Timing Constraints for High Speed Counterflow-Clocked Pipelining

Jae-tack Yoo, Ganesh Gopalakrishnan and Kent F. Smith

UUCS-95-019

Department of Computer Science MEB 3190, University of Utah Salt Lake City, UT. 84112

October 30, 1995

Abstract

With the escalation of clock frequencies and the increasing ratio of wire- to gate-delays, clock skew is a major problem to be overcome in tomorrow's high-speed VLSI chips. Also, with an increasing number of stages switching simultaneously comes the problem of higher peak power consumption. In our past work, we have proposed a novel scheme called Counterflow-Clocked(C^2) Pipelining to combat these problem, and discussed methods for composing C^2 pipelined stages. In this paper, we analyze, in great detail, the timing constraints to be obeyed in designing basic C^2 pipelined stages as well as in composing C^2 pipelined stages. C^2 pipelining is well suited for systems that exhibit mostly uni-directional data flows as well as possess mostly nearest-neighbor connections. We illustrate C^2 pipelining on such a design with several design examples. C^2 pipelining eases the distribution of high speed clocks, shortens the clock period by eliminating global clock signals, allows natural use of level-sensitive dynamic latches, and generates less internal switching noise due to the uniformly distributed latch operation. By applying C^2 pipelining and its composition methods to build a system, VLSI designers can substitute the global clock skew problem with many local one-sided delay constraints.