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Abstract

We apply morphing to the problem of generating the initial mesh for �nite element
simulations� This algorithm reduces mesh adaptation time by integrating physical
and geometric constraints to provide a near optimal initial mesh� We apply this
method to large�scale bioelectric �eld problems involving the complex geometries of
the human body�

Introduction

Over the past two decades� the techniques of computer modeling and simulation have
become increasingly important to the �elds of bioengineering and medicine� Although
biological complexity outstrips the capabilities of even the largest computational sys�
tems� the computational methodology has taken hold in biology and medicine and has
been used successfully to suggest physiologically and clinically important scenarios
and results�

One class of important applications in computational medicine are volume con�
ductor problems which arise in electrocardiography and electroencephalography� The
solution to these problems have utility in de�brillation studies and in impedance
imaging tomography� and they are important in the detection and location of arrhyth�
mias and in the localization and analysis of spontaneous brain activity in epileptic
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patients�� In general� these methods are a form of electric and potential �eld imaging
and can be used to estimate the electrical activity inside a bounded volume conduc�
tor� either from potential measurements on an outer surface or directly from interior
bioelectric sources�

The bioelectric �elds that arise in the human body are� in general� governed by
Maxwell	s equations� Because of the time scale of bioelectric signals within the vol�
ume conductors of the thorax and skull� charge is distributed throughout the volume
virtually instantaneously such that we can invoke a quasi�static approximation� The
bioelectric �elds can thus be described by the Poisson equation for electrical conduc�
tion� if we know the current distribution within the volume� or by Laplace	s equation�
if we know the voltage distribution on a bounded surface� This yields the general
formulation�

r � 
�r�� 
 �ISV 
��

where � is the conductivity tensor� � is the potential� and ISV the cardiac source�
current density� Two primary problems can be formulated from Equation 
��� The
�rst is the direct problem in electrocardiography 
ECG�� given a subset of potentials
on the surface of the heart� or a description of the primary current sources within the
heart� calculate the electric and potential �elds within the body and upon the surface
of the torso� The second is the problem of cardiac de�brillation� given known currents
or voltages which are applied from external sources 
e�g� de�brillation electrodes��
determine the distribution of applied current throughout the heart�

To solve these problems� we have constructed a geometric model of the human
thorax ��� �� from ��� MRI scans recorded in � mm increments� Images were digitized
into a set of discrete contours 
poly�lines� and after some smoothing� additional points
were added between the contours and the images were tesselated into a discrete set of
elements � triangles for two�dimensional models and tetrahedra for three�dimensional
models�

A �nite element 
FE� analysis is then utilized to approximate the bioelectric �elds
throughout the discretized geometry according to 
��� A problem which immediately
arises in constructing such discrete models and the primary topic of this paper is�
how does one know� a priori� what is an appropriate level of mesh discretization

which balances solution accuracy and computational e�ciency� While at this point�
there does not exist an answer to this question� we have taken a step towards seeking
a plausible 
if not optimal� approximation�

Traditionally� in adaptive �nite element methods� one would start with a dis�
cretization of the geometry which conforms to the topology of the solution domain�
Then a �nite element solution would be computed and an error analysis performed to
�nd elements which need re�nement� Additional elements would be included 
or the
order of the basis function increased� and this would continue in an iterative fashion
until some a priori convergence criteria had been reached�

�In this paper� we will focus upon primarily applications in cardiology� but note that the methods

we develop are directly applicable to electroencephalography and other problems in computational

medicine�
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Figure �� Surface boundaries from a single slice of MRI data

Mesh re�nement would be unnecessary if one could somehow guess the �nal mesh
from the start� In the face of complex geometries and inhomogeneities� this seems
to be an impossible task� However� if we could get close in the initial stage� fewer

re�nement steps would be required to reach the �nal stage� For our grid to be nearly
optimal� it must accurately re�ect the geometry and the physics of our system� Ef�
fectively� it must be composed of small patches in the areas of high gradient and
maintain the integrity of all boundaries�

To generate a grid with these properties� we �morph� or interpolate between the
shapes of internal source boundaries and external insulating boundaries� Morphing
provides the geometric characteristics of the mesh� and the rate of the morph controls
the density of the mesh� The intermediate interpolated shapes are resampled in space
and �time� to provide the actual mesh points� For models with simple topologies� this
method produces results similar to mapping methods for grid generation���� However�
as we will demonstrate� the morphing method is also capable of handling domains
with complex topologies�

Methods

As an initial testbed� we have constructed an algorithm to generate meshes for a two�
dimensional slice of our thorax data� A single trans�thoracic slice is taken from the
MRI data� and a mesh is constructed using the boundaries obtained from segmenting
this slice� The tissue boundaries 
body� fat� muscle� lungs and heart� obtained from
one slice of a male patient is shown in Figure �� In two dimensions� the boundaries
of the voltage sources� current sources� internal geometries� and the exterior of the
model are closed planar curves�

A curve in two�dimensional space may be represented in several di�erent ways�
These representations can be divided into three classes� parametric� explicit� and
implicit���� For this application� we will exploit the properties of the implicit repre�
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sentation in order to perform shape interpolation�

Let f� and f� be the implicit representations of two curves� c� and c�� A blend
function between c� and c� can be created by linearly interpolating between them� If
we use t 
for time� as our interpolant� then we can de�ne this resulting blend function
fm as�

fm
x� y� t� 
 
�� t�f�
x� y� � tf�
x� y�

At time t 
 �� fm
x� y� �� 
 f�
x� y�� and at time t 
 �� fm
x� y� �� 
 f�
x� y�� For
� � t � �� there is a smooth transition between f� and f��

Beyond simple geometric shapes� the implicit representation for a curve is usually
not obtainable� This is particularly true for curves which were generated from real
world data� There are at least two methods of obtaining an implicit representation
for a curve from data points�

�� Function �tting� Find Aj� Xj and Yj � such that�

f
x� y� �X
j

Ajq

x�Xj�� � 
y � Yj��

for the known data points�

�� Signed distance function� Let f
x� y� be � � if 
x� y� is inside the polygon
formed by the data points� and f
x� y� � � if 
x� y� is outside that polygon�
f
x� y� 
 � if 
x� y� is on the polygon� jf
x� y�j 
 the smallest distance to
any point on the polygon� Thus f
x� y� is a �signed distance� from the polygon
edges� This method could also be applied to higher order curves such as splines�

We chose the �nd option because of the simplicity of implementation� and it	s
faithful reproduction of the original curve�

Di�erent Distributions

The primary goal is to create an initial mesh which re�ects areas of high gradients in
the domain� while at the same time conforming to the topology of the solution domain�
The boundary conditions and sources give rise to these gradients� For the human
thorax model� the heart is considered to be a voltage source� and the body exterior
an insulating boundary� while any additional de�brillator electrodes are modeled as
current sources� We make the following assumptions about the di�erent boundary
conditions�

�� Dirichlet� Produce gradients which have a �

r
fallo�� meaning that the size of

the elements should be directly proportional to r� This would correspond to
a voltage source in our problem domain� such as the endogenous �elds of the
heart�
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�� Neumann� Speci�ed byr��n 
 f � For our purposes� the Neumann boundary
conditions are used in two di�erent ways�


a� f 
 �� Used to specify an insulating boundary� In this case� the boundary
has no e�ect on the �nal mesh other than shape� The body exterior is an
insulating boundary�


b� f 
 g
x� y�� Used to specify a current source� In this case� the gradients
exhibit a �

r�
fallo� from the boundary� which would make the size of the

elements proportional to r�� De�brillator electrodes are modeled as current
sources�

Thus� the proper distribution for a voltage source 
element size proportional to
r�� would require equally spaced contours� and the proper distribution for a current
source 
element size proportional to r��� would require contours spaced proportionally
to r� The proper distributions are given by the following interpolations�

Voltage source�
tDboundary
x� y� � 
� � t�Dvsource
x� y� 
 �

Current source�
t�Dboundary
x� y� � 
� � t��Disource
x� y� 
 �

where Dboundary � Dvsource and Disource are the signed distance functions for the respec�
tive boundaries�

Consider two circles of radius � and radius �� represented by the implicit equationp
x� � y� �R�

� For a voltage source on the inner circle�

fm
x� y� t� 
 t

q
x� � y� � �� � 
�� t�


q
x� � y� � ��



q
x� � y� � 
� � t�

producing circles of radius � � t�

� For a current source on the inner circle�

fm
x� y� t� 
 t�
�q

x� � y� � �
�
�
�
�� t�

��q
x� � y� � �

�



q
x� � y� �

�
� � t�

�

producing circles of radius 
� � t���
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For problems with non�circular boundaries� these interpolations are used to give
the approximate distributions� If the sources are on the outer circle� di�erent distri�
butions must be formulated�

For a single problem which contains multiple sources of one type� they are com�
bined into a single �metasource� by using the minimum value obtained from each of
the implicit equations�

If a single domain contains both voltage sources 
Dirichlet boundaries�� and cur�
rent sources 
Neumann boundaries�� then the resulting curves must be combined�
Since the interpolation is done di�erently for the two cases� they cannot be combined
into a single �metasource�� Therefore� we combined the two contours at each contour
level� This is done to the implicit representations with the following function�

f
x� y� 
 jfv
x� y�fc
x� y�j Or 
fv
x� y�� fc
x� y��

where the Or function is de�ned as�

Or 
a� b� 


�
�� if a � � or b � �
� if a �
 � or b �
 �

This produces the union of the two curves� with the overlapping region removed�

Building the Mesh

The �rst step in building the mesh is to locate the isocontours� For each t value�
the linear combination of our sources and boundary produces an implicit function
for which we wish to trace the zero�set� Our trace algorithm �nds a point on this
set for each source� and traces along it until the contour is complete� The contour is
then resampled to contain a �xed number of points� We repeat this process for each
isocontour� and �nally utilize a Delauney triangulation method to mesh our points
into an optimal con�guration�

Results

A mesh generated using the morphing algorithm is shown in Figure �� Figure �
shows the same space meshed using evenly spaced points� and Figure � shows this
space meshed using random points� All three mesh discretizes the region between
the epicardium and the torso boundary 
skin� for a single slice of MRI data� The
gray lines show the mesh discretization obtained by each of the methods� and the
dark lines show iso�voltage contours generated from the endogenous �elds of the
heart� The iso�voltage contours on each of the meshes were obtained by solving
Laplace	s equation for electrical conduction using experimentally obtained voltages as
the Dirichlet boundary conditions� Initial simulations show that the mesh generated
using the morphing algorithm is e�ective in reducing the number of iterations required
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to fully adapt the mesh� Observe that the element sizes in Figure � re�ect the �

r
fallo�

of the �elds induced by the heart� yielding a more accurate solution to the voltage �eld�
In addition� the �nal number of nodes in our fully adapted mesh is signi�cantly lower
than the number of nodes produced from algorithms with standard initial meshes�
Complete descriptions of these results will be included in the �nal paper�

Another set of meshes is shown for a region with two current sources 
as would be
the case for modeling de�brillation electrodes� in Figures �� � and �� These �gures
show the algorithm	s performance with multiple sources� It is worth noting that the
element sizes in Figure � re�ect the �

r�
fallo� of the �elds induced by current sources�

Future Work

Ultimately� we will expand these tools to work for three�dimensional spaces� Most of
the extensions are straightforward � isocontours become isosurfaces� and the same
linear morphing still applies� but the surfaces are more di�cult to parameterize� We
would also like to use coherence obtained from the point generation algorithm in
conjunction with an incremental Delauney Triangulation algorithm to optimize the
triangulation process�
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Figure �� Heart and Torso meshed using Morphing algorithm 
��� points�

Figure �� Heart and Torso meshed using regularly sampled points 
��� points�

Figure �� Heart and Torso meshed using randomly placed points 
��� points�
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Figure �� Heart and Torso meshed using Morphing algorithm 
��� points�

Figure �� Heart and Torso meshed using regularly sampled points 
��� points�

Figure �� Heart and Torso meshed using randomly placed points 
��� points�
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