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Abstract

Geometric inference is widely used in computer vision, but very little attention has been given
to the question of how geometric properties affect the resulting errors in the inferences made. This
thesis addresses the problem of the stability of geometric inference in determining locations with a
goal of being able to predict type and magnitude of the errors which occur and to determine on what
basis to make geometric inferences which will minimize error. It is shown that the amount of the
error occurring in a localization process using angular measurements to features depends heavily on
which features are used, that the amount of the error occurring in such a localization process is not a
function of the number of features used, that it is possible to develop simple heuristic functions for
choosing features for localization which will significantly decrease error in that localization, that
it is possible to decrease localization error in a particular direction, and that, if features have been
identified but knowledge of left to right order in the view is unknown, simple steps can be taken to
aid in determining that ordering. This knowledge is applied in the domain of robot navigation in
outdoor, unstructured environments.

This work was supported by National Science Foundation grant IRI-9196146, with partial funding from the
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Chapter 1

Introduction

Biological vision systems are constantly faced with tasks requiring geometric inference. Compu-
tational vision systems have been developed to perform many of those tasks. Both biological and
computational systems must deal with errors in the inferences they make. This thesis addresses the
problem of the stability of the vision-based geometric inferences made in location determination.
Location determination can be intuitively described as the process of establishing a location using
information which is often incomplete or inexact. The stability of an inference is determined by
the amount of error in the resulting estimate of location with the most stable inferences producing
the least error.

We humans use configurations of landmarks in the environment to determine our own location.
We make decisions as to the particular landmarks to use, whether or not we should move and take
another look before we estimate where we are, and, if we do move, in what direction(s) and how
far. We make such decisions when recognizing objects: How do we identify a three dimensional
object given a noisy, partially occluded two dimensional image?

The above decisions require that inferences be made regarding angular and/or distance measures.
Certain configurations of features or properties of movement will allow for less error in inference
than others. We say that these are more stable or less sensitive to noise. The geometric inferences
which will make use of the stable configurations or properties are said to be more stable than those
which do not. When we speak of the stability of geometric inference in location determination, we
are referring to the above types of decisions.

This thesis addresses the problem of the stability of geometric inference in determining loca-
tions, (i.e., localization), with the double goal of being able to predict the type and magnitude of
errors which will occur as well as to know on what basis to make inferences which will minimize
error. Chapter 2 summarizes the research which has been done on the geometric inferences made
by insects and early human navigators. Chapter 3 analyzes the sensitivity of a configuration of
features and shows how some configurations are more stable (lead to less error in localization) than
others. Chapter 4 applies this knowledge to several problems in the domain of robot navigation
in outdoor, unstructured environments. Chapter 5 summarizes the contributions of this work and
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discusses possible future extensions of what has been done here.

The following restrictions were placed on the analysis and applications:

� It was assumed that features were point features, that some sort of map was available and
that features in the view were matched to that map. The problems of setting up view to
map correspondences and dealing with any major correspondence errors were not addressed.
[Thompson et al., 1993] addresses those problems. A small set of correspondences are
established, used to infer a viewpoint, which is then used to establish more correspondences.
A constraint satisfaction approach is taken such that ambiguous correspondences generate
multiple hypotheses. Any hypotheses which lead to incompatible constraints are candidates
for correspondence errors and discarded. Minor correspondence errors, such as misidenti-
fying a subpeak as a peak, could in most cases be handled as measurement errors, whereas
major correspondence errors, such as those which would reverse the direction of view, were
found to be better handled using constraint satisfaction.

� Distance estimates, because distance is so often impossible to estimate, were not used.

� Due to the fact that in many practical applications, conditions on the earth’s surface render
navigational instruments useless, such instruments, including a compass, were assumed not
available.

� An effort was made to keep any heuristics used to minimize error as simple as possible.
Even when maps were assumed available, an attempt was made to use only simple geometric
information from those maps. This need for simplicity was emphasized by W. Grey Walter
[Walter, 1953] in his description of the behavior of Machina speculatrix. The electro-
mechanical M. speculatrix was built to exemplify the behaviors of a living creature. Three
of those behaviors were “parsimony”, “discernment” and “optima”. Parsimony referred to
the economy of structure and function in living animals while discernment concerned the
ability to distinguish between effective and ineffective behaviors. Optima was “the tendency
to seek conditions with moderate and most favourable properties, rather than the maxima”.
As Walter so eloquently states: “Little virtue or interest would lie in achieving life like
effects with a multiplication of mechanisms greater than life would tolerate. Creatures with
superfluous organs do not survive; the true measure of reality is a minimum."

Previous work in localization, when it addressed error at all, did so after the error occurred.
What has been done here demonstrates that steps over and above improving sensor accuracy can
be taken to decrease it before it occurs. The specific contributions of this work, to be further
summarized in Chapter 5, are as follows:

� The amount of the error occurring in a localization process using angular measurements to
features depends heavily on which features are used.

� The amount of the error occurring in such a localization process is not a function of the
number of features used.
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� It is possible to develop simple heuristic functions for choosing features for localization
which will significantly decrease error in that localization. This applies not only to choosing
features in the view which have been previously matched to a map, but to choosing directions
in which to look for new features.

� It is possible to decrease localization error in a particular direction. This is useful for a robot
attempting to stay close to a path.

� If features have been identified but knowledge of left to right order in the view is unknown,
simple steps can be taken to aid in determining that ordering.
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Chapter 2

Background

The next two sections summarize research on the geometric inferences made by two different
biological systems, as notable in their differences as they are in their similarities. Section 2.1
discusses how geometric inferences are made by insects. Section 2.2 looks at some of the primitive
human navigational techniques used to deal with errors in geometric inferences.

2.1 Geometric inferences made by insect navigators

Although animal behavior has been studied for centuries, the fairly new field of ethology�, which
involves observations of animals in their natural environments rather than in a laboratory setting has
contributed much to the understanding of how insects as well as other animals can successfully find
their way home after foraging large distances from a nest site [Huntingford, 1984, Slater, 1985].

Several well known computational navigation systems have been modeled after insect-type
navigation [Brooks, 1986, Maes and Brooks, 1990, Lucarini et al., 1993]. However, these systems
are based on low level reactive behaviors or self-organization of multiple agents. Many insect-like
robots working at a very low level accomplish a possibly complex task. Studies of actual insect
navigators [Wehner and Raber, 1979, Cartwright and Collett, 1982, Collett et al., 1992] have shown
that some insects use higher level geometric inferences when navigating. It is these navigational
techniques which relate to this work.

In order to use geometric inferences in navigation, some sort of representation of geometric
relationships must exist. A cognitive map is one such representation. A cognitive map can be
defined in different ways. It could be a simple record of geometric relationships in the environment
which can be used to plan movements through that environment. It is possible for an animal to have
such a record of geometric relationships among points in its environment, but not have a complete
map of the surrounding terrain. Gallistel [Gallistel, 1990] claims that the popular belief that the
cognitive maps of “lower” animals are weaker than those of humans is not well-founded. It is

�Many dictionaries still define this word as “the science of the formation of human character”.
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important to distinguish between a map having less in it (being “impoverished”) and actually being
weaker in a geometric sense. He classifies geometric maps into four categories: topology, projective
geometry, affine geometry and metric geometry, with each one being weaker than the next (i.e.,
metric maps are also affine but affine maps are not necessarily metric). As an example, bees can
distinguish between square and rectangular configurations around a feeding site. Thus, their maps
must be more than affine because a square and a rectangle are equal under affine transformations.
Distance and angle measures, fundamental to a metric map, are used to differentiate configurations.

At the other extreme, a cognitive map can also be defined as the mental analogue of a topo-
graphical map [Wehner, 1990] where an animal can determine its position relative to any other point
within its environment, even if it has been displaced. In this wider sense, it is questionable whether
or not insects possess cognitive maps at all. If they do, they are most likely “weak”. However, it is
possible for humans (see Section 2.2) as well as insects to navigate successfully without a mental
topographic map.

Figure 2.1: Cataglyphis bicolor, the desert ant, navigates using point sightings on mapped terrain.
(Ant drawing courtesy of James Moen.)

Experimental evidence substantiates an assumption that animals do not use celestial fixes to
determine their own position. This makes sense, considering that an error of �� in the sun’s
azimuth will put a navigator off by 100 km. Gallistel believes that animals obtain direction from
the heavens but determine their position from an interplay between dead reckoning� and piloting
with the aid of point sightings on mapped terrain. For example, the desert ant, Cataglyphis bicolor,
looks for its nest only when reckoning indicates that it is in the general vicinity. At this point,
the dead reckoning stops and piloting takes over. This dead reckoning or path integration is not
done by performing a vector summation such as a modern human navigator would do, but by using
computationally simple approximations [Muller and Wehner, 1988]. A path integration system
produces large errors only when the ant makes sharp backward turns, and it very seldom makes
this type of turn. The errors in distance and angular measure that it does make tend to cancel each
other out. If its reckoning contains a great deal of error, it will either run right past its nest or start
piloting too soon and misidentify the landmarks it needs for that piloting.

�See Section 2.2 for an explanation of the source of this term.
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This combining of the two determination methods conforms with the theory set forth in [Mc-
Farland and Houston, 1981] that the survival of any animal depends to a large extent on its optimal
use of resources. Returning to its nest with the use of only landmarks would require a large store
of noted landmarks and most likely limit the distance it could forage. On the other hand, dead
reckoning alone could cause it to miss the nest entirely, with often fatal results due to the fact that
its survival time in the desert sun is only a matter of hours. The search process that the ant goes
through if it does get lost is also governed by this concept [Wehner and Srinivasan, 1981].

As the desert ant nears the nest site, it switches into its piloting stage, using a small number
of prominent landmarks. This helps eliminate the uncertainty present in a cluttered environment
as well as the directional errors which accumulated during path integration [Collett et al., 1992,
Wehner and Harkness, 1983]. Rather than recalling route details as it approaches the nest site,
it simply passes either to the left or right of specific landmarks. There is usually a prominent
landmark close to the nest site which plays two roles: it shows the correct general path while the
ant is still quite a distance away, and its size and angular position from the nest are stored visual
properties which help define the nest entrance as the ant moves closer.

Experiments in changing the size of landmarks placed near a nest entrance support the theory
that a simple image matching routine is used at this point. When landmarks are replaced with
ones identical except for size, the ants don’t stop. It is clear that they economize, not learning the
topography of a wide area, but rather basic properties of landmarks which help them stay on the path.
They do not seem to possess more general information such as that the nest site is located halfway
between two landmarks. Similar recent observations have been made in the case of foraging honey
bees [Dyer, 1991]. Rather than a cognitive map in the sense of an internal topographic map, the
bees use landmarks associated with routes which they have traveled previously. They will also
head toward a panorama of landmarks associated with a food site. In neither case do they need or
seem to use the complex geometric relationships available in a topographic map.

2.2 Geometric inferences made by human navigators

According to Hutchins [Hutchins, 1993], human navigators have three basic questions:

� Where Am I? (Localization)

� If I am here, how do I get there? (Path Planning)

� If I am here and move in a certain way for a certain time, where will I be? (Dead Reckoning)

Errors in measurement will particularly affect answers to the first and third questions. Western
navigators determine their position on a map by the use of sightings to objects with known
coordinates on that map. Lines, arcs and circles of position are established. Lines of position
are determined either by lining the viewpoint up with two charted points or by using the compass
bearing of one charted point. Arcs of position are determined by measuring the angles between

6



two charted points. Circles of position are determined by the sighting of a known point together
with knowledge of distance to that point. Distance is often extremely difficult to estimate, resulting
in circles of position not being used very often. A stationary fix is obtained from intersecting lines
and/or arcs of position. A common fix is called the three-point fix and is the intersection of arcs of
position using three points.

The fact that errors which occur in localization are not directly proportional to errors in sensing
has been known to navigators for many years. Nathaniel Bowditch (1773–1838) [Bowditch, 1802]
said: “A person who understands the nature of errors avoids many pitfalls. Thus, the magnitude of
the errors of individual lines of position is not a reliable indication of the size of the error of the
fix obtained from them. Two lines of position with small error might produce a fix having a much
larger error if the lines cross at a small angle.”

Bowditch also explained the source of and confusion over the phrase dead reckoning. Early
navigators threw a buoyant object overboard to determine the speed of the vessel relative to the
object “dead” in the water. The course steered and this estimated speed through the water was then
used to determine position, thus the term dead reckoning. This was confused with the process of
deduced or ded reckoning in which a ship’s position was deduced with allowances made for current
and wind. The dead reckoning referred to in Section 2.1 and used throughout this work should be
defined in the first, simpler way. The typical nautical error in dead reckoning for western sailors
in the last century ranged from 5 to 10%. It is interesting to note that this is also the average error
made by cataglyphis bicolor during path integration.

Taking fixes requires the second definition of a cognitive map, (i.e., a mental topographic map).
However, it is not the case that all human nautical navigators have used or needed such a map.
The navigators of the Central Caroline Islands of Micronesia use ancient techniques which require
metric relationships but no maps. In fact, these methods are so different from those used in western
cultures that they were not fully understood until recently.

One possible explanation for the inability to comprehend the reasoning behind these techniques
is that an assumption was made that both Micronesian and western navigators were processing
information in the same way. According to David Marr [Marr, 1982], any information processing
task is carried out at three levels: computational theory, representational and implementational.
The computational level gives the goal of the computation and the logic by which it can be carried
out, while the representational level deals with the actual algorithm needed for accomplishing the
task. Hutchins claims [Hutchins, 1993] that early studies of Micronesian navigation assumed that
representations used in western navigation were also used by the Micronesian navigators. Due to
this blindness to other feasible navigational algorithms, they attributed the navigators’ success to
luck rather than to skill. The Micronesians, although sharing the same computational theory as
western navigators, hold an egocentric point of view. They do not have the bird’s eye world view
idea of western cultures. They do not use a map of the navigational area [Hutchins, 1983], nor do
they use instruments. The navigational methods they do use are much like those of the desert ant,
a combination of dead reckoning and piloting.
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In the area surrounding the Caroline Islands, approximately ��� of the earth’s surface is land.
Navigation using landmarks would be extremely difficult to implement. One concept widely
employed in Pacific non-instrumental navigation is that of using a “star path”. The positions of the
stars relative to each other are fixed from a viewpoint on the earth. The stars appear to move from
east to west as the earth moves. A linear constellation (star path) is a set of stars which follow the
same path. Each star path is made up of 6–10 stars, fairly evenly spaced. Connecting the stars
produces an east to west path, converting the moving stars into a fixed frame of reference. These
stellar maps are good examples of pure geometric representations. A star is not recognized by
its own intrinsic properties, but by its geometric relationship to other stars. Different star paths
are learned by navigators traveling in different areas of the Pacific. This is not an easy task. Not
everyone navigates, and those who do so traditionally learn these paths as children.

This is not unlike the methods used by those birds in the northern hemisphere which migrate
at night, flying away from the small cluster of stars around Polaris. Regardless of the rotation
of individual stars around Polaris itself, flying away from the cluster results in a path heading
south [Slater, 1985]. Any constellations used for navigation are learned by these birds as nestlings
[Gallistel, 1990]. Birds in different areas of the world learn different constellations.

It is also not unlike the cognitive map as defined by Kuipers [Kuipers, 1978]. If, as Kuipers
states, the body of common-sense knowledge which is built up from observations as one travels
through the environment is considered to be the cognitive map, it follows that, although humans
may have the ability to generate and refer to actual topographical maps, they may in many instances
only need and only use a cognitive map that is just as impoverished as that of an insect.

Micronesian navigators conceived of the horizon as being a straight line parallel to the course
of the canoe, rather than as a circle around it. Their cognitive maps, just as those of “lower”
animals may have had less in them, but they were not any weaker in the geometric sense than
the navigational maps referred to by modern navigators. In fact, this lack of cluttered detail most
likely contributed to their ability to compute their own location without the use of instruments.
Shepard and Hurwitz [Shepard and Hurwitz, 1985] discuss the mental rotations required to follow
left and right turns on a map and the confusion resulting when “up” on the map does not coincide
with straight ahead in the surrounding environment. They distinguish three different frames of
reference used when localizing and moving on two-dimensional terrain: An egocentric frame,
defined by up-down, left-right and front-back; an object-centered frame, defined in terms of some
other object; and an environmental frame, defined in terms of north-south and east-west from
a particular location on the earth’s surface. The insects discussed in Section 2.1 as well as the
early Micronesian navigators use the simpler egocentric frame of reference rather than the more
complicated environmental frame required for modern map and instrument based navigation.
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Chapter 3

Sensitivity of feature configuration in
viewpoint determination

Viewpoint determination often must be based on the apparent position of features in the environ-
ment. One-dimensional constraints on position can be combined to estimate location. The two
most commonly used constraints are distance and absolute bearings (angular measure from true
north).

A perfect estimate of distance to one feature in three-dimensional space constrains the viewpoint
to the surface of a sphere centered at that feature with radius equal to the given distance. An
estimate of distance to a second feature constrains the viewpoint to the circle of intersection of the
two spheres. When the features can be ordered with respect to the viewpoint position (e.g., A is left
of B), the viewpoint is constrained to half that circle. In the special case when the viewpoint lies on
the line joining the two features, the spheres are tangent and the viewpoint is uniquely determined,
lying at the point of tangency. If, as shown in Figure 3.1, a two-dimensional approximation of
the environment is assumed, knowing the distance to one feature constrains the viewpoint to the
circumference of a circle of radius equal to that distance. Knowledge of the distance to two features
restricts the viewpoint to the intersection of two such circles. In most cases, the circles will intersect
in two points. In the special case when the viewpoint lies on the line joining the two features, the
circles are tangent and the viewpoint is unique. If the left to right order of the features is known,
the viewpoint is also unique. In all other cases, knowing the distance to a third feature is required
for uniquely determining the viewpoint.

Absolute angular measure to one feature in both two and three-dimensional space constrains
the viewpoint to a line such as that in Figure 3.2a. Knowledge of absolute angular measure to a
second feature constrains the viewpoint to the intersection of two lines, as shown in Figure 3.2b.
This location is unique unless the lines are antiparallel (i.e., the viewpoint lies on the line joining
the two features).

However, it is frequently the case that actual distance to features is unknown. Likewise, absolute
bearings are not always available and can be unreliable in many environments. In such situations,
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Figure 3.1: Knowledge of the distance to feature A constrains the viewpoint V to the circumference
of a circle as shown in a. Knowledge of the distance to both features A and B constrains the
viewpoint to the intersection of two circles, V� or V�, as shown in b.
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Figure 3.2: Absolute angular measure to feature A in two-dimensional space constrains the view-
point V to a line as shown in a. Absolute angular measures to features A and B constrain the
viewpoint V to the intersection of two lines as shown in b.

alternative methods must be employed. The alternative addressed in this thesis is the use of relative
angular measure. This approach not only avoids the above mentioned problems, but may be a more
appropriate model for applications involving biological systems. Human cultures, for example,
have successfully navigated significant distances without any concept of a distance measure, and
did so long before the introduction of the magnetic compass in 1100 A.D.

The visual angle from a viewpoint to two point features will be defined as the angle formed by
the rays from the viewpoint location to each point feature. It has been shown [Levitt and Lawton,
1990] that a perfect estimate of the visual angle between two points constrains the viewpoint to a
surface of revolution somewhat resembling the torus shown in Figure 3.3a. If a two–dimensional
approximation of the environment is assumed, as in Figure 3.3b, the viewpoint is constrained to the
intersection of the surface of revolution with a plane passing through the two feature points and the
viewpoint. When the points can be ordered with respect to the viewpoint position, the viewpoint is
restricted to half the surface (if up is known) or to one arc of the boundary. In the two-dimensional
case, as shown in Figure 3.4, visual angles between three points will constrain the viewpoint to
the intersection of three circles, unless all three points and the navigator lie on the same circle
[Krotkov, 1989, Sugihara, 1988]. This single circle configuration restricts the viewpoint to the arc
of the circle boundary from A to C, providing the same localization as would knowledge of the
visual angle between only two points.

10



a)
V

A B

b)

A B

V

Figure 3.3: Knowledge of the visual angle measure between two points, A and B, constrains the
viewpoint V to a) a surface of revolution. If a two-dimensional approximation of the environment
is assumed, the viewpoint is constrained to b) the intersection of the surface in a) with a plane
through A, B, and V.

The above three types of one-dimensional constraints can be combined to provide unique
localization. For example, the distance to one feature and the absolute angular measure to another
can be used to determine the viewpoint. However, any measurements taken will never be completely
accurate. As a result, it is important to have an understanding of the errors which can develop
when using such methods. Due to the previously mentioned problems with the use of distance and
absolute angular measures, this analysis deals with the errors involved when using relative angular
measurements only. A posteriori analysis can predict the precision of an estimated viewpoint given
expectations about the errors associated with the determination of visual bearings. Perhaps even
more importantly, a priori analysis can be used to choose feature configurations which are least
sensitive to error, thus yielding the most reliable localizations.

In Section 3.1 the errors associated with this form of localization when the three ordered features
are included within a visual angle of � ���� are analyzed. A method for determining the area
around the actual viewpoint in which an estimated location will lie given a particular configuration
of features and specific error bounds in visual angle estimates to those features is developed.
Section 3.2 covers the situation when the viewpoint lies within the feature configuration (i.e., the
visual angle is not restricted to less than ����). The effects on the estimated location when a
two-dimensional environment is modified so that features are at different elevations (e.g., landmark
features on uneven terrain) are shown in Section 3.3. Section 3.4 analyzes the distribution of error
in the area around the actual viewpoint. Localization using different configurations of features
when identical errors in the estimate of visual angles are made is discussed in Section 3.5. This
sensitivity to error in visual angle estimate will vary considerably among configurations, with the
result that feature configuration can dramatically affect the precision with which localization is
accomplished. Section 3.6 addresses the question of how visual angle measures can aid in ordering
features.
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Figure 3.4: Knowledge of the visual angle measures from the viewpoint to three points A, B and
C in two-dimensional space will uniquely determine the viewpoint V, as shown on the left, unless
all three points and the viewpoint lie on the same circle, as shown on the right.
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Figure 3.5: The error in visual angle estimate to two points constrains the viewpoint V to a) a
thickened ring. When three points are used, the viewpoint is constrained to b) the intersection of
two such thickened rings.

When a two-dimensional approximation of the environment is assumed, an error in the visual angle
estimate to two features, as shown in Figure 3.5a, will constrain the viewpoint to a thickened ring,
the thickness of the ring determined by the amount of error [Krotkov, 1989, Levitt and Lawton,
1990]. When three features are used, any given error in estimate constrains the viewpoint to the
intersection of two such rings [Kuipers and Levitt, 1988, Sutherland, 1992].� See Appendix A for

�A third ring passing through the two features lying at greatest distance from each other can be computed, but it
does not affect area size.
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details of the computation. In Figure 3.5b, let� be the visual angle from the viewpoint subtended by
chord AB and � be the visual angle from the viewpoint subtended by chord BC. The intersection of
the thickened rings, termed the area of uncertainty, is surrounded by the dark lines. In this particular
example, the features are in a straight line, the distance between features equals the distance from
the viewpoint to the center feature and both � and � measure ���. The area represents an error less
than or equal to ������ or ���� in both � and �.
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Figure 3.6: a) Dark lines surround the area of uncertainty for a ���� error bound with the same
configuration as in Figure 3.5b. Dashed lines surround the error area for angle �. b) Dark lines
surround the area of uncertainty for a���� error bound in � and a���� error bound in �. c) The
error in the estimate of angle � is bounded by �	��. Angle � is estimated perfectly. The result is
a ���� error bound in estimate of �. Dashed lines surround the error area for angle �.

Figure 3.5b is somewhat simplified. The features will not always be in a straight line, angles �
and � will not always be identical and the same error in estimate will not always be made for each
angle. An example of how different errors in estimate of angles � and � will affect the size and
shape of the area of uncertainty is shown in Figure 3.6. Figure 3.6a shows the area of uncertainty
for an error bound in both � and � of����. Figure 3.6b shows the area of uncertainty for an error
bound in � of ���� and an error bound in � of ����. Figure 3.6c shows the area of uncertainty
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for a�	�� error bound in � and a perfect estimate of �. Note that, in this case, the area is reduced
to an arc of the circle passing through B and C.

In general, if the error is additive with �e the error in �, for any given �e, �e � �e
�e implies that
�e � �e��e for all �e such that � � �e � �e. If the error is multiplicative, �e � �����e
�����e
implies that�e � �����e������e for all �e such that � � �e � �����e. In all cases, the resulting
area of uncertainty equals the intersection of the two (possibly thickened) rings corresponding to
the error in estimate of angles � and �. This intersection will always lie within the thickened
ring corresponding to the error in �, with the relationship of �e to �e and �e as given in the above
equations.� For all examples in this analysis, a choice of the type of error introduced, either
multiplicative or additive, was made, unless error type affected results. In these cases, both types
were used.

3.1.1 Size of the area of uncertainty

Three factors affect the size of the area of uncertainty: the amount of the error in angle estimate,
the relative distance of the viewpoint to the configuration and the shape of the configuration.

The area size will change according to the amount of error. The larger the error, the thicker the
ring produced by the error bounds on one visual angle and the larger the area resulting from the
intersection of two such rings. As an example, Figure 3.7 shows two areas of uncertainty. The outer
area, with an error bound of ���� of visual angle measure, is the same as shown in Figure 3.5.
The inner area is for an error bound of ���� of visual angle measure.

A

B

C

V

Figure 3.7: The size of the area of uncertainty is a function of the error in the visual angle measure.

It has been shown [Kuipers and Levitt, 1988, Levitt and Lawton, 1990] that the lines joining
pairs of features divide space into distinguishable areas (orientation regions). [Levitt and Lawton,

�Although all graphs in this example show a straight line configuration of features, the described conditions also
hold for nonlinear configurations.
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1990] called these lines LPB’s (landmark pair boundaries). When all three features (landmarks)
lie on a straight line, two orientation regions are created and the viewpoint is constrained to a
half plane. When the features are not in a straight line, the three LPB’s create seven orientation
regions, as shown in Figure 3.8. The viewpoint is constrained to one of those regions. Crossing
into a different orientation region changes the ordering of the features. Since feature order has
been determined, it can be assumed that an LPB will not be crossed. Thus, the LPB puts a bound
on the size of the area in the direction of overestimation of the visual angle. However, for 6 of the
7 orientation regions formed by a non-linear configuration of three features, there is no bound on
how far back the viewpoint can be located, causing the total possible area of uncertainty due to the
amount of error in the angle estimate to be unbounded.

A C

B

Figure 3.8: The LPB’s in a non–linear configuration restrict the viewpoint to one of 7 orientation
regions.
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Figure 3.9: The size of the area of uncertainty as the viewpoint moves away from the configuration.

The relative distance of the viewpoint to the configuration will also affect the area size.�

�Because the visual angles alone are used as a measure, distance is relative (e.g. distance of the viewpoint of 1000
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Figure 3.9 shows the change in size of the area of uncertainty for a straight line configuration with
features one unit apart and the viewpoint lying on the perpendicular bisector of the line joining the
features.

V1 V2

A

B

C

V1
V2

A

B

C

Figure 3.10: An additive error bound of ����� was introduced in the figure on the left while a
multiplicative error bound of ���� was introduced in the figure on the right. The change in
size of the area of uncertainty is due to the change in distance of the viewpoint from the feature
configuration.

Figure 3.10 shows two examples of the change in the area size as the viewpoint distance to
the configuration changes. Due to the fact that whether the error is multiplicative or additive will
affect results, both types of error were introduced. The figure on the left uses additive error bounds.
The figure on the right uses multiplicative error bounds. The larger areas are for an error bound of
���� or ����� in the visual angle measure. The smaller areas are for the corresponding amount
of either multiplicative or additive error. The point representing V2 in the additive example is not
shown because the area is so small.

The third parameter to consider is the shape of the configuration. Thus far the configuration has
been held constant with all three features in a line and equally spaced. The comparative distance
between straight line features and the angular relationship between non–linear features will both
affect area size.

In Figure 3.11, dark lines surround the area of uncertainty resulting from a ���� error bound
in the visual angle measure for the straight line configuration with features A, B and C one unit
apart and the viewpoint five units from the configuration. The resulting areas with feature C� moved
away from C are surrounded by dashed lines. C� is 2 units from B on the left and 4 units from B on
the right. In both figures, the dark and dashed lines coincide where the boundary is determined by
the error ring for the circle through A and B. A skewness develops on the boundary determined by

feet to a straight line configuration with features located 1000 feet apart is considered to be the same as a distance of
4000 feet with the features 4000 feet apart).

16



the error ring for the circle through B and C. The area of uncertainty becomes smaller as C� moves
away from C.

A

B

C’

V

C

A

B

C’

V

C

Figure 3.11: Both graphs show an error bound of���� in visual angle estimate with the viewpoint 5
units from configuration. The dark lines surround the area of uncertainty for the ABC configuration.
The dashed lines surround the area for the ABC� configuration.

The first step in analyzing how a change in the angular relationship between features affects the
size of the area of uncertainty is to consider the LPB’s and the resulting orientation regions. Note
that regardless of the error size, the viewpoint cannot move out of the orientation region. The area
of uncertainty will always be within that region.

If the locations of features A and C are fixed and feature B is moved along a line equidistant
from A and C, the largest area of uncertainty for any give error amount will occur when B lies
on the same circle as A, C and the viewpoint. Feature positions alone will not reveal whether
or not this single circle condition, shown in Figure 3.4, exists. It is also necessary to know the
viewpoint position. However, it can, for example, be ruled out if no part of the circle through the
three features lies in the viewpoint’s orientation region, which holds if the center feature is closer
to the viewpoint than the other two.

Figure 3.12 shows the area of uncertainty for a ���� error bound and the same basic con-
figuration as in Figure 3.11 (� � � � �����). Feature B� is one unit closer to the viewpoint in
Figure 3.12a and one unit further away in Figure 3.12b. Although both show a decrease in area,
the resulting area in Figure 3.12a is significantly smaller. Thus, the nonlinear configuration in
Figure 3.12a is the least sensitive to error and would produce the most precise localization. Note
that the length of the chord lying on the axis of symmetry does not change as feature B is moved.
For a viewpoint facing the configuration, change in area is lateral only.

To summarize, the area of uncertainty corresponding to a given visual angle and error in that
visual angle varies greatly for different configurations of features [Sutherland, 1992, Sutherland
and Thompson, 1993]. Figure 3.13 shows a comparison of different areas with visual angle error
range of ������ or ���� in both � and �. Visual angles are identical for all configurations.
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Figure 3.12: The heavy dark lines surround the area of uncertainty with a ���� error bound in
estimate of the visual angle, features A, B and C one unit apart and the viewpoint 5 units away.
The dashed lines in a) surround the area of uncertainty resulting when B� is one unit closer to the
observer than B. The dashed lines in b) surround the area of uncertainty resulting when B� is one
unit further away. The error circles are black for the linear configuration and grey for the non–linear
configuration.
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V

Figure 3.13: The area of uncertainty will vary with feature configuration: a) features in a straight
line b) center feature pushed forward c) center feature pushed backward d) viewpoint off the line
of symmetry of the configuration. All visual angles and error bounds are the same.
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3.1.2 Shape of the area of uncertainty

Two shape properties must be considered. The first is symmetry. If the configuration is symmetric,
the viewpoint is located on a line of symmetry of that configuration and the bound on the error in
visual angle estimate is the same for both angle � and angle �, then the area of uncertainty will
also be symmetric. If any of those properties do not hold, the area will not be symmetric.

A

B

a)

C
V

A
B

b)

C

V

Figure 3.14: The shape of the area of uncertainty is skewed when the viewpoint is moved off the
line of symmetry of the configuration.

Figure 3.6 shows how unequal error bounds in the estimates of angles � and � affect shape. In
Figure 3.11, as feature C was pulled away from the configuration, the area decrease resulted in an
asymmetric shape. Figure 3.14 shows how the area shape is skewed when the viewpoint is moved
off the line of symmetry of the configuration.

The second property is eccentricity, a measure of the “roundness” of an area of uncertainty. The
same three factors which affect the size of the area of uncertainty (the amount of error in the visual
angle estimate, the relative distance of the viewpoint to the configuration and the configuration
shape) also affect its eccentricity. However, the last factor has much more effect on the eccentricity
than do the first two. The ratio W/L where L = the diameter of the area of uncertainty in the
direction of feature B and W = the diameter of the area of uncertainty perpendicular to the direction
of feature B can be used as a measure of eccentricity. Figure 3.7 showed an example of how the area
of uncertainty changed as a function of error in visual angle measure. Note that the eccentricity of
the outer area is slightly less than that of the inner area, but the basic shape remains the same. How
the relative distance of the viewpoint to the configuration affects eccentricity was demonstrated in
Figure 3.10. In both cases, the W/L measure is greater for the area surrounding V1. However, the
small change in roundness is overshadowed by the large change in the size of the area of uncertainty.
Figures 3.12 and 3.13 show the significant difference that configuration shape has on eccentricity.
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3.2 Area of uncertainty - viewpoint inside configuration

It was shown in Section 3.1 that when all three point features, ordered A,B,C, lie within an angle
of ���� from the viewpoint, the area of uncertainty consists of the intersection of two thickened
rings passing through the AB and BC pairs. This area lies within the thickened ring passing
through A and C. The sum of the visual angles to AB and BC equals the visual angle to AC. When
the viewpoint lies within the configuration, the situation is modified. All three thickened rings
contribute to the formation of the area of uncertainty. The sum of the visual angles to AB, BC
and AC is �	��. Figure 3.15 shows the modification in area of uncertainty shape caused when the
viewpoint moves inside the configuration. The new area is formed by six circular arc segments. If,
as in Figure 3.15, the viewpoint lies in the center of equally spaced features, this area is symmetric.
If it is not located at the center and/or if the features are not equally spaced, the shape of the area
changes.

A

C

B V

Figure 3.15: When the viewpoint is inside the configuration of features, the area of uncertainty is
formed by six circular arc segments.

Whereas when the viewpoint was outside the configuration, the area of uncertainty was only
bounded in size of underestimate of the visual angle by an estimate of �� and, thus, unbounded in
how far away from the configuration an estimate of the viewpoint could lie, the viewpoint being
in the center of the configuration implies that it is surrounded by LPB’s, putting a bound on how
far away from any feature pair the viewpoint can be. Figure 3.16 shows one example of such a
situation. Angle � measures ����. An underestimate of only ��� would put the viewpoint on the
LPB joining features B and C. If the LPB is not crossed, the amount of error in underestimate is
bounded by that amount.

Figure 3.17 shows a comparison of the areas of uncertainty with two different configurations of
features, the viewpoints inside and outside the configurations and both additive and multiplicative
error bounds. An additive error bound of ���� was introduced on the left while a multiplicative
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Figure 3.16: The LPB’s can put a bound on the error in underestimation of the visual angle when
the viewpoint lies inside the configuration of features.

error bound of����was introduced on the right. The dashed lines surround the areas of uncertainty
when the viewpoint is outside the configuration of features. The visual angles from the viewpoint
to AB� and B�C are both 	��, so an error of ��� equals an error of ���, causing the areas surrounded
by dashed lines to be the same in corresponding rows. Since features A, B, and C do not move,
the areas surrounded by solid lines are the same in corresponding columns. It is clear from this
example that a comparison of area size cannot be made without a prior assumption on error type.
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Figure 3.17: A comparison of the areas of uncertainty with the viewpoint inside and outside the
configuration of features: the areas on the left result from an additive error bound of ���� while
those on the right result from a multiplicative error bound of ����.
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3.3 Area of uncertainty - 2.5 dimensions

When the environment is three rather than two dimensional, perfect knowledge of visual angles
between three features does not necessarily produce a unique viewpoint. One of the following will
hold:

Case I: All three features and the viewpoint lie in the same plane. This is identical to assuming
a two-dimensional approximation of the environment. The only time that exact localization cannot
be determined is when the three features and the viewpoint lie on a single circle. (See Figure 3.4.)
Case II: All three features and the viewpoint do not lie in a single plane. This implies that they
do not lie on a single circle, excluding the exception in Case I. Let A, B, C be the features and V
the viewpoint. Without loss of generality, it can be assumed that A is at the origin and B at point
�d�� �� �� where d� is the distance between A and B. C is located at �Cx�Cy�Cz� such that d� (the
distance between B and C) =

p
Cx�
 Cy� 
 Cz�.

The parametric equation of the surface of revolution through A, B and V is given by:

�
������

x

y

z

�
������

T

�

�
������

d�
� sin� sinu� � d���
d�

� sin� cos t��cos�� cosu��
d�

� sin� sin t��cos�� cosu��

�
������

T

where 	�� � t� � �	�� �, � � u� � �	 � � and � is the visual angle.

The parametric equation of the surface of revolution through B, C and V is given by:
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is the rotation matrix, 	�� � t� � �	��, � � u� � �	 � � with � the visual angle.

Solving these two equations simultaneously gives the parametric equation of a curve in three-
space. Although a general formulation of the equation of intersection of the surfaces is rather

�Because feature order is known, only half the surface of revolution is needed.
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complicated, it is not difficult to express three of the variables in terms of the fourth (e.g., t�� t�� u�
in terms of u�) for any specific configuration. Thus, requiring the navigator to lie on both surfaces
constrains the viewpoint to a single curve.

A

B

C

a)
b)

Figure 3.18: Perfect measurement of visual angles to three features in three-space constrains the
viewpoint to a) the intersection of two surfaces. This intersection is b) projected onto the map to
determine the viewpoint.

In Figure 3.18a, the scene is being viewed from the side opposite the viewpoint. The viewpoint
lies somewhere on the black line running along the intersection of the two semi-surfaces.� As
in the two-dimensional approximation of the environment, the third surface, formed by the visual
angle to points A and C, will intersect the other two surfaces along the same line, so is of no help
in providing a unique location.

Now, consider a 2.5 dimensional environment: The curve on which the viewpoint must lie is
projected onto a surface, as shown in Figure 3.18b. Feasible viewpoint locations are at the points
(x,y,z) where the z coordinate of the curve matches the elevation of point (x,y) on the surface.
It is possible, but highly unlikely, that more than one point on the curve will intersect with the
surface. The assumption can therefore be made that the location is unique. It follows that a perfect
measurement of the visual angles to three features in 2.5 dimensional space will provide exact
localization.

With imperfect visual angle measurements, the area of uncertainty is affected not only by the
error amount and the two-dimensional configuration shape, but also by the elevation of the features
measured from a horizontal plane passing through the viewpoint. Although the actual area size on
a given plane will depend on local features around any individual viewpoint, the area of uncertainty
projected onto a horizontal plane through the viewpoint provides a bound on lateral distance from
that viewpoint. Figure 3.19 shows an example of the difference that elevated features can make in
the area of uncertainty. The visual angles to feature points A, B and C are both ���. The angles
from the viewpoint to the projection of points A, B and C on the plane are ���. An error bound of
���� on the actual visual angles produces an error of 
��� to ��� for the projected angles. The
smaller area on the plane is what the area of uncertainty would be for angles of ��� and an error
bound of ���� if the feature points were at the same elevation as the viewpoint. The larger area is

�“semi” due to the feature ordering restrictions.
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A

B

C

Figure 3.19: Visual angles to A, B, and C of ��� and an error bound of ���� produce the larger
area of uncertainty. The smaller area is what would result with the same visual angles and error
amounts if the features were in the same plane as the viewpoint.

the actual area of uncertainty for this configuration. It is not always the case that areas are larger
if features are elevated. Elevation differences in features as well as the configuration of features
affect area size.

3.4 Error distribution within the area of uncertainty

In addition to the differences in the area of uncertainty size and shape for identical visual angle
measures, the distribution of points within an area is not solely determined by the distribution of
the error in angle measure. This is most easily seen by considering the distribution of viewpoint
estimates within the area of uncertainty when the error in angle measure is uniformlydistributed. As
shown on the left of Figure 3.20, the area is divided into sections, each representing a combination of
errors in the estimations of the visual angles �, from the viewpoint to features A and B, �, from the
viewpoint to features B and C, and �, from the viewpoint to features A and C such that � � �
 �.
Table 3.1 shows which conditions hold in each section. For any feature configuration, these sections
are not of equal size, resulting in a non-uniform distribution of viewpoint estimates across the area
of uncertainty. The relative size of each section is dependent on the feature configuration as well
as the bounds on the visual angle errors. However, the probability of a given estimate lying within
a section is dependent only on the error bounds. If � ranges from � � �� to � 
 �� and � ranges
from � � �� to � 
 �� where all �i 
 �, a joint probability distribution diagram, as shown on the
right of Figure 3.20, can be used to determine the probability of each of the numbered sections.
The numbers in the diagram correspond to the numbers of the sections in the figure. If eri is the
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Figure 3.20: Uncertainty due to error in visual angle measure: On the left, arcs of the circles divide
the area of uncertainty into 6 sections. The features are at A, B and C. The viewpoint is at V. �
is the visual angle from the viewpoint to A and B. � is the visual angle from the viewpoint to B
and C. On the right is a diagram of the joint probability distribution. The numbers in the diagram
correspond to the numbers in the figure on the left.

error in angle i, the top half of the square represents er� 
 �, the right half of the square represents
er� 
 �, and the diagonal line represents the location where er� � er� 
 er� � �. Note that the
diagram has been drawn to match this particular figure, so the error bounds are the same for both
� and �. When equality does not hold, the square becomes a rectangle. The probabilities can be
easily computed as in the following examples:

Prob��� �� � overestimate� �
Area �

Total Area
�

�� � ��
� � �� � �� �

�

�

or:

Prob��� � under� � over� �
Area �

Total Area
�

�����

�

� � �� � �� �
�

�

The result of running 10,000 iterations, introducing a random, uniformly distributed error for
the same feature configuration and error measure used in Figure 3.20 is shown in Figure 3.21. The
true viewpoint is at the large black point. In all 10,000 iterations, the highest multiplicity of a
single estimated viewpoint location was four. Sections 1 and 4, although quite different in size,
each contained approximately one quarter of the points, as predicted, leading to the less dense
distribution on the left of the scatter plot in Figure 3.21.� This can be predicted from the diagram
on the right of Figure 3.20. The areas in the diagram corresponding to Sections 1 and 4 are each
equal in size to one quarter of the total area of the square.

�Error amounts here and in subsequent sections were generated using an implementation of the Wichmann-Hill
algorithm [Wichmann and Hill, 1982].
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Area Overestimate Underestimate
1 �, �, � —
2 �, � �

3 � �, �
4 — �, �, �
5 � �, �
6 �, � �

Table 3.1: The visual angles are either under or overestimated in each of the 6 areas of Figure 3.20.
Angle � is the angle from A to B with vertex V. Angle � is the angle from B to C with vertex V.
Angle � is the angle from A to C with vertex V.

X axis ->

Figure 3.21: Assuming a uniform distribution of the error in visual angle measure, the distribution
of points within the area of uncertainty is affected by the shape of that area. Each small point
represents 1 of 10,000 iterations. The actual viewpoint is at the large black point. The example
shown is for the area of uncertainty diagrammed in Figure 3.20.

A similar situation exists with the distribution of error by amount within any one section of the
figure on the left of Figure 3.20. As an example, if Area 4 was divided according to error ranges
of �� ��� underestimate and �� � ��� underestimate, it would contain six subareas as shown in
Figure 3.22. The conditions which hold in each area are given in Table 3.2. This property prevents
the distribution within any one area from having anything close to a normal distribution in spite of
the wedge shaped areas suggesting a denser distribution near the actual viewpoint.

If a normal distribution of error in visual angle measure is assumed, the distribution around
the true viewpoint exhibits a definite central tendency with the same skewing as shown for the
uniform distribution. In any case, if the presumed bounds on under and overestimate in the angle
measure are equal and the area in which an overestimate lies is significantly smaller than is that for
a corresponding underestimate, it may be better to overestimate.
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Figure 3.22: Conditions which hold in the 6 subareas of Area 4 are given in Table 3.2.

Subarea Underestimate Underestimate
of �� ��� of ��� ���

4a �, �, � —
4b �, � �

4c � �, �
4d — �, �, �
4e � �, �
4f �, � �

Table 3.2: The visual angles are underestimated by differing amounts in each of the 6 subareas of
Area 4 in Figure 3.20. Angle � is the angle from A to B with vertex V. Angle � is the angle from
B to C with vertex V. Angle � is the angle from A to C with vertex V.

3.5 Conditions affecting sensitivity

Two basic conditions affect the sensitivity of a configuration of features. The first is the rate of
change of each visual angle measure as the viewpoint moves in the environment. The second is the
rate of change of the ratio of angles � and � as the viewpoint moves.

As an example of the first condition, consider the viewpoints in Figure 3.10. Much less
movement from the viewpoint is required to exit the area of uncertainty when the viewpoint is
closer to the configuration because visual angles change at a greater rate with movement in that
area than when the viewpoint is a large distance from the configuration. The total size of an area
of uncertainty is based on this first condition. If the rate of change of the visual angle with respect
to the viewpoint is high at a given location, a moving viewpoint will leave the area quickly. If the
rate of change is low, a significant distance could be traveled before the area boundary is reached.

Figure 3.23 shows two three-dimensional graphs. The visual angle � to the features A and B is

28



a) B A

Di
st
an
ce

. .

12
10

8
6

4
2

-10
-5

0
5

10

0

0.5

1

1.5

12
10

8
6

4
2

-10
-5

0
5

10

0

5

1

5

b) B A

Di
st
an
ce

. .

12
10

8
6

4
2

-10
-5

0
5

10

0

0.5

1

1.5

12
10

8
6

4
2

-10
-5

0
5

10

0

5

1

5

Figure 3.23: The visual angle � is represented by the height of the surface. Surface height is 0 at
the LPB and outside of the orientation region. Distance is units to the furthest feature. Features
are 4 units apart.

represented by the height of the surface. The rate of change of � is greatest where the surface slope
is steepest. Less error in localization should be made when the viewpoint is situated at a point of
steep slope than than when it is at a point where the slope is shallow. A viewpoint located at (0,4)
on the XY plane of Figure 3.23a with Y being the axis labeled as Distance would correspond to
V2 in Figure 3.10 and is at a point where the rate of change of visual angle � is much greater than
it is at a viewpoint located at (0,20) on the same XY plane (off the graph of Figure 3.23a), which
would correspond to V1 in Figure 3.10. Moving feature A closer to the graph of possible viewpoint
locations, as shown in Figure 3.23b, causes an increase in the height of the surface at x = 0 and a
decrease in the height of the surface at x = 5. The visual angle to features A and B from a viewpoint
at (0,4) on the XY plane will change more rapidly as that viewpoint moves, for example, toward
the point (4,4) than would the visual angle for a viewpoint moving between the same two locations
in Figure 3.23a. This results in the bounds on the area of uncertainty created by the error in a given
angle being close to the true viewpoint when that viewpoint is located at a point of steep slope on
the graph. The closer to the viewpoint those bounds are, the smaller the area of uncertainty.

The second condition, the comparison of angle measure, also affects sensitivity. The rate
of change of this ratio will be large when � is increasing rapidly and � is decreasing rapidly
or vice-versa. This affects the eccentricity of the area of uncertainty. As an example of this
second condition, consider a viewpoint facing the configuration in Figure 3.12a. Very little lateral
movement off the viewpoint is required to exit the area of uncertainty in the non-linear configuration
because the ratio of the visual angles is changing at a much greater rate than it does with the linear
feature configuration. It follows that Areas 2, 3 5 and 6 of the area of uncertainty shown in
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Figure 3.24: The ratio of the visual angles ��� is represented by the height of the surface. The
height is 0 outside of the orientation region. The distance shown is in linear units to the furthest
feature.

Figure 3.20 will be small. In the graphs of Figure 3.24, the ratio ��� is represented by the height
of the surface. The features A, B, and C (not shown) are located at (0,4), (0,0) and (0,-4) in
Figure 3.24a and at (0,4), (4,4) and (0,-4) in Figure 3.24b. This corresponds to the feature locations
in Figure 3.12a. The maximum rate of change occurs at the points of steepest slope. The visual
angle ratio ��� from a viewpoint located at (0,20) on the XY plane of Figure 3.24b with the Y-axis
labeled Distance, corresponding to the viewpoint in Figure 3.12a, would change more rapidly as
the viewpoint moves, for example, toward (4,20) than would the visual angle ratio in Figure 3.24a
for the same viewpoint and the same move.

To summarize, the rates of change of the visual angles and their ratio in an area around the
actual viewpoint location depend on configuration shape and the location of the viewpoint with
respect to the configuration. Large rates of change result in less sensitivity to error.

3.6 Ordering features

The work described thus far in this chapter assumed that features had been identified and ordered.
An interesting question to pose is whether or not visual angle measures can aid in ordering features.
The answer is mixed.

3.6.1 Angle measures from one viewpoint

Assume that for a two-dimensional approximation of the environment, the visual angle measure is
known exactly. When the configuration of three figures is linear, there are two possible viewpoint
locations, one on each side of the single LPB passing through the features. It is easily shown that
both of these locations are physically possible, regardless of spacing between features: Without
loss of generality, it can be assumed that features are at ��� ��, ��� �� and �X�� �� where X� 
 �.
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The viewpoint could then be either at V� or V� in the figure on the left of Figure 3.25.

(0,0)
(1,0)

(x1,0)

V1

V2

(0,0)
(1,0)

(x1,0)

V1

V2

Figure 3.25: The viewpoint can be either at V� or V� when features lie in a straight line. In the
figure on the left, the viewpoint rotates around the feature line. In the figure on the right, it is
assumed that the viewer is standing on a surface on either side of the feature line.

If the viewpoint coordinates are given by �x� y�, eliminating a� and r� in the system of equations
representing the circle with radius r� and center �a�� b�� through ��� ��, ��� �� and �x� y�:

a�� 
 b�� � r�� (3.1)

�� � a��
� 
 b�� � r�� (3.2)

�x� a��
� 
 �y � b��

� � r�� (3.3)

gives the resulting equation:
x� � x
 y� � �b�y � � (3.4)

Eliminating a� in the corresponding system of equations representing the circle through ��� ��,
�X�� �� and �x� y�:

�� � a��
� 
 b�� � r�� (3.5)

�X� � a��
� 
 b�� � r�� (3.6)

�x� a��
� 
 �y � b��

� � r�� (3.7)

gives the resulting equation:

x� � �� �X��x
 y� � �b�y 
X� � � (3.8)
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Solving equations 3.4 and 3.8 simultaneously gives the point ��� ��, which is the center feature
point and:

x �
��b� � b��

� 
 �b�X��b� � b��

��b� � b��� 
X�
�

(3.9)

y �
�X��b� 
 b��X� � ���

��b� � b��� 
X�
�

(3.10)

This second solution provides the coordinates for possible viewpoints. Due to the fact that X� 

� 
 �, the denominators will always be non-zero, with the result that both x and y are always
defined. When b�� b� 
 �, y is greater than � and when b�� b� � �, y is less than �, providing two
possible viewpoint locations. The viewpoint can, of course, be determined exactly if either the
leftmost or rightmost feature is known.

The implicit assumption was made in the above argument that the viewpoint would rotate around
the feature line, i.e., a viewer standing at V� would have to be standing on its head at V� in order
for the angle measures to be in the same left to right order. If, as in many realistic applications, the
viewer is standing on a surface, the viewpoint will still be restricted to two possible locations, but
as shown in the figure on the right of Figure 3.25, these locations are not directly across the feature
line from each other.

When the feature configuration is non-linear and the viewpoint is outside the configuration,
a partial ordering combined with constraints on angle measure can limit the viewpoint location.
Table 3.3 shows the possible orientation regions for the viewpoint location in Figure 3.26 if the
position of only one feature is known. Furthermore, if it is known that B is in the center and if
the visual angle to the outer two features is greater than angle ABC, then the viewpoint must lie in
orientation region 2 because the angle to the two outer features from any point in orientation region
5 is less than angle ABC. It follows that if it is known that A is to the left and the visual angle to
AB is greater than the angle ACB, the viewpoint must lie in orientation region 2. Likewise, if it is
known that C is to the right and the visual angle to BC is greater than the angle BAC, the viewpoint
must also be in orientation region 2. In general, for static localization, knowing the position of one
feature point restricts the viewpoint to one of two orientation regions, one with the center feature
closer to the viewpoint than the line joining the two outer features and one with the center feature
further from the viewpoint than that line. If the visual angle is greater than the angle subtended by
the three features, the orientation region, and thus total ordering can be uniquely determined. If
there is no knowledge about feature order, the feature positions can still minimally constrain the
viewpoint. For example, angle ABC in Figure 3.26 measures ���. Angles BAC and BCA measure
�� each. Any visual angle measure between the two outer features greater than ��� eliminates
orientation region 5. Any visual angle measure between the two outer features greater than ��

eliminates orientation regions 1, 3 and 5.

It follows that when the assumption is made that any given error in visual angle measure lies
within certain bounds and the above hold for those bounds, the same restrictions can be made.
As an example, if it is known that B is in the center and that the error in visual angle measure is
bounded by ����, then an angle measure between the two outer features of ��� or greater would
force the viewpoint to be in orientation region 2.
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Knowledge Visual Angle Orientation Region
B in center � 
 ABC 2

� � ABC 2 or 5
A to left � 
 ACB 2

� � ACB 2 or 3
C to right � 
 BAC 2

� � BAC 1 or 2

Table 3.3: Possible orientation regions for the viewpoint location if the position of only one feature
is known. The numbers refer to the numbered regions in Figure 3.26. Angle � is the visual angle
between the outer two features.

A

B

C

1 2 3

4

5

6

Figure 3.26: A partial ordering of non-linear features limits the orientation regions in which the
viewpoint can lie.

When a 2.5-dimensional environment such as the earth’s surface is assumed, feature altitude
could perhaps help determine order, but only in conjunction with other visual cues. As an example,
consider the sequence of images of three point features in Figure 3.27. One of the features is higher
than the other two. However, as the viewpoint position changes from frame to frame, one is not
able to distinguish the difference in height from the points alone. In the sequence of images in
Figure 3.28, the boxes and termination points of the rectangular solids provide clues which the
points alone did not, making a determination of the tallest feature fairly simple.

3.6.2 Angle measures from multiple viewpoints

A second question to pose is whether or not taking angle measures from more than one viewpoint
would help in resolving the ambiguity resulting from no or partial knowledge of order. First,
assume a two-dimensional approximation of the environment, exact visual angle measure and an
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Figure 3.27: Four different views of three point features, one of which is taller than the other two.

Figure 3.28: The same sequence of features as in Figure 3.27 with extended altitudes and 3-d
boxes.

equally spaced, linear configuration of features. It is clear that for any movement on one side of the
single LPB, a comparable one is possible on the other side with the same change in visual angle
measures. Moving and taking a second measure will not provide any additional information.

If the configuration of features is straight line asymmetric, as in Figure 3.25, or non-linear,
moving and taking a second measure will provide information which will help in determining
feature order. For example, a move parallel to the line passing through the outer two features
followed by a second error-free angular reading will provide sufficient information to determine
in which orientation region the viewpoint lies. However, knowledge of the visual angle measures
alone are not enough to determine in which direction to head so that movement is parallel to the
line passing through the outer two features.

One possible strategy is to make a small move toward a feature. This can easily be accomplished
by keeping the feature centered in the image plane. Consider the configuration on the right of
Figure 3.25. As was previously discussed, the viewpoint can be at either V� or V�. Movement
toward the leftmost feature from each of the two viewpoints would result in different visual angle
measures after the move. A series of experiments were run in simulation, using different positions
of the center feature, different length moves and different bounds on the errors occurring in the
visual angle measures. One thousand runs were made with each situation.

The scenario is as follows: The viewer computes the visual angle measure and determines
the two possible viewpoints. Due to the fact that the measurements contain error, these locations
are probably not correct. It then computes what visual angle measures should be after a move of
a given distance toward the leftmost feature from each of the two possible viewpoints. Finally,
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it makes that move and computes the actual visual angle measures. This last computation can
also contain error. It compares the last measurements to the two computations of what the angles
should measure and chooses its location determined by which computation is closer to the actual
measurements.

When the measurements were error free, the only situation which did not produce the correct
result was when the center feature was equally spaced between the outer two. When error was
introduced, the bounds on that error, the length of the move and the distance from the configuration
all affected the results. As the center feature was moved closer to the midpoint between the two
outer features, performance deteriorated. The distance of the move was given as a percent of the
distance between the outer two features (feature spread) rather than as an absolute distance. The
initial viewpoints were randomly picked in an area extending from the feature line a distance of
1.5 time the distance between the outer two features. This area was divided into three equally
sized subareas with Area 1 being the furthest from the configuration. This division of space, as
diagrammed in Figure 3.29, demonstrates how the distance from the feature line affects results.

AAAAA

BBBBB 22222

BBBBB 11111

CCCCC
AAAAA rrrrreeeeeaaaaa     11111 AAAAA rrrrreeeeeaaaaa     22222 AAAAA rrrrreeeeeaaaaa     33333

VVVVV

Figure 3.29: Initial viewpoints, such as V, were picked in the three labeled subareas. A movement
of a percent of the feature spread was made toward feature A.

For the results summarized in Table 3.4, the actual move distances were 400 and 800 meters with
the spread between features A and C equal to 20,000 meters and the random viewpoints extending
30,000 meters back from the feature line. Feature B was located 2760 meters from feature C. For
the results summarized in Table 3.5, the actual move distances were again 400 and 800 meters with
the spread between features A and C equal to 20,000 meters and the random viewpoints extending
30,000 meters back from the feature line. However, feature B was located 5760 meters from feature
C. Figure 3.29 shows a diagram of one such move with B� the position of the center landmark for
the first set of results, B� the position of the center landmark for the second set of results, and the
line from V showing the approximate length of a move of �� of feature spread. The results show
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how performance is improved when the middle feature is moved away from a position equally
spaced between the two outer features.

Movement as % of Feature Spread
Measurement Area 1 Area 2 Area 3

Error 2% 4% 2% 4% 2% 4%
5% .91 1.00 .89 1.00 .87 .96
10% .77 .97 .78 .93 .80 .88
15% .69 .94 .72 .86 .75 .83

Table 3.4: Percent of correct orientation region guesses, given as a decimal, for a linear asymmetric
configuration of features after one local move and a second angle measure. The center feature was
2760 meters from the feature on the right. The total spread between features was 20,000 meters.

Movement as % of Feature Spread
Measurement Area 1 Area 2 Area 3

Error 2% 4% 2% 4% 2% 4%
5% .62 .74 .59 .69 .65 .73
10% .56 .62 .53 .59 .62 .68
15% .55 .56 .51 .54 .62 .64

Table 3.5: Percent of correct orientation region guesses, given as a decimal, for a linear asymmetric
configuration of features after one local move and a second angle measure. Center feature was
5760 meters from the feature on the right. The total spread between features was 20,000 meters.

A similar set of experiments was done with non-linear feature configurations. Random view-
points were chosen in the same three areas used in the straight line trials but the constraint of
requiring a second position in the “opposite” orientation region with the same visual angle mea-
sures to features had to be imposed. There was still, of course, a need for partial ordering knowledge
such as “B is in the center”. Results for the three configurations shown in Figure 3.30 are summa-
rized in Tables 3.6, 3.7 and 3.8. The question marks lie in the areas which were being chosen
between for possible viewpoint location.
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Figure 3.30: The three configurations of features for which the localization data is given. The
question marks lie in the areas which were being chosen between for possible viewpoint location.

Movement as % of Feature Spread
Measurement Area 1 Area 2 Area 3

Error 2% 4% 2% 4% 2% 4%
5% .87 .89 .85 .87 .91 .91
10% .83 .84 .81 .83 .86 .84
15% .78 .78 .78 .80 .81 .78

Table 3.6: Percent of correct orientation region guesses, given as a decimal, for the non-linear
configuration of features shown on the left of Figure 3.30 after one local move and a second angle
measure.

Movement as % of Feature Spread
Measurement Area 1 Area 2 Area 3

Error 2% 4% 2% 4% 2% 4%
5% .99 .98 .97 .97 .94 .92
10% .95 .95 .94 .94 .89 .87
15% .93 .94 .93 .94 .83 .83

Table 3.7: Percent of correct orientation region guesses, given as a decimal, for the non-linear
configuration of features in the center of Figure 3.30 after one local move and a second angle
measure.
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Movement as % of Feature Spread
Measurement Area 1 Area 2 Area 3

Error 2% 4% 2% 4% 2% 4%
5% .82 .84 .86 .87 .95 .96
10% .78 .80 .85 .86 .92 .93
15% .76 .76 .82 .83 .89 .90

Table 3.8: Percent of correct orientation region guesses, given as a decimal, for the non-linear
configuration of features on the right of Figure 3.30 after one local move and a second angle
measure.

As discussed in Section 3.1, the area of uncertainty increases in size as the viewpoint approaches
a single circle configuration with the features. There is a large area in the right section of
the rightmost configuration of Figure 3.30 for which this property can hold. The result is that
movement toward the leftmost feature changes visual angle measure very little, accounting for the
improved performance shown in Table 3.8, particularly in the area closest to the configuration.

These simulations show that small movements can aid in reducing the ambiguity resulting from
only partial knowledge of order, especially when the three feature points are non-linear. Does this
process fall into the category of active perception or active vision as in [Bajcsy, 1988]? Bajcsy
states: “perceptual activity is exploratory, probing, searching;” In that general sense, this process
could be considered a type of active perception. Something is being actively done to aid in the
perceptual process. However, most research in active machine perception has dealt with ideas such
as the use of retina-like lenses [Sandini and Tagliasco, 1980] or gaze control [Ballard, 1989] in
which small, often continuous movement of the imaging device implements low level visual goals.
The activity here involves moving the viewpoint a distance which, although small compared to the
overall size of the environment, is large compared to that involved in movements required for gaze
control, and compared to those tightly controlled movements is rather loose and full of error. It is
more closely tied to the concept of purposive vision as described in [Maver and Bajcsy, 1993].

Animals will use motion parallax to judge distance [Gallistel, 1990] but this again usually
consists of either small movements of the head from side to side or a series of vertical head bobs.
The zigzag flight motions employed by bees and wasps to measure distance as they back away from
a nest or feeding site [Wehner, 1981] contain large movements. However, the decision being made
here (i.e., what side of the configuration are we on?) is at a higher level of cognition than is that of
estimating distance, regardless of the length of the movement made in the estimating process.
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Chapter 4

Robot navigation in unstructured
environments

4.1 Introduction

Determining locations in an unstructured environment is a major task for an autonomous mobile
robot navigating with a map. It must, as in Figure 4.1, match the locations of specific objects on
the map to sensed objects in the view, add the locations of new unmapped objects to that map and
continually update its own location as it moves.

The navigation problem of self-localization in the world is an absolute orientation problem.
Absolute orientation [Haralick et al., 1989] is defined as the recovery of the relationship between
two 3D coordinate systems. To find this relationship, one must determine scaling, translation and
rotation. The early algorithms for determining absolute orientation were developed by researchers
in the field of photogrammetry. In 1958, E. H. Thompson [Thompson, 1958] matched model
coordinates with geodetic coordinates. He projected the sphere onto the complex plane and used
a system of linear equations to solve the 3D � 3D absolute orientation problem for rotation only.
In 1973, Sanso [Sanso, 1973] extended this solution to include scaling and translation. Sanso’s
solution used the quaternion algebra, a method which has recently regained popularity, particularly
in the area of computer vision.

Most recent work in autonomous robot navigation has been done in structured indoor environ-
ments. A sampling of this work can be found in [Crowley, 1985, Tsubouchi and Yuta, 1987,
Kriegman et al., 1989, Kosaka and Kak, 1992, Fennema et al., 1990, Ferrari et al., 1990,
Atiya and Hager, 1993, D’Orazio et al., 1992]. Of the work in outdoor navigation, the following is
associated most closely with this research.

Dickmanns’ experimental five ton van “VaMoRs” navigated in outdoor environments, but
remained (understandably) on paved roads, using road edges for tracking [Dickmanns and Graefe,
1988b, Dickmanns and Graefe, 1988a, Dickmanns, 1992]. Thus, the environment was large, but
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Figure 4.1: An established match between landmarks in the environment and features on a map
can be used by a robot navigator to determine its own location.

structured, and the edges used for determining locations were close to the vehicle. Work in both
the DARPA ALV program and the Carnegie Mellon Navlab also was carried out in a structured
outdoor environment with roads, their intersections and lanemarkings the predominant terrain
features [Davis et al., 1987, Thorpe et al., 1987].

Talluri and Aggarwal, [Talluri and Aggarwal, 1992], used a constrained search paradigm,
deriving a significantly pruned search space in which to determine robot location by making terrain
elevation assumptions based on altimeter and compass readings. Although their assumptions hold
when sensing errors are small, they failed to simulate the frequently occurring conditions in a real
outdoor environment which cause altimeter readings to err in the magnitude of hundreds rather
than their stated tens of feet and compass readings to be rendered completely useless.

Yacoob and Davis, [Yacoob and Davis, 1992], used a single point range finder, an altimeter, a
compass and an inclinometer along with Digital Elevation Map (DEM) data to prune the search
space. They also made assumptions such as a rather small error bound on both the range finder
and altimeter measurements of ���. The work of [Levitt et al., 1987, Levitt et al., 1988, Levitt
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and Lawton, 1990, Kuipers and Levitt, 1988] referenced in Chapter 3 addressed the problem of
navigating in large-scale space, defining it as space whose structure cannot be observed from a single
viewpoint. They built up a representation of such space based upon observations of visual events.
Due to the fact that their environment was rich in landmarks and that their “qualitative navigation”
approach was intended to function with only approximate knowledge, types and magnitudes of
errors were not an issue. [Dai and Lawton, 1993] expanded on this approach, developing algorithms
which deal with landmarks for which there are no range estimates. Again, the number of available
landmarks in their environment made it possible to navigate by moving from one orientation region
to another without straying too far from the desired path.

Autonomous underwater vehicles (AUV’s) often navigate in their completely unstructured
environments by either adding structures for reference or navigating only over short local distances.
Methods proposed include the use of a network of bottom-laid acoustic transponders combined
with a high accuracy dead reckoning system [Babb, 1990], electronic still cameras with high
performance, large format CCD imagers [Harris et al., 1987], and the exploitation of surface
texture properties [Negahdaripour et al., 1990, Negahdaripour and Yu, 1990]. However, even when
several methods are combined, the error involved is significant.

The Navstar Global Positioning System (GPS) has often been promoted as an error free solution
to the problem of self-localization. However, problems also exist with the use of GPS. The signals
of the GPS satellites are corrupted by data noise, multipath errors, clock errors, atmospheric delays
and instrumental delays [Wu and Melbourne, 1993]. Selective availability encryption degrades
the positioning accuracy for any user without access to the encryption [Wu et al., 1992]. These
users make up a large group: the entire civilian community. Averaging techniques such as the
Extended Kalman filter are used to add differential corrections to the GPS measurements and
improve accuracy [Negast and Paschall, 1992]. When using the Kalman filter in this type of
application, the dynamic and observation models which are assumed are often incorrect due to
causes such as cycle slips, leading to significant errors or possible nonconvergence in the filter
results [Lu and Lachapelle, 1992].

DGPS (Differential Global Positioning System)/radiobeacon broadcast networks have been
developed to provide position fixing for maritime applications which require more than an accuracy
within 100 meters [Enge, 1993]. A local reference station with a high quality GPS receiver and an
antenna at a known location estimates the error in the GPS signal and transmits it as a correction
to users within the range of the station. This is necessary because GPS is not accurate enough for
such maritime applications as navigating a harbor entrance or offshore surveying.

Atmospheric conditions also affect GPS. The signal strength is a function of the thickness of the
air mass which the signal passes through [Cohen et al., 1993]. Experiments have been conducted
[Tranquilla and Al-Rizzo, 1993] during periods of snowfall and when ice clouds were present in
the atmosphere. The phase delays caused by the ice clouds and snow were calculated. These errors
vary according to such difficult to measure parameters as ice crystal size, density and orientation
or the “wetness” of the snow. The elevation angle of the signal also affects the result. The path
length through the clouds usually increases as the elevation angle decreases. The longer the path
length through the clouds, the larger the error. Note that ice clouds and snowfalls can lie between
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the signalling satellite and the receiver when weather conditions around the receiver are good and
landmarks are in clear view.

The visible horizon when GPS is used for navigation on land is approximately ��� rather than
the �� assumed when a vehicle is at sea. This can be even worse in an urban or mountainous setting
[Mattos, 1992]. Duerr, [Duerr, 1992], has studied the effect of terrain masking on the precision of
GPS readings. Most published results on GPS accuracy have assumed an unobstructed view of the
sky. Duerr showed that a GPS receiver located in a valley can have a significant loss of accuracy
for long periods of time. The accuracy is a function of time of day and latitude. These results not
only affect land vehicles but also aircraft flying at low altitudes and some missile systems.

In most of the above cases, assumptions such as existence of a road, nearby features or special
instruments were made. In the particular case of GPS, the assumption is that measurements will be
precise. Without making these assumptions, an outdoor, unstructured environment with its rugged
terrain and few distinguishable landmarks presents unique challenges to a robot navigator:

� Errors in distance traveled can be significant and unpredictable, compounding as the robot
moves. Whether the robot is wheeled [Talluri and Aggarwal, 1992] or legged [Hoffman and
Krotkov, 1993], terrain surface conditions exacerbate these errors for land vehicles. Existing
tools for determining position and translational motion in underwater vehicles (e.g., linear
accelerometers or Doppler techniques) are insensitive to slow positional drift [Negahdaripour
et al., 1990]. Kosaka and Kak, in their very thorough treatment of indoor navigation
techniques [Kosaka and Kak, 1992], state that occasional wheel slippage inconsistent with
the mathematical model was the believed cause of failure in their hallway experiments. In
an unstructured environment, this type of error occurs frequently.

� The sensors commonly used in indoor navigation do not have a large enough range to be very
useful outdoors. The accuracy of a compass or barometric altimeter [Talluri and Aggarwal,
1992] is often affected by conditions such as magnetic fields or atmospheric pressures in
the environment to the extent that these devices are not reliable. Thus, absolute bearings,
registered to a map, may not be available. In that case, triangulation, a common method for
determining locations which requires absolute bearings to two or more landmarks, cannot be
used.

� The objects which must be matched in an unstructured environment typically possess features
which may be deceptively masked in the view. A common example of this is a mountain
peak hidden by a subpeak. Errors caused by irregular terrain features such as this cannot be
predicted or modeled.

� Errors due to the inherent limits of the sensors themselves, such as discretization in images
when a camera is the sensing device are affected by the distance of the object from the camera
and the focal length of the lens. The wide-angle lens often used in passive vision systems
to acquire as large a view of the environment as possible, not only introduces distortion
but, due to the large distance that each pixel represents, adds to the discretization error. In
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addition, conditions such as fog surrounding a land navigator or particles suspended in the
water around an undersea system can cause image blurring and back-scattered noise, both of
which affect sensor accuracy [Stewart, 1991].

� Maps contain errors. As an example, the location of the highest point of a significant peak
is 200 meters off on one of the United States Geological Survey (USGS) Digital Elevation
Maps (DEMs) [Thompson et al., 1993]. Navigation researchers working in small structured
environments have a great deal of control over the maps they use. That is not the case for
those working in large unstructured environments.

Traditionally, errors in localization have been dealt with after the fact. Some type of filter or
maximum likelihood function is implemented to find a good location estimate from the combined
noisy measurements. Most of these methods assume a specific error distribution and/or initial
solution estimate. As an example, the above mentioned Extended Kalman filter (EKF) assumes
white Gaussian noise [Kalman, 1960, Smith and Cheeseman, 1986, Matthies and Shafer, 1987,
Ayache and Faugeras, 1989]. Although the Kalman filter is guaranteed to converge, the EKF is
not. It can easily fall into a local minimum if a good estimate of the solution is not available in
advance [Sorenson, 1970]. Due to the problems mentioned above, initial solution estimates in
an unstructured environment can be very poor. Even when convergence is possible, the number
of measurements a filter requires to converge is often large due to the amount of error in those
measurements [Cui et al., 1990]. This factor is important when images must be taken and processed
in real time.

A combination of all of these problems leads to error being a significant discriminant between
navigating in structured and unstructured environments. If robot motion could be better modeled, a
variety of accurate sensors were available, the environment surrounding the navigator was conducive
to signal transmission and objects sensed were bar codes rather than flora covered terrain, outdoor
navigation would be much easier. Unfortunately, that is not the case. A mobile robot, navigating
in real time and limited in the number of measurements it can take, must make the best use of the
sensory data it has. In short, a successful navigator must use inexact navigation (i.e., produce good
localization with only approximate information)[Thompson and Kearney, 1986]. This chapter
approaches the task of navigating in an unstructured world by critically analyzing the types of
errors which will occur and, utilizing only those tools and techniques which are available in such
environments, exploiting the geometric properties involved in the localization process so that steps
can be taken to decrease the possibility of error before it occurs. The result is less error and greater
success for whichever filter is used to handle the error that does exist.

4.2 Localizing to a point

Drawing on the results of Chapter 3, if the landmarks are point features�, and left to right order of
those landmarks is known, it follows that, for a navigator located at the viewpoint, the configuration

�The mountain peaks in Figure 4.1 are one example of such features.
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of landmarks used for localization will significantly affect how successful that navigator is.

As shown in Section 3.3, it can be safely assumed that, for a navigator traveling on terrain (as
opposed to being in space), exact knowledge of the visual angles between three points constrains
the viewpoint to the intersection of three surfaces and the terrain.

When the visual angle measure is not exact but within a given range, location is constrained
to an area on the terrain. The area of uncertainty for a terrestrial navigator is defined to be the
area on a plane passing through the true viewpoint in which the navigator may self-locate for any
given error range in visual angle measure. Section 3.1 described how areas of uncertainty are
determined for any configuration of three landmarks and any given error in visual angle estimate to
those landmarks when the viewpoint was outside the configuration. This information will be used
to show how an algorithm incorporating a wise choice of landmarks on which to base localization
will lead to a significant decrease in the resulting area of uncertainty. The performance of this
algorithm will then be compared to indiscriminate choice of landmarks used for localization.

4.2.1 Choosing good configurations

In order to make the best use of available information, the successful navigator must choose
landmarks which will give the least localization error regardless of the amount of error in the
visual angle measure. As shown in Section 3.1.1, the area of uncertainty corresponding to a
given visual angle measure and given error in that visual angle measure varies greatly for different
configurations of landmarks. The areas of uncertainty calculated in Chapter 3 were computed
knowing the viewpoint location on the map. The navigator will only know landmark map location
and landmark viewing order. This information, together with knowing that the viewpoint is located
somewhere on the map, can be used to choose configurations of landmarks which will lead to good
localization.

Identifying landmarks in large-scale space is difficult and time consuming [Thompson and
Pick, 1992]. Rather than depend on a large pool of identified landmarks, one can start with a small
“basis” set. Additional landmarks can be identified relative to those in the basis set only if they are
needed. It makes no sense to spend time identifying landmarks which will not help in localization.

An algorithm has been developed which can be used to choose good configurations for localiza-
tion. As discussed in Section 3.1.1, since the computation of the area of uncertainty is dependent
on landmark order, the area will always be bounded by the orientation region formed by those
three landmarks used for localization. As shown in Figure 4.2, the algorithm begins by picking
the triple of landmarks from the basis set which produce the smallest orientation region on the
map. An ongoing rule of thumb is to avoid anything close to a single circle configuration (i.e., all
landmarks and viewpoint on one circle). Although it is not known exactly where the viewpoint
is, any configuration which will result in a circle which passes through all three landmarks also
passing near the estimated viewpoint can be avoided. If, as in Figure 4.3, all triples produce the
same orientation region, the most widely spaced landmarks should be chosen.
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Figure 4.2: Lines joining the landmark points divide space into orientation regions such as the
shaded area in the foreground.

The outer area of Figure 4.3 is the area of uncertainty with angles � and � of ��� and an error
bound of���� in each. The landmarks are at A, B and C. The inner area is for visual angles of 	��

with the same error bound. The landmarks are at A�, B and C�. The further apart these landmarks
are, the better the localization.

The Algorithm:

Step I: Choose the first set of landmarks as those best satisfying the above qualifications. An
estimate of the viewpoint using this set will locate the navigator at point V�.

Step II: Choose the “best” configuration based on V�, and estimate a new viewpoint, V�. In
preliminary work [Sutherland and Thompson, 1993], the best configurations in two dissimilar
directions were used to estimate viewpoint. The weighted average of these two values was
taken as the estimated viewpoint. As explained in Section 4.2.2, results were not as good
as when only one configuration was used. If necessary (and possible), identify needed new
landmarks.

Incorporating the following constraints, based on the error analysis of Chapter 3, a “goodness”
function was developed to weight configurations.

1. If all triples produce the same orientation region (e.g., all landmarks lie on a straight line),
the most widely spaced landmarks should be chosen. The effect that this spread has on the
size of the area of uncertainty is illustrated in Figure 4.3.

2. It follows from the previous point that the spread of the outer two landmarks relative to their
distance to the viewpoint affects area size in all cases, not only when the configuration is a
straight line.
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Figure 4.3: The outer lines surround the area of uncertainty with angles � and � of ��� and an error
bound of���� in each. The landmarks are at A, B and C. The inner area is for visual angles of 	��

with the same error bound. The landmarks are at A�, B and C�.

3. The closer a configuration is to single circle (i.e., all landmarks plus the viewpoint on one
circle), the greater the error in localization. Avoid anything near a single circle configuration.

4. The relative distance of the center landmark to the viewpoint compared to the distance of
a line passing through the outer two landmarks to the viewpoint will affect area size. The
closer the center landmark is to the viewpoint, the better the localization.

5. Localization improves as the center landmark moves further back (away from the viewpoint)
from the circle passing through the viewpoint and the outer two landmarks.

This heuristic function uses the locations of landmarks A, B, C and the first estimated viewpoint
V�. The larger the function value, the better the configuration. Although V� is not necessarily the
true viewpoint, experiments have shown that this function discriminates in such a way that the best
configuration to be used for localization can be determined using this estimate. In Figure 4.4, let
A � �Ax�Ay�Az�,B � �Bx�By�Bz�, C � �Cx�Cy�Cz�, V � �V x� V y� V z� be the projections
of the landmark points and V� on a horizontal plane. Let I be point of intersection of the line
through V and B with the circle through A, C , and V ; L be point of intersection of the line through
A and C with the line through V and B; and d�p� q� be distance between any two points p and q.

Then:

G�A�B�C� V�� � h
 f

where
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Figure 4.4: Simple geometric relations can be used to rank landmark configurations.
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��d�V�B��d�V�I��
d�V�I��	 � d�A�C�

d�V�L� if d�V�B� � d�V� I�
d�V�I��d�V�B�

d�L�I� � d�A�C�
d�V�L� if d�V� L� � d�V�B� � d�V� I�

d�A�C�
d�V�B� if d�V�B� � d�V� L�

The function consists of two parts:

� The h function weighs the elevation of the landmarks compared to the elevation at point V�. It
is non-negative and attains its maximum of 1 when the average elevation of the landmarks is
equal to the elevation at V�. An example was given in Figure 3.19 showing how landmarks at
elevations higher than the viewpoint produce an area of uncertainty larger than that produced
if they were all at close to the same elevation. As the difference between the average elevation
of the landmarks and the elevation of the viewpoint increases, the value of the h function
decreases. So that it does not go to zero too quickly, the value of the constant k must be
determined by the units in which the elevations are measured and the maximum difference
in elevations in the area. The latter information is available from the map. Due to the fact
that the elevation data was in meters, k was set to .005 in the experiments described here.

� The f function, also non-negative and defined piecewise, has the major effect on the goodness
measure. It is based on the size of the area of uncertainty for the projected points. The
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continuity of the function was maintained so that small changes in positions would not
produce jumps in function value. Note that, for any landmark triple and viewpoint position, a
diagram such as that shown in Figure 4.4 can be drawn. A circle passes through the outer two
landmarks, A and C, and the estimated viewpoint, V. A line joins the outer two landmarks.
A second line passes through the estimated viewpoint and the center landmark. The center
landmark, B, can be located anywhere along that line. The point where that line intersects
the AC line is labeled L and the point where it intersects the circle is labeled I.

The line joining V and B is split into three sections, each corresponding to a piece of the
piecewise defined function f. The first definition holds if B is on or outside the circle. The
second definition holds if B is inside the circle and either on the AC line or further from V
than that line. The third definition holds if B lies on the same side of the AC line as V.

Holding to the third constraint to avoid anything close to a single circle configuration, the
factor d�V�B� � d�V� I� gives 0 for the value of f when B is on the circle. This factor also
appears (reversed) in the second piece of the f function. So, as B approaches I from either
direction, the value of f goes to 0. This factor was not necessary in the third piece of the
function since B cannot be on the circle if it is on that section of the line.

Holding to the second constraint that the wider the spread of the outer two landmarks relative
to their distance from the estimated viewpoint, the smaller the area of uncertainty, the factor
d�A�C�
d�V�L�

was included in the first two pieces of f. This factor was modified for the third piece
of the function with d�V�B� replacing d�V�L� in the denominator. Thus, f would not only
increase in value as the outer two landmarks moved further away, but also increase as B
moved closer to V. This satisfies the fourth constraint.

If B lies on the AC line, f � d�A�C�
d�V�L�

. The function then increases in value as the distance
between the outer two landmarks increases relative to the distance from the landmark line to
V. This satisfies the first constraint.

The fifth constraint is satisfied by the same factor, d�V�B�� d�V� I� which goes to zero as B
approaches the circle. As B moves away from the circle and the area of uncertainty decreases
in size, this factor will increase. However, as shown in Figure 3.13, B must move further
back from the circle to have an area of uncertainty similar in size to that obtained when it
moves a given distance from the circle toward V. Although the relationship is not linear, we
have found that for the range of configurations which occurred in our trials, the factor �

�

does a good job of equally rating two configurations which produce similar sized areas of
uncertainty where one has B positioned toward V and the other has B outside of the circle.

The function rates the configurations a) through d) in Figure 3.13 as 1, 2.73, 2.15, and 1.74,
respectively, for V� at actual viewpoint. Varying the position of V� in the orientation region will
change the actual measures, but, in most cases, not their ordering (i.e., the second configuration
remains the best). The important point to be made here is not that a particular heuristic function
is superior to any other for choosing configurations, but rather that it is possible to use a simple
function to choose landmark triples which will decrease the resulting error in localization regardless
of error in visual angle measure.
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4.2.2 Why use only one landmark triple?

The question arises as to whether or not better localization could be attained with more than the
minimal three landmarks. Levitt and Lawton [Levitt and Lawton, 1990] showed experimentally
that, in general, localization is sensitive to the number of landmarks used. However, they assumed
that a large number of landmarks were available. Their results compare localization using up to
20 landmarks. Twenty landmarks provide 1140 different ordered triples. Indiscriminately adding
more landmarks may eventually produce good localization, but the process of adding a landmark
does not guarantee improvement. Figures 4.3 and 4.5 show two examples of situations where
the benefit of adding more landmarks is questionable. In Figure 4.3, the innermost area, which is

A

B’

C

A

B

C

Figure 4.5: It is not necessarily the case that the more landmarks used for localization, the better.
The area surrounded by 4 arcs resulted from using landmarks A, B�, and C.

completely inside the outer area, corresponds to the most widely spaced landmarks, A�, B and C�,
while the larger area results from localizing using the inner three landmarks, A, B and C. The error
bound was ���� of the visual angle measure for both configurations. A multiplicative error was
used to show that the difference in area size is significant even for the most favorable error model.
Because the most widely spaced landmarks, with corresponding larger visual angles, provided the
best localization, an additive error model would make the difference even greater. The visual angles
to A and B and to A� and B are ��� and �	���, respectively. Thus, ��� of each produces additive
error bounds of �� and �	���. If a ��� error bound was used, the smaller area, produced by A�, B
and C�, would decrease. If a��	��� error bound was used, the larger area, produced by A, B and C,
would increase. In this situation, if landmarks A�, B and C� had already been used for localization,
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identifying and adding A and C (or any other features on line segment A�C�) would not improve
the size of the area of uncertainty.

It is important to keep in mind the fact that the true viewpoint is not known. With the single
assumption being that the error in the visual angle measure is bounded by a given amount, the only
available knowledge is that the estimated viewpoint lies within some area of uncertainty, the size and
shape of which is unknown. If, as in Figure 4.3, one area was nested inside another and viewpoints
were estimated using both triples, an estimated viewpoint using the configuration which produced
the smaller area would have to be somehow combined with the viewpoint estimated using the
configuration that produced the larger area. A general rule for combining two estimated viewpoints,
(i.e., without knowing the true viewpoint or the size and shape of the areas of uncertainty), will
not, in all cases, produce a better result than using only one of the estimates, particularly if that
estimate was made using the configuration which produced the smallest area of uncertainty.

In Figure 4.5, the area surrounded by 6 arcs corresponds to using landmarks A, B and C with
the viewpoint inside the configuration. The area surrounded by 4 arcs corresponds to using A,
B�, and C. The error bounds were ���� of visual angle measure for both configurations. For
this example, an additive error model was used. A multiplicative error would put the AB�C area
completely inside the ABC area. The navigator does not know what the intersection of the areas
is. If it uses more than one landmark triple, it can only average its results. Even with using a
conservative additive bound, combining estimates for the two configurations could easily lead to
worse localization than using only the AB�C area, particularly for a navigator attempting to stay
on a narrow path while heading toward landmark B�. Whether the actual incurred error is additive,
multiplicative or (most likely) a combination of the two, it is clear that some configurations will not
improve localization and that when processing sensor feedback in real time and having to possibly
search for and identify new landmarks, the assumption of the more landmarks used the better is not
necessarily true.

A sequence of experiments was run comparing results of using multiple ordered triples from
a set of landmarks and taking only one measurement using a good triple. All experiments were
run in simulation using topographic map data. The outcomes for a typical set of runs are shown
in Tables 4.1-4.4. Triples of landmarks were picked from a group of five, providing 10 different
triples from which to choose. A random error with uniform distribution within the given bounds
was added to the angle measures for 100 iterations. The tables show the number of iterations (as a
percent) in which the given combination of triples produced an estimated viewpoint closest to the
actual one. If more than one triple was used, the estimate was determined by linearly combining the
x and y coordinates of each viewpoint. This does not, of course, account for the cost of processing
the additional sensor readings. In the run summarized in Table 4.1, the good triple of landmarks
was also included in the 2 Triple and 5 Triple sequences. When the triples in these sequences
were not very good for localization, the results were even more biased toward using the good triple
alone. Figure 4.6 shows the view and map with landmarks labeled which were used for this set of
runs.� The navigator is located at the star in the foreground. The landmarks creating the “good”

�The figure shows a contour map of an area southeast of Salt Lake City, UT, generated from USGS 30m DEM data.
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triple are marked by triangles.

Error in Angle “Good” Triple 2 Triples 5 Triples 10 Triples
10% 71% 20% 1% 8%
20% 72% 22% 2% 4%
30% 67% 21% 1% 11%

Table 4.1: Percentage of 100 iterations for which the given combinations of landmark triples
produced an estimated viewpoint closest to the actual viewpoint. In all cases, the 2 Triple and 5
Triple columns included the “Good” Triple.

The results of ordering all triples using the heuristic and combining them in the order: the best,
the two best, the five best, etc. are shown in Table 4.2. The results of combining them in the order:
the worst, the two worst, the five worst, etc. are shown in Table 4.3. The results of combining them
in a random order are shown in Table 4.4.

Error in Angle “Best” Triple 2 “Best” 5 “Best” 10 Triples
10% 38% 17% 45% 0%
20% 40% 23% 37% 0%
30% 34% 25% 41% 0%

Table 4.2: Percentage of 100 iterations for which the given combinations of the best landmark
triples produced an estimated viewpoint closest to the actual viewpoint.

Error in Angle “Worst” Triple 2 “Worst” 5 “Worst” 10 Triples
10% 8% 1% 0% 91%
20% 10% 7% 0% 83%
30% 22% 4% 0% 74%

Table 4.3: Percentage of 100 iterations for which the given combinations of the worst landmark
triples produced an estimated viewpoint closest to the actual viewpoint.

What is clear from these results is that, when landmarks are sparse, if any combinations of
landmark triples are made, the triples used should be chosen with care. However, it also should
be noted that the heuristic used for ranking the triples is simply that: a heuristic. The “goodness”
ratings for the 10 triples are given in Table 4.5. It cannot be assumed that the heuristic is,
for example, able to clearly differentiate between configuration ABC with a rating of .61 and
configuration ABE with a rating of .58. In addition, if some of the triples available for localization
rank very poorly, it would be best not to use them at all. Furthermore, although the combination
of the triples with the five best ratings gave results comparable to using the triple with the highest
rating alone, using those five triples required the identification of all five landmarks and the making
of five estimates. In all of these trials, the combination of triples which resulted in the estimate
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Error in Angle Random Triple 2 Random Triples 5 Random Triples 10 Triples
10% 46% 33% 13% 8%
20% 47% 36% 15% 2%
30% 42% 34% 21% 3%

Table 4.4: Percentage of 100 iterations for which the given combinations of random landmark
triples produced an estimated viewpoint closest to the actual viewpoint.

closest to the true viewpoint received the vote. How much closer it was than the second best
estimate was not considered. Two interesting extensions of this analysis would be to measure the
differences in distances and to consider the variance as well as the mean of each set of estimates.

In summary, exploiting the geometric properties of a few identified landmarks rather than
assuming that numerous landmarks have been identified will minimize cost, particularly since the
number of significant landmarks in outdoor environments is usually quite small.

4.2.3 Experimental results for static localization

The performance of the algorithm described in Section 4.3.4 was compared with using indis-
criminate choice of landmarks for localization. The size of the basis set in all cases was five,
providing ten different combinations of ordered landmarks. Experiments were run in simulation
using real topographic map data. A uniform distribution of error of ���� in visual angle measure
was assumed.

The statistical distribution of sensor errors and whether they affect measurements in an additive,
multiplicative, or non-linear manner are heavily dependent on the specific sensor technologies used.
In navigation, these can range from very wide field image sensors to sensors which mechanically
move to scan for landmarks. An assumption of a uniform distribution of error does not necessarily
mean that error is uniformly distributed. A case could be made for running experiments in these
environments and developing an error model such as those described by Mintz et al. [Hager and
Mintz, 1991, McKendall and Mintz, 1990] for indoor use. However, many of the errors a navigator
must handle are due to environmental conditions. Weather, humidity levels, undersea thermal
vents, fog, etc. will all affect the error. An error model developed under one set of conditions
may not be appropriate when those conditions change. By assuming a large bound on a uniformly
distributed error, whatever error does occur is likely to be a subset of that which was assumed.

Whether or not assumed error should be multiplicative or additive is also a point of debate.
Sources of sensor measurement errors for the visual angle between two landmarks include positional
quantization, lens distortion and camera positioning errors. The latter two will almost always
dominate, particularly if visual angles are large. The magnitude of these errors is multiplicative
with respect to the visual angle. Another important source of error in visual angle measurement
results from the fact that landmarks are seldom truly point features, resulting in some uncertainty
in the bearing that should be assigned to an individual landmark. This error is independent of
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Figure 4.6: The five marked mountain peaks in the view correspond to points on the map. The
navigator is at the star in the foreground. The good triple is marked by triangles.

the actual visual angle measure so contributes in a more additive manner to the visual angle error.
However, it is not necessarily completely additive. As an example, an error of ��� could be made
in a large visual angle due to a mismatch of the true “point” for one feature. The assumption
that landmark ordering is known precludes this type of error from occurring with visual angles of
measurement, in this example, less than ���. The error cannot be larger than the angle without
changing the order of the landmarks. The assumption of additive or multiplicative error was varied
in the simulations run here.

The identified landmarks for each experiment were chosen based on their locations relative to
the viewpoint. All landmarks could theoretically be seen from the viewpoint location. Figure 4.7
shows the same map as in Figure 4.1 with the basis set of landmarks identified with large dots and
three of the ten LPB’s drawn on the map.� The landmark labels run across the top of the map
directly above the corresponding landmarks.

A navigator located at the star near the left-middle of the map views the landmarks in the order

�The figure shows a contour map of an area southeast of Salt Lake City, UT, generated from USGS 30m DEM data.
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A B C D E

Figure 4.7: The algorithm begins by picking landmarks which produce the smallest orientation
region on the map.

A,B,C,D,E. A navigator located at the star near the top views the landmarks in order D,E,C,B,A.

The algorithm is implemented in the following way:

Step I: The navigator in the foreground will choose landmarks A,B, and C (in that order)
to determine V�. The navigator, knowing landmark order, knows its own orientation region and
therefore knows that these three landmarks, when used alone, produce the smallest orientation
region. (Note that the smallest region for the navigator at the top of the map is the one also formed
by those landmarks, but in the order C, B, A.)

Step II: The navigator in the foreground then estimates viewpoint V� using these landmarks.
The estimated V� is used in the goodness function. Table 4.5 shows the results. The navigator will
estimate location using configuration BCE. This is the configuration with the highest rating used
for the runs summarized in Table 4.1.

This heuristic function is not guaranteed to always provide the best localization. However, it is
easy to implement, intuitive in its method of rating, computationally inexpensive and, in general,
does a good job.

Multiple runs of 100 iterations each were made at different locations and with different groups
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Configuration Rating Configuration Rating
ABC .61 ADE .46
ABD .4 BCD 1.13
ABE .58 BCE 1.41
ACD 1.13 BDE .42
ACE 1.29 CDE .14

Table 4.5: Based on the above results, the navigator in the foreground of the map in Figure 4.7 will
estimate location using configuration BCE.

Figure 4.8: Scatter plots of 100 viewpoint estimates for the viewpoint shown in the foreground of
Figure 4.7. The plot on the left is the result of localizing using a good landmark configuration.
The plot on the right is the result of choosing configurations at random. The map boundaries were
427890E, 4482180N by 452160E, 4498320N UTM coordinates. The maps are shown with east
toward the top.

of five landmarks. A random error with a uniform distribution bounded by ���� of visual angle
was added to all angle measures. Figure 4.8 shows scatter plots for the run which was done using
the configuration shown in Figure 4.7 with actual viewpoint at the star in the foreground. The plot
on the left is the result of using a good landmark configuration to localize. The plot on the right
is the result of choosing configurations randomly. Table 4.6 shows mean distance and standard
deviation in meters from actual viewpoint for a sampling of runs done on the map in Figure 4.9,
including the run plotted in Figure 4.8. The wise choice of landmarks consistently performed better
than a random choice.

Although these errors may seem large, two things should be noted:

� More accurate sensing will result in tighter error bounds with the wise choice continuing to
perform better than a random choice of configurations.
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Figure 4.9: The labeled stars are the locations from which the localization runs summarized in
Table 4.6 were made.

Good Landmark Choice Random Landmark Choice
Label Location Mean Dist Std Deviation Mean Dist Std Deviation

1 430560E,4494240N 1264.89 513.12 3237.74 2726.13
2 430620E,4488210N 1142.44 670.81 3136.97 2520.50
3 438840E,4486290N 402.73 202.35 688.74 478.83
4 445830E,4487340N 1368.04 1136.07 2876.42 3288.25
5 443460E,4496760N 987.45 358.96 1185.76 819.96

Table 4.6: Results of a sampling of localization runs using the map shown in Figure 4.9. The labels
refer to the labeled points in Figure 4.9. Each run was of 100 iterations. The map boundaries were
427890E, 4482180N by 452160E, 4498320N UTM coordinates.

� Distances are large in large-scale space. The visual angle measure to landmarks is a global
constraint. After the viewpoint has been estimated to a general area, local constraints can
provide the necessary information for further localization. The smaller that area is, the more
successful those local constraints will be.

4.2.4 Experimental results for localization while moving

A moving navigator is faced with a double challenge: not only is there error in visual angle
estimate, but also error in movement. As in the static localization, it is assumed that landmarks are
point features and can be ordered, that the navigator is traveling on terrain (as opposed to being
in space), and that perfect measurement of the visual angles to three landmarks will provide exact
localization.
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The performance of the algorithm was again compared with randomly choosing landmarks to
be used for localization. All experiments were run in simulation using real topographic data. It
was assumed that the navigator had a map of the area and knew map locations of points which
defined both the path and the landmarks as well as the order of landmarks with respect to initial
navigator location. Results for one example are shown in Figure 4.10 and in the sequence of
frames in Figure 4.11. Each frame in this example represents an area approximately 18 by 12
kilometers with the lower left corner corresponding to UTM coordinates 427020E, 4497780N,
southeast of Salt Lake City, UT. North is to the left of each frame, and east is toward the top. All
landmarks are mountain peaks which are visible from the given path.� As in the static localization
experiments, a small set of landmarks was used, with additional landmarks being identified when
needed. The eight landmarks used for these trials provided 56 different combinations of ordered
landmark triples.

Consider two navigators moving along a path toward a goal. They have identified visible
landmarks on a map and know the left to right order of those landmarks. Both begin by using
their knowledge of landmark order to determine the smallest orientation region in which they are
located. They use the landmarks which form that region to estimate their initial location. Those
three landmarks are shown as triangles in Figure 4.10. The estimated location (the same for both
navigators) is shown by the empty square. The desired path is shown by a dotted line. The goal is
marked by a star. The sequence of frames in Figure 4.11 show each step as the navigators progress
toward the goal. A configuration of three landmarks to use for localization (triangles) is chosen.
The viewpoint (the empty square) is estimated and a move is made toward the next path point
(the line ending in a solid square). The sequence on the left shows a wise choice of landmarks.
Landmarks are chosen randomly in the sequence on the right.

Figure 4.10: The eight points at the top of the figure represent the eight landmarks used for
localization. Both navigators start at the solid square on the lower left. The viewpoint is estimated
(the empty square) using the three landmarks (triangles) which produce the smallest orientation
region. The desired path is shown as a dotted line. The goal is marked by a star.

The landmarks used by the navigator on the right in the first frame are not as widely spaced as
those used on the left. In addition, the center landmark lies behind (with respect to the navigator)

�Landmark locations and elevations were taken from USGS 30m DEM data.

57



the line joining the outer two landmarks whereas the center landmark on the left lies in front of
that line. These conditions result in a larger area of uncertainty for the configuration on the right
and somewhat poor localization. This error is made up for in the second frame, but a large error in
estimation occurs in the last frame. The reason for this is that the actual navigator location (from
which the estimate was made) and the three landmarks chosen are very close to being on a single
circle. The visual angles themselves in the corresponding third frames are quite similar: ��� and
��� on the left and ��� and ��� on the right.�

Error Bounds: ���� Angle ���� Angle ���� Angle
0 Move 0 Move ���� Move

Mean Extra Wise Landmark Choice 344 2883 474
Distance Random Landmark Choice 4273 18657 4576
Mean Distance Wise Landmark Choice 452 513 387
to Path Random Landmark Choice 1106 1227 861
Mean Distance Wise Landmark Choice 711 1166 769
to Goal Random Landmark Choice 3239 4781 3290

Table 4.7: Results after 100 trials. The total path length was 11352 meters. All distances have
been rounded to the nearest meter.

In order to illustrate this approach, simulations were run using a multiplicative error, uniformly
distributed over a fixed range. The three pairs of frames in Figure 4.12 show navigator positions
for 50 trials, assuming a uniform distribution of error within ���� in visual angle measure and
no error in movement, error within ���� in visual angle measure and no error in movement, and
error within���� in both visual angle and direction and distance of move.� The clustering around
the path points is quite marked on the left, the result of using the algorithm to choose landmark
configurations.

Table 4.7 gives the results for all three cases after 100 trials each. The distances have been
rounded to the nearest meter. “Mean Extra Distance” is the average number of meters � total path
length that each navigator traveled. Due to the fact that paths in unstructured environments are
seldom straight, total distance traveled does not necessarily reflect how well the navigator stayed
on the desired path. For that reason, distance of each path segment of the desired path to the
corresponding path taken was also recorded. The perpendicular distance of the midpoint of the
desired path segment to the path segment taken was computed for each segment. The average of
all these distances is given in the table as “Mean Distance to Path”. This gives an indication of
the lateral distance of each navigator to the desired path. “Mean Distance to Goal” is the average
distance to the goal. The navigator which used the algorithm traveled less, remained closer to
the path and ended closer to the goal than the second navigator. It is important in this type of

�The elevation of a landmark affects the visual angle measure. That is why the sums of the angles are not equal
even though the outer landmarks are the same.

�A point was picked from a uniform distribution within a circle of radius ��� of path segment length around the
desired path point.
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Figure 4.11: The sequence on the left shows the path taken by the navigator using the algorithm.
The sequence on the right shows the path taken when landmarks used for localization are chosen
randomly. The landmarks used for localization are shown as triangles. The desired path is a dotted
line. The path taken is a solid line. The viewpoint is estimated at the empty square, and the
navigator moves to the next path point (the end of the solid line furthest to the right).
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Figure 4.12: After fifty trials, clustering on the left shows how better localization results when
landmarks are chosen wisely. The error bounds were ���� in visual angle for the top pair of
frames, ���� in visual angle for the second pair of frames, and ���� in both visual angle and
direction and distance of move for the third set of frames.
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environment that, when better localization at the goal is needed, the navigator is close enough to
that goal to exploit local constraints. The navigator who chose landmarks wisely is close enough to
use local constraints in all three sets of trials. It is questionable if the second navigator, averaging
a minimum of two miles away from the goal, will be able to take advantage of such constraints.

4.2.5 Adding new landmarks

For the example in Section 4.2.4, all landmarks were initially identified and matched to the map.
The landmarks were also all on the navigator’s left as it moved. It is often the case that new features
to be used for localization must be added as movement continues. This is almost always true when
distances are long or movement is through an area such as a canyon with landmarks on both sides of
the path. It would be to the navigator’s advantage to look for new landmarks which would provide
the best localization. This would also be an appropriate strategy to be used in the placement of
synthetic landmarks such as beacons. Thus, whether placing beacons to be used for localization
or identifying new natural landmarks, the cost can be reduced significantly if locations which will
provide good localization are chosen. Turning again to the example of the desert ant, Cataglyphis
economizes on what it learns about its surroundings. It learns only significant landmarks and no
more than are necessary to stay on course. It does not learn the complete topography of a large
area [Collett et al., 1992]. The results of the analysis in Chapter 3 can be used to choose areas on
the terrain map in which to look for landmarks.

Consider two navigators following the path shown in Figure 4.13.	 Their landmarks are
mountain peaks. As they move along the path, some landmarks are no longer visible and new ones
are identified. They start at the square shown at the bottom of each frame. Their goal is to reach
the star at the top. They have identified the seven landmarks marked in the top two frames, chosen
the landmarks marked by triangles to estimate location and moved along the solid line to the next
dark box. The navigator on the left made a wise choice of landmarks with which to localize, and
stayed closer to the path as a result. At this point, they take another image. The two landmarks
on the far right are no longer seen in the image, and new landmarks appear. The navigator on the
left looks for a landmark in the same direction as the next path point. It identifies and uses the one
marked by the center triangle on the left side in the second set of frames, knowing that it should get
good two-dimensional localization with a landmark pushed so far back from the ones it has already
identified and good lateral localization with a landmark lying in the same direction as the next point
on the path. The navigator on the right identifies all the peaks it sees in the image before it picks a
triple and moves. Due to the fact that in the simulated runs, that navigator picks a random triple,
it happens to pick a triple from the pool of landmarks it had already identified. It could have not
identified any new landmarks before it moved. Whatever the scenario, it was in a position where
none of the known landmarks was very good for localization and it did not do anything to improve
the situation. As can be seen in the second set of frames of Figure 4.13, the navigator on the left
traveled less distance, remained closer to the path and ended closer to the next path point. It also

�They are using the same map as in Figure 4.7 and are moving through the canyon which runs up the center of the
map.
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Figure 4.13: An example of two navigators traveling toward a goal. They begin by picking 3
landmarks with which to localize, shown by the triangles in the top set of frames, and move along
the dark line to the second dark box. They then take a new image. The navigator on the left looks
for an additional landmark in a “good” place, and finds the one marked by the center triangle on
the left of the second set of frames. The navigator on the right identifies all new landmarks and
randomly picks a triple. The result of their next move is shown in the second set of frames.
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spent minimal time identifying new landmarks because it knew where the best place was to look
for them.

Figures 4.14-4.16 show the results after 50 trials for the same multiplicative error amounts used
in the example shown in Figure 4.12, a uniform distribution of error within ���� in visual angle
measure and no error in movement, error within ���� in visual angle measure and no error in
movement, and error within ���� in both visual angle and direction and distance of move. Note
that no other heuristics, such as knowledge of orientation region, were used. Thus, outliers are
present on both the left and the right. The visual angles were, in general, larger than those in
Figure 4.12, producing very large absolute errors for the given multiplicative error amounts. In
spite of that, better clustering is apparent on the left, where the heuristic was used. Table 4.8 gives
the results for all three cases after 100 trials each. The distances have been rounded to the nearest
meter. The table is labeled in exactly the same way as Table 4.7, which gave the results for the
example in Section 4.2.4.

Figure 4.14: Results after 50 trials with error bounds of ���� in visual angle measure. The
heuristic is used for choosing landmarks in the frame on the left.
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Figure 4.15: Results after 50 trials with error bounds of ���� in visual angle measure. The
heuristic is used for choosing landmarks in the frame on the left.

Figure 4.16: Results after 50 trials with error bounds of ���� in both visual angle measure and
the direction and distance of the move. The heuristic is used for choosing landmarks in the frame
on the left.
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Error Bounds: ���� Angle ���� Angle ���� Angle
0 Move 0 Move ���� Move

Mean Extra Wise Landmark Choice 2969 4522 4764
Distance Random Landmark Choice 5430 8070 5379
Mean Distance Wise Landmark Choice 687 964 710
to Path Random Landmark Choice 871 1302 998
Mean Distance Wise Landmark Choice 761 1438 900
to Goal Random Landmark Choice 1177 1838 1215

Table 4.8: Results after 100 trials with the navigator traveling through the area containing the
landmarks. The total path length was 19490 meters. All distances have been rounded to the nearest
meter.

4.3 Localizing to a path

4.3.1 Pursuing projections

Section 4.2.1 described how heuristics can be used to choose landmarks for localization which
reduce the error in location estimate. It is just as important, if not more so, to localize to a path.
An autonomous robot following a path could err in estimating where it is on the path and still
successfully reach its goal, but a poor estimate of lateral distance from that path might have severe
consequences. This is particularly true in an outdoor, unstructured environment where straying
from a path could easily lead to vehicle destruction.

Techniques frequently applied to statistical pattern recognition problems can be used to develop
heuristics for choosing landmark configurations which will produce good path localization. A
popular method of analyzing multivariate data is to find a low-dimensional projection which will
reveal characteristics which are not apparent in the higher dimension. This process is aptly termed
“projection pursuit” because the direction in which the projection is to be made must be determined
[Diaconis and Freedman, 1984, Friedman, 1987, Intrator, 1992, Intrator, 1993]. For many high
dimensional data clouds, the majority of the lower dimensional projections are approximately
Gaussian. In this case, the interesting information in a pattern recognition problem is obtained by
projecting the data onto an axis so that a single Gaussian distribution is not produced. However,
the opposite can also be true. Diaconis and Freedman [Diaconis and Freedman, 1984] showed
that there are classes of data sets where the interesting projections are the ones which are close to
Gaussian. It is this type of projection which will be pursued herein.

The error in location estimate can be divided into two components: error in lateral distance
from the path and error along the path. As shown in Figure 4.17, one estimate of location can
be closer to the true location than another but have greater error in lateral distance from the path.
Distance and direction of movement are based on that estimate. The navigator will remain closer
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Figure 4.17: When the navigator is trying to follow the path toward the goal, Estimate 1 is closer
to actual location but Estimate 2 is closer to the path. The dashed lines show computed paths from
the two estimated locations. The solid lines show actual paths. The resulting locations are shown
by empty circles. If the goal is to stay as close to the path as possible, Estimate 2 is preferable to
Estimate 1.

to the path when the error in estimate of lateral distance from the path is minimal. To find good
configurations for path localization, the two-dimensional area of uncertainty can be projected into
one-dimensional space. Knowledge of one-dimensional distribution is then used to chose a triple
of landmarks which will provide good path localization. Whereas in classical projection pursuit,
the two-dimensional data cloud is given and an appropriate one-dimensional projection must be
found, this “inverse” problem can be described as finding a configuration so that the resulting
two-dimensional data cloud produces the desired projection onto a given axis.

Consider the area of uncertainty shown in Figure 3.21. Assuming uniform distribution of error
in visual angle measure, each small point represents 1 of 10,000 iterations. The true viewpoint is at
the large black point. Although there is no central tendency in the two-dimensional distribution, the
distribution of points along both the x and y axes, as shown in the graphs at the top of Figure 4.18
show a definite central tendency.

However, if the robot is heading at a ��� angle counter-clockwise from the positive x-axis, the
distribution of its location, as shown in the graph at the bottom of Figure 4.18, is close to uniform
across the path. Thus, whether or not there is any central tendency in a one-dimensional sense
depends on the direction of the one-dimensional slice.

A second example in Figure 4.19 shows an elongated area of uncertainty. The landmarks
used for localization are at A, B, and C. The error bound was ���� of the visual angle measure.
The actual viewpoint is at the white dot surrounded by the area of uncertainty. When the area is
projected onto an axis perpendicular to path P1, a much smaller variance results than when it is
projected onto an axis perpendicular to path P2. Although the actual error distribution is the same,
a navigator would have better localization to path P1 than to path P2.

The goal: to find an area of uncertainty which has a Gaussian distribution with small variance
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Figure 4.18: Distribution of points along x-axis, y-axis and along an axis rotated ��� counterclock-
wise from the x-axis.

when projected onto an axis perpendicular to the path direction.

There are two geometric properties which must be considered when pursuing projections:

� The smaller angle between the path and the axis of the orientation region, “axis” being the
line passing through landmark B and the midpoint of line segment AC. This angle can be
measured exactly with knowledge of the landmark configuration and the path location.

� The ratio W/L where L = the diameter
 of the area of uncertainty in direction of landmark
B and W = the diameter of the area of uncertainty perpendicular to direction of landmark B.
This ratio gives a measure of the “fatness” of the area of uncertainty. An area such as that
in Figure 4.19 is “thin”. In most cases, the ratio W/L can be estimated with knowledge of
landmark configuration, the path location and the orientation region in which the viewpoint
lies. This ratio was used in Chapter 3 to measure the eccentricity of an area of uncertainty.

The properties are not independent. The goodness of a particular configuration in terms of local-
ization to path depends on both.

�“Diameter” is defined as length of the longest line segment joining two points on the boundary of the area of
uncertainty in a specified direction.
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Figure 4.19: The landmarks used for localization are at A, B, and C. The error bound was ����
of the visual angle measure. The actual viewpoint is at the white dot surrounded by the area of
uncertainty shown by the black scatter plot of possible points. When the navigator moves to the
black square, final location will be within an area matching the area of uncertainty centered at the
square.

4.3.2 Effect of path-axis angle

To show how the angle between the path and the axis of the orientation region affects path
localization, two sets of simulations were run, the first using the configuration on the left and the
second using the configuration on the right of Figure 4.20. In each set of simulations, trials of 1000
runs each were done. The visual angles to all configurations were the same. The location was
estimated and a move was made toward the goal.

A

B

C

A

B

C

Figure 4.20: Configurations used to show how orientation to path affects path localization. Land-
marks are at A, B and C. Viewpoint is at the white dot. Three orientations are shown for the left
configuration in Figure 4.21 and for the right configuration in Figure 4.22.

The only parameter which varied was the angular relationship of the configuration to the path
direction. A uniform error bound of ���, ��� and ��� of the visual angle measure was introduced.
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Figure 4.21: The center landmark was 225 linear units and the line joining the outer landmarks
was 250 linear units from the actual viewpoint for all three configurations. The angle from the
viewpoint to all outer landmark pairs was ���	�. As shown in Table 4.9, path localization is best
for Configuration 1.

The results for the first set of simulations are shown in Table 4.9. The positions of the configurations
are shown in Figure 4.21. Although, as expected, the mean distance to the goal does not differ as
the configuration is rotated, Configuration 1 provides better path localization than Configuration
3. Results for the second set of simulations are shown in Table 4.10. The configuration positions
are shown in Figure 4.22. In this case, Configuration 3 provides better path localization than does
Configuration 1.

Config. Path/Axis Error Mean Dist. Mean Dist.
Angle in Angle to Goal to Path

1 �� 10% 18.27 9.43
20% 36.58 19.27
30% 55.00 29.80

2 ��� 10% 17.99 11.74
20% 36.00 23.54
30% 54.11 35.40

3 ��� 10% 18.17 12.90
20% 36.35 25.72
30% 54.58 38.43

Table 4.9: Results of simulated trials using the three configurations shown in Figure 4.21. The
distances are given in linear units.
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Figure 4.22: The center landmark was 200 linear units and the line joining the outer landmarks
was 300 linear units from the actual viewpoint for all three configurations. The angle from the
viewpoint to all outer landmark pairs was �	�	�. As shown in Table 4.10, path localization is best
for Configuration 3.

Config. Path/Axis Error Mean Dist. Mean Dist.
Angle in Angle to Goal to Path

1 �� 10% 13.62 10.89
20% 27.45 21.95
30% 41.72 33.32

2 ��� 10% 13.47 8.87
20% 27.16 17.88
30% 41.29 27.19

3 ��� 10% 13.57 5.46
20% 27.31 11.02
30% 41.43 16.83

Table 4.10: Results of simulated trials using the three configurations shown in Figure 4.22. The
distances are given in linear units.
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4.3.3 Effect of W/L ratio

Changing the angle between the path and the axis of the orientation region changes the path
localization but how it is changed depends on the shape of the area of uncertainty, which can be
estimated by the eccentricity ratio W/L, which was described in Section 3.1.2. In most cases, an
estimate of this ratio can be obtained in the following way: for any landmark triple A, B and C,
the circle through A, B and the viewpoint V intersects the circle through B, C and V at points B
and V. It is well known [Pedoe, 1970] that when two circles intersect, there is only one angle of
intersection, the same at both intersection points. Thus, the angle at V equals the angle at B. The
landmark pair boundaries, as described in Section 3.1, joining AB and BC (and intersecting at B)
will be used to put a bound on the angle of intersection of the circles passing through A, B and V
and B, C and V.

If landmark B lies closer to the viewpoint than does the line segment joining landmarks A and
C, as shown in Figure 4.23a, the angle of intersection of the circles, equal to the angle of intersection
of the tangents (dashed lines) at that point, cannot be larger than the angle of intersection of the
LPB’s. This is due to the fact that the limits of the slopes of the chords AB and BC as A and C
approach B equal the slopes of the tangents at B. In this case, which can easily be determined when
orientation region is known, an upper bound is placed on that angle. Thus, the angle of intersection
of the circles at V, which is unknown, is bounded above by the angle of intersection of the LPB’s,
which is known.
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CC

VV

θθ
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θθ

aa)) bb))

AA’’ CC’’

Figure 4.23: In a), the angle � of intersection of the circles cannot be greater than the angle of
intersection of the LPB’s. In b), the angle � of intersection of the circles cannot be less than the
angle of intersection of the LPB’s.

If landmark B lies further from the viewpoint than does the line segment joining landmarks A
and C, A and C can lie on the inner circular arcs as shown in Figure 4.23b, but they could also lie
on the outer circular arcs, as do A� and C� in Figure 4.23b. When they lie on the inner circular arcs,
the angle of intersection of the circles cannot be less than the angle of intersection of the LPB’s.
In this case, a lower bound is placed on that angle. If they lie on the outer circular arcs, the angle
of intersection of the LPB’s cannot be used as a bound on the angle of intersection of the circles.
The tangents are not limits of the chords because the chords are on one circle and the tangents are
on the other.
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To determine if A and C lie on the inner circular arcs, resulting in a lower bound for the angle of
intersection of the circles, consider a circle passing through the three landmark points, as shown in
Figure 4.24. The measure of the inscribed angle � can be easily computed from landmark positions.
For any viewpoint inside the circle, such as V� in the figure, the visual angle to landmarks A and C
is greater than �. For any viewpoint outside the circle, such as V� in the figure, the visual angle to
A and C is less than �. If the viewpoint was on the circle, the configuration would be single circle
(i.e., all landmarks and viewpoint on one circle). Since it is assumed that anything close to a single
circle configuration has already been eliminated, it follows that the estimate of the visual angle to
A and C will either be significantly less or significantly greater than �. Once the viewpoint location
in relation to the circle is determined, the inner-outer circular arc question is also answered. As
shown in Figure 4.24, a circle through A, B and V� is smaller than the circle through A, B and C,
with the result that C is then on the outer circular arc. A circle through A, B and V� is larger than
the circle through A, B and C, with the result that C is then on the inner circular arc. The same
argument holds for the circle through B, C and either Vi.
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VV11
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γγ

Figure 4.24: Visual angle to A and C is larger than � at V� and smaller than � at V�.

The angle of intersection of the circles at V affects the ratio W/L because the area of uncertainty is
formed by intersecting thickened rings surrounding the circles, the thickness of the rings determined
by the amount of error (See Section 3.1). As shown in Figure 4.25, the ratio W/L is proportional
to the angle of intersection of the circles. Landmarks are at A, B and C. The area of uncertainty
surrounds the actual viewpoint V. If the angle of intersection of the circles is small, the area of
uncertainty will be “thin”. If the angle is large, the area will be “fat”. Thus, the limits imposed by
the LPB’s provide a heuristic for estimating the shape of the area of uncertainty. A small upper
bound produces a small angle of intersection of the circles which, in turn, produces a “thin” area
of uncertainty.

Figure 4.26 shows the shapes of different areas of uncertainty within given orientation regions,
including those formed by the configurations in Figure 4.20. Although the areas change shape
somewhat according to the viewpoint location, the general shape is the same within each area.
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Figure 4.25: The angle of intersection of the circles affects the shape of the area of uncertainty.

To summarize, it can be determined, using landmark configuration alone, whether or not the
LPB’s provide a bound for the angle of intersection of the circles. When they provide an upper
bound, the more acute the angle of intersection of the LPB’s, the smaller the ratio W/L will be,
providing good path localization for a path heading toward landmark B. When they provide a lower
bound, the more obtuse the angle of intersection of the LPB’s, the larger the ratio W/L will be,
providing good path localization for a path heading perpendicular to landmark B. This information
will be used to choose landmark configurations which will give good path localization.

4.3.4 Choosing good configurations

The function described in Section 4.2.1 was first used to rank configurations for general goodness,
based on the size of the area of uncertainty.

The original function was then augmented with an additive factor p to weight path goodness.
This factor was added only if the goodness measure for point localization was above a given
threshold. In this way, the path goodness was not able to add weight to a configuration which was
generally poor for localization. This factor is determined in the following way. If an upper bound
exists:

p � k � � �

� � � 
 �
� �

��

� 
 �
� � �

�� �
��

�
��

If a lower bound exists:

p � k � ��� � � � �
	�

where � is the angle between landmarks A and C with vertex B and � is the computed angle
between the axis of the orientation region and the path.

The first factor of the upper bound function, k, is a weighting factor which was set to 1 for the

experiments described here. The third factor,
�

�� �

�
�

�
��

, is the multiplicative inverse of the second

factor when it reaches its maximum, i.e., when either angle � or angle � are 0. The sole purpose of
this factor is to force the range of the function to be ��� ��. The second factor, which is responsible

73



A

B

C

A

B

C

A

B

C

Figure 4.26: In these three examples, four different viewpoints are chosen with each configuration.
The LPB’s provide an upper limit on the angle of intersection of the circles in both top examples.
They provide a lower limit in the example at the bottom, where the circle through A, B and C has
been added to show how the four viewpoints lie outside the circle.

for the rating, equals 0 when angle � � �

� and angle � � 	. In such a case, the upper bound
exists, but it is large. In addition, the path is perpendicular to the axis of the orientation region.
When such conditions hold, this factor should not, and does not, add to the goodness measure
of the configuration. On the other hand, when angle � is small, providing a small upper bound,
and/or angle � is small, the function should affect the goodness measure of the configuration. A
three-dimensional plot of this function is shown in Figure 4.27.

The rationale for the lower bound function is that a large lower bound is best for path localization
when the path is perpendicular to the axis of the orientation region. When angle � � �, p � �. As
angle � approaches �

� , p approaches k� �

�
. At the same time, angle � is ranging from a theoretically

infinitesimal lower bound when landmark B is pushed back an infinite distance from the viewpoint
to 	 for a straight line configuration of landmarks. This function also ranges in value from 0 to 1,
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Figure 4.27: When an upper bound exists and the weighting factor k � �, the p function ranges
in value from 0 to 1, depending on the measure of �, the angle between landmarks A and C with
vertex B and �, the angle between the axis of the orientation region and the path.

with 0 being poor for path localization and 1 being good. The weighting factor k was set to 1, as
for the upper bound function. In either case, if path localization is not desired, k � �.

4.3.5 Experimental results

A sequence of simulations were run, using U. S. Geological Survey 30 meter Digital Elevation
Map (DEM) data with a goal of keeping the robot navigator as close to the path as possible. The
contour map in Figure 4.28 shows the location of one set of runs. The area is approximately 21
kilometers in the east-west direction by 14 kilometers in the north-south direction just northeast of
Salt Lake City, Utah. The UTM coordinates of the southwest corner are 426180E, 4511040N. The
path, shown on the map, runs along the banks of the creek through City Creek Canyon. The start
position and each point at which a new image was taken are shown by squares. The goal is marked
by a star. The landmarks are marked by filled black circles. The panorama in Figure 4.29 is the
terrain viewed from the nearest high point to the robot start position. The canyon is visible in the
center frame.

The assumption was made that the point landmarks (in this case, mountain peaks) had been
identified and matched to the map. The landmarks used for localization were chosen only from
those visible at any given location. The rugged terrain coupled with the proximity of the path to
the creek makes this a classic example of the type of situation where path localization is important.
The total length traveled is about 8000 meters or 5 miles. In each run, the navigator takes a new
reading at approximately 1 mile intervals. Uniform error bounds of ���, ���� and ���� in
visual angle measure were introduced. Due to the spread between most landmarks, these limits
produced errors in angle measure which were quite large in angular value. For this particular set of
experiments, 60% of the possible configurations were bounded either above or below. Only those
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Figure 4.28: A contour map of the area in which simulations were run. The path is shown by a
heavy black line. The start position is at the left. The goal is at the star.

Figure 4.29: Terrain view from nearest high point to start position. The entrance to City Creek
Canyon is visible in the center frame.

configurations which had a goodness measure greater than 1 were considered for the additional
path weighting. Although this threshold worked well in the simulations, it would also be possible
to choose, for example, the configurations which were in the top ��� of the rankings for point
localization, eliminating the need for a numeric threshold. The constant k was set to 5. Again,
although this worked well in all of the simulations, its value could also be chosen based on the
range of goodness measures for point localization. The results are in Table 4.11.

Error in Heuristic for Choosing Landmark Triple
Angle None used Point only Point and Path
5% 160 m. 90 m. 70 m.
10% 270 m. 205 m. 162 m.
20% 426 m. 408 m. 393 m.

Table 4.11: Results of runs through City Creek Canyon. The mean distance to the path (in meters)
is given for three different bounds in angular measure error. Fifty trips were recorded with each
error amount.

Adding the heuristic for path localization did not change total distance traveled. The final
distance from the goal averaged ��� better when the heuristic was used. As the error bounds on
the angular measure increase, the areas of uncertainty increase in size, resulting in the possible
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estimates being further from the true location and, thus, further from the path. When errors are
large, areas of uncertainty are not long and narrow, so few areas are good for path localization. For
that reason, the increased error not only causes an increase in the mean distance from the path but
also less improvement from using a path heuristic.

In summary, an inversion of the classic statistical projection pursuit problem shows that simple
heuristics can be used to keep a robot which is navigating using only relative angle measure closer
to its path. Such heuristics are easy to implement and need only be applied if the configuration
of landmarks has already been judged good for point localization, keeping the added computation
to a minimum. Experiments using USGS 30m DEM data have shown that, even with only a few
landmarks from which to choose configurations, path localization can be improved by pursuing
good projections.
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Chapter 5

Conclusion

5.1 Contributions

The results of this work have shown that:

� The amount of the error occurring in a localization process using angular measurements
to features depends heavily on which features are used. An example of how different
features with identical angular measurements to those features and identical error bounds on
visual angle measure can produce significantly different areas of uncertainty was shown in
Figure 3.13.

� The amount of the error occurring in such a localization process is not a function of the
number of features used. The key point here is that the viewpoint is not known, so the area
of uncertainty is not known. The problem is not one of intersecting areas of uncertainty, but
of averaging multiple viewpoint estimates. Unless numerous estimates are made, averaging
can worsen the final estimate. This problem was discussed in Section 4.2.2.

� It is possible to develop simple heuristic functions for choosing features for localization
which will significantly decrease error in that localization. This applies not only to choosing
features in the view which have been previously matched to a map, but to choosing directions
in which to look for new features. One such function was developed and tested in simulation
on real terrain data, using mountain peaks as features. These experiments in localizing to a
point were described in Section 4.2.

� It is possible to decrease localization error in a particular direction. A landmark triple which
produces a distribution with a small variance when projected into one-dimensional space
in a particular direction is “pursued”. For a robot attempting to stay close to a path, the
most favorable direction for such a projection would be perpendicular to the direction of
movement. Experiments in localizing to a path were discussed in Section 4.3.
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� If features have been identified but knowledge of left to right order in the view is unknown,
simple steps can be taken to aid in determining that ordering. Trials were run introducing
varying amounts of error and different feature configurations. This work was summarized in
Section 3.6.

5.2 Future work

The three main areas summarized below hold possibilities for future work. The first, outlined
in Section 5.2.1, is a continuation of the navigation work described in this thesis. The second
is an expansion of the preliminary analysis which has already been done in the area of object
recognition. This analysis is described in Section 5.2.2. The third, outlined in Section 5.2.3, is a
natural extension of these same ideas in the area of camera calibration.

5.2.1 Navigation

In the area of navigation, there are five immediate extensions of this work which should prove
interesting:

1. Experiments should be run with a robot navigating in an actual unstructured outdoor envi-
ronment both on terrain and underwater.

2. Experiments should be run in an indoor environment which is structured but large. Robot
runs were made indoors, but were done so in such a confined space that localization error
was not a major problem. The time to rate and choose landmark triples is not well spent if
all triples produce good localization.

3. The symmetry properties described in Section 3.1.2 have not been exploited. It would be very
interesting to explore methods of using the symmetry properties of an area of uncertainty to
aid in predicting location.

4. The navigating skills of cataglyphis bicolor should be analyzed carefully with a focus on
discovering which of them would be well suited for use by an autonomous robot.

5. The extraordinary navigation skills of the Micronesians were described in Chapter 2. Several
land-based ancient cultures are also known for their ability to navigate without sophisticated
instruments. It might be just as interesting to investigate these navigational techniques as
was the work of [Pick et al., 1993] with modern, experienced land navigators.
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5.2.2 Object recognition

Several extensions to what has been done here exist in the area of pose estimation in model–
based object recognition. In most cases, the goal in object recognition is not necessarily to
reconstruct a 3D scene, but to identify objects in it. The image is searched for matches to models
in memory in an attempt to identify those objects. After image features (e.g., points, edges)
have been found, combinations of the features are matched against transformations of the stored
models. A common domain used in model–based object recognition is that of two–dimensional
rigid objects in a three–dimensional scene. The features to match are points and a bounded
amount of sensing error is assumed. Three non–collinear model points are transformed, usually
by orthographic projection plus scale (equivalently, by an affine transform [Huttenlocher, 1988])
then matched against triples of non–collinear image points to determine a model pose. This pose
is then used to find the location of additional model points in the image [Fischler and Bolles, 1981,
Huttenlocher and Ullman, 1990]. Lamdan, Schwartz and Wolfson have shown that a set of three
noncollinear model points m��m��m� can be used as an affine basis such that all other model
points mi are expressed as:

mi � �i�m� �m�� 
 �i�m� �m�� 
m�

where (�i� �i) are the affine coordinates of mi. The affine coordinates are invariant under affine
transforms but they are dependent on the three points which were chosen for the basis [Lamdan et
al., 1988].

As in visual navigation, there is sensing error in the presumed location of image points. Jacobs
[Jacobs, 1991] assumed a sensing error in image point locations up to � in any direction, such
that the correct model pose would align each basis point within a circle of radius � around the
corresponding image point. After using model points m��m��m� and image points i�� i�� i� to
determine an affine transform, he applied that transform to a fourth model point m�. He then
showed that the potential location of the fourth image point, i�, will lie within a circle of radius
�j�� �����j
 j��j
 j��j
��� around the transformedm�. The size of this circle does not depend
on the transformations which have been made, but only on the affine coordinates of m�.

However, just as the configuration of three landmarks can have a dramatic affect on the size
of the area of uncertainty, the three points chosen for the basis will affect the size of the circle of
uncertainty. Since the affine coordinates of a point are invariant under affine transforms and circle
radius depends only on the affine coordinates, a wise choice of model basis points can significantly
limit the size of the area in which to search for a match. Limiting the size of this area has two
advantages: less time is required to search a smaller area and it is less likely that an incorrect match
will be made.

As an example, consider the object in Figure 5.1. Let m� � ���� 	�, m� � ��� ��, m� � ��� 	�,
m�

� � ���� �� and m� � ��� ��. Without loss of generality, we can assume that no transformation
was required to line up the model with the image. If m��m��m� are used as a basis, then

m� � ��� �� � �������� 
 ����� �� 
 ���� 	�
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m1

m2

m3

m4

m2’

Figure 5.1: Assuming that sensing error is within a circle of radius � within each basis point, the
dark circle around point m� surrounds the search area when m��m��m� are used as a basis. The
light circle surrounds the area when m�

� replaces m�. The area is significantly reduced in the second
case.

� �� � �� �� � ��
� radius � �j�� � 
 �j
 � 
 � 
 ��� � 	�

If m��m
�

��m� are used as a basis, then

m� � ��� �� � �������� 
 ����� �� 
 ���� 	�
� �� � ���� �� � ����

� radius � �j�� ���� ����j 
 ��� 
 ���� 
 ��� � �����

Thus, the size of the circle of uncertainty can be significantly affected by the choice of basis
points.
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It is interesting to note that the size of this circle can easily be determined based on the area in
the affine plane in which the affine coordinates of the point lie. Consider the numbered areas in the
plane of Figure 5.2. The radius of the circle for each of the areas is:

1. ��

2. ����� �

3. ���

4. ��� 
 ��

5. ��

6. ����� ��

7. �����  � ��

ξ + η = 1

η

ξ1

2

3
4

5

67

Figure 5.2: The size of the circle of uncertainty is determined by the area in the affine plane in
which the transformed point lies.

These values can be easily computed from the previously stated general formula [Grimson et
al., 1991]. What is interesting about these values is that areas 4 and 7 are the only ones in which
the size of the circle depends on both affine coordinates of the point. For example, the circle would
be the same size for any point in area 5 for a constant value of . Likewise, any point within area 1
will have a circle of uncertainty of radius ��.

Another interesting question is: what would be the result if the assumed error in each basis
point was not a circle of radius �, but an oval or a crescent or some other shape? Would it, for
example, be possible to choose basis points which would reduce the search area for an edge to a
long narrow strip?
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5.2.3 Camera calibration

Camera calibration in stereo vision provides many of the same problems as navigation and object
recognition. If the camera is calibrated by using 6 known points and their respective images on the
two image planes, the question of how the location of those points affects the error in calibration
parallels that of selecting basis points in pose estimation. An error in estimate of an extrinsic
camera parameter such as pan or tilt will give a result similar to that of a visual angle error in
navigation. [Blostein and Huang, 1987] have derived the probability that position estimate due
to quantization error in triangulation is within a specified error tolerance. They assume uniform
distribution of the possible locations of the 3D point and analyze the effect on the pixel area. The
parallel of this problem to what this research addressed can be seen by comparing Figure 5.3 and
Table 5.1 with Figure 3.20 and Table 3.1 in Chapter 3.

a)

A

P

B

1

2
3

4

Figure 5.3: Uncertainty due to quantization: A and B are the midpoints of the pixels on which the
world point is projected. Actual point projection can be anywhere within the intervals. If A and B
were exact, they would project from point P.

Area Overestimate Underestimate
1 B A
2 A, B —
3 A B
4 — A, B

Table 5.1: Given that the world point is in one of the 4 areas shown in Figure 5.3, whether A and/or
B are under or overestimates of the actual projected image point is shown.
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An analysis of the geometric constraints involved in the use of a third camera should be done.
[Dhond and Aggarwal, 1991] in their cost-benefit analysis of adding a third camera to the stereo
process, mention that the pan and tilt angles of the second and third cameras. respectively, are
usually set equal in magnitude and equal to arctan b

Zmax
where b is the baseline distance and Zmax

the maximum expected depth in the scene. The baselines are also all equal. This situation is full
of possibilities for testing the configurations used in the 2–camera analysis as well as searching for
other geometric properties which could affect stability. The positioning of the three cameras seems
to have been done as a matter of convenience only. How results are affected by that positioning is
a problem which has not yet been addressed.
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Appendix A

Computing the area of uncertainty

The following computation is for the area of uncertainty for an error bound of ���� in the visual
angle measure and a straight line configuration with features one unit apart and the viewpoint one
unit from feature B, as shown in Figure 3.5b. It is assumed that V is at (0,0), A at (1,1), B at (1,0)
and C at (1,-1).

1. Determine equations of the four error circles:
The circle passing through V, A and B has equation �x � ���� 
 �y � ���� � ����� with
center P at (.5,.5). Due to the fact that the inscribed angle at V equals half the central angle,
the isosceles triangle ABP with base AB has altitude d and angle APD equal to � where
� is the visual angle from V to A and B (See Figure A.1). To find the equation of the
error circle through A and B for a 30% underestimate, a new center P� must be found such
that angle AP�D = .7*�. P� will lie on an extension of altitude PD because distance(P�,A)=
distance(P�,B). Thus, tan�� � ��=distance(A,D)/�d 
�d) where �d is the distance from P
to P�.

For this particular example, �=45�, distance(A,D)= .5 and d � ��. Therefore,
tan������� � ������ 
 �d�
� �	�� � ������ 
 �d�
� �d � ���	

Thus, the error circle for a 30% underestimate of visual angle passes through A(1,1) and
B(1,0) and is centered at (.184,.5). By solving the equation ��� ������
��� ���� � r�, the
radius r � ��� is found.

The error circle for a 30% overestimate of � is found as above, using the equation tan���� �
�� � ��������d�. To find the two error circles for angle �, repeat the entire process using
B and C.

The equations for the four error circles for this example are:
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(a) �x� ������ 
 �y � ���� � ������

(� underestimate)

(b) �x� �	���� 
 �y � ���� � ����	��

(� overestimate)

(c) �x� ������ 
 �y 
 ���� � ������

(� underestimate)

(d) �x� �	���� 
 �y 
 ���� � ����	��

(� overestimate)

(The symmetry in the values is due to the symmetric configuration.)

α
∆

A

B

P
D

<-d->
P’
d

Figure A.1: The center P� of the error circle for a 30% underestimate of visual angle � lies on an
extension of the altitude of triangle APB.

2. Determine the intersection of the error circles:
The important point here is to solve for the correct intersections. Referring to Figure 3.5b and
beginning with the intersection point to the left of the viewpoint and proceeding clockwise,
the equation pairs to solve are (a) and (c), (c) and (b), (b) and (d), (d) and (a). Note that each
pair of circles will intersect in two points. However, one of those points is a feature point.
To find the intersection point to the left of the viewpoint, the system :
�x� ������ 
 �y � ���� � ������ and
�x� ������ 
 �y 
 ���� � ������

is solved to get the points (0,1) and (-.632,0). The second point is the one desired. The other
three intersection points are (.109,.454), (.387,0) and (.109,-.454).

3. Graph the arcs:
If the circles are defined parametrically, only a single function is needed for the graphing.
The following calculations are for the arc of circle (a). The equation �x � ������ 
 �y �
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���� � ������ which must be graphed from (-.632,0) to (.109,-.454) is given parametrically
by ����� 
 ��� � cos �� �� 
 ��� � sin �� with � ranging from 	 
 arctan�������	� to
	 
 arctan���������� or 3.69 to 4.63. This process must be repeated for each arc.
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