de�nition of subtyping relationships among types�

Compositional modularity as de�ned above is at once a uni�cation and distilla�

tion of several forms of modularity� The notion of module is boiled down to a simple

notion of abstracted namespace� yet several sophisticated forms of manipulation

can be performed on modules� The simplicity of the notion of module lends itself

to application to a broad range of modular and nonmodular languages and even

to notions such as object �le linking� interface de�nition and combination� and

document manipulation� In fact� the general concepts of compositional modularity

can themselves be abstracted and expressed independent of the particular compu�

tational model of a base language� Such a generic model can then be expressed

in an OO manner� constituting what is generally referred to as an object�oriented

framework ����� This approach was �rst suggested in Bracha�s thesis ���� although

no engineering strategies or implementation work was presented�

A more complete and detailed description of compositional modularity will be

provided in Chapters  and � by presenting a language embodying its concepts�

��� A Formal Characterization

In this section� we summarize the formal semantics of Jigsaw���� a module

language that supports most notions of compositional modularity� and constitutes

the starting point for this research� The concepts in this section will be covered

in the concrete context of a variant of Scheme in the following chapter� thus this

section may be skipped without loss of continuity� The formal semantics are given

here so that extensions to this semantics can be presented formally in the rest of

the dissertation�

����� Generator Manipulation

The semantics are speci�ed here using the untyped lambda calculus 	 see the

original description ��� �� for full details�

As mentioned earlier� the basis of generator semantics goes back to record
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calculi� A record is characterized as a function from a �nite domain of labels

to a domain of values� Each label�value pair is called an attribute� Operators

over records� such as for concatenation �kr�� attribute overriding ��r�� attribute

removal �nr�� renaming �renamer� and selection ��r�� are de�ned elsewhere ���� and

not given here� The subscript r signi�es that the operations are de�ned on records�

Applicatively� a module is modeled as a record generating function� or a gener�

ator� Its domain equation and an example follow�

Generator � Instance � Instance

g � �s� fa� � v�� a� � v�� � � � � an � vng

The parameter s corresponds to the generator�s notion of �self�� The �xpoint

Y �g� of such a generator� a record� is called an instance of the module� Taking the

�xpoint of the generator binds the generator�s self�references s�ax�

In terms of OO programming� a generator �or module� corresponds to a class�

and an instance corresponds to an object of a class� Furthermore� the bindings of

labels can actually refer to labels that are not de�ned within the generator� These

unde�ned labels correspond to pure virtuals or abstract attributes� and the gener�

ator corresponds to an abstract class� Abstract classes should not be instantiated�

since access to abstract attributes is unde�ned� The formal characterization re�ects

this fact� one cannot take the �xpoint of an abstract generator� since the range of

the function is smaller than the domain�

Modules are combined using a suite of combinators that individually achieve

e�ects of inheritance� Figure ��� shows the de�nitions of the primary combinators�

merge� override� rename� restrict� freeze� hide� and copy�as� �Generator operators

are given in the sans serif font for uniformity with their use in the rest of this

dissertation��

The operators given in the �gure take generators as parameters and produce

new ones whose s parameters are modi�ed appropriately� For example� the operator

merge takes in two generators g� and g� and produces a new generator whose body

is a simple record concatenation �kr� of the two records given by g��s� and g��s��
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merge� �g�� �g�� �s� g��s� kr g��s�

override � �g�� �g�� �s� g��s��r g��s�

rename a b �

�
�g� �s� g�s�r fa � s�rbg� renamer a b if g de�nes a
�g� �s� g�s�r fa � s�rbg� otherwise

restrict a � �g� �s� g�s� nr a

freeze a � �g� Y ��f� �s� g�s�r fa � f�s��rag��

hide a � �g� �s� �freeze a��g��s� nr a

copy�as a b � �g� �s� let super � g�s� in super kr fb � super�rag

Figure ���� The generator de�nitions of the primary module combinators�

The de�nitions for the unary operators given in the �gure are more involved� the

interested reader is referred to ref� ���� �Also� Chapter  explains the semantics of

these operators� along with examples and idioms of their use� within the concrete

context of an extension of the Scheme language��

In order to model imperative semantics in this framework� we must account for

the e�ect of instantiation on the store� This can be achieved by augmenting the

semantics of generators using a notion of constructors� With this augmentation�

when the �xpoint of a generator is taken� we get a constructor which can be applied

to a store to get an instance� The domain equations are�

Generator � Constructor � Constructor

Constructor � Store � �Instance � Store�

Modules are �rst class semantic entities� hence module attributes can themselves

be modules� Such nested modules can contain free references� which implicitly refer

to names in a surrounding lexical scope and are found in the module�s environment�

This semantics is modeled by passing the environment as an argument to the se�

mantic function that creates constructors� The constructor retains the environment
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in which it was created� Upon instantiation� i�e�� when applied to a store� it extends

its retained environment with bindings arising from the attribute de�nitions in the

module�

Given this� imperative operators analogous to the applicative ones given in

Figure ��� can be formulated� However� we shall omit the details here for the sake

of simplicity of presentation and work with the applicative operators�

����� Static Typing

A module has a type� called its interface� that is given by the types of all its

attributes� both de�ned and declared� An attribute is said to be de�ned if it binds

a name to a value and it is said to be declared if it simply speci�es the type of

the binding� For example� if a module de�nes attributes a� � � � am with values that

have valid type signatures �� � � � �m and declares attributes d� � � � dk with valid type

signatures �� � � � �k� then the module has an interface�

f de�ne a� � ��� � � � � am � �m

declare d� � ��� � � � � dk � �k g

A static type system determines the type of new modules generated by module

operators� provided that the types of the incoming modules satisfy certain proper�

ties� Rules for performing this� called type rules� for each module combinator have

been speci�ed as part of the Jigsaw language� The detailed rules are not reproduced

here� but an English transcription for each operator is given below and summarized

in Table ����

In the following description� attributes from two modules are said to con	ict

if they have the same name� Furthermore� subtyping relationships between types

can exist in the particular computational base language� Subtypes induce a partial

ordering structure� usually a lattice structure� on types� and in most cases it is

possible to determine the greatest lower bound �greatest common subtype� and the

least upper bound �least common supertype� of pairs of types� For interface types�

subtyping is given by type equality� since module operators require complete type

information for their arguments� and thus are not polymorphic�
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Table ���� Informal type rules for module combination�

Operator Typing

merge�Module� Combine interfaces� For con�icting attributes� de�nitions
disallowed� a de�nition must be a subtype of declaration� for
declarations� replace with greatest common subtype�

override�Module� Same as merge� except con�icting de�nitions are allowed�
incoming de�nition must be a subtype of con�icting de�nition�

restrict�Label� Given attribute must be de�ned�
freeze�Label� Given attribute must be de�ned�
hide�Label� Given attribute must be de�ned�
rename�Label�Label� First argument attribute must exist �declared or de�ned��

second must not�
copy�as�Label�Label� First argument attribute must be de�ned� second must not

exist�

When two modules are merge�d� the interface of the resultant module is a

combination of the interfaces of the incoming modules� The types of noncon�icting

attributes in both modules are included in the resultant� For con�icting attributes�

there are three cases� as follows� Con�icting de�ned attributes are altogether

disallowed� If one is de�ned and the other declared� the de�ned attribute is included

in the resultant if it is a subtype of the declared one� If both are declared� the

attribute�s type in the resultant module will be the greatest common subtype of the

con�icting types�

The type rule for the override operator is the same as for merge� except in the

case of con�icting de�ned attributes� In this case� the one from the right operand

must be a subtype of the one from the left� and the attribute in the resultant module

will be the more speci�c type� the subtype�

The type rules for restrict� freeze� and hide require that the given attribute

is de�ned in the module� The rename operator requires that its �rst argument

attribute is either de�ned or declared in the module and that the second argument

is neither de�ned nor declared� The copy�as operator� on the other hand� requires

that its �rst argument be de�ned and that the second one does not exist�
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��� Summary

This chapter has explained the background and motivational concepts necessary

to understand compositional modularity� The model has been placed in the context

of progressions of �exibility� �rst�classness� reuse� and name�space abstraction in

module systems� Classical module systems support decomposition� encapsulation�

static type checking� and lexical nesting but do not support module manipulation

to achieve reuse� OO programming systems do support manipulable modules but

are usually in�exible and do not fully support nested modules�

Furthermore� a concise description of the goals and salient features of com�

positional modularity has been presented� The primary goal of compositional

modularity is to support a �exible mechanism for composing highly decomposed

programs to achieve a high degree of implementation reuse� It supports enhanced

reuse over existing models with the new notion of compositional nesting�

We also summarized the formal generator semantics and static type system of

the module manipulation language Jigsaw� which constitutes the starting point for

this research�



CHAPTER �

COMPOSITIONALLY MODULAR

SCHEME

The purpose of this chapter is twofold� One is to introduce the concepts of

compositional modularity in the concrete context of a programming language�

The language presented here is called Compositionally Modular Scheme� or CMS

for short� which is the programming language Scheme ���� extended to support

compositional modularity�

The other purpose is to demonstrate that these notions are general enough to

emulate idioms of advanced modularity such as OO inheritance� In particular�

idioms such as abstract classes� super�based and pre�x�based single inheritance�

mixin�based and multiple inheritance� and wrapping of method de�nitions and

calls are emulated�

Scheme is a dialect of the Lisp programming language� It is statically scoped�

properly tail�recursive� dynamically typed and incorporates �rst�class procedures

and continuations� It has a simple semantics and supports both imperative and

functional styles of programming� In this spirit� the CMS module system supports

modules as �rst�class entities� and it is dynamic and interactive�

The primitives of CMS are gradually introduced in Section ��� There are

primitives to create modules� to combine and adapt them� to inspect them� to

instantiate them� and to access their attributes�

Sections �� and �� then show how the above primitives can be applied indi�

vidually or in combination with others to achieve various idioms of OO inheritance�

All these concepts are illustrated with several examples�
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��� Modules and Instances

In CMS� a module consists of a list of attributes� with no order signi�cance�

Attributes are of two kinds� Mutable attributes are similar to Scheme variables and

can store any Scheme value� Immutable attributes are symbols bound to Scheme

values in a read�only manner� i�e�� they can be accessed but not assigned to�

A module is a Scheme value that is created with the mk�module primitive�

Modules may be manipulated� but their attributes cannot be accessed or evaluated

until they are instantiated via the mk�instance primitive� The syntax of these two

primitives is�

�mk�module hmutable�attribute�listi himmutable�attribute�listi�
�mk�instance hmodule�expri�

Expressions that create modules� such as the mk�module expression above� are

denoted as hmodule�expri� Similarly� expressions that create instances are denoted

as hinstance�expri�

The attributes of an instance can be accessed via the attr�ref primitive and

assigned to via the attr�set� primitive� Procedures within a module can access

sibling attributes via the self�ref primitive and assign to them with the self�set�

primitive� �These primitives are explained in more detail in Section �����

Figure �� shows the basic module operations� Figure �� �a� shows a module

bound to a Scheme variable fueled�vehicle� The module has one mutable attribute

fuel and two immutable attributes� empty�� bound to a procedure which checks to

see if the fuel tank is empty� and �ll� bound to a procedure that �lls the fuel tank

of the vehicle to capacity� The �ll method refers to an attribute capacity that is

not de�ned within the module but is expected to be the fuel capacity of the vehicle

in gallons� In the vocabulary of traditional module systems� the above module

exports the three symbols fuel� empty� and �ll� and implicitly imports one symbol

capacity� �An alternative language design could support explicit importation via

explicit interfaces��
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�a�

�de�ne fueled�vehicle �mk�module
��fuel ���
��empty� �lambda ��

�� �self�ref fuel� ����
��ll �lambda ��

�self�set� fuel �self�ref capacity�������

�b�

�de�ne encap�fueled�vehicle �hide fueled�vehicle 	�fuel���
�describe encap�fueled�vehicle�


�
��empty� �lambda �� �� �self�ref �priv�attr� ����� ��ll � � ���

�c�

�de�ne capacity�module
�mk�module ��

��capacity 
��
�greater�capacity� �lambda �in�

�� �self�ref capacity� �attr�ref in capacity�������
�de�ne vehicle �merge encap�fueled�vehicle capacity�module��

�d�
�de�ne new�capacity

�mk�module �� ��capacity ������
�de�ne new�vehicle �override vehicle new�capacity��

�e� �de�ne v
 �mk�instance vehicle��

Figure ���� Basic module operations� �a� De�nition via mk�module� �b� encap�
sulation via hide� �c� combination via merge� �d� rebinding via override� and �e�
instantiation via mk�instance�

����� Encapsulation

As mentioned earlier� one of the most important requirements of module systems

is encapsulation� This is supported by the primitive hide� which returns a new

module that encapsulates the given attributes�

�hide hmodule�expri hattr�name�list�expri�

In Figure �� �b�� the hide expression creates a new module with an encapsulated

fuel attribute that has an internal� inaccessible name� This is shown by the describe

primitive� which simply prints out the attributes of a module� as �priv�attr��

Hiding results in what is known as object�level encapsulation� i�e�� the hidden

attributes of a particular instance of a module are accessible only by self�reference
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primitives �e�g�� self�ref� within that individual instance� They are not accessible ex�

ternally �e�g�� via attr�ref�� not even by the incoming parameter of a binary method

such as the in parameter of the greater�capacity� method of module capacity�module

shown in Figure �� �c�� This style of encapsulation is in contrast to the class�level

encapsulation supported by ADTs� and also the C�� language�

It is important to note that such retroactive encapsulation shrinks the interface

of a module� As a result� functions expecting an instance of a particular module

may not necessarily operate correctly on an instance of the module subjected to

a hide operation� This represents the widely accepted notion that an inherited

module does not necessarily result in a subtype of the �parent�� in e�ect separating

inheritance from subtyping �����

����� Combination

The module capacity�module given in Figure �� �c� exports two symbols� capac�

ity� which represents the fuel capacity of a vehicle in gallons� and greater�capacity��

bound to a procedure that determines if the current instance has greater fuel

capacity than the incoming argument�

The module encap�fueled�vehicle can be combined with capacity�module to satisfy

its import requirements� This can be accomplished via the primitive merge� which

has the following syntax�

�merge hmodule�expr� i hmodule�expr� i�

The new merged module vehicle in Figure �� �c� exports four symbols and

imports none� �One can check if the import requirements of individual modules are

satis�ed by using introspection primitives described in Section ������

The primitivemergedoes not permit combining modules with con�icting de�ned

attributes� i�e�� attributes that are de�ned to have the same name� If there are name

con�icts� one can use the operator override�

�override hmodule�expr� i hmodule�expr� i�

In the presence of con�icting attributes� override creates a new module by choos�

ing hmodule�expr
 i�s binding over hmodule�expr� i�s in the resulting module� For

example� the module new�capacity in Figure �� �d� cannot be merged with vehicle





since the two modules have a con�icting attribute capacity� However� new�capacity

can override vehicle� as shown� This way� immutable attributes can be re�bound�

and mutable attributes can be associated with new initial values�

An instance of the vehicle module� such as v� in Figure �� �e�� represents

exactly the kind of module interconnectivity that can be speci�ed by the use of

import�export operations in traditional module systems�

����� Attributes and Their Access

Immutable attributes correspond to the �xed �behavior� of the abstraction

represented by the module� whereas mutable attributes correspond to its �state��

Immutable attributes that are bound to procedures are referred to as methods�

borrowing fromOO programming� Immutable attributes can also be bound to other

modules� called nested modules� dealt with in Chapter �� Immutable attributes have

the potential to be shared among all instances of the module�

Mutable attributes� on the other hand� are bound to fresh locations upon module

instantiation and initialized with the value associated with each attribute� Thus�

mutable attributes can never be re�bound as such� they can only be re�initialized�

e�g�� via override� Structured values �e�g�� lists� are only shallow copied� staying

consistent with the reference semantics of values in lisp based languages� Values

that are stored �or initialized� into mutable attributes are not really �bound� to

the attribute� hence a Scheme procedure stored into a mutable attribute cannot

access other attributes of the module via self�ref� If this were allowed� then the

procedure would e�ectively become a �rst�class closure that could be passed around�

however� CMS provides other means for creating such a closure �via attr�refc below��

Similarly� a module can be stored into a mutable attribute� but it cannot access

the attributes of the outer module via env�ref �described later��

The attributes of an instance are accessed with the following primitives�

�attr�ref hinstance�expri hattribute�namei harg�expr� i�
�attr�refc hinstance�expri hattribute�namei�
�attr�set� hinstance�expri hattribute�namei hexpri�
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The values of both mutable and immutable attributes are accessed with the

primitive attr�ref� If the referenced attribute is a method� it is applied with the

given argument�s� and its value returned� Syntactically� accessing the value of a

nonmethod attribute via attr�ref is exactly the same as applying a method with no

arguments� A method can also be accessed as a �rst�class closure� without applying

it� via the primitive attr�refc� For nonmethod attributes� attr�refc is semantically

equivalent to attr�ref� Mutable attributes are assigned with the primitive attr�set��

A method can access the instance within which it is executing via the expression

�self�� Thus� a method can access a sibling attribute within the same instance as

�attr�ref �self� hattr�namei�� However� encapsulated attributes cannot be accessed

in this manner� For this� a method uses the analogous primitives self�ref and self�refc

to access the values of attributes� and self�set� to assign to mutable attributes� of

the instance within which it is executing�

�self�ref hattribute�namei harg�expr� i�
�self�refc hattribute�namei�
�self�set� hattribute�namei hexpri�

Accesses via these primitives are called self�references� whereas accesses via

attr�ref and attr�set� are called external references� Figure �� shows examples of

the use of some of these primitives�

����� Abstract Modules

An attribute is called unde�ned if it is self�referenced� or referenced from a

nested module� but is not speci�ed in the module� If it is speci�ed� it is called

de�ned�

A module is abstract if any attribute is left unde�ned� In keeping with dynamic

typing in Scheme� an abstract module can be instantiated� since it is possible that

some methods can run to completion if they do not refer to unde�ned attributes�

It is a checked run�time error to refer to an unde�ned attribute� It should be noted

that this goes beyond the normal compilation�oriented policy stated in Section

������
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����� Adaptation

Thus far� we have shown how CMS supports the notions of traditional module

systems� From this point on� we go beyond traditional module systems� In this

section� operators to adapt particular characteristics of modules are described� In

the following section� ways to �nd out information about �rst�class modules and

instances are given� Following that� we show how to use all the primitives introduced

to simulate composite idioms of OO programming�

Besides hide� there are four other primitives �see Figure ��� which can be used to

create new modules by adapting some aspect of the attributes of existing modules�

�restrict hmodule�expri hattr�name�list�expri�
�rename hmodule�expri hfrom�name�list�expri hto�name�list�expri�
�copy�as hmodule�expri hfrom�name�list�expri hto�name�list�expri�
�freeze hmodule�expri hattr�name�list�expri�

The primitive restrict simply removes the de�nitions of the given �de�ned�

attributes from the module� i�e�� makes them unde�ned� An example is shown

in Figure �� �a��

�a�
�describe �restrict vehicle 	�capacity���


�
��empty� � � � � ��ll � � � � �greater�capacity� � � � ��

�b�
�describe �rename vehicle 	�capacity� 	�fuel�capacity���


�
��fuel�capacity 
����ll �� � � �self�ref fuel�capacity��� � � � �

�c�
�describe �copy�as vehicle 	�capacity� 	�default�capacity���


�
��capacity 
���default�capacity 
����ll �� � � �self�ref capacity��� � � � �

�d�
�describe �freeze vehicle 	�capacity���


�
��capacity 
����ll �� � � �self�ref �priv�attr����� � ��

Figure ���� Module adaptation operations� �a� Removing an attribute via restrict�
�b� renaming an attribute and self�references to it via rename� �c� copying an
attribute via copy�as� and �d� statically binding self�references to an attribute via
freeze�
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The primitive rename changes the names of the de�nitions of� and self�references

to� attributes in its argument hfrom�name�list�expri to the corresponding ones in

hto�name�list�expri� An example is shown in Figure �� �b�� Unde�ned attributes�

i�e�� attributes that are not de�ned but are self�referenced� can also be renamed�

The primitive copy�as copies the de�nitions of attributes hfrom�name�list�expri

to attributes with corresponding names in hto�name�list�expri� The from argument

attributes must be de�ned� An example is shown in Figure �� �c��

The primitive freeze statically binds self�references to the given attributes� pro�

vided they are de�ned in the module� Freezing the attribute capacity in the

module vehicle causes self�references to capacity to be statically bound� but the

attribute capacity itself is available in the public interface for further manipulation�

e�g�� rebinding by combination� �This e�ect is similar to converting accesses to

a virtual C�� method into accesses to a nonvirtual method� The di�erence is

that C�� allows nonvirtual methods to be in the public interface of a class 	

the general philosophy here is that all public attributes are rebindable� or virtual�

like in Smalltalk�� As shown in Figure �� �d�� frozen self�references to capacity

are transformed to refer to a private version of the attribute� Operationally� the

binding of the private version is shared with the public version� as long as the

public version is not re�bound to a new value via overriding� This implies that

frozen references to mutable attributes are always shared� since mutable attributes

can never be rebound� they can just be initialized to new values�

In Figure �� all the module adaptation operators are shown pictorially� At

the top left is a box representing the given module with an inner box representing

the method meth� Self�references to meth from within the rest of the module are

shown bundled into one line pointing to meth� At the top center� the inner shaded

box labeled �meth� indicates an encapsulated meth attribute� At the top right�

references to the unde�ned method meth are shown bundled into a line pointing

out of the module�

The above module manipulation primitives are applicative� in the sense that

they return new modules without destructively modifying their arguments� De�
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restrict meth

freeze methrename meth meth’

hide meth

copy meth meth’

meth <meth>

meth

meth

<meth>

meth’

methmeth’

Figure ���� Pictorial representation of adaptation� Given a module with a method
meth and self�references to it� this �gure shows the e�ect of various adaptation
operators� Shaded boxes with �meth� indicate encapsulated meth attributes�

structive versions of the operators could permit one to express composite module

operations without compromising e
ciency by making unnecessary copies� How�

ever� such operations could result in disastrous behavior� For example� an instance

that introspectively queries for its module via module�of �described in the next

section� could obtain a di�erent module from the one fromwhich it was instantiated�

As a result� destructive module operations are not supported�

����� Introspection

There are several primitives available for determining various kinds of informa�

tion about modules and instances� Some of them are�

�attrs�of hmodule�expri�
�mutable�attrs�of hmodule�expri�
�module�of hinstance�expri�
�de�ned� hmodule�expri hattr�name�list�expri�
�self�refs�in hmodule�expri hattr�name�list�expri�
�conicts�between hmodule�expri hattr�name�list�expri�

Some examples are shown in Figure ��� The names of the publicly accessible

attributes of a module are accessible via the attrs�of primitives� For example� the

mutable attributes of a module can be encapsulated with the expression in Figure

�� �a��
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�a� �hide vehicle �mutable�attrs�of vehicle��

�b� �de�ned� vehicle �self�refs�in vehicle greater�capacity���

�c� �let ��conicts �conicts�between mod
 �attrs�of mod�����
�rename mod
 conicts �prepend �super�� conicts���

Figure ���� Introspection operations� �a� Hiding mutable attributes via muta�
ble�attrs�of� �b� checking if a method will run to completion using de�ned� and
self�refs�in� and �c� renaming con�icting attributes via con�icts�between�

The primitive de�ned� is used to determine if an attribute is de�ned in a

module� It returns �f if any one of the given attribute names is unde�ned in the

given module� If all of them are de�ned� it returns the incoming list of attribute

names� The primitive de�ned� can actually be implemented in terms of attrs�of�

The module from which an instance was created can be obtained with the

primitivemodule�of� Thus� �module�of �self�� is similar to self class in Smalltalk� like

current in Ei�el ���� and myclass given in Canning et al� �����

It is sometimes useful to know the names of public attributes that are self�

referenced within a method� The primitive self�refs�in returns a �at list comprising

the set of all the self�referenced public attributes within the bindings of the given

attribute names� Argument attribute names that are nonexistent or bound to

nonmethod values are ignored� For example� to determine if a method will execute

without run�time errors relating to locally unde�ned public attributes �private

attributes are always de�ned�� one can evaluate the expression in Figure �� �b��

The primitive con�icts�between returns a list of attribute names that are de�ned

in the given module and also exist in the given list� For example� all the attributes of

a module that con�ict with another module can be renamed by using the expression

in Figure �� �c�� Renaming is an adaptation operator described in the following

section�

Two other primitives not enumerated above are module� and instance� which

are predicates that tell if their argument value is a module or instance respectively�

The introspective operations given above do not permit access to any aspect of
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private attributes of modules� Being meta�level primitives� they do permit exposing

some details of method implementations� such as self�references� However� it has

been argued in the literature ���� that the self�reference dependencies of methods are

indeed an aspect of their inheritance interface� rather than their implementation�

��� Single Inheritance

From the programmer�s point of view� it is necessary to know not only the avail�

able constructs in a language but also the intent and usefulness of the constructs�

Thus� it is necessary to show how CMS can emulate composite notions of advanced

modular programming� such as OO programming� In this section� we show how

CMS supports several styles of single inheritance� In Section ��� styles of multiple

inheritance are illustrated�

����� Super
based Single Inheritance

Super�based single inheritance is illustrated in Figure ��� Single inheritance

systems such as Smalltalk have the notion of a class consisting of methods and

encapsulated instance variables� In these systems� it is possible to specify a class

declaration similar to that shown in Figure �� �a�� �The de�ne�class construct

will be explained below�� In this example� the attribute fuel is intended to be

encapsulated as an instance variable and the Scheme constant �f �false� indicates

that the class has no superclasses� Such a class declaration is equivalent to writing

a mk�module expression and hiding the fuel attribute of the resultant module�

Given such a vehicle module� a land vehicle can subsequently be de�ned in

such systems by specifying the way in which land vehicles incrementally di�er from

vehicles� That is� a subclass land�vehicle of vehicle can be speci�ed in a manner

similar to Figure �� �b�� In this de�nition� a new immutable attribute wheels

is added� and the display binding is overridden with a method that accesses the

shadowed method as �self�ref super�display��

The crucial e�ect of inheritance is the appropriate rebinding of self�references

in the superclass to rede�ned attributes in the subclass� The question is how to

achieve this in CMS� For the vehicle example� a new module that captures the
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�a�

�de�ne�class vehicle �f
��fuel ���
��capacity 
��
��ll �lambda ��

�self�set� fuel �self�ref capacity��
�self�ref display���

�display �lambda �� �format �t �fuel � � a �capacity � a� �
�self�ref fuel� �self�ref capacity������

�b�

�de�ne�class land�vehicle vehicle
��
��wheels ��
�display �lambda ��

�self�ref super�display�
�format �t �wheels � � a � �self�ref wheels������

�c�

�de�ne land�vehicle
�hide �override �copy�as vehicle 	�display� 	�super�display��

�mk�module ��
��wheels ��
�display �lambda ��

�self�ref super�display�
�format � � � �self�ref wheels�������

	�super�display���

Figure ���� Super�based single inheritance� �a� The superclass vehicle� �b� the
subclass land�vehicle� and �c� the module expression that the macro in box �b�
expands to�

characteristics of a land vehicle is created� and this must be combined with the

vehicle module� Consider the following cases�

�� Simply override� The subclass cannot simply override the superclass� since in

that case� the superclass display will be wiped out�

�� Rename and override� If the superclass display is renamed to super�display�

self�references to display are also renamed� Thus� the self�reference to display

in the �ll method will never execute the subclass� display�

� Copy and override� If the superclass display is copied to super�display and then
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overridden� self�references to display in the superclass will execute the subclass�

display� as desired� However� the resultant module will have an extra method

super�display in its public interface�

�� Copy� override� and hide� This is the correct solution� shown in Figure ��

�c��

One can write a macro in CMS to translate de�ne�class expressions such as

those for vehicle and land�vehicle into module expressions� In fact� a library of

several such useful macros accompanies CMS� One macro for single inheritance

accepts the following syntax�

�de�ne�class hnamei hsuperi hinst�var�listi hmethod�listi�

This macro automatically �nds con�icting attributes between modules by using

the introspective primitive con�icts�between and uses the expression in Figure ��

�c� to achieve single inheritance�

The general form of the module expression shown in Figure �� �c� turns out

to be a useful idiom in CMS� It can be used for expressing other e�ects such as

pre�x�based inheritance� wrapping� and mixin combination� described later� We

shall refer to this form as the copy�override�hide idiom�

����� Pre�xing

The programming language Beta ���� supports a form of single inheritance called

pre�xing� which is quite di�erent from the single inheritance presented in Section

�����

In pre�xing� a superclass method that expects to be re�bound by a subclass

de�nition uses a construct called inner somewhere in its body� Within instances

of the superclass� calls to inner amount to null statements� or no�ops� Subclasses

can rede�ne the method and� in turn� call inner� Within subclass instances� the

superclass method is executed �rst� then the subclass� rede�nition is executed upon

encountering the inner statement� It is easy to see that this mechanism ensures

that a method rede�nition is an extension of the original method� rather than a

replacement�
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The above e�ect can be achieved in CMS with the macro de�ne�pre�x� illustrated

with the vehicle example in Figure ��� Figure �� �a� focuses on the display method

of the vehicle class� The expression �self�ref inner�display� corresponds to the inner

construct� This class de�nition expands to the module expression shown in ��

�b�� where a dummy inner�display attribute is merged in� In fact� the de�ne�pre�x

macro adds such a dummy attribute �prepended with inner�� for every immutable

attribute in the de�nition�

A subclass land�vehicle of vehicle is de�ned in Figure �� �c�� which expands to

an expression similar to the one in �� �d�� In this expression� assume that a module

with the subclass characteristics is �rst merged in with a dummy inner�display to

produce the module land�veh�chars� This module�s display method is then copied

as sub�display and overridden with the superclass in which the dummy inner�display

attribute is removed and references to it are renamed to sub�display� Lastly� sub�

display is hidden away so that there is only one display method in the resultant�

�a�
�de�ne�pre�x vehicle �f

�� � ��
�� � ��display �lambda �� � � � �self�ref inner�display� � � �����

�b�

�de�ne vehicle �mk�module �� � ��
�� � �
�display �lambda �� � � � �self�ref inner�display� � � � ��
�inner�display �t����

�c�
�de�ne�pre�x land�vehicle vehicle

�� � ��
�� � ��display �lambda �� � � � �self�ref inner�display� � � �����

�d�

�de�ne land�vehicle
�hide �override �copy�as land�veh�chars 	�display� 	�sub�display��

�rename �restrict vehicle 	�inner�display��
	�inner�display� 	�sub�display���

	�sub�display���

Figure ���� Pre�x�based inheritance� �a� A vehicle pre�x� �b� expansion of
the inner construct� �c� a land vehicle subclass� and �d� the module expression
to combine pre�xes�
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This example also uses the copy�override�hide idiom introduced in Section �����

The di�erence here is that the adapted superclass overrides the subclass as opposed

to the reverse in Section ����� Indeed� this is the di�erence between pre�x�based

and super�based forms of single inheritance� This can be contrasted side by side

pictorially in Figure �� �the diagramming conventions used are the same as in

Figure ���

����� Wrapping

The notion of wrapping enables one to interpose a piece of code �the �wrapper��

between a method and its callers� Wrapping� similar to the CLOS notion of 	around

methods� is useful in many contexts� In fact� wrapping method de�nitions can be

METH

METH’

METH

METH

METH’

METH

INNER

METH

(b)

INNER

INNER

METH

METH’

SUPER

SUB

DELTA

SUB

SUPER

DELTA

(a)

Figure ���� Pictorial representation of single inheritance� �a� Super�based� �hide
�override �copy�as SUPER METH METH
� DELTA� METH
�� and �b� pre�x�based�
�hide �override �copy�as DELTA METH METH
� �rename SUPER INNER METH
��
METH
�
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used to simulate 	before and 	after methods of CLOS as well� since new code can

be interposed before or after the call to the old code� It is easy to wrap method

de�nitions using the copy�override�hide idiom shown earlier� CMS provides a macro

called wrap�method to achieve this e�ect� but we shall omit its description here to

conserve space�

A more interesting and less often explored e�ect is to wrap self�referenced calls

to particular methods� as illustrated in Figure ��� Say we have a module veh�sim

shown in Figure ���a�� which is intended to be combined with the vehicle module�

Its method sim��ll calls the unde�ned method �ll upon some condition �ll�condition�

Say we want to count the number of calls to �ll that sim��ll makes� We do not want

to wrap the method �ll in vehicle� since we want to count only calls from sim��ll�

Also� we cannot wrap the sim��ll method to do this� since every call to it does not

necessarily result in a call to �ll� due to the �ll�condition test�

Thus� we need to wrap calls to �ll from the veh�sim module using the wrap�call

�a�

�de�ne veh�sim �mk�module �� � � �
��sim��ll �lambda �v�

�if ��ll�condition v�
�self�ref �ll�������

�b�

�de�ne counted�veh�sim
�let ��count�sim �merge veh�sim �mk�module ��count ��� ������
�wrap�call count�sim �ll

�lambda ��
�self�set� count �� �self�ref count� 
��
�self�ref �ll�����

�c�

�hide �merge �rename count�sim 	��ll� 	�wrap��ll��
�mk�module ��

��wrap��ll �lambda ��
�self�set� count �� �self�ref count� 
��
�self�ref �ll������

	�wrap��ll��

Figure ���� Wrapping calls to methods� �a� A vehicle simulation module veh�sim�
�b� wrapping calls to �ll from veh�sim using the wrap�call macro� and �c� the module
expression that wrap�call expands to�



��

macro shown in box �b�� We add a mutable attribute count to veh�sim and wrap

its calls to �ll to increment the counter� The module expression that the wrap�call

expands into is given in box �c�� In this expression� we �rst rename the unde�ned

attribute �ll to wrap��ll� thus changing the self�references correspondingly� We then

merge in a wrap��ll method that increments count and calls the old �ll method in

the resulting module�

��� Idioms in CMS

The general form of the expression in Figure �� �c� is another useful idiom

in CMS and will be referred to as the rename�merge�hide idiom� The distinction

between the copy�override�hide idiom and the rename�merge�hide idiom is worth

exploring� Figure �� pictorially shows the use of these idioms for method de�nitions

in the �rst row and method calls in the second� In the �gure� shaded boxes represent

hidden methods�

For method de�nitions� both the idioms are used when a method METH of M�
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Figure ��	� Idioms in CMS�
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is being rede�ned by M�� and the old de�nition of the method is referred to in

the rede�nition as METH
� The di�erence is that copy�override�hide is used when

M��s references to METH are to refer to the new METH in the combined module�

Rename�merge�hide is used when M��s references are to refer to the old de�nition

renamed as METH
� and M��s references are to refer to the rede�nition�

As an example scenario� rename�merge�hide is not appropriate to achieve the

right e�ect of single inheritance� For example� in Figure ���c�� renaming vehicle�s

displaymethod instead of copying it would not work� since in that case self�references

to display in vehicle would also be renamed 	 we want self�references in the super�

class to refer to the new� rebound display method�

For method calls� only the rename�merge�hide idiom applies� since unde�ned

attributes cannot be copied� In Figure ��� module M� has a call to METH which

is wrapped to produce M as shown� An example was given in Section ����

��� Multiple Inheritance

We have seen in Section �� how to express the creation of a subclass from a

single superclass� With multiple inheritance �MI�� there is the additional problem

of how to compose the superclasses by resolving con�icts and sharing attributes

between them� Typically� a language supporting multiple inheritance makes avail�

able to the programmer a small number of choices for attribute sharing and con�ict

resolution� The advantage of OO programming with operator�based inheritance

is that the programmer has numerous options for� and �ne�grained control over�

decisions taken while combining multiple modules�

The most important advantage of operator�based inheritance as given here is

that the programmer has explicit control over the various aspects of combination

of modules� This is in contrast to many existing languages� which provide de�

fault language behavior for aspects of multiple inheritance� Two examples are

default linearization of ancestors and sharing of ancestors common to multiple

paths� Depending upon such default rules can cause unexpected consequences if

the inheritance relationship between classes �which is an implementation detail� is
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changed� With explicit� �ne�grained control over aspects of multiple inheritance as

supported by compositional modularity� inheritance relationships can be changed

as desired� as long as the interface of the inherited module is not changed� This

makes the approach more compositional�

����� Mixins and Linearized MI

Consider the case of linearized multiple inheritance as in Flavors and Loops�

where the graph of ancestor classes of a class are linearized into a single inheritance

hierarchy� Each of these languages speci�es a di�erent default rule for the lin�

earization of ancestor classes� For example� both these languages do a depth��rst�

left�to�right traversal of ancestor classes up to join classes� i�e�� classes that are

encountered more than once� which get traversed on their �rst visit in Flavors and

last visit in Loops�

It has been argued that currently used linearizations do not ensure that �the

inheritance mechanism behaves �naturally� relative to the incremental design of the

inheritance hierarchy� ����� Moreover� changing the inherited superclass of a class

�an implementation detail� can change the computed linearization of superclasses�

producing a completely di�erent behavior than before�

Perhaps it is better to let the programmer select the precedence order of super�

classes as dictated by individual applications� In the case of CLOS� a programmer

with considerable expertise can use the meta�object protocol of the language and

adapt the default rule� In contrast� programming with operator�based inheritance

gives the programmer direct control over combination� as shown in Figure ����

Say we want to create modules for land vehicles and sea vehicles as subclasses

of vehicle� We can de�ne modules with the characteristics of land vehicles �number

of wheels� and sea vehicles �surface vessel or submarine� as shown in box �a��

In these modules� one can think of the expression �self�ref super�display� as being

the equivalent of call�next�method in CLOS� Abstract modules such as these are

sometimes called �mixins� 	 reusable abstractions that require other abstractions

in order to be usefully applied� Such abstractions have been characterized as

functions from classes to classes ���� However� the approach of operator�based
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�a�

�de�ne land�veh�chars �mk�module ��
��wheels ��
�display �lambda �� �self�ref super�display�

�format �t �wheels � � a � �self�ref wheels�������
�de�ne sea�veh�chars �mk�module ��

��surface �t�
�display �lambda �� �self�ref super�display�

�format �t �surface � � a � �self�ref surface�������

�b�
�de�ne�subclass land�vehicle �land�veh�chars vehicle��
�de�ne�subclass sea�vehicle �sea�veh�chars vehicle��
�de�ne�subclass amphibian �land�veh�chars sea�veh�chars vehicle��

�c�

�de�ne amphibian
�hide �override �copy�as vehicle 	�display� 	�super�display��

�hide �override �copy�as sea�veh�chars 	�display� 	�super�display��
land�veh�chars�

	�super�display���
	�super�display���

Figure ���� Linearized multiple inheritance�

inheritance given here uniformly treats all aspects of inheritance as operations over

modules� as was �rst developed in ����

With the de�nitions in box �a�� we can create land�vehicle and sea�vehicle �sub�

classes� of vehicle as shown in box �b�� This is achieved using the copy�override�hide

idiom �Figure ���� but with the macro de�ne�subclass which accepts a slightly

di�erent syntax� Similarly� we can �chain� the creation of subclasses so that

the call to super�display in each class calls the display method of the next lower

precedence superclass� Thus� we can create an amphibian class that inherits both

the characteristics of land and sea vehicles� The de�ne�subclass macro for amphibian

expands to the module expression shown in box �c� �note the cascaded use of the

copy�override�hide idiom� and extends to an arbitrary number of superclasses� as

desired�
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����� MI with No Common Ancestors

Let us now consider the case of multiple superclasses that are not linearized and

have no common ancestor� Say we have a module color de�ned as in Figure ����a��

We can combine color with the module land�vehicle shown earlier into car�class�

as shown in Figure ��� �b�� This expression uses the rename�merge�hide idiom

introduced in Section �� The method display that con�icts in the �superclasses�

vehicle and color is renamed in each and the superclasses are merged together� A

new module that de�nes a display method that calls the renamed display methods

is then merged in to create the desired car�class� This example can be extended

to more than two superclasses and can be automated via a macro that uses the

introspective primitive con�icts�between to rename attributes�

The rename�merge�hide idiom works �ne for this example� since there are no

self�references to the renamed attribute in the superclasses� However� the right

e�ect of inheritance can only be obtained with copy�as� so that self�references in

the superclasses are not changed� followed by a merge� so that accidental con�icts

between superclasses do not get quietly re�bound� The problem with copying

con�icting attributes and merging is that the con�icts will still persist� This can be

remedied by restrict�ing �Section ����� after copying� and then merging and hiding�

�a�

�de�ne color
�mk�module

��color 	white��
��set�color �lambda �new�color� �self�set� color new�color���
�display �lambda �� �format �t �color � � a� �self�ref color�������

�b�

�de�ne car�class
�hide �merge �merge �rename color 	�display� 	�color�display��

�rename land�vehicle 	�display� 	�vehicle�display���
�mk�module ��

��display �lambda �� �self�ref vehicle�display�
�self�ref color�display������

	�color�display vehicle�display��

Figure ����� Multiple inheritance with no common ancestors�



��

There is some similarity between such a copy�restrict�merge�hide operation and the

copy�override�hide idiom�

����� MI with Common Ancestors

In the case of superclasses with a common ancestor� such as in the �diamond�

problem of multiple inheritance� the situation gets more complex� In this case� the

attributes of the common ancestor are clearly con�icting in the direct superclasses

of the inheriting class� Furthermore� there is the choice of inheriting either a single

copy or multiple copies of mutable attributes from the common ancestor�

Consider the case of a language providing a default rule of sharing the attributes

of the common ancestor� Now� if the inheritance structure is changed� say by

inheriting from two separate classes instead of the common ancestor� then there is

the potential for attribute clashes� Thus� the approach of compositional modularity

is to require explicit speci�cation of every aspect of combination of modules�

To illustrate� consider the two previously given modules land�vehicle and sea�

vehicle which have each inherited from the vehicle module� Say we want to create

an amphibian module that inherits from these two modules but needs two copies of

the fuel attribute to model two di�erent kinds of fuels for amphibians� This can be

achieved with the expression in Figure ���� In this example� the fuel attribute is

renamed for each type of module� The two modules are then overridden since the

con�icting attributes capacity and �ll are known to be identical� and the method

display will be overridden in the �nal module� A new display method that displays

all the attributes in an appropriate way is included in the �nal composition to get

the desired module�

�override �override �rename land�vehicle 	�fuel� 	�land�fuel��
�rename sea�vehicle 	�fuel� 	�sea�fuel���

�mk�module ��
�display �lambda ��

�format � � � �self�ref land�fuel� �self�ref sea�fuel� � � � ������

Figure ����� Multiple inheritance with common ancestors�
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The distinction between programming with �rst�class modules and the oper�

ational style more often found in OO languages is illustrated by this example�

Problems of con�icts and sharing clearly manifest themselves and compel the

programmer to resolve them as the particular situation demands using introspec�

tion and inheritance operators� For example� con�icts between superclasses can

be inspected with con�icts�between� and superclasses can be overridden in some

appropriate order to resolve attribute con�icts� If multiple copies of mutable

attributes from the common ancestor are desired� they can be renamed within

each superclass� as shown in the example above� However� if desired� the burden of

resolving con�icts in each individual case can be removed by writing macros that

perform a user�chosen method of composition�

��� Related Work

This chapter has already shown the relationship of CMS constructs to inheri�

tance mechanisms found in several OO languages� In this section� its relationship

to various other module models is given�

Most classical module systems such as SML ����� and Ada ��� do not support

�rst�class modules� Some ML systems ���� however� do support higher�order

functors� although not as �rst�class run�time values� Also� these module systems

closely associate a static type system with the module system� From the viewpoint

of compositionality and reuse� these systems are quite limited� as explained in

Section ������

An early e�ort to incorporate �rst�class modules into a language was in Pebble

����� There� the uniformity and expressive power obtained by using �rst�class

modules were recognized� More recently� many other languages such as FX ����

and Rascal also support �rst�class modules�

Support for explicit interfaces separate from implementations is a frequent

feature of module systems ��� ��� ��� ��� ���� This is known to support large�scale

programming� since clients can be written �and compiled� based on a module�s

interface� The module�s implementors can then associate �possibly multiple� im�
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plementations with the interface�

The CMS language presented here does not explicitly support interfaces� How�

ever� interfaces can be built up dynamically� by specifying a module�s public inter�

face attributes and providing dummy error methods� Subsequently� implementa�

tions for this interface can be combined with it via override and private attributes

encapsulated via hide�

Several module systems have been developed for the Scheme programming

language� Curtis and Rauen�s system ���� supports explicit interfaces and modules

with import and export speci�cations� Tung�s ���� system additionally supports

a notion of renaming con�icting imports� as well as dynamic binding of imported

attributes� These systems do not support composition and� in e�ect� provide little

more than the functionality described in Sections ���� and �����

Lisp packages ��� are namespaces that map strings to symbols� Symbols ex�

ported from one package may be imported by another� The Scheme �� module

system ���� is a more sophisticated namespace manipulation mechanism� in that

it supports multiple instantiation of modules into packages� as well as explicit

interfaces� However� there are no mechanisms for composition or adaptation in

either of the above systems�

Some Scheme implementations support �rst�class environments� In these sys�

tems� �rst�class environments can be dynamically created and extended� and expres�

sions evaluated within them� The environment at any point can also be captured

by using a special primitive� such as the�environment� However� the only useful

operation de�ned on environments is eval�

Re�ective operations on �rst�class environments have been proposed in the lan�

guage Rascal ����� In this language� one can construct an environment with lexical

and public bindings� reify the environment into a data structure� and subsequently

re	ect the data structure back into an environment� Only public bindings are

visible when environments are re�ected� The e�ect of the rei�cation operation

can be constrained as desired by using barriers� Programmers can also unbind

names in an environment by using a restrict operation� Using the above operations�
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programmers can achieve many e�ects of modularity in Rascal�

The goals of CMS and Rascal are very similar� although the approaches used

are entirely di�erent� Rascal uses the approach of re�ection� whereas CMS uses

notions of generator manipulation� Speci�cally� CMS does not support re�ection

and rei�cation of environments� On the other hand� Rascal does not support a wide

array of name con�ict resolution mechanisms �e�g�� rename�� static binding �freeze��

and retroactive encapsulation �hide��

More signi�cantly� CMS di�ers from Rascal in that CMS is based on composi�

tional modularity� which is shown in the rest of this dissertation to apply not only

to dynamic languages but to several other systems� In particular� static typing

is not explored in Rascal� Also� compositional nesting� as given in the following

chapter� is unique to CMS�

A popular language family for OO programming with Lisp is the CLOS family

of languages ���� ���� CLOS supports a quite di�erent model of OO programming

from the one described here� with multiple�dispatch� generic functions� but much

weaker encapsulation� CMS� on the other hand� supports only single dispatch�

CLOS also supports a protocol to interact with its meta�architecture� Dexterity of

multiple inheritance as given in Section ���� was a primary practical consideration

in the design of the CLOS MOP�

CMS must also be compared to the approach of open implementations� Meta�

object protocols �MOPs� for CLOS ���� and C�� ���� expose the OO implementa�

tion of the language processor to the programmer� via a controlled protocol� Many

aspects of the language�s implementation� such as the mechanisms of inheritance�

object data layout� and method dispatch� are controllable via such MOPs�

As far as inheritance is concerned� CMS provides the programmer �exibility

similar to that provided by MOPs� for all practical purposes� CMS provides this

�exibility by supporting a small set of well�designed primitives that can e�ectively

control the desired aspects of inheritance� whereas MOPs do so by opening up the

meta�architecture implementation to direct user programming� As a result� our

approach does not give the user the full power of altering a language�s behavior as
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a full�blown MOP can� However� it is not clear that completely opening up the

implementation will not result in much complexity and inadvertent abuse by users�

Finally� inheritance of �rst�class modules must be compared with class�less

programming with prototypes and delegation as in SELF ����� Class�less pro�

gramming languages allow individual objects to inherit from �or delegate to� other

objects� Thus� there is no notion of classes instantiable into objects� The crucial

characteristic of delegation is that inherited objects are shared parts of inheriting

objects� whereas in ordinary inheritance� inherited classes are copied into inheriting

classes� Although it is true that instances of nested classes in ordinary inheritance

share a copy of the enclosing instance �as explained in the next chapter� in the same

manner as delegation� there is still no notion of dispatching to the shared parent

in nesting� It should also be pointed out that delegation�based languages such as

SELF do �or at least used to� support sophisticated mechanisms of inheritance of

their own� such as prioritized multiple inheritance�

��� Summary

This chapter has presented a realistic imperative language design that embodies

compositional modularity and has illustrated typical programming styles and idioms

in a language supporting compositional modularity�

In the language presented here� called Compositionally Modular Scheme �CMS��

modules are manipulated with a suite of operators that individually achieve e�ects

such as encapsulation� combination� sharing� and introspection� Compositional

module operators enable one to combine modules in a number of ways that enable

reuse� while preserving encapsulation�

The above language is expressive and �exible enough to model most previously

existing techniques of OO programming� We have shown by examples that the

language can emulate an unprecedentedly broad array of idioms such as single�

pre�x�based� mixin�based� and multiple inheritance� abstract classes� and wrapping

of method de�nitions and calls� Thus� the language provides mechanisms to support

all of the above but does not enforce any one inheritance policy� In e�ect� this
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language represents a uni�cation of the design space of dynamic� single�dispatch�

OO programming languages�

This model of modularity has been smoothly integrated into the programming

language Scheme while keeping with its original design philosophy that ���� a very

small number of rules for forming expressions� with no restrictions on how they are

composed� su
ce to form a practical and e
cient programming language that is

�exible enough to support most of the major programming paradigms in use today�

�����



CHAPTER �

MODULE NESTING

Software development by decomposition naturally leads to hierarchical nesting

of modules� Thus� support for nesting is an important requirement for module

systems� In this chapter� the notion of module nesting is developed and integrated

with the notion of compositionality�

Previous module models support lexical nesting� in which nested modules cannot

be developed independent of the �outer� nesting modules� This compromises the

modularity and reuse of the nested module� In compositional modularity� separately

developed modules may be retroactively composed with other modules to achieve

hierarchical nesting�

Nesting constructs in the language CMS are described in Section ���� One can

either directly lexically nest modules or retroactively nest them via a composition

operation� In e�ect� direct nesting can be regarded as syntactic sugar for separately

de�ning a module and retroactively nesting it�

Section �� illustrates the many applications of nested modules such as name�

space control� sharing� inheritance hierarchy combination� and the notion of man�

ager modules� within the context of the language CMS�

Finally� the semantic concept of closed generators is proposed in Section ��� to

model retroactive nesting� Ways to integrate this concept with earlier semantics of

generators� and their static typing� are discussed�

��� Goals and Bene�ts

In addition to the general requirements of compositional modularity� a system

supporting nested modules must meet the following goals related speci�cally to

module nesting�
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�� Separate processability� A fundamental requirement of modularity is that

individual modules must be speci�able independent of a particular context�

Thus� although a module is to be nested within another� it must be possible to

specify it independent of the other� Additionally� it might be desirable to have

the interface of a nestable module with a surrounding context be explicitly

speci�ed� �This is distinct from specifying the interface of the module with

respect to its �siblings� at the same level��

�� Composability� Any independently developed module must be composable

not only at the same level� but also in a hierarchical sense� That is� one must

be able to retroactively nest a separately developed module within any other

that has a compatible interface�

� Static safety� Properties such as type compatibility between a nestable mod�

ule and its outer module must be statically checked for safety�

�� Namespace independence� There must be support for accessing similarly

named values in the local and nonlocal environments� Such explicit access

has the bene�t that it eliminates the possibility of accidental reference to

nonlocal names�

It may at �rst seem that the modularity requirements of lexical nesting and

separate processability are at odds with each other� how can one develop a nested

module that depends on its lexical environment separately from its environment�

The solution is to have modules abstract over its entire lexical environment� as

outlined in Section ������ A more precise description of this idea is given in Section

����

The bene�ts of compositional nested modules derives from the ability to retroac�

tively nest modules�

�� Nested modules can be independently developed� thus supporting team de�

velopment even in the presence of hierarchical structure� This� along with
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the notion of static typechecking of retroactive nesting� supports large�scale

software development�

�� Without retroactive nesting� nested modules are directly lexically nested

within other modules� thus imposing a permanent nesting relationship and

restricting reuse of the nested module� In contrast� a compositional nested

module can be embedded into� and thus reused in� any module that generates

a conforming environment� The conformance can be statically checked�

� One can control the namespace of modules themselves� That is� groups of

interacting modules within an application can be retroactively bundled into

a separate namespace� so that all of them are not in the global application

namespace�

The general approach of compositional modularity is to provide facilities to

compose independently developed modules in various possible �and desirable� ways�

Thus� it is natural in this framework that modules can be composed to achieve

hierarchical nesting as well�

In a sense� support for compositional nested modules is analogous to sup�

port for mixin�based inheritance in OO languages� It is important for languages

that support incremental programming via inheritance also to support the use of

the increments themselves �called mixins� as independent reusable abstractions�

Similarly� a language that supports compositional programming as well as nested

modules must also support nested modules as independent composable abstractions�

In the following section� we introduce the concepts and applications of nesting

via the language CMS�

��� Nesting in CMS

In CMS� a module can be either directly lexically nested �Section ������� or it

can be nested after the fact �Section ������� In either case� a module that is bound

to an immutable attribute of another module is referred to as a nested module� As

argued in Section ���� a module stored within a mutable attribute is not properly
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called a nested module�

The methods of modules can refer to bindings in their surrounding environ�

ment using the following primitives� which refer to the given name in a lexically

surrounding scope that has a binding for that name�

�env�ref hattribute�namei harg�expr� i�
�env�refc hattribute�namei�
�env�set� hattribute�namei hexpri�

These three primitives serve functions analogous to the three self�reference

primitives given in Section ���� Thus� names in surrounding scopes are accessed

explicitly via these environment reference primitives� It is a checked run�time error

to refer to a name that does not have a binding in some surrounding scope�

����� Lexical Nesting

Modules follow static scoping rules just like the rest of Scheme� The environment

of a module is determined by the lexical placement of the mk�module expression

that creates it� Figure ��� shows examples of module nesting� In Figure ��� �a��

type� and type� are nested modules whose �ll methods refer to the capacity attribute

of the outer module� Individual vehicles are represented by instances of the nested

modules�

�a�

�de�ne vehicle�category
�mk�module ��

��capacity 
��
�type
 �mk�module �� � �� ���ll �lambda� � � �env�ref capacity�� � � �����
�type� �mk�module �� � �� ���ll �lambda� � � �env�ref capacity�� � � ��������

�de�ne mycategory �mk�instance vehicle�category��
�de�ne v
 �mk�instance �attr�ref mycategory type
���

�b�

�de�ne veh�type �mk�module �� � ��
���ll �lambda � � � �env�ref capacity� � � � �����

�de�ne new�vehicle�category
�nest type� veh�type vehicle�category��

Figure ���� Examples of nested modules� �a� Lexical nesting� and �b� retroactive
nesting�
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The mk�module expressions for these nested modules are evaluated at the time

vehicle�category is instantiated� Thus� nested modules have an instance of their

surrounding module as their environment and are bound to their environment at the

time of instantiation of the outer module �described more precisely in Section �������

Hence� lexical scoping is maintained regardless of whether nested modules are

moved to and combined in other environments with other nested modules created

in yet other environments� This is analogous to the creation and manipulation of

�rst�class closures� i�e�� procedures with environment references� in Scheme�

With static scoping� a module and its nested modules interact in nonobvious

ways� Changes to a module�s attributes� e�g�� via rename� freeze �static binding��

and hide� result in modi�cations to the environment of nested modules and must

be tracked by environment references� For example� renaming an attribute of a

module will cause the renaming of environment references in nested modules�

����� Retroactive Nesting

Module nesting can be done retroactively via the primitive nest�

�nest hattr�namei hnested�module�expri houter�module�expri�

This primitive returns a new module containing an attribute hattr�namei bound

to the module hnested�module�expri within the given outer module� An example is

shown in Figure ��� �b��

In an interactive language such as CMS� modules that contain env�ref�s can

be speci�ed in the �top�level� environment� However� since modules abstract over

their environments� env�ref�s in such modules are not automatically bound to names

occurring in the top�level environment� Instead� when such a module is instantiated

via mk�instance� its environment is bound to the Scheme environment at the point

of instantiation�

The above semantics� however� is akin to dynamic scoping� To obtain the e�ect

of static scoping for top�level modules� the following primitive is used�

�bind�env hmodule�expri �henvironmenti��

This expression binds the environment of the module produced by hmodule�expri

to the optional argument henvironmenti� which by default is the Scheme environ�



��

ment at that point� However� once �xed in this manner� env�ref bindings within

the module cannot be changed� thus further retroactive nesting will have no e�ect

on its environment references�

��� Applications of Nesting

����� Name
space Control and Sharing

A major use of block structure arises from a module providing a local name�

space for nested modules� This helps control problems associated with �at global

name�spaces� such as name pollution and accidental name con�icts�

Furthermore� a module can serve as a shared data repository for nested modules�

In Figure ��� �a�� the attribute capacity is shared among all instances of type� and

type� modules� Similarly� a mutable attribute can hold state that is shared among

instances of several modules� �An interesting� but unexplored� consequence of this

is that nonlocal references that are not resolved within the �top�level� environment

can be considered to be shared� persistent names��

In addition� a module can serve as a �factory� that produces initialized instances

of nested modules� That is� a method of an outer module can instantiate a �possibly

encapsulated� nested module and initialize the instance with �possibly shared� state

before returning it to the caller� A generalization of this idea is explored in Section

����

����� Modeling

Some real�world modeling problems can be nicely solved via nested classes� One

such problem is known as the prototype abstraction relation problem ������ page ����

The problem is how to model a concept that can be viewed both as an instance of

a more general concept �since it has state changing over time� and as a class �since

it models a prototype of similar entities�� For example� the concept of a �ight from

point A to point B can have changing state� e�g�� its carrier and schedule� Given a

particular �ight� such as Delta ���� at ��� am� there are instances of that �ight

each day�
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One solution to this problem is to model the notion of a �ight from A to B

as an outer class which contains a nested class� A particular �ight� such as Delta

���� at ��� am� is an instance of this outer class� This instance is a prototype

for individual �ights of Delta ���� at ��� am� which are themselves modeled as

instances of the class nested within it�

Another solution to the above problem is to use meta�classes� That is� the �ight

from A to B is a meta�class that can be instantiated into a class representing Delta

���� at ��� am� which can itself be instantiated into individual �ights�

However� an important point to be made here is that it is not always necessary

to pay the price of complexity of meta�classes� block structure can solve the same

problems in many cases� This is explored in more detail in the following section�

����� Manager Modules

Re	ection is a means by which programs can access and manipulate themselves�

CMS supports a form of re�ective programming on modules with the introspective

primitives given earlier in Section ����� in conjunction with manager modules�

A manager module consists of a nested module along with methods that ma�

nipulate some extensible functionality to be supported on the nested module� In a

sense� a manager module can be used to simulate a meta�class in more conventional

designs 	 this has already been shown by using block structure in the programming

language Beta ������ page ����� For example� a generic manager module can be

speci�ed as follows�

�de�ne manager
�mk�module ��
��new �lambda �� �mk�instance �self�ref class����
�ref �lambda �inst attr args�

�apply attr�ref inst attr args������

This module speci�es a method new that returns an instance of an unde�ned

attribute called class and a method ref that accesses the attribute attr of inst�

Basically� the new and ref methods act as surrogates for mk�instance and attr�ref for

modules bound to the attribute class� �The new and ref methods could actually be

named mk�module and attr�ref�� The idea is that any module can be bound to the
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attribute class and the new and ref methods can be specialized appropriately for

that module via manipulation of the manager module�

For instance� a car�manager module that counts the number of instances of the

car�class module can be created by binding the car�class module to class� adding

a counter attribute and wrapping the new method with code that increments the

counter� Attribute references on the instances of car�class can also be specialized

by wrapping the ref method and by using the convention of accessing car�class

attributes only via the specialized refmethod �although a policy such as this cannot

be enforced��

����� Hierarchy Combination

An inheritance �hierarchy� in OO programming is usually thought of as a

graph of inheriting classes� In some languages� hierarchies are indeed represented

internally as graphs� In CMS� an inheritance hierarchy is represented simply by

a collection of module expressions� some of which are mk�module expressions and

others which adapt and combine these modules� Such a hierarchy of modules can

be nested within another module� That is� the base class of the hierarchy can be a

nested module� and other modules that inherit from it can be computed via module

expressions within methods of the outer module �since modules are �rst�class��

Examples of hierarchy combination are shown in Figure ��� and pictorially in Figure

��� A hierarchy veh consisting of a vehicle module and its �subclass� car can be

written as shown in Figure ����a�� and pictorially in ���a��

Entire hierarchies such as the above can be �combined� with other hierarchies

by manipulating the outer modules� Consider a hierarchy cap with a module vehicle

with a single attribute capacity as shown in Figures ����b� and ���b�� Suppose we

wish to extend the hierarchy veh with the hierarchy cap� so that an attribute capacity

is added to the vehicle module �i�e�� the superclass�� which will be automatically

inherited by car �i�e�� the subclass�� This results in the hierarchy veh�cap shown in

Figure ���c� and can be produced by the expression shown in Figure ����c�� This

expression has considerable similarity with those given in the section on multiple

inheritance �Section ����
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�a�

�de�ne veh �mk�module ��
��vehicle �mk�module ��fuel ��� ����
�car �lambda �� �override �self�ref vehicle�

�mk�module ��color 	white�� ���������

�b� �de�ne cap �mk�module ��
��vehicle �mk�module �� ��capacity 
��������

�c�

�de�ne veh�cap
�override �override �copy�as veh 	�vehicle� 	�veh�vehicle��

�copy�as cap 	�vehicle� 	�cap�vehicle���
�mk�module ��

�vehicle �lambda ��
�override �self�ref veh�vehicle� �self�ref cap�vehicle�������

�d�

�de�ne disp
�mk�module ��
��vehicle �mk�module �� ��display �lambda �� � � � �����
�car �mk�module �� ��display �lambda �� � � � ��������

�e�

�de�ne veh�disp
�override �override �copy�as veh 	�vehicle car� 	�veh�vehicle veh�car��

�copy�as disp 	�vehicle draw� 	�disp�vehicle disp�car���
�mk�module ��
��vehicle �lambda ��

�override �self�ref veh�vehicle� �self�ref disp�vehicle����
�car �lambda ��

�override �self�ref veh�car� �self�ref disp�car��������

�f�

�de�ne cap�disp
�merge �merge �rename cap 	�vehicle� 	�cap�vehicle��

�rename disp 	�vehicle� 	�disp�vehicle���
�mk�module ��
��vehicle �lambda ��

�merge �self�ref cap�vehicle�
�self�ref disp�vehicle��������

Figure ���� Example of hierarchy combination� �a� The veh hierarchy� �b� the cap
extension hierarchy� �c� combining veh and cap� �d� the disp extension hierarchy�
�e� combining veh and disp� and �f� combining the parallel extensions cap and disp�
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vehicle
fuel

color
car

capacity
vehicle fuel

capacity

vehicle

color
car

vehicle
display

car
display

cap-disp

vehicle

display
capacity

car
display

car
color
display

vehicle
fuel

display

(a) (b) (c) (d) (e) (f)

veh cap veh-cap disp veh-disp

Figure ���� Hierarchy combination example shown pictorially�

Similarly� a disp hierarchy can be used to extend the veh hierarchy� In disp�

the two modules shown provide their own display methods� The disp hierarchy can

be combined with the veh hierarchy to produce the veh�disp hierarchy with the

expression shown in Figure ��� �d� and �e��

In the above examples� the hierarchies cap and disp can be considered �parallel�

extensions of the hierarchy veh� An interesting and often useful operation on parallel

extensions is that they can themselves be combined if there are no con�icts between

them� as given below and shown in Figure ����f�� Note the use of merge in the above

expression �as opposed to override� since we want to disallow con�icts�

E�ects similar to the above were �rst given by Ossher and Harrison ����� Hi�

erarchy combination is a signi�cant but consistent extension to OO programming

since it supports the development of modi�cations to entire hierarchies as well as

separated extensions which can themselves be integrated�

��� Semantics

In this section� we provide a denotational description of the notion of compo�

sitional nesting described earlier in the context of CMS� The reader who is not

interested in the formal underpinnings of compositional nesting may safely skip

this section�

Recall that nested modules in generator semantics� presented in Section ������

can contain free references which implicitly refer to names in a surrounding lexical
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scope and are found in the module�s environment� For an imperative language

with stores� this semantics is modeled by passing the environment as an argument

to the semantic function that creates constructors� The constructor retains the

environment in which it was created� Upon instantiation� i�e�� when applied to a

store� it extends its retained environment with bindings arising from the attribute

de�nitions in the module�

With respect to nested modules� there are at least two problems with the model

of generator semantics� The major problem is that modules can have free references�

which is at odds with goal ��� in Section ���� Free references compromise an

important requirement of modularity� the ability to develop and maintain a module

independent of its context� Second� modules in this model must be a priori designed

to be nested or not� they cannot be nested after the fact� This is at odds with goal

��� in Section ����

In this section� we attempt to remedy these problems �rst via a notion of

importation in Section ������ and more cleanly and elegantly with an extended

form of generators called closed generators in Section ������

����� Importation

Let us �rst attempt to retro�t support for nested modules into the original

framework of generators� We do this by disallowing free references and modeling

nonlocal references via the already existing mechanism of self�referencing� Thus� a

nonlocal reference is modeled as a self�reference to an unde�ned attribute� With

this approach� self�referenced attributes �that really stand for non�local references�

can be imported from bindings in an environment by using an import operator�

import a � �g� �e� hide a �s� fa � e�rag kr g�s�

This operator takes a module �generator� and an environment and produces a

new module with the given attribute bound to its value in the environment� The

type rule must make sure that a is not already de�ned in the incoming module�

The import operation hides the imported attribute in the resultant module�

This is because multiple modules that import an attribute with the same name
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from the same environment should be mergeable without con�icts arising only from

importation� To see why� consider sibling nested modules that import the same

name from a surrounding environment �generated from a module�� If such modules

are otherwise mergeable� importation should not result in a merge con�ict�

The above semantics satis�es the goal of independent development� However�

the goal of composability is only partially met� This semantics presumes module

combination at run�time� since environments are run�time entities� This is not

always desirable or possible� Furthermore� the goal of local�nonlocal access is

not satis�ed� since the two name�spaces are undesirably combined together� An

additional problem is that of verbosity� one must explicitly import from each

instance of a surrounding module as opposed to specifying a permanent nesting

relationship between a module and its surrounding module�

����� Closed Generators

In this section� we describe an alternative formulation of modules that meets

all the goals set out in Section ���� In this formulation� a module is modeled as a

closed�generator 	 a generator that abstracts over its environment� The domain

equation for closed�generators� and an example are shown below�

Closed�generator � Environment� Instance� Instance

gc � �e� �s� fa� � v�� � � � � an � vng

Closed�generators do not have any free references� Self�references are modeled

as explicit references to the s parameter �e�g�� s�ax�� and environment references

are modeled as explicit references to the e parameter �e�g�� e�ay��

A closed�generator is instantiated by applying it to an environment before taking

its �xpoint�

instantiate � �gc� �e� Y �gc�e��

Within this framework� a nested module is modeled as a closed�generator that is

applied to an environment �e�r s�� where s and e are the self and the environment

of the outer module� The �nonclosed� generator thus obtained is closed again by
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abstracting it over a �dummy� environment d� For example� the attribute ax is

bound to a nested module within module gc below�

gc � �e� �s� f� � � � ax � �d� gcnest�e�r s�� � � �g

The environment �e �r s� of gcnest is bound at the time the outer module gc

is instantiated� Subsequently� the nested module bound to ax can be selected

and passed around� Regardless of the environment it is supplied during its own

instantiation� its nonlocal references will always refer to its lexically surrounding

scope gc� This is the desired e�ect of lexical scoping�

Nested modules� by virtue of being part of the implementation of the outer

module� have access to the encapsulated attributes of the outer module� This fact

is modeled accurately by the above model� since the self s of the outer module is

supplied as the environment to the nested module�

A closed�generator can be nested within another after the fact via the operator

nest� The operator creates a new closed�generator by embedding the incoming

closed�generator as an attribute named n within the resultant� as shown below�

nest n � �gcin � �gcout � �e� �s� fn � �d� gcin�e�r s�g kr gcout�e��s�

Closed�generator semantics can be easily integrated with ordinary generator seman�

tics� Closed�generator versions �subscripted with gc� of unary and binary generator

operators �subscripted with g� can be speci�ed as given below�

Ugc � �gc� �e� Ug gc�e�

Bgc � �gc� � �gc� � �e� gc��e� Bg gc��e�

����� Imperative Closed Generators

This section provides a semantics for the mk�module and nest primitives of

CMS� using closed generators with stores� For this� the notion of closed generators

presented in the previous section is augmented with the notion of constructors given

in Section ������ Thus� an imperative closed generator takes an environment and
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produces an ordinary imperative generator �as given in Section ������� which when

applied to a store returns an instance and an updated store�

Closed�generator � Environment� Constructor � Constructor

Constructor � Store� �Instance� Store�

Given below is the semantic function M� which takes in a syntactic module

expression Msyn and return an imperative closed generator� A semantic function

B that generates an environment of names bound to values and locations from a

syntactic list of attributes� Bsyn� is assumed�

B � Bsyn � Environment� Store� �Environment� Store�

M �Msyn � Closed�generator

M�� �mk�module hattributesi� �� �
�e� �cself � �screate�

let �eself � � � cself screate in
B��hattributesi�� �e�r eself � screate

M�� �nest n hnested�modulei houter�modulei� �� �
�e� �cself � �screate�

let �eself � � � cself screate in
let gin �M��hnested�modulei�� �e�r eself � in

let �rout� s�� �M��houter�modulei�� e cself screate in
�fn � �d� ging kr rout� s��

����� Static Typing

In order to satisfy the static safety requirement of Section ���� we outline static

typing for closed generators and nesting in this section� Note that the augmentation

of ordinary generators into closed generators requires augmentation of static type

rules de�ned on ordinary generators in ref� ���� however these augmentations will

not be given here�

The �rst question is whether we can treat imported names simply as declared

names� thus not distinguishing between declared self�references and nonlocal refer�

ences� The problem with such an approach arises when trying to nest one module
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within another 	 we cannot determine which declared names of the nested module

should be imported from the names of the outer module and which correspond to

self�referenced names and thus should not be imported� Thus� modules correspond�

ing to closed generators must be given a type consisting of declared� de�ned� and

imported attributes�

If a module de�nes unique attributes a� � � � am with bindings v� � � � vm with

valid type signatures �� � � � �m� declares unique attributes d� � � � dk with valid type

signatures �� � � � �k� and imports unique names e� � � � el with valid type signatures

�� � � � �l� then the module has the type�

f de�ne a� � ��� � � � � am � �m

declare d� � ��� � � � � dk � �k
import e� � ��� � � � � el � �l g

The operator nest imports those attributes that are speci�ed as import in an

�inner� module from declared� de�ned� or import attributes in an �outer� module�

Those import attributes in the inner module that are not already declared� de�ned�

or import in the outer module become import attributes of the resultant module�

Attributes actually imported from an outer module can be subtypes of the types

speci�ed for import attributes in the inner module� Furthermore� the nested module

in the resultant module does not have any remaining import attributes� all of them

have been �pushed up� into the outer module� This corresponds to the notion that

the environment of the inner module is �xed after the nest operation� These notions

are captured in the type rule given in Figure ��� �omitting clauses for uniqueness

conditions� etc���

This concludes our treatment of the semantics of nested modules�

��� Discussion and Related Work

In C�� ����� class nesting is merely a name�space structuring mechanism�

Nonlocal references within nested classes are disallowed �except to statics� which

are globally referable via quali�ed names� �

A more conventional semantics is to have nonlocal references access bindings

of names in a surrounding scope� A local binding essentially overrides a binding
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 � mout � f de�ne a� � ���� � � � � am � ��m�

b�� � ���� � � � � b�p � ��p
declare c� � 	��� � � � � cq � 	�q�

d�� � ���� � � � � d�r � ��r
import x� � 
��� � � � � xs � 
�s�

y�� � ���� � � � � y�t � ��t g
 � min � f de�ne b�� � ���� � � � � b�u � ��u

declare d�� � ���� � � � � d�v � ��v
import a� � ���� � � � � am � ��m�

c� � 	��� � � � � cq � 	�q�
x� � 
��� � � � � xs � 
�s�
y�� � ���� � � � � y�w � ��w g

�i � � � � � m ��i � ��i
�j � � � � � q 	�j � 	�j
�k � � � � � s 
�k � 
�k

 � nest n min mout � f de�ne a� � ���� � � � � am � ��m�

b�� � ���� � � � � b�p � ��p�
n � f de�ne b�� � ���� � � � � b�u � ��u

declare d�� � ���� � � � � d�v � ��v
import g

declare c� � 	��� � � � � cq � 	�q�
d�� � ���� � � � � d�r � ��r

import x� � 
��� � � � � xs � 
�s�
y�� � ���� � � � � y�t � ��t�

y�� � ���� � � � � y�w � ��w g

Figure ���� Type rule for the nest operator�

to the same name in a surrounding scope� This is equivalent to the conventional

semantics of nested functions in most languages� Examples are ML substructures

����� Scheme modules ����� and Beta subpatterns� However� one can only directly

lexically nest modules in these systems� there is no notion of compositional nesting�

The most experience with nested modules to date is with subpatterns supported

by the Beta language ���� ���� Nested patterns are idiomatically used in Beta for

obtaining several e�ects� one of which is the mixin style of programming� For

example� a mixin such as AMixin

AMixin� �� In� virtual class InType�
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Out� class In �� ��� ��
��

can be used by �rst binding the virtual class In by deriving from AMixin� then

extracting the nested class Out �which is �mixed in� with In�� In BETA� this

programming idiom is useful since it permits one to bind a virtual class such as In

with a class that is a subtype of the declared type InType� However� such a construct

cannot be statically typed� Idioms such as this are obtainable by other means in

CMS� as shown in the previous chapter�

Finally� it should be pointed out that separate compilation of nested modules

can be performed by using conventional link�editing techniques� Environmental

references can be stored as relocation information in the compiled object �le and

patched up with the proper nonlocal access code when combined with an outer

module�

��� Summary

This chapter showed how to achieve the goal that a language that supports

compositional modularity must also support nested modules as independent com�

posable abstractions� We develop a denotational semantic formulation of nested

modules as closed�generators that meets the above goal�

An important point of this chapter is that block structure is not orthogonal

to modularity� Madsen���� has argued that block structure is not a mechanism

for programming in the large and that a language must contain other facilities for

modularizing a program into smaller parts� Here� we show that nesting is itself a

form of composition� and nested modules can indeed be used for programming in

the large�

We further go on to illustrate several applications of nested modules such as

sharing� name�space control� modeling� manager modules� and inheritance hierarchy

combination� We show that it is not always necessary to pay the price of complexity

of meta�class support� compositional nested modules can solve the same problems

in many cases�



CHAPTER �

THE ETYMA FRAMEWORK

et�y�mon �pl� et�y�ma also etymons� L� fr� Gk� � � �
� a word or
morpheme from which words are formed by composition or derivation�

� Webster Dictionary

Earlier� it was argued that the model of compositional modularity can be

expressed independent of particular realizations� In this chapter� we show that the

notions fundamental to compositional modularity can be formulated as a simple

software architecture� an OO framework named Etyma� that can be e�ectively

reused to build tools for a wide variety of systems�

The framework was designed to be simple� extensible� and reusable and to

support introspective re�ection� The abstract and concrete classes that constitute

the framework are presented in Section ���� These classes cover the domain of

values of interest within compositional modularity as well as their types�

Systems based on this framework bene�t not only from the power and �exibility

that the architecture o�ers but also from signi�cant design and code reuse� The

implementation architecture of an interpreter for the language CMS and the extent

to which it bene�ts from reuse are given in Section ���

Finally� reuse characteristics of the framework� such as its design� documenta�

tion� and its evolution over reuse iterations� are discussed in Section ����

��� OO Frameworks and Design Patterns

The challenge to broadly applying the abstract model of compositional modu�

larity is to realize it in a practical� coherent� and reasonably complete manner� For

this� we exploit the idea that generic linguistic notions such as �module�� �record��

�instance�� etc� can be organized as a taxonomy of concepts with relationships
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such as is�a� has�a� aggregates� etc� Furthermore� such a space of concepts can

itself be speci�ed using an OO language� thus constituting what is known as an

OO framework�

In essence� an OO framework is an OO model that captures the essential

abstractions in a particular application domain ����� It expresses the architecture

of applications in the domain in terms of objects and interactions between them�

Frameworks allow developers to build applications e�ectively by concretizing ab�

stract classes in the framework via inheritance and by con�guring� i�e�� connecting

instances of� prede�ned concrete classes in the framework� As a result� a framework

can be thought of as being parameterized on a completion that provides call back

code 	 a sort of bidirectional function abstraction� Applications are built by com�

pleting a framework for speci�c purposes� while preserving the overall architecture

of the framework� Frameworks thus promote design and code reuse through OO

concepts such as inheritance and polymorphism�

We use the notion of design patterns to describe parts of the Etyma framework�

Design patterns are somewhat smaller architectural units than frameworks and

are more general� Design patterns systematically name� explain� and evaluate

important and recurring solutions to speci�c problems in OO software design� Thus�

a pattern �catalog�� such as the one given by Gamma et al� ���� helps an OO

designer to identify and apply simple and elegant solutions to commonly occurring

problems in OO design to achieve greater reuse and �exibility� Table ��� gives brief

descriptions of the patterns used in describing Etyma� the reader is referred to ref�

��� for complete descriptions�

Furthermore� we use OO diagrams to describe the framework� Our diagramming

conventions are based on that given in ���� and are given in Figure ���� These

diagramming conventions have been adapted to describe a framework realized using

the C�� language ���� such as Etyma�
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Table ���� Design patterns used to describe Etyma�

Name Description

Bridge Decouple an abstraction from its implementation so that
the two can vary independently�

Composite Compose objects into tree structures to represent part�
whole hierarchies� Composite lets clients treat individual
objects and compositions of objects uniformly�

Factory Method De�ne an interface for creating an object� but let sub�
classes decide which class to instantiate� Factory Method
lets a class defer instantiation to subclasses�

Iterator Provide a way for accessing the elements of an aggre�
gate object sequentially without exposing its underlying
representation�

Singleton Ensure a class only has one instance� and provide a global
point of access to it�

Template Method De�ne the skeleton of an algorithm in an operation� de�
ferring some steps to subclasses� Template Method lets
subclasses rede�ne certain steps of an algorithm without
changing the algorithm�s structure�

Class

ConcreteSubClass

abstract-operation()

protected-operation()

pseudo-code

private-operation()

abstract-operation()

AbstractClass object
reference

aggregation

implementation

Figure ���� OO diagramming conventions� A class� interface is divided into three
parts� public� protected �methods below dashed line�� and private �methods below
solid line�� Slanted font indicates abstract classes and methods� and regular font
stands for concrete ones� Lines with triangles stand for inheritance and subtyping
�is�a��
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��� The Design of Etyma

In this section� we present the design of our OO framework for composition�

ally modular systems� We �rst outline some of the requirements and issues that

governed the design of Etyma�

�� Scope� The framework must encompass abstractions spanning module sys�

tems and their associated type systems� Thus� the focus of Etyma is to

facilitate building the processing engines of tools for module systems� rather

than for building the front� and back�ends to such systems�

�� Simplicity� The framework must consist of a small number of orthogonal

abstractions�

� Extensibility� It must be possible to easily add new abstractions and new

features to abstractions within the model without overhauling the entire

design for each extension� This property is strengthened with more reuse�

�� Reusability� The framework must be designed and documented to facilitate

design and code reuse� That is� it must include as much functionality of

module systems as possible� without committing to speci�c base languages�

Also� every abstraction in the framework must be reused within at least

two completions� Furthermore� design decisions and dependencies must be

documented to aid reuse clients�

�� Re	ection� The model must support introspective re�ection� That is� each

class must support methods to query �but not modify� the signi�cant aspects

of its internal representation�

A model of a model� i�e�� a meta�model� of a software system is usually re�

ferred to as a meta�level architecture �or meta�architecture�� For instance� the OO

programming model supported by Smalltalk ��� is itself captured as a set of inter�

acting meta�objects� such as Object� Class and CompiledMethod� which constitutes

the Smalltalk meta�architecture� Thus� a generic OO realization of the essential
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concepts of compositional modularity� such as Etyma� can be termed as an OO

meta�architecture for compositional modularity�

After introducing the central notions in Etyma and their relationships in the

following section� we present the abstract classes of Etyma in Section ������ and

some concrete classes in Section ����� These sections together describe Etyma�

����� Concepts and Their Relationships

Compositional modularity deals with modules� their instances� the attributes

they are composed of� and the types of all the above� Thus� the primary concepts

that must be captured by a meta�architecture are those of modules� instances�

methods� variables� and their corresponding types�

However� Etyma is a linguistic framework� i�e�� a framework from which pro�

gramming languages will be designed� Thus� while modeling the above concepts�

we must not inadvertently limit their generality� For example� a method is a

specialization of the general concept of a function� Similarly� the concept of a

record is closely related to that of a module and an instance� although the precise

relationship between these concepts may not be immediately obvious� The �rst

order of business� then� is to clarify the relationships� speci�cally is�a relationships�

between these three concepts�

The concept of records models the classical notion� �nite functions from labels to

values� with no notion of self�reference� Records support operations such as merge�

override� rename� restrict� and copy�as� similar to the ones found in refs� ���� ��� In

addition� the select operation on records models attribute selection�

Modules support all the above operations except select� plus the operations

freeze and hide� Thus� the concept of a module is clearly not a subtype �is�a� of the

concept of a record�

Consider the idea that a record is�a module� This seems feasible� since we can

regard the operation freeze on records to be the identity function� and hide on

records to be the same as restrict� Furthermore� if a record is�a module� a record

can be viewed as a module� However� if the restrict operation is applied to such a

record �viewing it as a module�� the given attribute will be entirely removed from
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the interface of the record� Restrict semantics on modules require that the type of

the restrict�ed attribute remain in its interface� Consequently� a record cannot be

viewed as a module� and hence a record is not a subtype �is�a� of module�

Formally� modules are modeled as functions over records 	 record generators�

Thus it is natural that records and modules are not related to each other via the

is�a relationship� On the other hand� an instance is�a record� This is because the

�xpoint of a record generator 	 an instance 	 is a record with its self�references

bound�

In the following sections� we show how to model the abstractions of composi�

tional modularity in an OO manner�

����� The Abstract Classes

In this section� we give an overview of the abstract classes in the Etyma

framework� as shown in Figure ���� These classes are abstract in the conceptual

sense 	 they represent abstract concepts that must be concretized in the setting of

a particular completion� In most cases� they also have at least one abstract method

�pure virtual in C��� or one template method �pattern� not the C�� concept� see

Figure ���� that is speci�ed in terms of one or more abstract methods of the same

class or of another class�

All classes in Etyma are subclasses of the root superclass Etymon� which simply

consists of support methods for debugging �not shown��

Classes Type and TypedValue are abstract superclasses that model the linguistic

domains of types and values respectively� These two classes form the roots of

parallel hierarchies� �The hierarchies are almost parallel� with the exceptions noted

below�� These two hierarchies are described in the following two subsections�

������� The Value Classes

Subclasses of class TypedValue are called the value classes� Etyma models

strong typing� hence concrete subclasses of TypedValue are expected to return their

concrete type object �an object of a subclass of class Type� see Section �������� when

queried via type�of���
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expr->typecheck()

expr->eval(env’)
setup environment

eq (in)

else undefined
if (eq (in)) then in

env

Record merge (Record)
Record override (Record)

TypedValue select (Label)

Module module-of()

Boolean typecheck()
TypedValue apply(Args)

TypedValue apply(Instance, Args)
TypedValue self-ref (Label)
void rename-self-refs (Label, Label)

StorableValue fetch()
Void store (StorableValue)

Boolean le (Type in)
Type glb (Type in)
Type lub (Type in)

Boolean eq (Type)

expr

v = select(l)
if v is a Method then

v->apply(self, a)

Record

Instance

Method

Function

Location

Type

TypedValue

Etymon

StorableValue
ExprNode

Type type-of ()

Module merge (Module)
Module override (Module)

Boolean typecheck()

void insert(Label, AttrValue)

void remove(Label)
AttrValue find(Label)
Instance create_instance()

Module

Instance instantiate ()

TypedValue
msg-send(Label l,Args a)

void insert-priv(Label,AttrValue)

void insert (Label, AttrValue)

TypedValue eval (Env)
Boolean typecheck()

module

self

Figure ���� Overview of abstract classes�

��������� Class Module� The abstract class Module� a TypedValue� cap�

tures the notion of a compositional module in its broadest conception� The public

methods of class Module are central to this model� they correspond to the module

operators introduced in Chapters  and �� merge� override� hide� copy�as� rename�

restrict� freeze� and nest� Additionally there are methods that support instantiation

and typechecking�

Within the abstract class Module� no concrete representation for module at�

tributes is assumed� Instead� a set of protected abstract methods such as insert���

remove��� etc� �see Figure ���� are de�ned to manage module attributes� The

public module operations are implemented as template method patterns in terms

of these abstract methods� Concrete subclasses of Module are expected to provide

implementations for these abstract protected methods�

To illustrate this design technique� Figure �� shows the pseudo�code for the

template method merge in terms of several abstract methods �shown in slanted

font�� The abstract method create iter�� is a factory method pattern and is expected
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Module��merge �Module in�
if �interfaces of self and in are not mergeable� then

fail

out � self�clone��
i � in�create iter��
i��rst��
while � not i�at end�� � do

in label � i�curr label��
in attr � i�curr attrval��
self attr � self��nd�in label�
if �self attr not found� then

out�insert�in label�clone��� in attr�clone���
else if �self attr and in attr are both only declared� then

glb � greatest common subtype of the types of self attr and
in attr

out�replace�in label� glb�
else if �self attr is declared and in attr is de�ned� then

out�replace�in label� in attr�clone���
i�next��

merge private attributes
return out

Figure ���� Pseudo�code for template method merge� The method is completely
speci�ed in terms of several abstract methods� shown in slanted font�

to provide an instance of a concrete subclass of an abstract iterator pattern class

AttrIter� The attribute iterator returned by a call to create iter�� is expected to

iterate over label�binding pairs� which can be individually extracted via curr label��

and curr attrval�� respectively�

Module objects have public and private �hidden� attributes� Thus� concrete

subclasses of Module are expected to maintain two attribute lists corresponding

to public and private attributes� Accordingly� there is a set of protected abstract

methods in class Module to manage private attributes� such as insert priv shown

in Figure ����

The abstract method create instance�� is a factory method pattern that gen�

erates instance objects of module objects� That is� this method is expected to

return an object of a concrete subclass of class Instance� The method instantiate��
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of Module then ��lls�in� the newly allocated instance with attributes from the

module� by sharing nonlocation attributes and allocating new location attributes�

��������� Classes Record and Instance� As mentioned earlier� class Record

supports operations such as merge� restrict� etc� as well as select�Label�� All of

these methods are implemented as template methods pattern in terms of abstract

protected methods� similar to class Module�

Class Instance is a subclass of Record� and it supports operations similar to

Record� In addition� class Instance models the traditional OO notion of sending a

message �dynamic dispatch� to an object as select�ing a function�valued attribute

followed by invoking apply on the returned function object� This functionality is

encapsulated by the template method pattern msg�send�Label�Args�� Furthermore�

class Instance has access to its generating module with its module member�

��������� Classes Function� Method� and ExprNode� Function�values are

modeled via class Function� A function�s body is modeled as an object reference

to an ExprNode object� Class ExprNode is a composite pattern� with concrete

subclasses representing particular kinds of expressions�

The apply�� method of class Function sets up the environment with the current

values of the arguments and calls the method eval with the environment as the

parameter� The appropriate subclass of ExprNode can then access the values in

the environment as needed�

The concept of a method di�ers from that of a function in that a method

�belongs� to an object� a method has a notion of self� Accordingly� class Method�

a subclass of Function� requires that the �rst argument to its apply method be an

object of a subclass of class Instance� corresponding to its notion of self� The apply

method of class Method saves the value of its �rst argument as the self attribute of

the Method object� for future access by its self�ref method �explained below��

Self�references within the body of the method can access the attributes �both

public and private� of the instance within which the method is executing via the

self ref method of class Method� The self ref method accesses the previously saved

self instance� saved upon entry into the apply method�
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Consider what happens if the method body applies the same method object on

a di�erent instance of the same module� The apply method is recursively called

with the di�erent instance� Upon entry� it saves self 	 but this overwrites the old

value of self ! To solve this� the apply method saves away the old value of self upon

entry� overwrites it� and restores the old value before exiting�

Additionally� class Method provides methods for accessing �not shown� and

renaming self�references in its body�

��������� Classes Location� StorableValue and PrimValue� Mutable state

�e�g�� instance variables� is modeled with class Location� Location objects store

objects of class StorableValue� the exact de�nition of which depends on a particular

completion� For example� storable values typically include at least the primitive

values in a language� but often include pointers� which can be modeled as locations

containing other locations� Primitive values are modeled as a class PrimValue

�not shown in Figure ���� that multiply inherits from classes TypedValue and

StorableValue�

Some of the other classes referred to� but not described in Figure ���� are� class

Label which implements the notion of program identi�ers �names�� class AttrValue

which represents label bindings� class Env which represents environments� and class

Args which is an aggregation of values� Other support classes for iteration �class

Iterator� and lists �class List� are not shown�

The role and use of these abstractions will become clearer with the description

of their concrete subclasses in Section ���� and a framework completion in Section

���

������� The Type Classes

Type classes corresponding to the value classes of the previous section� as well

as other commonly found types in modular programming languages� are modeled as

subclasses of class Type �see Figure ����� Class Type de�nes an abstract method eq

that is expected to check if two types are equal in concrete subclasses� In addition�

it de�nes template method patterns le that checks for subtype �defaults to eq�

and glb that computes the greatest lower bound �or greatest common subtype�
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else undefined

Type

Boolean eq (Type)
Boolean le (Type in)

Type glb (Type in)

Type lub (Type in)

UnitType

NamedType

Boolean mergeable(Interface)
Boolean overrideable(Interface)

AttrIter create_iter()
AttrValue find (Label)

Interface LocationType

FunctionType

RecordType

argtypes

valtype

eq (in)

if (eq (in)) then in

Figure ���� Overview of type classes�

required for merge and override semantics�� However� in order to compute the

greatest common subtype of two function types� it is necessary to compute the

lowest common supertype of their input argument types� due to contravariance� As

a result� class Type also de�nes a method lub that computes the least upper bound

�or least common supertype� of a pair of types� Concrete subclasses of Type are

expected to appropriately rede�ne this semantics�

��������� Classes UnitType and NamedType� Class UnitType represents a

type that contains a single member� It is implemented as a singleton pattern�

Class NamedType models types that have identity� For named types� equality is

determined by string equality of their names� Subtyping is given by type equality if

there is no explicit assertion of subtyping relationships between named types� The

class provides a method for explicit assertion of subtyping relationships�

��������� Classes Interface and RecordType� Class Interface� a subclass of

Type� models the type of modules� Class Interface implements template methods

that typecheck individual module operations� Methods of classModule call methods

of class Interface such as mergeable� overrideable� etc�� which implement the type

rules for merge� override� etc� These methods are based on the type rules given in
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Section ����� and are de�ned in terms of abstract protected methods such as �nd���

and the type comparison predicates such as eq and le inherited from class Type�

Class Interface supports structural typing� in which the names and types of

attributes are considered without order signi�cance� For example� its eq method

checks� for each attribute� that an attribute with the same name and type exists in

the incoming interface� Thus� the eq method relies on the eq method of class Label�

which implements identi�ers� Subtyping on interfaces is the same as type equality

�see Section �������

Some applications� e�g�� document modules as given in Chapter �� may require

structural typing of interfaces with order signi�cance� This can of course be imple�

mented by deriving a concrete subclass of Interface that implements its attributes

as an ordered collection of label�attrvalue pairs�

Name�based typing of interfaces can be supported by creating a concrete sub�

class that inherits from classes Interface and NamedType and inheriting the eq and le

methods from NamedType� Such an interface is referred to as a �branded� interface

����� Again� the le method may take into account explicit speci�cation of subtyping

relationships between branded interfaces�

Class RecordType represents the type of records ���� as well as the type of

instances� It supports template methods for typechecking individual record oper�

ations� including select� These methods are implemented in a manner similar to

those of class Interface� This class also implements structural typing� but can be

subclassed to implement ordered and branded record types �such as C structs��

��������� Class FunctionType� Class FunctionType models function types

with the standard notions of equality and subtyping� taking into account con�

travariance� Methods to compare function types are used in the combination of

modules that contain function�valued attributes� This should be distinguished

from typechecking the implementation of a function� which is done by calling

the typecheck�� method of the function object� which typechecks the expressions

comprising the function body�
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��������� Class LocationType� Type equality in class LocationType is given

by type equality of its contained type� and subtyping is the same as type equality�

Location�bound attributes �variables� can be used as evaluators �i�e�� expressions

that return values� and as acceptors �i�e�� expressions that receive values� in di�erent

contexts� Expressions that are evaluators can only be replaced with expressions

whose types are subtypes of the original� whereas expressions that are acceptors

can only be replaced by expressions whose types are supertypes of the original �����

As a result� subtyping of variables is always restricted to type equivalence�

��������� Recursive types� Etyma supports recursive types �not shown in

Figure ����� A constituent of a composite type may be a recursive type� represented

as an object of class RecType� Class Type requires that subclasses provide separate

methods for �nding equality �eq rec� and subtyping �le rec� of recursive types�

Subclasses of class Type shown in Figure ��� directly implement the recursive

subtyping algorithm given by Amadio and Cardelli ���� which uses a trail of pairs

of known recursive subtypes to avoid diverging on cyclic structures� See Chapter �

for examples of recursive types�

����� Concrete Classes

As described thus far� the framework provides a rather generic object model�

abstracting over notions such as primitive values and expressions in potential lan�

guage completions� This basic architecture itself can be used for constructing some

kinds of modular systems� such as that explained in Chapter ��

However� in order to be more directly useful� e�g�� for constructing a language

interpreter or compiler� concrete subclasses of generic notions must be provided

as part of the framework� The idea is that an implementor of a compositionally

modular system should be able to �nd as much reusable design and code in the

framework as possible� Consequently� we provide �standard� concrete subclasses of

Module� Instance� Interface� and the attribute iterator AttrIter� as part of Etyma�

as shown in Figure ���� In addition to these� some concrete subclasses of the

composite pattern ExprNode are provided as well but are not shown in the �gure�

Class StdModule is a concrete subclass of Module that represents its attributes
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attrs

AttrValue find (Label)

StdInterface

Interface

StdInstance

void insert (Label, AttrValue)

Instance Module

Module mk-mod (AttrMap)

void insert(Label, AttrValue)

StdModule

AttrIter create_iter()
Instance create_instance()

AttrMap

Label AttrValue AttrIter

StdAttrIter
attrs

insert into attrs

return new StdInstance

return new StdAttrIter

attrs

Figure ���� Overview of some concrete classes�

as a map �object of class AttrMap�� An attribute map is a collection of individual

attributes� each of which maps an object of class Label to one of class AttrValue�

An AttrValue object encapsulates an object of class TypedValue� This design

pattern� a variation of the bridge pattern� makes it possible for completions to

reuse much of the implementation of class StdModule by simply implementing

classes corresponding to attribute bindings as subclasses of TypedValue�

Each of StdModule�s attribute management functions is implemented as the

corresponding operation on the map� Its factory method create iter returns an

object of a concrete subclass of class AttrIter� class StdAttrIter� which iterates over

attribute maps� Similarly� the factory method create instance returns an object of

the concrete subclass of class Instance� class StdInstance� Class StdInstance itself is

also implemented using attribute maps�

A concrete subclass of class Interface� class StdInterface� represents the type of

StdModule objects� StdInterface is also implemented as an attribute map� Thus�

AttrValue holds an object of a concrete subclass of either TypedValue �de�nitions�

or Type �declarations��

This concludes the description of the Etyma framework proper� Etyma is

implemented in the C�� language� It is continually evolving �see Section �����
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but currently consists of about �� reusable classes and approximately ����� lines of

C�� code�

A distinguishing feature of Etyma is that its design has been guided mainly by a

formal description �i�e�� denotational semantics and type rules� of the corresponding

linguistic concepts� The reader might have noted the correspondence between

the above framework abstraction design and denotational models of programming

languages ��� Denotational semantics applies functional programming to abstract

over language functionality� Here� we apply a denotational description of modular�

ity to abstract over language modularity� Furthermore� the framework approach is

intended to provide the language developer a modular means by which to design and

implement a language�s value domain� type system� etc� relatively independently of

each other� Once the basic elements of the language are designed� the classes in the

framework are directly available for incorporation into the language processor�

��� Implementing CMS as a Completion

As mentioned earlier� one uses the Etyma framework by writing concrete

subclasses of the framework classes and by instantiating them within a C�C��

program� To give a concrete example of the precise mechanics of completing the

framework� this section presents in some detail the design and implementation of

an interpreter for the language CMS which was presented in Chapters  and ��

The CMS interpreter consists of two parts� a basic Scheme interpreter written

in the C language� and the module system implemented as a completion of Etyma�

The basic Scheme interpreter itself was derived from a publicly available scriptable

windowing toolkit called STk ����� The interpreter implementation exports many

of the functions implementing Scheme semantics� thus making it easy to access its

internals� Furthermore� the interpreter was originally designed to be extensible� i�e��

new Scheme primitives can be implemented in C�C�� and easily incorporated into

the interpreter� For example� say we want to implement a new Scheme primitive

new�prim that takes two input parameters and is implemented by a C function

new prim in C �� � � �� This can be done by including the following C function call in
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the appropriate initialization routine of the interpreter and recompiling it�

add new primitive ��new�prim�� tc subr �� new prim in C��

Thus� in order to implement CMS� Scheme primitives implementing concepts of

compositional modularity such as mk�module� mk�instance� self�ref� merge� etc� were

implemented in C�� and incorporated into the interpreter� More speci�cally� once

the new CMS primitives were identi�ed� subclasses of Etyma classes that support

the primitives were designed and implemented� Furthermore� �glue� functions

that extend the basic interpreter by calling the appropriate methods of the new

subclasses were also implemented�

The overall architecture of the CMS interpreter is shown in Figure ���� The

Scheme library shown on the left includes the macros for OO programming such

as de�ne�class and de�ne�pre�x presented in Chapter � as well as other support

functions written in CMS� The subclasses of framework classes comprising the

completion are shown in Figure ��� and described in the following sections�

In order to extend Scheme with a new datatype corresponding to modules that

itself can contain other Scheme values� we must �rst model the Scheme value and

type domains in the framework� Scheme consists of a uniform domain of �rst�class

values that includes primitive values and functions� �It is su
cient to consider these

Scheme values for the purposes of this discussion�� Scheme variables are identi�ers

C++

C C++

interpreter
library

Scm
glue

completion

ETYMA

basic

Figure ���� Architecture of CMS interpreter� The basic Scheme interpreter written
in C is extended with C�� code consisting of subclasses of generic classes in the
Etyma framework� The Scheme library on the left consists of CMS macros and
support functions�
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SchInterface

StdInterfaceStdInstance

SchInstanceSchModule

StdModuleLocation

SchLocation

Method

SchMethod

PrimValue

ETYMA classes

SchValue

Label

SchLabel

Completion subclasses

Figure ���� Subclasses of framework classes to implement CMS�

that are bound to locations� which in turn can contain any Scheme value� Scheme

values are typed� but variables are not�

An extension to Scheme must preserve Scheme�s essential �avor and pragmatics�

Thus� module attributes should be designed to be untyped names� Furthermore�

attributes can be bound to values� locations� or methods �functions�� Hence� it must

be possible to model these notions� i�e�� names� values� locations� and functions�

using the framework�

The untyped nature of variables can be modeled using the singleton type rep�

resented by class UnitType� Scheme identi�ers can be modeled with a subclass

of the framework class Label� with the notion of equality implemented using the

corresponding method for Scheme names exported by the interpreter� Location

bindings can be modeled with a subclass of class Location and method bindings with

a subclass of class Method� The method subclass need not store the method body as

a subclass of ExprNode� instead� it can simply store the internal representation of

Scheme expression as exported by the interpreter implementation� Self�references

and environment references can be managed by searching and modifying the internal

representation of the method body� as necessary�

As described in Section ����� the concrete class StdModule is implemented using

class AttrMap which maps Label objects to AttrValue objects� AttrValue objects

encapsulate TypedValue objects� Thus� the implementation of class StdModule can

be almost completely reused for implementing Scheme modules simply by creating

the Scheme subclasses mentioned in the previous paragraph� The only modi�cation

that needs to be done in the subclass of StdModule is to rede�ne create instance to
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return an object of an appropriate subclass of class StdInstance� This subclass needs

to also implement code for CMS primitives such as self�ref� self�set�� attr�ref� etc�

A subclass of StdInterface also needs to rede�ne certain typechecking routines to

re�ect the fact that attributes in CMS are not explicity declared� but simply left

unde�ned�

This concludes the description of the CMS implementation� The reusability of

the framework design� in conjunction with the extensibility of the basic Scheme

interpreter� made the degree of reuse so high in this case that most of CMS was de�

signed and implemented in a short period of time� Table ��� shows several measures

of reuse for this completion� The �rst three rows represent the module system alone

implemented as a completion of Etyma whereas the last row represents the entire

system� The percentages for class and method reuse give an indication of design

reuse� since classes and their methods represent the functional decomposition and

interface design of the framework� Similarly� the percentages for lines of code give

a measure of code reuse� Reuse issues are explored in the following section�

��� Reuse Issues

OO frameworks are built to be reused� Although the traditional notion of

reuse is that of code reuse� design reuse is generally acknowledged to be equally or

more important� According to Peter Deutsch ����� interface design and functional

factoring constitutes the key intellectual content of software and is far more di
cult

to create or recreate than code� In fact� it would not be wrong to say that the

primary bene�t of OO frameworks is design reuse�

Table ���� Reuse of design and code CMS�

Reuse parameter New Reused " reuse
Classes � �� ��

Etyma Methods �� ��� ����
Lines of Code ���� ���� ���

Etyma � STk Lines of Code ���� ����� ����
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However� it is well known that OO programs are not reusable unless they are

speci�cally designed to be reused� Moreover� once they are designed to be reusable�

an appropriate method or �protocol� for e�ectively reusing the framework must be

documented ����� Some reuse techniques used in Etyma are given below�

����� Designing for Reuse

The best known OO reuse mechanism is that of abstract base classes� Abstract

classes are partially de�ned classes that specify the essential characteristics of an

abstraction� so that concrete subclasses provide the incomplete parts� For example�

consider the abstract class Module of Etyma� One way to design it would be to

simply specify all the public methods as abstract methods �pure virtuals in C����

This will certainly enable design reuse� however� there would be no code reuse�

Alternatively� public methods can be designed as template methods to increase

code reuse� In class Module� the public methods are implemented in terms of very

simple protected attribute management methods speci�ed as abstract methods or

factory methods� This technique also results in a layered design� where a subclass

can rede�ne inherited functionality at a �ne level by rede�ning the protected

methods� or at a coarse level by rede�ning the public methods themselves�

Designers of reusable software must take special care not to preclude e
cient

implementation� In the case of classModule� the public methods implement applica�

tive operators� i�e�� they return a copy of the module with the requested operation

performed on it� Thus� for example� if a concrete subclass desires to compose

inherited public methods� there might be undesirable copies made� compromising

both time and space e
ciency� To avoid this� the public methods of Module are

implemented in terms of a protected clone�� method in conjunction with protected�

imperative versions of the operators� Thus� the concrete subclass can compose the

imperative versions of operators without making any more copies than necessary�

����� Documenting for Reuse

In contrast to a code library� it is not su
cient to merely publish one interface

in order for clients to reuse an OO framework� Two interfaces must be published�
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a usage interface for external clients �clients that use the public interface�� and

an extension interface for internal clients �clients that complete the framework

via inheritance�� Furthermore� in order for the extension interface to be utilized

e�ectively by internal clients� it must be accompanied by information about the

structure and dependencies between the abstractions modeled in the framework�

The use of OO diagrams as given in this chapter is very useful� The diagrams

greatly enhance a client�s understanding of the overall architecture of a framework�

Identi�cation of design patterns is also helpful� since these patterns have been

studied and described extensively�

While trying to implement methods more e
ciently� one can end up introduc�

ing dependencies between methods that needs to be explicitly documented� For

example� consider the implementation of the project operation� the dual of the

restrict operation� in a subclass of class Module� Project simply restricts all the

attributes of the module that are not given to it� thus it can be implemented in

terms of the restrict method� If this is done� however� the typechecking code in the

implementation of restrict will be executed several times more than is necessary� To

avoid that� the project method can duplicate some of the restrict code� In doing

so� we have introduced a dependency between the project and restrict methods�

every time a subclass rede�nes the restrict method� the project method must be

appropriately rede�ned as well� Exposing such dependencies has been dubbed

�consistent protocols� in the literature �����

����� Framework Evolution

A fundamental phenomenon of OO framework construction is evolution over

iterative reuse cycles� It is commonly said that the reusability of a framework

increases over reuse iterations� Reuse begets reuse�

The design cycle of frameworks is usually characterized as follows� Start by

building one application in the domain of interest and identify those abstractions

that can be generalized� For n � �� build the nth application by reusing the

generalized abstractions identi�ed thus far� simultaneously trying to identify other

generalizable abstractions from all n applications� Although the value of n to
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produce a truly �reusable� framework varies widely from case to case� it is generally

believed that most of the reusable value in a framework can be obtained by n � �

The C�� realization of the Etyma framework has undergone several iterations

over almost two years� We outline below the major evolutionary stages�

�� The very �rst version of Etyma was almost fully concrete and was designed

to experiment with a module extension of the C language� It consisted only of

the notions of modules� instances� primitive values� and locations� along with

a few support classes� C�� programs that instantiate these classes and thus

�program with modules� could be written� however� an appropriate front�end

and back�end were not constructed� The experiment provided a glimpse of a

modular C but was not completed �since it was judged that such a project

would demand vastly more e�ort on front�end and back�end considerations�

rather than the framework itself�� However� it helped identify some of the

basic implementational characteristics of the framework�

�� The next incarnation of Etyma was used to build a typechecking mechanism

for C language object modules� described in Section ���� This experiment

solidi�ed many of the type classes of Etyma� At this point� Etyma was still

primarily a set of concrete classes�

� The third incarnation was used to direct the design of a programmable linker

and loader called OMOS� described in Chapter �� In this iteration� the

framework was not directly used in the construction of OMOS� but it evolved

in parallel with the actual class hierarchy of OMOS� as described in Section

���� Throughout� several revisions were continually made to Etyma� In this

iteration� most of the abstract classes of Etyma were introduced and much

of the template method pattern implementations within abstract classes were

�rst written� Also� the standard concrete classes given in Section ���� were

developed� and this required the introduction of several new support classes

�implemented as C�� templates��
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�� The fourth iteration over Etyma was the construction of CMS� described

in Section ��� By the time of this completion� the framework design was

essentially in place� The only changes made to the framework were in the

solidifying of class Method� Code relating to module nesting was added�

Nonetheless� the CMS interpreter was constructed within a very short period

of time and resulted in a high degree of reuse�

�� The next iteration was to design and implement an IDL compiler front�end�

described in Chapter �� Most of the design developed in iteration ��� above

was reused here� There were almost no changes to the framework� Code

relating to recursive types was added�

�� The most recent iteration over Etyma has been to build the document

composition system described in Chapter �� There were no changes to the

framework�

As can be seen from the above iterations� the �rst three iterations essentially

evolved the framework from a set of concrete classes to a reusable set of abstract and

concrete classes� Thus� these iterations crystallized the reusable functionality of the

framework� From the fourth iteration onwards� the framework was mostly reused�

with the completions themselves hardly changing the structure of the framework�

As the observed reusability of the framework increased� measurements were

taken to record the reuse achieved� starting from iteration ��� above� Reuse mea�

surements for iteration ��� were given in Table ���� similar measurements are given

for iterations ��� and ��� later� For all three iterations� both design and code reuse

were found to be signi�cant� between ��" and ����"�

��� Related Work

Several OO frameworks have been developed� initially for user interfaces and

subsequently for many other domains as well ���� ��� ��� ��� Etyma bears a

close relationship to compiler frameworks ����� which comprise classes usually for

generating an internal representation of programs� Compiler frameworks fall into
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two categories� those that represent programs syntactically such as Sage�� ����

and those that represent programs semantically� such as ours� Compiler frameworks

are designed with various objectives� such as for representing abstract syntax�

constructing tools for programming environments� or for structuring the compiler

itself� e�g�� with objects representing phases of the compiler ���� or for enabling

compile�time re�ection via a meta�object protocol ����� Etyma� although support�

ing many of the above� is unique in that it is intended to be a reusable architecture

for constructing a variety of modular systems�

As mentioned earlier� Etyma represents a meta�architecture for modular sys�

tems� OO meta�architectures have been employed previously to enable re�ective�

�exible� and extensible language designs� Many of these advantages stem from the

fact that rei�ed �i�e�� concretely realized� meta�classes are candidates for systematic

re�ective access� That is� a system that has a well�designed meta�architecture can

essentially provide users not only with its standard interface but with an alternative

interface 	 a �side door� to the internal architecture� which is typically a subset of

the meta�architecture interface� Information access and re�nement via this alter�

native interface can enable applications to �ne�tune a language implementation to

suit its particular needs� Meta�classes can be specialized to suit speci�c tasks using

standard OO techniques such as inheritance� In a compilation setting� meta�classes

can even be specialized to statically optimize run�time data layout or generate

optimized code for particular special cases�

It is important to clarify the relationship between the concepts of meta�archi�

tecture� re	ection� and metaobject protocol �MOP�� A meta�architecture models�

systematically implements� and documents the fundamental concepts of a system�

A meta�architecture is OO if the concepts are modeled as collaborating classes� A

system is re�ective if its users have introspective �i�e�� read� and�or intercessory

�i�e�� modi�cation� access to the rei�ed meta�architecture of the system� Finally�

a MOP documents and illustrates a disciplined method of re�ective access to a

carefully chosen subset of a system�s OO meta�architecture�

Etyma is primarily an application framework for modular systems� An impor�
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tant point of this dissertation is that the design discipline encouraged by object�

oriented methods can be fruitfully applied to the design of programming languages

themselves� However� being a meta�architecture� Etyma enables the construction

of re�ective systems� and the design of suitable MOPs� and thus could potentially

bring the advantages mentioned above�

As points of comparison� we now brie�y present two widely known language

meta�architectures� Smalltalk��� ��� and the Common Lisp Object System �CLOS�

�����

����� Smalltalk

Smalltalk is based on a uniform model of communicating objects� It has a

small number of concepts 	 object� class� instance� message� and method� Every

concept in the system is modeled as an object� either instantiable �class object� or

not �instance object�� The most primitive low�level operations in the system are

delegated to a virtual machine� Objects communicate via messages� the semantics

of messages are implemented by receivers as methods�

Smalltalk�s notion of objects is captured by class Object which provides the

basic semantics� including message handling� of all objects in the system� The

semantics of classes is captured by class Class along with its superclass Behavior

which de�nes the state required by classes� such as for instance variables and a

method dictionary� Further� the class CompiledMethod embodies the notion of a

class� method� this class de�nes a method valueWithReceiver	 to evaluate itself�

Smalltalk is a �dual hierarchy� language� as are most object�oriented languages�

That is� it has a cleanly articulated class�subclass hierarchy as well as a class�

instance hierarchy� In most languages� however� the class�instance hierarchy is not

interesting since it comprises only two levels 	 that of all classes and all instances�

In Smalltalk� this hierarchy is deeper and is recursive� as described below�

Every object in Smalltalk is an instance of some class� Since classes themselves

are objects� each class object is an instance of yet another class� usually referred

to as a metaclass object� For example� a class Foo is an instance of its metaclass�

given by the expression Foo class� Such metaclass objects are themselves instances
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of an ordinary class calledMetaclass� The metaclass of class Metaclass itself is given

by Metaclass class� which is also an instance of class Metaclass� just as Foo class is�

The above recursion puts an end to the in�nite regression of metaclasses�

Consider the class�subclass hierarchy of metaclasses� Every class in Smalltalk

inherits from class Object� hence the subclass hierarchy is a singly rooted tree�

The class Metaclass mentioned above is also a subclass of Object� The instances

of class Metaclass� such as Foo class� Metaclass class� and even Object class� are all

�meta�classes� These metaclasses are subclasses of class Class� which is a subclass of

class Object� �The actual subclass hierarchy of Smalltalk is slightly more involved

than what is described here� due to the desirability of symmetric class and metaclass

hierarchies� but the given description will su
ce for this discussion��

����� CLOS

The CLOS object system supports the standard concept of classes� which can be

instantiated into instances ����� Class attributes are called slots� A distinguishing

feature of the CLOS model is the notion of generic functions which are de�ned

independent of any class and can be specialized into methods that are applicable to

speci�c classes� Generic functions can be dispatched based on multiple arguments

�multimethods��

The CLOS meta�architecture speci�es the following basic meta�object classes

corresponding to the basic concepts of the language� class� slot�de�nition� generic�

function� and method� All user�de�ned metaobjects must be designed to be sub�

classes of one of the above meta�object classes� The speci�ed default semantics

of the CLOS language are embodied by specializations of the above classes� with

names beginning with standard���� e�g�� standard�class� and standard�method�

The class�subclass hierarchy of the CLOS meta�architecture is as follows� At the

root is class t which has one subclass standard�object capturing the semantics of all

objects in the system� Every class created in the system must have standard�object

as its superclass� One subclass of standard�object is the class metaobject� of which

the basic meta�object classes mentioned above are subclasses�

The class�instance hierarchy of CLOS essentially has four levels� Individual
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CLOS classes are instances of class class or one of its subclasses� Class class is an

instance of �its own subclass� standard�class� as are most other meta�object classes�

��� Summary

We argued that the simplicity of compositional modularity enables it to be

applied to a wide variety of systems such as modular and nonmodular program�

ming languages� linkers� interface de�nition processors� and document manipulation

systems� Thus� it is desirable to build a generic� reusable realization of the model

	 a meta�architecture 	 that abstracts over the particular characteristics of the

system it is embedded within� We de�ned the scope of such a meta�architecture and

required that it be simple� general� extensible� and reusable� and that it support

re�ection�

The model of compositional modularity can be expressed independent of base

languages� It can also be expressed in an OO manner� i�e�� as a set of interacting

partially speci�ed �abstract� classes 	 also known as an OO framework� In this

chapter� we presented an OO framework for compositional modularity known as

Etyma�

Etyma can be reused to build a variety of compositionally modular systems�

The implementation of one such system� an interpreter for the language CMS� is

described in this chapter� Other systems are described in the following chapters�

Etyma consists of a set of highly intertwined abstract classes that model the

value and type domains of modular systems� as well as a set of generally useful

concrete subclasses� The interfaces of and relationships between Etyma�s abstract

value and type classes as well as its concrete classes are explained�

A framework becomes reusable only if it is designed and documented with

reusability in mind� Furthermore� a framework becomes more reusable with more

reuse� Etyma�s design considerations and its repeated reuse have helped it evolve

into a reusable framework�

As the painter needs his framework of parchment� the improvising
musical group needs its framework in time� Miles Davis presents here
frameworks which are exquisite in their simplicity and yet contain all
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that is necessary to stimulate performance with a sure reference to the
primary conception�

� Bill Evans �liner notes for Miles Davis� �Kind of Blue��



CHAPTER �

COMPOSITION OF OBJECT MODULES

This chapter develops a second application of compositional modularity� com�

position of object modules� i�e�� programmed linkage of separately compiled �les�

An object module is an abstracted namespace� That is� it has a set of �le�

level symbols �represented as a symbol table� and a set of symbol self�references

�represented as relocation information�� which can be modeled as an abstracted

namespace� Manipulation of abstracted namespaces is precisely the province of

compositional modularity� hence it can be used to adapt and combine �link� object

�les�

The central idea of this chapter is that the physical modularity of application

components� i�e�� separately compiled �les� can in essence be viewed as logical mod�

ularity� i�e�� �rst�class compositional modules� which in turn can support e�ective

application development� A software architecture which can take advantage of this

idea is presented in Section ����

Section �� proceeds to describe the mechanics of module management within

this architecture� It also shows how this viewpoint solves some longstanding prob�

lems with the management and binding of components in present�day application

development environments�

It is possible to perform type�safe composition of object modules in the above

architecture� The details of such a facility are given in Section ����

��� Motivation

����� Application Composition via Linkage

In a traditional application development environment such as UNIX� application

components ultimately take the form of �les of various kinds 	 source� object�
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executable� and library �les� Entire applications are typically built by putting

together these components using in�exible� and sometimes ad�hoc� techniques such

as preprocessor directives and external linkage� all often managed via make�le

directives�

It is also natural for developers to generate components corresponding to in�

cremental changes to already existing application components� especially if they

subscribe to the software engineering principle known as �extension by addition��

This principle holds that it is better to extend software not by direct modi�cation

but by controlled addition of incremental units of software� Advantages of �ex�

tension by addition� include better tracking of changes and more reliable semantic

conformance by software increments� Most importantly� the increments themselves

have the potential to be reused in other similar settings�

The model of compositional modularity supports the e�ective management of

all the above kinds of application components� It supports encapsulation which

helps to enhance abstraction� It supports several forms of inheritance� which is a

mechanism for managing incremental changes to software units� It supports various

mechanisms for adapting components to enable their reuse in a broad range of

situations� Hence there is much to gain from supporting compositional modular�

ity within the infrastructure of an application development environment� beyond

whatever support is provided by the languages in which application components

are written�

In this chapter� an architecture for applying compositional modularity to OO

application development is presented� This architecture demonstrates a principled�

yet �exible� way in which to construct applications from components� This facility is

orthogonal to make�les and does not impose new techniques for building individual

application components� Instead� it relies on the idea that the physical modularity

of traditional application components �i�e�� �les� can be endowed the power and

�exibility of logicalmodularity� Such logical modules can then be manipulated using

the concepts of compositional modularity� where �rst�class modules are viewed as

building blocks that can be transformed and composed in various ways to construct
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entire application programs� Individual modules� or entire applications� can then

be instantiated into the address spaces of particular client processes�

This approach has other advantages besides making application construction

more principled and �exible� First� it enables a form of OO programming with

components written in non�OO languages such as C and Fortran� Second� it

enables adaptive composition� where the system that manages the logical layer can

perform various composition�time� �exec��time� and possibly run�time optimizing

transformations to components� For example� system services �such as libraries�

can be abstracted over their actual implementations� adding a level of indirection

between a service and its actual implementation� This permits optimizations of the

service implementation based on clients� disclosed behavioral characteristics� Such

system�level support is explored in several studies ���� ��� ��� and is summarized in

Section ����� However� for the most part� this chapter focuses on application level

support�

Indeed� much of this chapter is based on work performed by Douglas Orr and

others on OMOS� the Object Meta�Object Server ���� OMOS was primarily

conceived as an �object server� 	 a server process that generates implementa�

tions of programs based on user and system requirements� Although OMOS was

not originally constructed for the speci�c purpose of illustrating the concepts of

compositional modularity� it provides an infrastructure that is perfectly suitable

for doing so�

It is important to make it clear that compositional modularity supported by a

logical layer is not in con�ict with object�orientation supported by component�level

languages� For example� C�� programmers deal with two distinct notions of

modularity� classes� fundamental to logical modularity� and source �les� which

deal with physical modularity� These two modularity dimensions share many

characteristics but have very di�erent senses of composability� i�e�� inheritance for

classes� and linkage for �les� Indeed� they are rather orthogonal in the minds of

C�� programmers� because class de�nitions and source �les do not always bear

��� relationships� and linkage is performed in a �class�less� universal namespace
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�attened by name mangling� In essence� they manage programs at two levels�

classes with their semantic relationships and �les with their linkage relationships�

The approach presented here supports a similar degree of manageability for physical

artifacts �i�e�� �les� as for logical artifacts �i�e�� classes��

In the following section� we present an application scenario that motivates the

architecture presented in this chapter�

����� A Scenario

Consider a scenario in which a team of developers is building an image process�

ing application using a vendor supplied �shrink�wrapped� library� Say the team

completes building an initial version of the application �which is large�scale� say�

greater than ���K lines of code� and is now ready for system testing� We can

imagine common problems deriving from this scenario�

�i� Call wrapping� Suppose that the team �nds that the application malfunc�

tions because it calls a library function edge detect�� on an image data structure�

consistently with an incorrect storage format� say with pixels represented as type

FLOAT when BYTE was expected� Using traditional tools� this problem is recti�ed

by inserting another library function call to the routine �oattobyte�� before each

site in the application where edge detect�� was being called� This approach not only

requires extensive modi�cation of the application source code but also expensive

recompilation� Moreover� if two separate shrink�wrapped libraries are to be put

together in this manner� sources might not even be available� Instead� it is more

desirable to �wrap�� at binding time� calls to edge detect�� with an adaptor that

calls �oattobyte��� all without recompiling the large application� However� such a

facility is not usually supported in conventional OS environments�

�ii� Library extension management� Suppose further that the team decides that

the application could work much better with an image format slightly di�erent from

the format expected by the library� but one which is easy to convert to and from

the old format� If the new format is to be supported for future projects� it is best

to change all library functions to accept the new format� However� sources for the

library are not available� hence it cannot be directly modi�ed� Thus� this would
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require developing and integrating a separate extension to the library� Furthermore�

there could be several other independent extensions to the library that need to be

integrated and supported for future applications� Developing such incremental

extensions is much like subclassing in OO programming� but there is usually no

support for e�ectively managing such incremental software units�

�iii� Static constructors and destructors� Imagine that the team wants to make

sure that all statically de�ned images are properly allocated and initialized from disk

before the program starts and �ushed back to disk before the program terminates�

Currently available techniques for doing this are di
cult and cumbersome�

�iv� Flat namespace� Say the IP library uses the Motif library� which is in turn

implemented in terms of the lower�level X library� Thus� in the traditional scenario�

all the symbols imported from theMotif and X libraries become part of the interface

exported by the IP library� There is no way to prevent clients of the IP library

from obtaining access to the lower level library interface or possibly su�er name

collisions with that interface�

The system architecture we present in the following sections o�ers an e�ective

solution to the above problems� Speci�c solutions to these problems are given in

Section ����

��� Architecture

����� Conceptual Layering

The �rst step in presenting an architecture for managing object modules is to

clarify the conceptual layering of application components�

Conceptually� artifacts of physical modularity� i�e�� �les of various kinds� form

a physical layer� These modules may be written as components in conventional

languages that have no notion of objects� For example� in the case of C� there

is no support for manipulating physical modules� much less for generating and

accessing instances of them at run�time	 �les are simply a design�time structuring

mechanism�

The physical layer is managed with the help of traditional programming lan�

guage environments� For example� the C language preprocessor� compiler� the
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make utility� the debugger� and library construction utilities help the programmer

to develop application components of various kinds�

In the architecture presented here� each physical module can be manipulated

as a �rst�class compositional module in what we shall conceptualize as the logical

layer� In this layer� construction of entire applications is directed by scripts written

by application programmers describing the composition of logical modules� Scripts

are written in a module manipulation language that supports not only a simple

merge of modules in the manner of conventional linking but also many others

including attribute encapsulation� overriding� and renaming� Most importantly�

since modules are �rst�class entities in this language� individual operations can be

composed in an expression�oriented fashion to produce composite e�ects such as

inheritance in OO programming�

The logical layer is managed by a special tool� in the design of which the

following requirements were laid out� First� the tool must provide a language

processing system for the module manipulation language� Second� it must perform

essential operating system services� that of linking modules and loading them into

client address spaces� Third� since these services are in the critical path of all

applications� it must be able to perform optimizations such as caching� Finally� it

must be continually available� For these reasons� the logical module layer in the

prototype described here is managed by a server process 	 a second generation

implementation of a server named OMOS ����

The module manipulation language supported by OMOS is derived from the

programming language Scheme���� and is similar in �avor to CMS� The most

important distinction� of course� is that its notion of modules is that of object

�les� Modules are created by reading in physical object �les� Conventional linking

is accomplished using the merge operator of the module language� Given the

other module manipulation operators� the language enables powerful and �exible

application composition indeed 	 this is the subject of Section ���
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����� Application Construction

In this section� we describe the steps in constructing an application� based on

the architecture shown graphically in Figure ����

The �rst step is to build individual application components �physical modules�

using a conventional programming language� �In this discussion� we shall consider

only C language components� although the same ideas can be applied to another

language such as Fortran�� Individual components� such as c��c� c��c� and c��c in

Figure ��� can be designed as traditional program �les with no knowledge of the

logical layer� Alternatively a component can be designed to be reused via suitable

programming in the logical layer� such as a �wrapper� module described in Section

���

Application components may be owned and managed by the user or by OMOS�

/

printf.o read.o libccrt0

OMOS file system

client
client

client

USER

app.msc3.cc2.cc1.c

~banavar/app1

User file system

OMOS

cacheapp

c1

c2

c3

Figure ���� Overall architecture of object �le composition� c��c� c��c� etc� are
user application components to be composed as described in the user module spec
app�ms� Printf�o� etc�� are system components to be composed as given in module
specs crt�� etc� These components are composed by OMOS� possibly cached� and
instantiated into client address spaces� The user can directly interact with OMOS
via a command line interface to e�ect module composition and instantiation�
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In Figure ���� c��c� c��c� and c��c are user provided application components� System

provided components� such as libraries� are owned and managed by the OMOS

server and accessed via service requests to OMOS�

The second step is to create a module spec� a �le that describes the creation

and composition of logical modules from application components� This is written

in a module language described in Section ��� In Figure ���� app�ms is a user

module spec that describes how to put the components of the application together�

Module specs can themselves be modular� they can refer to other module specs� For

example� app�ms may refer to libc� a system provided module spec that describes

how to put together the components of a standard system library with a client

module�

The �nal step is to request the module server to execute the module spec and

instantiate �i�e�� load� the result into a client address space� Module specs may be

executed by calling a stand�alone version of OMOS from within a make�le and the

loading step performed interactively�

����� The OMOS Server

The most important component of the architecture given above is brie�y de�

scribed in this section� This is the system that manages the logical layer� OMOS

���� The term �meta�object� was originally intended to be indicative of the

intensional nature of module specs and the fact that module specs are really

programs that generate other programs� However this name should be considered

historical and will not be further justi�ed here�

As mentioned earlier� OMOS is a continuously running process that is designed

to provide a linking and loading facility for client programs via the use of module

combination and instantiation� OMOS supports three main functions� execution of

module specs to compose applications� caching of intermediate results� and program

loading�

Clients request OMOS to construct and map a program by providing a module

spec that describes how to construct the program� Module specs can refer to object

�les and other module specs from either the user �le system area or the system area�
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System provided components� such as the standard C library libc shown in Figure

���� are themselves module specs� Application programs that need to use libc load

in the module spec and combine the library with other application components in

any desired manner�

In fact� system provided libraries are actually represented as function abstrac�

tions that receive an application module as a parameter and produce a composed

module� Thus� for example� the function body of libc can examine its incoming

module parameter using a set of meta�level primitives and custom generate an

implementation of libc that is best�suited to the particular application at hand�

This mechanism� in e�ect� provides a level of indirection between a system service

and its actual implementation� thus permitting optimizations of the service imple�

mentation based on clients� disclosed behavioral characteristics� The details of this

mechanism can be found in ref� �����

Since OMOS loads programs into client address spaces� it can be used as the

basis for system program execution and shared libraries ����� as well as dynamic

loading of modules� OMOSmodule specs have also been used to implement program

monitoring and reordering �����

Since OMOS is an active entity �a server�� it is capable of performing sophis�

ticated module manipulations on each instantiation of a module� Evaluation of a

module expression will often produce the same results each time� As a result� OMOS

caches module results in order to avoid re�doing unnecessary work� Combining a

caching linker with the system object loader gives OMOS the �exibility to change

implementations as it deems necessary� e�g�� to re�ect an updated implementation

of a shared module across all its clients �����

Backward compatibility is a crucial issue to be addressed in the context of the

architecture presented here� Two issues seem to be important� �i� support for

old�style linking specs �e�g�� ld�� which should be automatically translatable to the

module language� and �ii� support for old style system services such as libraries �as

opposed to module specs�� �These issues are currently being worked out as part of

ongoing related projects� and will not be further dealt with here��
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There are several other interesting system issues related to OMOS� However� the

purpose here is not to explore OMOS but to explore the application of compositional

modularity to �exible application development using the infrastructure supported

by OMOS� Thus� we conclude the general description of the architecture and

proceed to describe the functionality exported by the module language in the

following section�

��� Object Module Management

As argued in Sections ���� an infrastructure that aims to support e�ective appli�

cation development must support the �exible management of application compo�

nents� It was further argued that the management of components� their extensions�

and their bindings is essentially similar to the management of classes and subclasses

via inheritance in OO programming� This argument behooves us to demonstrate

that the architecture presented above does indeed support the essential concepts

of OO programming� viz� classes and inheritance� which is shown below in Sections

���� and ���� respectively�

Given the facilities described in this section� it is in fact possible to consider

doing OO programming with a non�OO language �such as C�� However� it is not

possible to do full��edged OO programming in such a manner� because of the

reasons given in Section ������ Neither is it desirable� since OO language support

�such as C��� might be directly available� Thus� the facility described here is

intended mainly for enhancing application component management rather than for

actual application programming�

����� Classes and Instances

������� Modules

An object ���o�� or dot�o� �le� generated by compiling a C source �le� corre�

sponds directly to a compositional module� A dot�o consists of a set of attributes

with no order signi�cance� An attribute is either a �le�level de�nition �a name

with a data� storage or function binding�� or a �le�level declaration �a name with

an associated type� e�g�� extern int i��� �Type de�nitions� e�g�� struct de�nitions and
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typedef�s in C� are not considered attributes�� Such a �le can be treated just like a

class if we consider its �le�level functions as the methods of the class� its �le�level

data and storage de�nitions as member data of the class� its declarations as unde�

�ned �abstract� attributes� and its static ��le internal linkage� data and functions

as encapsulated attributes� Furthermore� a dot�o typically contains unresolved

self�references to attributes� represented in the form of relocation entries�

Symbols� both de�ned and merely declared� of physical modules make up the

interface of logical modules� �For simplicity of presentation� we consider interfaces

to comprise only the symbol names� without their programming language types�

see Section ��� for a study of typed interfaces�� Compiled code and data in the

actual object �le represent the module implementation�

A physical dot�o is brought into the purview of the logical layer by using the

module language primitive called open�module� the syntax of which is given in

Figure ���� Once it is thus read in as a logical module� it can be manipulated using

other primitives of compositional modularity�

������� Encapsulation

Module attributes can be encapsulated using the operator hide �see Figure �����

However� in the case of C language components� encapsulation partly comes for free�

since C supports the internal linkage directive� static� However� attributes can be

hidden after the fact� i�e�� nonstatic C attributes can be made static retroactively�

with hide� This is a very useful operation as demonstrated in Section ����

Many OO systems support the notion of a class consisting of public and private

�open�module hpath�string�expri�
��x hsection�locn�listi hmodule�expri�
�hide hmodule�expri hsym�name�list�expri�
�merge hmodule�expr� i hmodule�expr� i ����
�override hmodule�expr� i hmodule�expr� i ����
�copy�as hmodule�expri hfrom�name�list�expri hto�name�list�expri�
�rename hmodule�expri hfrom�name�list�expri hto�name�list�expri�

Figure ���� Syntax of module primitives�
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�encapsulated� attributes� In our system� a similar concept of classes is supported

by a Scheme macro de�ne�class� with the following syntax�

�de�ne�class hnamei
hdot�o��lei hsuperclass�exprsi hencap�attrsi�

For example� given a dot�o vehicle�o that contains� among other attributes� a

global integer named fuel and a global method display that displays the value of

the fuel attribute� one can write the following expression �within a module spec� to

create a class named vehicle by encapsulating the attribute named fuel�

�de�ne�class vehicle �vehicle�o� �� ��fuel���

This macro expands into the following simple module expression�

�de�ne vehicle
�hide �open�module �vehicle�o�� 	��fuel����

������� Instances

Instantiating a module amounts to �xing self�references within the module and

allocating storage for variables� In the case of instantiation of dot�o modules�

�xing self�references involves �xing relocations in the dot�o� and storage allocation

amounts to binding addresses� These two steps are usually performed simultane�

ously� Thus� an object �le can be instantiated into an executable that is bound

���xed�� to particular addresses and is ready to be mapped into the address space of

a process� Dot�o�s can be instantiated multiple times� bound to di�erent addresses�

Hence� �xed executables are modeled as instances of dot�o�s� A module is instan�

tiated using the primitive �x �see Figure ����� The argument hsection�locn�listi

speci�es constraints for �xing the module to desired sections of the client address

space�

A concept closely associated with �rst�class objects in conventional OO lan�

guages is message sending� However� as mentioned earlier� there is no notion of

�rst�class objects at the physical layer� which is where physical modules are im�

plemented using component�level languages� Thus� message sending is not directly

supportable in our framework� However� an approach to supporting a form of
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message sending via inter�process communication can be envisioned� as described

in Section ������

����� Inheritance

In this section� we introduce the inheritance related primitives supported by

the module language and describe the manner in which they can be composed� We

start by introducing the following four primitives whose syntax is given in Figure

���� These primitives have essentially the same semantics as for CMS� except here�

the computational sublanguage is quite di�erent�

The primitive merge combines modules which do not have con�icting de�ned

attributes� i�e�� attributes with the same name� This semantics is analogous to

traditional linking of object �les� However� the idea here is to go beyond traditional

linking and support other operations basic to inheritance in OO programming� such

as the following�

The primitive override produces a new module by combining its arguments� If

there are con�icting attributes� it chooses hmodule�expr
 i�s binding over that of

hmodule�expr� i in the resulting module�

The primitive copy�as copies hfrom�name�list�expri attributes to attributes with

corresponding names in hto�name�list�expri� The from argument attributes must

be de�ned�

The primitive rename changes the names of the de�nitions of� and self�references

to� attributes in its argument hfrom�name�list�expri to the corresponding ones in

hto�name�list�expri�

To illustrate the use of the above primitives� the following section describes how

to achieve several variations of a facility generally referred to as �wrapping��

������� Wrapping

Figure �� shows a service providing module LIB with a function f�� and its

client module CLIENT that calls f��� Three varieties of wrapping can be illustrated

with the modules shown in the �gure�
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(Wrapper)

void f() {

    f_old();

    /* ... */

}

extern void f_old();

CLIENT
(Client Program)

void g() {

    f();

    /* .... */

}

extern void f();

LWRAP

CWRAP

    f();

(Wrapper)

void stub() {

    f();

    /* ... */

}

extern void f();

LIB
(Service Provider)

void f() {

}

    /* .... */

    /* .... */

Figure ���� Examples of wrapping in OMOS�

��� A version of LIB that is wrapped with the module LWRAP so that all accesses

to f�� are indirected through LWRAP�s f�� can be produced with the expression�

�hide �override �copy�as LIB f f old� LWRAP� f old�

By using copy�as instead of rename� this expression ensures that self�references

to f�� within LIB continue to refer to �the overridden� f�� in the resultant and are

not renamed to f old�

��� Alternatively� a wrapped version of LIB in which the de�nition of and self�

references to f�� are renamed can be produced using the expression�

�hide �merge �rename LIB f f old� LWRAP� f old�

This might be useful� for example� if we want to wrap LIB with a wrapper which

counts only the number of external calls to LIB�s f��� but does not count internal

calls�

�� If we want to wrap all calls to f�� from CLIENT so that they are mediated

via the stub�� function of module CWRAP� we can use the following expression�

�hide �merge �rename CLIENT f stub� CWRAP� stub�
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Note that only a particular client module is wrapped� without wrapping the

service provider� In the example� renaming the client module�s calls to f�� produces

the desired e�ect� since the declaration of f�� as well as all self�references to it must

be renamed�

Generalizing the above cases� the three varieties of wrapping possible in our

model are shown pictorially in Figure ���� The leftmost column of the �gure shows

the given modules M� and M� and their wrappers W� and W�� The top row shows

a technique referred to as method wrapping� and the bottom row call wrapping�

Figure ����a� corresponds to example ��� above� Figure ����b� to ���� and Figure

����d� to �� above�

The CLOS language supports a technique known as before�after methods to

interpose calls to code before or after a particular method proper� The above

calls
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Figure ���� Wrapping scenarios� The leftmost column shows the given modules�
M� to be wrapped by W�� and M� to be wrapped by W�� The top row shows the
operations and e�ects of performing method wrapping� and the bottom row shows
call wrapping�



���

notions of method wrapping and call wrapping can be extended to support calling

of precompiled routines by generating and wrapping the appropriate adaptors� For

example� to call a method bef in module B before a method meth in module M�

we can generate a wrapper module W with a function meth that �rst calls bef

and then calls the old de�nition of meth as old�meth� The modules M� W� and B

can be combined in a manner similar to method wrapping to get the e�ect of a

before�method�

�hide �override �copy�as M meth old�meth�
�merge W B��

old�meth�

������� Single and Multiple Inheritance

The idioms shown in Figure ��� are in fact the basis of inheritance in current

day OO languages� as shown in Chapter � In this section� we give a brief idea of

how these idioms can be used to achieve notions of inheritance�

Recall from Section ���� that a class can be de�ned using the macro de�ne�class�

which expands to a module expression that uses open�module and hide� A vehicle

class was de�ned there� Using the same macro� a class can also inherit from another

existing class�

For example� suppose a dot�o land chars�o is created� which contains a global

constant integer called wheels� and a function called display�� that �rst calls a

declared method called super�display��� then prints the value of wheels� Given such

a module� a land�vehicle class can be created as a subclass of the previously de�ned

vehicle module by writing�

�de�ne�class land�vehicle �land chars�o� �vehicle� ���

This macro expands to the module expression�

�de�ne land�vehicle
�hide �override �copy�as vehicle 	��display��

	��super display���
�open�module �land chars�o���

	��super�display����

In this expression� a module with attributes wheels and display is created and

is used to override the superclass vehicle in which the display attribute is copied
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as super display� The new display method can access the shadowed method as su�

per display� In general� all such con�icting attributes are determined by a meta�level

primitive called con�icts�between and copied to a name with a super pre�x� The

copied super display attribute is then hidden away to get a module with exactly one

display method in the public interface� as desired� An important point here is that

calls to display within the old vehicle module and the new land�vehicle module are

both rebound to call the display method of the land�vehicle module�

The above idea of single inheritance can be generalized to multiple inheritance as

found in languages such as CLOS ����� In these languages� the graph of superclasses

of a class is linearized into a single inheritance hierarchy by a language provided

mechanism� A similar e�ect can be achieved with the de�ne�class macro� except

that the programmer must explicitly specify the order of the superclasses� as shown

below�

�de�ne�class land�chars �land chars�o� �� ���
�de�ne�class sea�chars �sea chars�o� �� ���
�de�ne�class amphibian

�amphibian�o� �land�chars sea�chars vehicle� ���

In fact� explicit speci�cation of linearization is more useful than an implicit� lan�

guage provided mechanism� With the module operations supported by the module

language� several other single and multiple inheritance styles can be expressed as

well� as shown in Chapter �

����� Solving Old Problems

Using the operations de�ned on modules it is possible to conveniently solve long�

standing problems in software engineering� encountered when using C� or C���

Several of these problems had solutions previously� but they were ad�hoc and�or

required changes to source code� Module operations permit general solutions that

impose no source code changes�

In this section� we delineate clean solutions to each of the problems enumerated

in Section ������ in the same order�

�i� Wrapping calls� To solve the �rst problem of Section ������ the module

spec for the image processing �IP� application can be written as given in Section
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������� under call wrapping� Calls to edge detect�� can be wrapped with a wrapper

method that �rst calls the function �oattobyte�� and then calls the edge detect��

library function�

�ii� Library extension management� The IP library can be thought of as an OO

class� and incremental changes to it can be thought of as subclasses that modify the

behavior of their superclasses� The subclasses can be integrated with the superclass

by means of a module spec that uses the notions of inheritance illustrated in Section

�����

�iii� Static constructors and destructors� In C��� there is a need to generate

calls to a set of static constructors and destructors before a program starts� Special

code is added to the C�� front end to generate calls to the appropriate constructor

and destructor routines� However� the order in which such static objects are

constructed is poorly controlled in C�� and leads to vexing environment creation

problems for large systems�

Under some variants of Unix� the C language has handled the need for destruc�

tors in an ad�hoc fashion� by allowing programs to dynamically specify the names

of destructor routines by passing them to the atexit�� routine� In other variants�

the destructors for the standard I�O library are hard�coded into the standard exit

routine� In neither case is there any provision for calling initialization routines �e�g��

constructors� before program startup�

In both the cases of C and C��� module operations allow addressing the

problem of generating calls to initialization or termination routines by using a

general facility� rather than special�purpose mechanisms� As shown in Section

������ as before�after methods� module expressions can easily be programmed to

generate a wrapper main�� routine that calls all of the initialization routines found

within that module� then call the real main�� routine� Similarly� the exit�� routine

can be wrapped with an exit routine that calls all the destructors found in the

module before calling the real exit���

�iv� Flat namespace� A longstanding naming problem with the C �and� to some

extent C��� language has traditionally been the lack of depth in the program
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namespace� C has a two�level namespace� where names can be either private

to a module or known across all modules in an application� As a result� if an

application uses library l��a which imports symbols from another library l��a� all

symbols imported from l��a are known by the application and become part of its

exported interface�

With module operations� these problems can be avoided� Once a module

that implements low�level functionality has been combined with a module that

implements higher�level functionality� the functions in the former�s interface can be

subjected to the hide operation to avoid con�icts or accidental matches at higher

levels�

��� Type�safe Composition

In this section� we present a technique to perform type checking of object mod�

ules within the architecture presented earlier in this chapter� The type system of

speci�c languages can be incorporated into OMOS� and type information extracted

from object modules can be used to ascertain the type safety of combining object

modules� We describe in detail the realization of these steps for ANSI C� by utilizing

standard debugging information generated by compilers�

����� Motivation

It is widely agreed that strong typing increases the reliability of software� How�

ever� compilers for statically typed languages such as C and C�� in traditional

nonintegrated programming environments guarantee type�safety only within a com�

pilation unit� but not across such units� �C�� style name�mangling does not

accomplish complete type�safety across compilation units� see Section ����� Long�

standing and widely available linkers compose separately compiled units by match�

ing symbols purely by name equivalence with no regard to their types� Such

�common denominator� linkers accommodate object modules from various source

languages by simply ignoring the static semantics of the language� �Commonly

used object �le formats are not even designed to incorporate source language type

information in an easily accessible manner��
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Moreover� a programmable linkage facility such as OMOS enables the incor�

poration of automatic and user�de�ned type conversion routines for encapsulated

data� For automatic conversion� we postulate safe adaptability rules for converting

built�in data types using the language de�nition in conjunction with the characteris�

tics of particular hardware platforms� We then utilize these rules to automatically

generate data conversion adapters at link time� More importantly� programmer

de�ned conversion stubs can also be easily incorporated at link time� This opens

up the possibility of programmer�controlled data evolution and conversion across

heterogeneous data formats� e�g�� those arising from di�erent languages� hardware

architectures� etc�

Link�time type�checking helps one to adapt and utilize the full expressive power

of language type systems to better suit modern persistent� distributed� and hetero�

geneous environments� For example� structural typing can be applied to languages

such as ANSI C with name�based typing� Pure name�based typing becomes a prob�

lem in persistent and distributed environments� where data and types could migrate

outside the program in which they were originally created ��� and lead to matching

of names that may or may not have the same programmer�intended meaning� This

argues for structural matching of aggregate types similar to Modula� ����� using

member order and type signi�cance along with names�

����� A Scenario

As before� an ANSI C program source or object �le is considered a module

consisting of a set of attributes with no order signi�cance� The interface consists

of the types of the attributes of the module� along with information as to whether

each is de�ned or merely declared� For example� Figure ��� shows a module O�

whose interface consists of one attribute

f de�ne f 	 void � struct S g

and a module O� whose interface consists of two attributes
f de�ne g 	 void � void�

declare f 	 void � int g
Consider the case where a programmer creates and compiles module O� with

the intention of using O��s f de�nition by performing O� merge O�� but makes
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Module O� Module O� Module O

struct S f
int x�
�� ��� ��
g
struct S f �� f
�� ��� ��

g

extern int f ���
void g �� f
int x � f ���

g

struct S f
int x�
�� ��� ��

g
extern struct S f
���
int f stub �� f
return f���x�

g

Figure ���� Linkage adaptation� Modules O� and O� are composed with the
expression� �O� rename f f stub� merge O� merge O�

the incorrect presumption that f returns an int� If merge were untyped �as it is

in common linkage�� O� merge O� would have been legal� with disastrous results�

However� it should not typecheck� since the interfaces of O� and O� are not type

compatible for a merge operation� the return types of f are not related�

Suppose that the programmer of O� discovers during linkage that f returns

the desired int value as a component of the returned structure� In the traditional

scenario� in order to make O� and O� compatible� the programmer would have to

modify the source code of either module extensively and recompile� This might not

be possible for precompiled libraries� Even if it were possible� it could adversely

a�ect combination of the modi�ed module with yet other modules�

Programmability supported by the module management facility is crucial to

alleviate this problem� In this example� O� can be adapted by constructing an

adapter module O� O consists of a declaration of f that matches its de�nition

in O� and a stub function f stub that extracts the desired value from the structure

returned by f� With this� a modi�ed version of O� can be obtained with the module

expression �merge �rename O� f f stub� O��� which can then be merge�ed with O� to

get the originally desired e�ect� �This e�ect is similar to call wrapping explained

in Section ������ If a type error cannot be corrected with such transformations on

object modules� it might indicate a more serious error in the design of the modules

involved�
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Furthermore� the process of wrapping procedures as given above is enhanced by

the availability of module type information� The wrapper procedure can sometimes

be automatically constructed with a signature identical to that of the wrapped

procedure� and simple language constructs can be used to propagate the caller�s

arguments to the wrapped routine� If type information was not available �or in cases

such as printfwhere the routine is de�ned to take a variable number of arguments�

it would be necessary to use a machine�dependent wrapper that preserves and passes

along the call frame without knowledge of its contents�

����� C�s Type System

In order to ascertain the type�safety of modules being combined� the module

type rules �given in Section ������ built into the linker requires knowledge of the

type system �type domain� type equivalence and subtyping� of the base language

ANSI C� As before� attributes match if they have the same name� There cannot

be matching attributes within a single interface� and attributes that match across

interfaces must be type compatible�

This section describes the relevant type system of ANSI C �type domain and

type equivalence� ���� and enhancements made to it for type�checking across com�

pilation units �structural typing� and function subtyping��

The type domain of ANSI C consists of �i� basic types �primitive types �int�

�oat� etc��� and enumerated types�� �ii� derived types �function types� struct and

union types� array and pointer types�� and �iii� typedef�ed names� Speci�ers for

these types can be augmented with type quali�ers �const and volatile� and storage

class speci�ers �auto� register� static and extern��

The type quali�er volatile concerns optimization and is not relevant here� The

type quali�er const is signi�cant for typing since it distinguishes read�only variables

from read�write variables� it will be explicitly dealt with later in this section� The

storage class speci�ers auto and register are not relevant since they may only be

used within functions 	 we are interested in �le�level declarations and de�nitions�

The storage speci�er extern indicates an attribute declaration whereas nonextern

attributes are considered to be de�ned� The storage speci�er static for a �le�level
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attribute gives it internal linkage� i�e�� the attribute can be viewed as having been

subjected to a hide module operation� Similarly� attributes that are subjected to

hide via link�time programming can be regarded as having been converted to the

static storage class after the fact�

C permits calls to functions that have not been declared in a module� A call to

an undeclared function f in a module results in an implicit �le�level declaration of

extern int f ���

������� Type Equivalence

Type equivalence in ANSI C within a single translation unit and our extensions

for type�checking across translation units are given in Table ���� There are two

changes to the defaults� As mentioned earlier� for aggregate types �struct�s and

union�s�� name equivalence is too weak when applied outside of a single translation

unit� as argued earlier� Therefore� we adopt a conservative structural typing regi�

men in which the names� order and types of members are also signi�cant� We also

retain the signi�cance of aggregate tags since there could be application�speci�c

semantic content in them� Second� for typedef�ed names� again� there could be

application�speci�c semantic content in them� so we adopt strict name equivalence�

Furthermore� some type speci�ers are implied by others� e�g�� short implies short

int� therefore these types are equivalent� Also� the type quali�er const is signi�cant

for equivalence�

Table ���� Type equivalence in ANSI C�
Type Within translation unit Across translation units

Primitive name equivalence same

Function structural� with in and out pa�
rameter types signi�cant

same

Enum name equivalence same

Structunion name �tag� equivalence� tag�less
types are unique

structural� with tag� member or�
der � names signi�cant

Pointer equivalence of target types same

Array equivalence of element types �
equality of array size

same

Typedef typedef�ed type typedef name equivalence
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������� Subtyping

The module operators merge and override utilize subtyping rules for type�check�

ing combination� Our base language� ANSI C� has no notion of subtypes� hence

subtyping can be considered to be restricted to type equivalence� However� module

composition would be more �exible if we could retroactively formulate subtyping

rules consistent with the ANSI C language de�nition�

The ANSI C language speci�es safe conversion rules for certain primitive arith�

metic data types �e�g�� �oat to double�� A conversion is said to be safe if all values

of one type can be represented as values of the other without loss of precision

or change in numerical value� C compilers� however� can usually be expected to

support many more safe conversions than those that are de�ned by the language� as

governed by hardware characteristics� These safe conversion rules can be thought of

as subsumption rules� which in turn provide the basis for formulating subtype rules

for primitive arithmetic types� Figure ��� shows the data type sizes and a partial

order of subtypes for the HP series ���� machines ���s and ���s�� For instance� a

value of type short can be safely coerced into a value of type �oat on this platform

without loss of precision or change in numerical value� We might ask if the above

rules can be exploited during type�checking of attributes across translation units�

Consider �le�level variable declarations� Variables can be used as evaluators

�i�e�� expressions that return values� and as acceptors �i�e�� expressions that receive

values� in di�erent contexts� Expressions that are evaluators can only be replaced

with expressions whose types are subtypes of the original� whereas expressions that

are acceptors can only be replaced by expressions whose types are supertypes of

the original ����� As a result� subtyping of variables must always be restricted to

type equivalence�

Consider �le�level read�only �i�e�� const� variables� Subtyping involving the type

quali�er const can be described as follows� if a non�const type s is a subtype of a

non�const type t� then const s is a subtype of const t� s is a subtype of const t� but

const s is not a subtype of t� So� for example� is a declaration extern const �oat x

in one translation unit be considered a subtype of a de�nition short x in another�
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bit-field enum X

sizeof (float)  <  sizeof (double)  ==  sizeof(long double)

signed char

int

short int

long int
unsigned int

unsigned char

long unsigned int

short unsigned int

float

void

double
long double

1  <  sizeof (short)  <  sizeof (int)  ==  sizeof(long) ==  sizeof(float)

Figure ���� Subtyping of C primitive data types�

and thus safely combined�

Unfortunately� this is not the case� since size and layout formats for various prim�

itive data types are usually incompatible� thus requiring active coercion� Moreover�

in certain cases� e�g�� enum types� compilers usually optimize layout by packing�

hence the fact that an enum type is really an int cannot be utilized� Within the

same translation unit� however� such subsumption rules can be applied since the

compiler has complete knowledge of layout and usage and hence it can generate

appropriate conversion and access code�

Similar arguments hold for subtyping constant user�de�ned aggregate data types

�struct and union� across translation units� For example� a struct of two shorts cannot

be considered to be a subtype of a const struct of two const �oats even though

short is a subtype of const �oat� Furthermore� C unions are not discriminated� and

member access is not type�checked at run�time� For example� a union with one short

component cannot be read�only accessed by a supertype� a union with a const short

and a const �oat component� in another translation unit� since there is no way for

the supertype accessor to know at run�time if the union actually contains a short
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value or a �oat value� As a result� subtyping on �le�level read�only variables is also

restricted to type equivalence�

Arguments such as the above can be formulated to show that subtyping on

pointer types is also restricted to type equivalence�

Consider subtyping of function types� Subtyping of function types is by con�

travariance ����� That is� a function type is a subtype of another with the same

number of arguments if its return type is a subtype of the latter�s� and its input

argument types are supertypes of the corresponding ones in the latter� According

to this rule� one can pass a function actual parameters that are subtypes of the

formal parameters in the function de�nition� For subtyping function types with

an unspeci�ed �variable� number of arguments� we require that the subtype has at

most the number of explicitly speci�ed argument types in the supertype and that

they are in the proper relationship�

However� we cannot use such a rule across translation units since in a compiled

function� the amount of space allocated for the input parameters is exactly the size

of the expected types� and the format is expected to be exactly as speci�ed� All in

all� and not surprisingly� no useful subtyping rules can be discovered in the existing

C language for direct application in type�checking across translation units�

The crucial observation� however� is that several useful subsumption rules can

be utilized for data that are encapsulated within functions� if adapters ��stubs��

that perform the appropriate coercion between data�types can be inserted between

combined modules at link time� This is feasible since such stub functions are

themselves compiled and hence they can utilize data format conversion knowledge

that a compiler uses within a translation unit� Applying this stub technique to

global data� however� is not feasible since it involves initializing global variables

with nonconstant values� which is illegal in ANSI C�

Function types lend themselves particularly well to this technique since the

performance of function calls is a�ected much less by this indirection than the

performance of data access� Moreover� it does not seem unreasonable to impose

the requirement on users to encapsulate such data that they foresee will be accessed



���

via supertypes�

In the architecture presented here� it is possible to automatically generate

coercion stubs for functions using the primitive type conversions shown in Figure

���� For an example of type adaptation using language de�ned subtypes� consider

Figure ���� As mentioned earlier� the type short is a subtype of �oat� Therefore�

the de�nition of function f in module O� is a subtype �by contravariance� of the

declaration of the function f in module O�� However� O� cannot be directly merged

with O�� since in general the calling sequence for fmight not be compatible� e�g� the

de�nition of f might be expecting its input in a �oating point register rather than

an integer register� This is remedied by �rst combining O� with the automatically

generated stub module O that incorporates safe coercions and then performing

the desired merge� as shown in the �gure�

Structural record subtyping with member name� type� and order signi�cance is

also possible� an example is shown in Figure ���� It should be emphasized that the

above technique applies only to input and output parameters of functions� since

coercion stubs can be automatically generated to account for function subtyping

only�

This technique of type conversion stubs can be generalized as illustrated in

Figure ��� to provide a general facility to incorporate user de�ned stubs at link

time for arbitrary data format conversion� In the �gure� module O� comprises

user�de�ned stubs�

Module O� Module O� Module O
�automatically generated�

short f �oat y� f
�� ��� ��

g

extern oat f �short��
void g �� f
oat z � f ����

g

extern short f �oat��
oat f stub �short x� f
return �oat� f ��oat� x��

g

Figure ���� Automatic data coercion using language rules� Modules O� and O�
are combined with the expression� �merge �hide �merge �rename O� f f stub� O��
f stub� O��
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Module O� Module O� Module O
�automatically generated�

struct S f
short x�
oat y�

g
struct S f �� f
�� ��� ��

g

struct S f
oat x�

g
extern struct S f
���
void g �� f
�� ��� ��

g

struct S
 f
short x�
oat y�

g
struct S f
oat x�

g
extern struct S f ���
struct S f stub �� f
struct S
 s
�
struct S� s � �struct S�� �s
�
struct S ret s�
�s � f ���
ret s�x � �oat� s��x�
return ret s�

g

Figure ���� Automatic conversion of structs using structural subtyping� Modules
O� and O� are combined with the expression� �merge �hide �merge �rename O� f
f stub� O�� f stub� O��

Module O� Module O� Module O

R
 f �T
 y� f
�� ��� ��

g

extern R� f �T���
void g �� f
R� z � f ���T� value����

g

extern R
 f �T
��
R� f stub �T� x� f
return R
 to R� �f �T� to T
�x���

g
R� R
 to R� �R
 r� f
�� ��� ��

g
T
 T� to T
 �T� t� f
�� ��� ��

g

Figure ��	� Programmer�de�ned data conversion� Modules O� and O� are
combined using� �merge �merge �rename O� f f stub� O�� O��
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��� Implementation

����� OMOS

Just like the interpreter for CMS� it is possible to design and implement OMOS

as a completion of the Etyma framework� However� we shall refer to the OMOS

implementation presented here as a �parallel completion� of Etyma� for the fol�

lowing reasons�

The implementation of OMOS described here is not� strictly speaking� a com�

pletion of Etyma in the same way that the CMS interpreter is� since it does not

directly reuse the code in Etyma� Nevertheless� the design of OMOS closely follows

the class design of Etyma� Moreover� concepts of compositional modularity �rst

developed with respect to Etyma and CMS were directly reused in the context of

OMOS�

The �rst generation implementation of OMOS ��� existed much before Etyma

was born� Later in its lifecycle� OMOS was reengineered to incorporate several

major design enhancements� During this� its �upper� class hierarchy was made

to follow the Etyma class design� However� it was not designed to be a direct

completion of Etyma� since the two pieces of software had already signi�cantly

diverged in terms of� for example� conventions and management infrastructure�

Nonetheless� there is conceptually no reason why OMOS could not be implemented

as a �rst�class completion of Etyma�

The OMOS class hierarchy consists of classes corresponding to the Etyma

classes Module and Instance� The notion of an object �le is implemented as a

concrete subclass DotO of Module� The methods of class DotO are implemented

using a code library that provides relative independence from particular object �le

formats� the Binary File Descriptor �BFD� library ���� from Cygnus Corporation�

As mentioned earlier� a dot�o is instantiated into �xed executables� modeled by

class FixedExe� a subclass of Instance� A �xed executable is internally represented

as an address map� An address map is a collection of entries that specify the address

in the virtual memory of a process that a block in an object �le is mapped to�

The front�end to OMOS is a Scheme interpreter derived from the STk package
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�similar to CMS�� New primitives added to the Scheme interpreter instantiate the

appropriate classes such as DotO and FixedExe above and invoke their appropriate

methods�

����� Type
safe Linkage

The object module type�checker given in Section ��� was built by reusing both

the design and the code of an early version of the Etyma framework�

Ideally� we would like compilers that generate object modules in a self�describing

format� with information about the source language� the machine architecture� and

the interface� all packaged within the object module in a readily accessible format�

However� this is far from reality 	 the closest approximation is an object �le

that has been compiled with the debugging option �g� which instructs the compiler

to generate type information in a standard encoded format� �Object �les compiled

without the debugging option contain no type information� and those compiled with

the debugging option contain more information than is necessary for type�checking

linkage� e�g�� types of local variables� line numbers� etc��

Extracting type information from the generated debugging information involved

the following steps in our prototype� The GNU C compiler� gcc� does not generate

debugging information for C extern symbols� since debugging is normally performed

on executable �les in which all external references have been resolved� To solve this�

we modi�ed the back end of gcc to generate debugging information for all symbols�

For accessing the sections of the object �le that contain debugging information

��stab and �stabstr�� we again use the BFD library and parse the �stabs� format

debug strings ���� using a yacc�lex generated parser�

The parser instantiates the appropriate subclasses of Etyma classes to cre�

ate the interface of the object module� For instance� the subclass CPrimType of

the framework class PrimType implements the partial order of primitive types

introduced before� A subclass DotOInterface of the framework class StdInterface

implements the concrete notion of the interfaces of dot�o �les� Similar subclasses

exist for representing function types� struct types� etc�

For using the type�checking facility� source programs must be written in ANSI
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C� and function declarations speci�ed using �new�style� prototypes� Furthermore�

usage of header �les can be minimized� explicit declarations of external functions

can be provided instead� Programs that are to be type�checked at link time must

be �re�compiled with our �modi�ed� compiler using the debug ��g� option�

One legitimate concern is the size of object �les as a result of the inclusion of

debugging information� The size of object �les does increase signi�cantly due to

debugging information� but this problem is exacerbated by the inclusion of huge

library header �les� Our solution to this problem is that given type�checking at

link�time� it is not necessary to include header �les in the traditional way� Instead�

programs can explicitly declare prototypes for those external �library� functions

that are called� A discussion of the disadvantages of header �les used in the

traditional manner is found below in Section ����

��� Related Work

This work is in essence a general and concrete realization of a vision due to

Donn Seeley �����

����� OMOS

Traditionally linkers support little control over name con�icts and the semantics

of combination� As mentioned earlier� traditional linking essentially amounts to

what is supported by merge�

Although programmable linkers exist� they do not o�er the generality and

�exibility of our system� Typically� some notion of hiding is supported� However�

it is novel to support an expressive suite of combination operators and the ability

to use a full�featured programming language to compose object modules�

From the systems point of view� a user�space loader such as OMOS is considered

no longer unusual ���� ��� Also� OMOS has some similarity to utilities such as dld

��� that aid programmers in the dynamic loading of code and data� Finally� the

Apollo DSEE �� system was a server�based system which managed sources and

objects� taking advantage of caching to avoid recompilation� However� DSEE was
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primarily a CASE tool and did not take part in the execution phase of program

development�

The module language of OMOS is somewhat similar to architecture description

languages� such as Rapide ����� the POLYLITH Module Interconnection Language

�MIL� ���� ���� and OMG�s Interface De�nition Language �IDL� ����� These lan�

guages all share the characteristic that they support the �exible speci�cation of

high�level components and interconnections� Our approach o�ers the important

advantage that OO like program adaptation and reuse techniques �inheritance� in

all its meanings� can be applied to legacy components written in non�OO languages�

An environment for �exible application development has been pursued in the

line of research leading to the so�called subject�oriented programming �SOP� ����

In this research� a �subject� is in essence an OO component� i�e�� a component

built around an OO class hierarchy� Subjects can be separately compiled and

composed using tools know as �compositors� �similar to OMOS�� Compositors

use various operators similar to the ones presented here� The primary di�erence

between SOP and our research is that SOP is broadly conceived around the OO

nature of individual components� and aims to build a toolset and object �le formats

speci�cally tailored for SOP� On the other hand� our research has focussed on

layered evolutionary support�

����� Type Safety

Integrated Development Environments �IDEs� for strongly typed languages�

e�g�� Ei�el ����� utilize mechanisms for type�checking separately compiled modules�

since they have complete knowledge and control over source and object modules�

However� our work di�ers from IDEs in that we provide a systemwide linkage

facility that attempts to typecheck combined modules independent of language

processors� Furthermore� the programmability of our linker enables ��ne tuning�

the compatibility of �possibly heterogeneous� object modules at link time�

The Berkeley Pascal Compiler pc ��� is similar to our e�ort in that it employs

debugging information to check type consistency across separately compiled mod�

ules� The compiler routinely generates stab�format type information into object
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modules� which is used by a binding phase of the compiler to check consistency

before delegating the actual linking to ld� However� the crucial advantage with

our approach is that we perform type�checking as a controlled and programmable

link�time activity�

Use of header �les has been a longstanding attempt at type�safety of separate

compilation� The Annotated C�� Reference Manual ���� page ���� explains the

inadequacy of header �les as follows�

��� C tried to ensure the consistency of separately compiled programs by
controlling the information given to the compiler in header �les� This ap�
proach works �ne up to a point� but does involve extra�linguistic mechanisms�
is usually error�prone� and can be costly because of the need to have other
programs �in addition to the linker and the compiler� know about the detailed
structure of a program�

Instead of including header �les� it is clearly more modular and less error�prone to

explicitly declare the expected external functionality �e�g�� library functions�� let the

linker check consistency at link time and correct inconsistencies via programming�

With the objective of enabling type�safe linkage within the constraints of ex�

isting linkers� Stroustrup ���� ��� describes a mechanism for encoding functions

with the types of input arguments� However� this mechanism is inadequate for our

purposes since �i� certain classes of type errors cannot be detected �page ��� of

����� since variable types and function return types are not encoded� �ii� although

it could be extended to deal with structural typing of C aggregate types� it does

not scale well to arbitrarily large types� e�g�� large structs� and �iii� we want to do

not only type�checking� but also useful adaptation during link�time� hence we must

utilize sophisticated linker technology�

There is a plethora of literature related to stub generation��� �� ���� The Polygen

system ���� is representative of automatic stub generation for programming in a

heterogeneous environment� Polygen packages heterogeneous modules by utilizing

a programmer�de�ned speci�cation of their interfaces and execution environments

speci�ed in a common module language� The packaging process involves generation

of client and server stubs that handle module interconnection and data type coercion
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dynamically� Our technique di�ers from Polygen in that we enable the combination

of precompiled object modules by automatic extraction of interfaces and via link�

time programming�

��	 Summary

We have argued that conventional application development environments lack

support for the e�ective management of application components� We illustrate that

the problems faced by application builders are similar to those that are solved by

the concepts of OO programming� We thus conclude that it is bene�cial to support

OO functionality within the component manipulation and binding environment�

We show that support for OO development can be achieved by elevating the

physical modularity �i�e�� separately compiled �les� of application components to

the level of logical modularity� managed by a systemwide server process� The server

supports a module language based on Scheme� using which �rst�class modules can

be manipulated via a powerful suite of operators� Expressions over modules are

used to achieve various OO e�ects� such as encapsulation and inheritance� thus

directly supporting application development in an OO manner� In this manner�

we enable a superior application development environment within a conventional

infrastructure�

In addition� we have described a programmable linkage facility for separately

compiled ANSI C object modules� We design the type system of ANSI C into our

linker and typecheck composition by extracting the interfaces of object modules

compiled with debugging information� Furthermore� we automatically generate

conversion stubs for compatible encapsulated types and permit easy incorporation

of arbitrary user�de�ned type conversion stubs at link time� We have thus demon�

strated a powerful� �exible� and type�safe linkage facility�
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INTERFACE COMPOSITION

It is widely believed that the complexity of modern distributed systems re�

quires a sophisticated language �or sublanguage� to explicitly specify the interfaces

through which application components interact� Service providing components are

said to o�er interfaces� while client components invoke them� possibly remotely�

The requirements of modern distributed systems necessitate support not only for

the inheritance of component implementations but also for the explicit speci�cation�

adaptation� and combination of interface speci�cations themselves� This suggests

that interfaces can be regarded as compositional entities� making it possible to

apply composition operators to interface composition�

This chapter explores this third application of compositional concepts� Section

��� develops the idea that interfaces are compositional entities and presents an IDL

compiler front�end as a completion of Etyma� Section ��� sketches how existing

IDLs can be extended with compositional concepts�

	�� Software Architecture Description

Developing large� complex� and concurrent systems requires signi�cant e�ort

spent on describing their architecture� both as an iterative design activity as well

as for documentation purposes� Informal architecture description via pictures is a

frequent practice in system design� Nonetheless� formal and machine�processable

descriptions are becoming necessary and widespread� especially in the context of

distributed systems�

An architecture aims to describe the components of a system and their rela�

tionships� such as �is�a�� �has�a�� and �communicates�with�� These properties are

usually described via architecture description languages �ADLs� ���� �� of varying
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degrees of expressive power� A description of the conventional typed interfaces of

components is a simple example of an architecture description� A more sophis�

ticated description� with its concomitant bene�ts and complexities� might specify

the typed interfaces along with their structural �e�g�� �component�of��� behavioral

�e�g�� invariant�� and interaction �e�g�� event description� relationships�

A family of languages known as interface de�nition languages �IDLs� are be�

coming increasingly popular in the arena of distributed systems and is described in

the following subsection� Although there is a wide variety of IDL designs� an IDL

typically provides a subset of the functionality of an ADL�

����� Interface De�nition Languages

Components of modern distributed systems are usually written in conventional

programming languages such as C and Fortran� which we shall call component

programming languages� or CPLs� These languages usually support some form

�however weak� of specifying the interfaces of components� e�g�� header �les in C�

However� many distributed systems� e�g�� refs� ���� �� ���� support a separate IDL

distinct from CPLs�

Explicit interface descriptions are useful for various purposes�

��� Speci�cation� To specify the contractual obligations between a service

providing component and its clients� and to ascertain that they are met� Minimally�

IDLs employ conventional programming language types for the speci�cation of

interfaces� although some IDLs� e�g�� ref� ����� support much stronger forms of

behavior speci�cation than others�

�
� Interoperability� As an intermediate language to facilitate interoperability

among components in heterogeneous� e�g�� hardware or programming language�

environments� There are usually several �language mappings� from an IDL to

individual CPLs� or vice versa �see below��

��� Implementation� As a source language for the automatic generation of

communication code between components� An IDL compiler usually reads in an

IDL speci�cation and generates �stub� code that performs packaging ��marshal�
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ing��� communication� and unpackaging ��unmarshaling�� of arguments for remote

procedures calls �RPC��

If the speci�cational power of an IDL does not exceed that of conventional pro�

gramming language type systems� the question arises as to the need for supporting

a separate IDL that is human�readable� It can be argued� as in ref� ���� that

instead� the type systems of individual CPLs can be augmented with constructs to

specify interoperability requirements and used to generate speci�cations in a purely

machine�readable IDL� This could be bene�cial in not burdening the programmer

with yet another programming language and perhaps for achieving a high degree

of interoperability� However� designing extensions to each existing CPL is consid�

erably harder than introducing a new� CPL�neutral IDL� Moreover� eliciting the

acceptance of new language extensions from a community of users of an existing

language is usually problematic�

In the rest of this chapter� we will consider only that aspect of IDLs that supports

typed interfaces and ignore interoperability and adapter generation aspects�

����� Compositional Interfaces

Having established the role and purpose of a separate� human�processable IDL�

consider the expressive power desired of such a language�

It may often be useful to specify an interface by reusing� i�e�� inheriting from�

existing interfaces� Reuse facilitates the evolution of interfaces ��� by ascertaining

that inheriting interfaces evolve in step with the inherited interfaces� It also

simpli�es maintenance by reducing redundant code� Most importantly� an IDL

should be able to express the types of components generated via implementation

inheritance in CPLs� In fact� it has been shown that inheritance of interfaces

generates exactly those types� known as inherited types� that correspond to the

types of inherited objects ���� �Inherited types are distinct from subtypes� see

below��

These reasons point to a need for �exible interface inheritance mechanisms in

IDLs� Several existing IDLs� e�g�� refs� ���� ���� support some form of interface

inheritance� However� some IDLs� e�g�� CORBAs IDL ���� described in Section
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���� unnecessarily limit the expressiveness of their interface inheritance mechanism�

Thus� support for compositionality of interfaces can prove to be useful� especially

since it can be layered on top of existing IDLs� including those that do not already

support inheritance� In order to apply compositional concepts to interfaces� how�

ever� we must �rst establish that an interface can be regarded as an abstracted

namespace�

An interface represents the type of a component� An interface thus comprises a

set of names associated with the types of subcomponents� The particular domain

of base types �i�e�� non�interface types� used in an IDL is of course chosen by the

IDL designer� Furthermore� interfaces may be recursive� i�e�� a type constituent

may refer back to the entire interface itself�

For example� consider a Point module that contains attributes corresponding to

rectangular coordinates x and y� a method move for changing the position of the

point and an equality predicate equal� Its interface may be expressed as follows�

where recursion is expressed using the selftype keyword�

interface PointType f
oat x� y�
selftype move �oat� oat��
boolean equal �selftype��

g�

In general� an IDL may support interface type constituents that refer to sibling

type constituents� similar to the notion of sibling member access via self in objects�

For example� the point interface above may be speci�ed as follows�

interface FloatPointType f
oat x� y�
selftype move �selftype�x� selftype�y��
boolean equal �selftype��

g

In this manner� the type of the move operation can track changes to the x and

y constituents� As a convenience� selftype�x may be abbreviated to x�

Inheritance is an operation on recursive structures� thus it can be applied to

interfaces as well� For instance� the interface PointType above can be extended to

have a color attribute using the merge operation� as follows�
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interface ColorType f
color type color�

g�
interface ColorPointType � PointType merge ColorType�

Although it inherits from PointType� the ColorPointType interface is not a sub�

type of PointType� due to the contravariance of the equal method� That is� in order

for ColorPointType to be a subtype of PointType� the incoming argument type of

equal must be a supertype of the correspoding one in PointType� This is not so�

However� ColorPointType shares the same structure as PointType� hence it is known

as an inherited type of PointType�

An important point to note here is that the merge operation on interfaces

generates types that correspond to the types of inherited module implementations

generated via both the merge and override operations in CPLs�

An override operation is de�ned on interfaces as well� but it does not produce

types directly corresponding to the override operation on CPL module implemen�

tations� With the interface override operation� type constituents of interfaces may

be arbitrarily rebound� The primary motivation for including such an operator is

to support a high degree of reuse of existing interface speci�cations�

In the following example� the x and y constituents of FloatPointType are rebound

to complex type� note that this will automatically result in the proper type for the

move constituent� due to self�reference�

interface ComplexPointType �
FloatPointType override
interface f
complex type x� y�

g�

Type constituents may be rename�d� which results in self�references to get re�

named as well� This is useful for resolving name con�icts while performing oper�

ations equivalent to multiple inheritance� Furthermore� particular interface con�

stituents may be project�ed� This operation is analogous to the notion in relational

algebra and is the dual of the restrict operator presented earlier�

The operator copy�as does not seem very useful in the context of interfaces�

Also� the operators freeze and hide do not apply� since interfaces by de�nition
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represent the public types of modules� In the following section� we provide a formal

characterization of interface inheritance in order to clarify the above notions�

����� Type Generators

An interface is a recursive structure ��� ��� corresponding to what we shall call

a type generator� Type generators are analogous to ordinary generators given in

Section ������ except that they are functions over records in which labels are bound

to types viewed as values� In this sense� types are �rst�class within IDLs� Our

description of type generators and their manipulation in this section is independent

of particular type domains�

We shall notate a type generator as #s� fa� � ��� � � � � an � �ng� where a� � � � an are

attribute names bound to the types �� � � � �n respectively� Note that s here stands

for the notion of selftype� by which a type constituent �x can refer back to the entire

interface�

Thus� the interface PointType given in the previous section can be written as�

PointType � #s�fx � Real� y � Real�move � Real �Real� s� equal � s� Boolg

A CPL may support a type system in which the type of the Point module may

be directly given by the above recursive type� In this case� instances of the Point

module have a type given by the �xpoint of the above type generator� In the case

of a CPL that does not support recursive types� the type of modules themselves

may be given by the �xpoint of type generators such as the above�

Compositional inheritance can be used to adapt and combine type generators�

The merge operator combines type generators that do not have any con�icting

attributes� as described by the following deduction rule�

 � gt� � #s� f a� � ��� � � � � an � �n g�
 � gt� � #s� f c� � 	�� � � � � cp � 	p g�

�i � � � � � n� �j � � � � � p� ai �� cj
 � gt� merge gt� � #s� f a� � ��� � � � � an � �n

c� � 	�� � � � � cp � 	p g

Equality and subtyping of base types are given by the base language and are not

speci�ed here� For interfaces� which are recursive types� subtyping is determined
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structurally� as described by the following rule �algorithms for subtyping recursive

types are given by Amadio and Cardelli �����

 � gt� � #s� fa� � ���� � � � � ak � ��k� � � � � an � ��n g�
 � gt� � #s� fa� � ���� � � � � ak � ��kg�
 � �i � � � � � k� ��i � ��i

 � �� � �� � gt����� � gt�����
 � gt� � gt�

As an example of the merge operation� merging the type generator PointType

above with

ColorType � #s� fc � Colorg

produces the type generator

#s� fx � Real� y � Real�move � Real�Real� s� equal � s� Bool� c � Colorg

As mentioned earlier� this type is not a subtype of PointType due to the con�

travariance of the equal method� Instead it is an inherited type� It is important to

understand that type inheritance does not necessarily produce subtypes�

One of the main motivations for the merge operator is to be able to generate

interfaces that correspond to inheritance in the module implementation language�

The override operator for type generators� de�ned exactly as for object generators�

permits labels to be rebound to arbitrary types�

 � gt� override gt� � #s� gt��s��r gt��s�

The rename and restrict operators have the usual semantics and can be speci�ed

entirely analogously to what is given in Figure ���� As mentioned before� the

operator project� the dual of restrict� can be quite useful in the context of interface

reuse� and the copy� freeze� and hide operators are not de�ned�

Compositional nesting can be supported for type generators as well� by develop�

ing closed type generators� However� it is doubtful that such expressiveness would

be very useful in the context of IDLs�

Finally� it is worth mentioning that types are applicative structures in the

context of IDLs� That is to say� the manipulation of type generators can be

viewed as applicative operations� i�e�� with copy semantics� and there is no notion

of assignable type variables�
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����� An Experimental IDL

In this section� we describe the implementation of an experimental compositional

IDL based on the concepts described in the previous two sections�

The base type domain of the language consists of primitive types� function types�

and record types� Interfaces in this language follow a structural type discipline�

Furthermore� interfaces can be recursive� in that a component type of the interface

can use the keyword selftype to refer to its own interface� Interfaces can be composed

using the operators merge� override� rename� and project with the semantics given

in the previous two sections� Examples of speci�cations were also given in Section

������

A compiler front�end for this language was designed as a completion of the

Etyma framework� The implementation architecture is shown in Figure ���� The

front�end parses the IDL source and builds up an internal representation that can

be used to further process the interface description as desired� e�g�� to produce

communication stubs�

Brie�y� the class design for this completion is as follows� De�ne class IDLInterface

as a subclass of class StdInterface� and de�ne methods merge �IDLInterface�� rename

�Label�Label�� etc� to return new interface objects after performing the appropriate

operations� The type equality and subtyping methods of StdInterface can be reused

directly in the IDLInterface class�

For implementing the base types� create a subclass IDLFunctionType of Func�

C++

ETYMA

completion

C++

IDL
source

yacc/lex

parser

Figure ���� Architecture of the IDL front�end�
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tionType to model function�valued attributes �operations� of interfaces� Subtyping

is by contravariance for operations� To keep the language design simple� we can

de�ne subtyping to be type equality for all the other types� Subclass NamedType

to IDLPrimType to model the primitive types of the IDL� For struct types� which

have type identity in IDL� subclass IDLStructType from BrandedRecType� itself a

subclass of RecordType�

Design and code reuse numbers for this completion are given in Table ����

	�� Making CORBAs IDL Compositional

As an illustration of how an existing IDL can be enhanced with compositional

concepts� we present an extension of the IDL speci�ed as part of the Common

Object Request Broker Architecture �CORBA� ���� in this section�

With CORBA IDL� one can specify interfaces comprising data attributes �con�

stant or variable� and operations �functions�� as well as type de�nitions and excep�

tions� The type domain consists of basic data types �e�g�� short� �oat� char� boolean��

constructed types �e�g�� struct� union� enum�� template types �e�g�� sequence� string��

arrays� and functions� Interfaces and other constructed types use name�based

typing� i�e�� a function declared to accept an interface type A can only accept

objects who have the type named by A�

An interface can inherit from another with the inheritance operator ���� in

which case all members of the inherited interface become members of the inheriting

interface� provided there are no con�icts� This is quite a rudimentary notion of

interface inheritance� since it does not permit rede�nition of operation �method�

types� or breaking larger interfaces into smaller ones� or even resolution of name

Table ���� Reuse of design and code for IDL�

Reuse parameter New Reused " reuse
Classes � �� ����
Methods �� ��� ����
Lines of Code ��� ��� ���
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con�icts in the case of multiple inheritance� As motivated in Section ���� it is

bene�cial to support a richer notion of interfaces and interface inheritance�

We will extend the CORBA IDL in the following speci�c directions�

�� We shall support an operator merge that lets one generate interfaces that

result from implementation inheritance in CPLs� This requires support for

rebinding of operations� The valid types that merge can rebind to a con�

stituent name are those that makes the resultant interface an inherited type

of the original interface� That is� the resultant interface must share the same

recursive structure as the original interface� but need not necessarily be a

subtype� �Thus� interface inheritance is a weaker notion than subtyping��

Integrating the notion of inherited types with name�based typing deserves

some consideration� In CORBAs IDL� an interface names a type� Conse�

quently� a derived interface� in our extension� names an inherited type �not a

subtype� of a base type�

�� Instead of integrating inherited types with name�based typing� we can intro�

duce structural typing of interfaces� Pure name�based typing could become

a problem in distributed environments� where data and types could migrate

outside the program in which they were originally created ��� and lead to

matching of names that may or may not have the same programmer�intended

meaning� With structural typing� the names and types of individual con�

stituents of interfaces are signi�cant�

� We shall support arbitrary rebinding of operations with the override operator�

Naturally� override could result in totally unrelated types�

�� Currently� name con�icts in the case of multiple inheritance are illegal� Sup�

port for attribute renaming can solve this problem�

�� Just as it is desirable to build up larger interfaces from smaller ones� it is

equally desirable to break up larger interfaces into smaller ones� We introduce
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an operator project on interfaces to support this�

We can add the above features without introducing the notion of selftype de�

scribed earlier� Consider the example interfaces shown in Figure ���� Interfaces

B and C inherit from A� rede�ning the op� operation�s return value in each case�

B and C are subtypes of A� although interfaces that inherit from B need not be

subtypes of B �due to the recursion in the input argument to op��� Interface D

combines B and C� resolving a con�icting name via the rename operator� since the

con�icting name� op�� has unrelated types in B and C� Nonetheless� B and C can

be combined without renaming via the override operator as in the expression for E�

in which case op� in the resultant gets its type from the right operand� Interface F

inherits from an interface derived from �a subset of� D via the project operator�

	�� Related Work

The TOOPL language ���� extensively treats the foundations of type systems

in relation to inheritance� The notions of selftype and inherited types given here

are taken from there�

The type sublanguage of the Rapide ���� programming language framework

supports much the same functionality that is given in this chapter� It supports

interface A f
A op
 ���
long op��in long arg
��

g�
interface B � A merge f
B op
 ���
boolean op��in B arg
��

g�
interface C � A merge f
C op
 ���
long op��inout long arg
��
g�

interface D �
�B rename op
 b op
� merge C�

interface E � B override C�

interface F �
�D project op
 op�� merge
f void op���� g�

Figure ���� Example speci�cations in extended IDL�
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structurally typed interfaces with subtyping� recursion via several forms of parame�

terized types� interface inheritance� renaming� and projection� In addition� Rapide

supports a notion of private interfaces which facilitates ADT�style implementation

of n�ary methods� However� it does not permit arbitrary overriding as with the

override operator� Also� there is no notion of self�reference of type constituents of

interfaces�

Concert ��� is a multilanguage distributed programming system in which inter�

face speci�cation is the responsibility of individual programming languages� not

a separate IDL� However� a machine�readable IDL is used to de�ne equivalence

between declarations in di�erent languages and to support a single intermediate

representation�

The use of interface inheritance to address a variety of problems in the evolution

of distributed systems is explored nicely in ref� ���� in the context of the Spring

distributed system�

	�� Summary

It is argued in this chapter that complex distributed systems need an explicit

notion of interface speci�cation and an expressive language to support such speci��

cations� The expressiveness required of such a language typically includes a notion

of interface inheritance�

It is then shown that since interfaces are recursive namespaces� compositional

concepts can be used to support reuse of interface speci�cations� A structure known

as type generators is introduced to describe notions of interface composition�

An experimental IDL that supports interface composition operators such as

merge� override� rename� and project was presented� Also� a way to extend the

CORBA IDL with such concepts was discussed�



CHAPTER 


DOCUMENT COMPOSITION

A large and complex document is often broken down into and composed from

smaller pieces� For example� the LaTEX source for this thesis was broken down into

�les corresponding to each of the chapters� which in turn were composed of �les

corresponding to sections�

Sometimes� documents developed for one purpose can be reused for other pur�

poses� For example� this thesis can be regarded as a composition of previously

written technical reports and papers� with modi�cations and much added material�

Perhaps a more persuasive example is that of report generation 	 a user manual

can be composed from several design document fragments�

A structured document can be modeled as a compositional module� Sections

within the document correspond to module attributes� with each section comprising

a label� associated section heading� and some textual body� Cross references within

text to other section labels correspond to self�references� Thus� the document can

be regarded as an abstracted namespace�

The model of compositional modularity can be used to enhance the compos�

ability and reusability of documents� This chapter explores applications of com�

positional document processing �Section ���� and presents a system for composing

document modules �Section �����


�� Applications of Document Composition

In general� document reuse can be useful in scenarios where several document

fragments are generated� edited� composed� revised� maintained� and delivered in

various ways� Some envisioned applications are described in the following sections�
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����� Report Generation

There are many environments in which numerous document fragments are gen�

erated� with the ultimate goal of putting them together as coherent reports for

human consumption� For example� design documents that are generated during

application software development form the basis for producing a user manual or a

reference manual for the application� Using concepts of compositionality� routine

report generation activities can be automated�

Consider the example in Figure ���� At the top of the �gure is shown a set

of document fragments labeled M� through Mn� Each of these fragments has

several sections� where section Lij is the jth section in fragment Mi� A section may

contain cross references to other de�ned or unde�ned sections within the document

fragment�

If each of the fragments can be considered a compositional module� two ways in

which they can be usefully put together are described in boxes �a� and �b� in the

�gure� using a Scheme�like language� �The examples use a function named cl�project

which projects sections corresponding to the closure of self�references within those

Lnp

MnM1

L11

L1i

L1k

Ln1

Lnj

�a�

�merge �cl�project M
 	�L

 L
� �����
�merge �cl�project M� 	������

���
�cl�project Mn 	�����������

�b�

�let �m �mk�module��
�nest �m
� �M
�hdng� �cl�project M
 	�L

 L
� ������
���
�nest �mn� �Mn�hdng� �cl�project Mn 	�Ln
 Ln� �������

Figure ���� Example of report generation�
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sections� This function can be written using a module primitive project and an

introspective primitive self�refs�in� see Chapter �� The expression in Figure ���

�a� merges �closures of� particular sections projected from each of the modules�

producing a document containing several sections at the same level� The expression

in Figure ��� �b� creates a new document module and nests within it one subsection

per original module that contains �closures of� particular sections projected from

each of the original modules�

Document composition such as the above is required routinely within� for exam�

ple� document centered industrial manufacturing processes� where document frag�

ments are generated at all stages of the process� Imagine that in a car manufacturing

plant� individual document fragments are generated at materials receiving� at the

parts warehouse inventory� at parts checkout� at various points on the assembly

line� at product storage� and at delivery� Using compositionality� these fragments

can be automatically composed in various ways to produce a number of extremely

useful reports� such as an inventory statement� parts catalog� assembly reports�

process monitoring� and quality control documents� etc�

����� Architectural Speci�cations

There is a tremendous amount of document generation and consumption in the

activity of building construction� In fact� specialized document processing systems

for architectural activities have been devised �����

Typically� a building architect obtains several large textbases of materials spec�

i�cations� which we shall call MasterSpecs� from a MasterSpec developer� The

architect then carefully extracts those parts of the various MasterSpecs that are

pertinent to the project in hand� These parts are then integrated with various

other project related documents and client speci�cations� which could themselves

already exist in various document fragments� The whole process could entail a

signi�cant amount of editing and composition� a document composition system

would clearly be very useful here� The integrated document is then delivered to the

building contractor�

There are other problems in this scenario that could potentially be solved by a
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compositional module system� First� MasterSpecs are generally delivered as a linear

document� although there is much richer structure and modularity within it� which

can be taken advantage of by an architect� Second� maintenance of the numerous

documents generated by an architect can be very cumbersome� For example� there

are usually multiple copies made of document fragments made for various projects�

making their evolution very hard� Instead� with a document composition system

which supports document reuse� a single copy of each document module can be

maintained and composed with others as necessary�

����� Revision Control

Revisions are essentially incremental additions and modi�cations that need to

be integrated with a base artifact� Compositional modularity can be useful for the

integration of revisions�

In the architectural scenario given in the previous subsection� a MasterSpec

developer could periodically release new revisions of MasterSpecs to an architect�

The architect is now faced with the problem of integrating the information in

the new release into already existing document fragments as well as architectural

speci�cations provided to contractors�

A document composition system could provide e�ective mechanisms for revision

control� For example� reexecuting a composition script on the new revision can

extract the updated sections from the new revision� Alternatively� the original

document based on the earlier revisions of the MasterSpec can be regarded as an

inheritance hierarchy� and the revisions to be made to it �based on the revised

MasterSpec� can be speci�ed as a new hierarchy� These two hierarchies can be

combined as given in Section ����� More about the relationship between composi�

tional modularity and revision control is given in Section �����


�� A System for Document Composition

Having motivated the utility of compositional document processing� this section

presents a system for the same� A modular document processing system is a

programmable facility that helps a document preparer to adapt and compose doc�
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uments e�ectively� In this section� a compositionally modular document processing

system called MTEX is described�

As mentioned earlier� the model of compositional modularity can be layered on

top of a variety of computational sublanguages� The MTEX system presented in this

chapter is built on top of a restricted version of the LaTEX document preparation

system ���� LaTEX is a typesetting program that takes in an ASCII text �le

annotated with typesetting commands �such as �section and �ref� and produces

a high quality document as a device independent �dvi� �le� With LaTEX� authors

can concentrate more on the content of their document than on formatting details�

����� Documents as Compositional Modules

An MTEX module has the syntax speci�ed by the grammar in Figure ����

Semantically� an MTEX module is modeled as a generator of an ordered set of

sections� each of which is a label bound either to a section body or to a nested

module� The section label is a symbolic name that can be referenced from other

sections� The section body is a tuple �H�B� where H is text corresponding to

the section heading and B corresponds to the actual text body� which consists of

textual segments interspersed with self�references to labels� An example module

and its semantic representation are shown in Figure ��� The module has three

attributes� sec�intro bound to a section body� sec�model bound to a nested

module� and sec�concl bound to a section body�

Given the above model of document modules� consider the meaning of the

operations of compositional modularity� The binary operator merge produces a

new document module with the sections of its right module operand concatenated

to its left module operand� if there are no con�icting labels between the two module

operands� Since the order of sections is signi�cant� merge is associative� but not

commutative�

The binary operator override concatenates two modules in the presence of con�

�icting section labels� Con�icting sections in the right operand replace correspond�

ing ones in the left operand� Noncon�icting sections in the right operand are

appended to the left operand in the same order that they occur in the right operand�
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module ��� whitespace section�list an MTEX module
section�list ��� empty

j section�list section
section ��� def�label section�body
def�label ��� �section� heading � whitespace section heading

�label� label � symbolic section label
section�body ��� empty

j section�body segment list of segments
segment ��� whitespace

j text arbitrary text
j �ref� label � self�reference

Figure ���� MTEX module syntax�

�section�Introduction�

�label�sec�intro�

We propose ���

�section�Model�

�label�sec�model�

�subsection�Structure�

�label�sec�struct�

��� �ref�sec�intro� ���

�subsection�Behavior�

�label�sec�behav�

��� �ref�sec�struct� ���

�section�Conclusion�

�label�sec�concl�

We have shown that ���

f sec�intro �� ��Introduction�� �We propose a model to � � ����

sec�model ��
f sec�struct �� ��Structure�� �� � ��reffsec�introg � � ����

sec�behav �� ��Behavior�� �� � ��reffsec�structg � � ��� g�
sec�concl �� ��Conclusion�� �We have shown that � � ��� g

Figure ���� An example MTEX document module �top� and its semantic repre�
sentation as a compositional module �bottom��
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The restrict operator has the usual meaning of removing sections� However�

its dual operator project is potentially more useful in the context of document

composition� The operators rename and copy�as have the usual meaning�

In the MTEX system� we have chosen not to support encapsulation� i�e�� the

hide operator� and its related concept of static binding� i�e�� the freeze operator�

However� encapsulation could conceivably have some fairly natural meanings for

some applications of document processing� For example� hidden sections could

be appended to a special appendix that is suitably titled� Alternatively� a new

document consisting of hidden sections could be created� and citations to the new

document could be inserted in place of references to the hidden sections�

Hierarchical nesting is a very important and useful notion in document struc�

turing� The nest operator supports retroactive nesting of document modules� as

described in Chapter �� However� two issues arise� First� since the LaTEX system

does not support nested namespaces� labels within nested modules must not con�ict

with any other labels in the module� This can be checked by the type rule of nest

if we model the interface of a document as comprising a 	at set of all the labels

within the module� Second� self�references and environment references are indis�

tinguishable in MTEX modules� Thus� the nest operator considers all unresolved

self�references in its nested module argument to stand for environment references�

Also� due to the nature of the generator model as it stands� self�references within

nested modules can refer only to labels in surrounding scopes� but not to labels

within other nested modules�

Naturally� there is no notion of typing in MTEX other than the notion of module

interfaces consisting of label names mentioned above�

The notion of instantiation of documents is interesting� For one thing� instan�

tiation involves binding of self�references� Additionally� instantiation results in

allocation of space and the layout of instances� Considering these� instantiation of

MTEX document modules is conceptually equivalent to running the latex program

on a document to produce a dvi �le� In fact� latex would normally need to be

run multiple times on a �le in order to resolve references 	 this iteration directly
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corresponds to taking the �xpoint of the document module�

����� MTEX Architecture

The architecture of the MTEX document processing system is two�tiered� similar

to the architecture presented in Chapter ��

Physical modules are created with the syntax described in the previous section�

Section bodies can have arbitrary text in them� including arbitrary LaTEX command

source�

A Scheme�derived module language is then used to transform the physical �les

into �rst�class compositional modules� then compose them in various ways� For

example� a mk�module primitive is used to read in a physical document module�

Operators such as project� nest and override are then used to adapt and combine

these �rst�class modules� which can be written back as �les using write�module� The

syntax of some sample primitives is shown in Figure ����

Meta�level introspective primitives� such as self�refs�in �see Section ������ are

also useful while manipulating documents� For example� project and self�refs�in can

be used to write a Scheme function that projects the closure of self�references from a

set of sections� In fact� such a function� called cl�project� is included in the standard

Scheme library associated with MTEX� As in Chapter �� MTEX script �les can

contain arbitrary Scheme code�

Since section order is crucial in documents� the user might wish to reorder

sections using a primitive reorder�

�mk�module �hmtex��le�namei��
�write�module hmodule�expri h�le�namei�
�merge hmodule�expr� i hmodule�expr� i�
�override hmodule�expr� i hmodule�expr� i�
�project hmodule�expri hlabel�list�expri�
�nest houter�module�expri hlabeli hheadingi hnested�module�expri�
�self�refs�in hmodule�expri hlabel�list�expri�
�reorder hmodule�expri hlabel�list�expri�

Figure ���� Sample MTEX primitives�
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Below� a simple example of MTEX document composition is shown� Say the

document shown in Figure �� is stored in a �le named body�tex� Imagine that

another �le oo�tex contains sections corresponding to the various concepts in OO

programming� The following expression can be used to compose the two �les�

�override �mk�module �body�tex��
�nest �mk�module� �sec�model� �OO Concepts� �mk�module �oo�tex����

The above expression nests the module oo�tex with the section label sec	model

into a freshly created empty module� which overrides the other module� The resul�

tant module has a section labeled sec	model bound to a nested module� consisting

of sections describing OO concepts� This module can be written out as a LaTEX �le

and instantiated into a dvi �le� Other examples� such as the ones shown in Figure

���� can be easily encoded in MTEX�

����� Implementation

The implementation architecture of MTEX is shown in Figure ���� A yacc�lex

parser reads in document modules� creates the appropriate framework classes� and

returns a �rst�class MTEX module� an object of class TexModule �below�� These

modules can be manipulated using Scheme primitives via the interpreter�

The subclasses of Etyma created to construct MTEX are TexLabel of Label�

Section of Method� TexModule of StdModule� SecMap of AttrMap� and TexInterface

of StdInterface� Also� a new class Segment was created� Approximate design and

code reuse numbers for the MTEX implementation are shown in Table ����

C++

ETYMA

C C++

MTeX basic interpreter glue
completion

MTeX
module
text

yacc/lex

parser

Expressions
Scheme

Figure ���� Architecture of the MTEX system�
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Table ���� Reuse of design and code for MTEX�

Reuse parameter New Reused " reuse
Classes � �� ��

Etyma Methods � �� ����
Lines of Code ���� ���� ��

Etyma � STk Lines of Code ���� ����� ����


�� Summary

This chapter characterizes documents as abstracted namespaces� thus making

it possible to apply notions of compositional modularity� Many module operators

introduced previously are shown to be sensible and bene�cial to document reuse�

Inheritance is shown to reap bene�ts in the context of documents� For example�

document fragments generated for one purpose can be reused for other similar�

related� or even unrelated purposes� Evolution and maintenance are made easier�

A document processing system called MTEX� which supports composition of

modules written in a variant of LaTEX� was introduced� Examples in MTEX and

applications such as report generation� architectural speci�cation� and revision

control were discussed�

This chapter has shown that the model of compositional modularity is bene�cial

to nontraditional computer applications such as document processing�
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CONCLUSIONS

Having demonstrated the expressive power and broad applicability of compo�

sitional modularity in detail� we will� in this chapter� recapitulate the signi�cant

lessons learned from this research and point to some unexplored directions�

��� Summary of Contributions

This dissertation has shown that the model of compositional modularity facil�

itates a high degree of reuse by supporting e�ective recomposition mechanisms

for highly decomposed software� In particular� it is shown that compositional

modularity supports a stronger and more �exible notion of reuse than traditional

class�based inheritance in object�oriented programming�

Compositional modularity de�nes a comprehensive suite of operations to ma�

nipulate self�referential namespaces� Owing to the pervasiveness of namespace ma�

nipulation in software systems� compositional modularity can be applied within an

unusually wide range of systems� To demonstrate� four such systems are described

and it is shown that they derive signi�cant bene�ts from incorporating composi�

tional modularity� To facilitate the e
cient construction of tools for such systems�

a reusable software architecture has been developed and successfully reused�

Speci�cally� this dissertation has made the following advances over previous

research�

�� A programming style based on compositional modularity has been illustrated

via examples� The model has been shown to be unifying in scope by emulat�

ing the important idioms of object�oriented programming� including several
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forms of single and multiple inheritance� wrapping� and inheritance hierarchy

combination�

�� Hierarchical nesting has been characterized as a composition operation and

shown to be an expressive feature by demonstrating its many applications�

� A realistic imperative language� called CMS� embodying the major aspects of

the model has been designed and implemented� CMS is an augmentation of

the programming language Scheme�

�� Compiled object �les have been characterized as compositional modules� An

architecture for managing such modules and for building entire applications

by composing them has been described� The primary component in this

architecture is a programmable linker� Some longstanding problems with

component management are shown to be alleviated within this architecture�

�� Interfaces� by virtue of being recursive structures� are shown to bene�t from

compositional concepts� An experimental compositional interface de�nition

language is presented� Ways to augment existing IDLs are suggested�

�� It has been shown that document fragments can be viewed as compositional

modules and� thus� may be reused in applicable situations� A modular doc�

ument processing system layered on the LaTEX document preparation system

and its applications are described�

�� A generic� reusable� object�oriented framework� known as Etyma� for con�

structing tools for systems based on compositional modularity has been de�

signed and implemented� The current version of Etyma� comprising more

than �� classes in ���� lines of C�� that evolved over six iterations� has

been documented using design patterns� Etyma has been reused to realize

the four signi�cantly di�ering tools above as completions� three of them were

direct completions and the fourth was a parallel one� Reuse of both design

and code for all measured completions was found to be signi�cant �between
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��" and ����"��

There are some limitations to the model of compositional modularity� The

model as presented here is not entirely unifying of previous models of modularity�

For example� the model would bene�t from supporting a slightly weaker notion

of encapsulation such as that supported by ADT�s� Implementation of binary

�and more generally� n�ary� methods would be facilitated by this� In particular�

a framework for compositionality can then be speci�ed using a strongly typed

compositionally modular language� This is not possible currently due to binary

operations such as merge and override� Additionally� it must be noted that the

binary module operators merge and override cannot be speci�ed polymorphically�

since they require complete knowledge of their incoming parameters� �The problem

of integrating the notion of ADT�s with inheritance in the presence of static typing

was noted in ref� �����

There are several interesting and useful directions in connection with composi�

tional modularity that are as yet unexplored� These are sketched in the following

section�

��� Future Directions

	���� Framework Enhancements

The design of Etyma can be enhanced to encompass more functionality than

presented here� The following speci�c areas come to mind�

The type system supported by Etyma can be improved� First� typechecking

method implementations when input or output parameters are speci�ed to be

selftype should be supported� However� associating a type with selftype can be

tricky due to the hide operator� Hiding shrinks rather than expands an interface via

inheritance� Thus� a bound on interfaces� which essentially speci�es attributes that

cannot be hidden after the fact� will be required to support this feature� Second�

support for overloading� or ad�hoc polymorphism� may be found to be necessary in

attempting to apply compositional modularity to some systems� This can� however�

be supported by augmenting the notion of attribute matching across modules by
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having the name as well as the type of attributes signi�cant�

As mentioned earlier� Etyma does not support front�end and back�end related

abstractions for tool construction� For supporting front�ends� a modular parser can

be associated with each abstraction that parses by calling parsers associated other

abstractions in turn� Object�oriented parser technology such as yacc�� ���� can

be utilized for this�

Back�end compilation is more interesting� Say we want to support transla�

tion into the C language� As usual� the front�end can �rst build up an internal

representation of the program comprising instances of specialized Etyma classes�

Class Method can support a method translate that translates its body into C code�

This method can be implemented in terms of calls to translate methods of other

abstractions� many of which would be speci�ed by completion classes� Furthermore�

for each occurrence of module instantiation in the source� class Method�s translate

can call class Module�s method gen instance�� which would generate C code that

allocates an instance of that module with the appropriate layout �an object layout

mechanism such as that suggested in ref� ��� can be used�� Compilation in the

presence of �rst�class modules will be slightly more involved� since code to represent

modules and perform module operations at run�time must be generated as well�

	���� Other Completions

Processors for many other programming languages can be built by reusing

Etyma� These programming languages can either be non�OO languages �similar

to Scheme� or already OO� Of course� if they are already OO� it will be much harder

to reconcile the semantics and pragmatics of the preexisting OO model with that of

compositional modularity� �A brief treatment of extending Modula� to incorporate

compositional operators is given in ref� ����� However� in my opinion� much more

can be gained by layering compositional modularity on top of non�OO languages

and systems� such as the four examples presented in this work�

In general� modularity can be layered in three ways� �i� no �rst�class run�time

modules or instances� in which case namespaces are manipulated prior to run�time

only� �ii� �rst�class instances but no �rst�class modules� similar to most conventional
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OO languages� and �iii� �rst�class modules and instances� similar to CMS� For

instance� the programming language C can be extended in any of the three ways

above�

It is interesting to consider other potential applications of compositional mod�

ularity that do not have to do with conventional programming languages� For

instance� hypertext documents on the world wide web �WWW� correspond to

namespaces with internal URL self�references as well as external �nonlocal� URL

references� Such documents can be statically composed as shown in Chapter

�� Individual document fragments can be considered nested within the universal

namespace of URLs such that nonlocal references are simply interpreted by the

hypertext tool to �nd remotely located documents�

Another application is the management of visual entities �such as windows�

buttons� menus� in a graphical user�interface environment� In this case� a container

�such as a canvas� can be considered to be a namespace with various individual

elements such as buttons� panel displays� and other canvases as attributes� each

associated with a name as well as its two�dimensional position� Furthermore� some

attributes �such as panel displays� can refer to other attributes �such as slide�bars��

Given this notion of namespaces� adaptation operations such as renaming� copying�

and removing� as well as composition operations such as merging� overriding� and

nesting� can be performed on them� e�g�� via some kind of a shell language� �This

idea actually corresponds to many existing characterizations of GUI entities as

objects in OO programming��

A third application could be �le system directories viewed as self�referential

namespaces� A directory consists of �le names bound to �le contents that can

potentially refer back to �le names� e�g�� a C source code directory with �include

directives� It might be desirable to construct a specialized compositional �le system

to manage such source code repositories�

	���� Version Management

In general� version management and compositional modularity have an inverse

relationship� In compositional modularity� given a moduleOld� an incrementDelta�
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and a speci�cation 	 of how to combine them� we generate a new module New�

Old 	 Delta � New

On the other hand� in version management� given a new module New and an

old module Old� we generate the di�erence Delta and a speci�cation �the inverse

of 
 below� say 	� of how to obtain New from Old�

New 
 Old � Delta

A version management system then stores Old� Delta� as well as 	� so that

either the old version or the new version can be generated� In e�ect� the revision

history of a module comprises incremental modi�cations �Delta�s� as well as the

composition history �	�s��

This raises the interesting question of whether a relation such as 
 �and its

inverse 	� between compositional modules can be automatically computed� Tradi�

tional tools such as di� compute Delta at the granularity of text lines� but it would

be interesting to study mechanisms to compute Delta at the granularity of module

attributes�

In any event� the above analysis suggests one� albeit not completely satisfactory�

way to perform version management using compositional modularity� as sketched

in Section ����� New revisions of modules are not speci�ed by giving module New�

but rather by giving Delta and 	� which are stored in the newly generated module

New� In this manner� every module carries along its own composition history� so

that some form of meta�level primitives can extract older versions of the module�

	���� Distributed Programming

In the treatment so far� composed modules are tightly bound to each other� in

a centralized manner� Thus� in the case of program modules� a resultant composed

module is expected to inhabit a single program address space�

Alternatively� program modules can be composed in a loosely coupled manner�

so that they can reside geographically separated but still be logically composed�
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This can be done by composing program modules so that remote procedure calls

�RPC�s� are made between parts of a composed module instead of regular procedure

calls� �This involves generating and integrating RPC adapters during composition��

In an architecture as given in Chapter �� there is no notion of �rst�class instances

or message�sending in the base language �compiled C object �les�� However� one

can still support a limited form of message�sending� The basic idea is that a module

instance corresponds to a thread in an address space� �Thus one can have many

module instances within the same address space�� With this� message sending

between instances is modeled as interprocess communication �IPC� by converting

static calls to IPC calls� For example� the expression

�msg�send m
 foo m� bar�

wraps the static call to foo�� withinm�with an IPC stub that calls the bar�� routine

within an instance of m�� which is itself wrapped with a receiving IPC stub� The

crucial question here is that of determining the identity of the receiving instance of

m�� since there is no notion of �rst�class instances� One answer to this question is

to have the msg�send primitive also generate a constructor function that establishes

the IPC environment between m� and m�� For example� the constructor routine

for m� registers instances of m� with a name service� and invocations of m��s foo��

look up the identity of an m� instance and establishe an IPC handle using that

name� The particular instance of m� that the name service returns can either be

constant for the duration of the program or be programmatically controlled from

within base language modules�

Finally� it should be mentioned that a compositional IDL �such as that pre�

sented in Chapter �� and a distributed programming infrastructure �as presented

in Chapter �� can be fruitfully integrated with each other� since they both support

a similar view of compositionality� For instance� the IDL can be used to specify and

compose the interfaces of components and generate adapters for their interactions�

whereas the actual components can be implemented using conventional languages

and composed using a compositional module language�
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