
UUCS-92-034 September, 1992

To appear in identical form in Proc. 26th Hawaii International Conference
on System Sciences, January 1993.

Dynamic Program Monitoring and Transformation

Using the OMOS Object Server

Douglas B� Orr� Robert W� Mecklenburg� Peter J� Hoogenboom� and Jay Lepreau

Department of Computer Science

University of Utah

Salt Lake City� UT �����

E�mail� fdbo�mecklen�hoogen�lepreaug�cs�utah�edu

Abstract

In traditional monolithic operating systems the con�
straints of working within the kernel have limited the
sophistication of the schemes used to manage exe�
cutable program images� By implementing an exe�
cutable image loader as a persistent user�space pro�
gram� we can extend system program loading capabili�
ties� In this paper we present OMOS� an Object�Meta�
Object Server which provides program loading facili�
ties as a special case of generic object instantiation�
We discuss the architecture of OMOS� the extensible
nature of that architecture� and its application to the
problem of dynamic program monitoring and optimiza�
tion� We present several optimization strategies and
the results of applying these strategies��

� Introduction

Traditional program loading facilities� such as those
found in Unix����� have simple semantics� often be�
cause they are implemented within the framework of
a monolithic kernel where resources tend to be con�
strained� Similarly they tend to use simple external
structures � executable �les� libraries� etc� � to re�
duce kernel complexity� One consequence of this sim�
plicity of implementation is that as programs grow
in size and complexity� the simple linking and load�

�This research was sponsored by Hewlett�Packard�s Re�
search Grants Program and by the Defense Advanced Research
Projects Agency �DOD�� monitored by the Department of the
Navy� O�ce of the Chief of Naval Research� under Grant num�
ber N�����	
�	J	����� The opinions and conclusions con�
tained in this document are those of the authors and should
not be interpreted as representing o�cial views or policies� ei�
ther expressed or implied� of the Defense Advanced Research
Projects Agency� the U�S� Government� or Hewlett�Packard�

ing algorithms used may produce poor locality of ref�
erence characteristics within the resulting programs�
Program loading and execution facilities tend to be
separate from compilation facilities� making it incon�
venient to perform optimizations based on information
derived at run�time�

In this paper we investigate the use of OMOS�
an Object�Meta�Object Server� to improve locality of
instruction reference by dynamically monitoring and
transforming executable images� We begin by dis�
cussing typical linker technology and the particular
problems of maintaining locality of reference within
large programs� We next provide an overview of
OMOS� its general organization� and its object load�
ing facilities� Subsequently� we describe the use of
OMOS	 extensible nature to transparently monitor
and transform executables to improve locality of ref�
erence� Finally� we discuss the results of our e
orts�
related work� and potential future work�

� OMOS and Linker Technology

Separate compilation of program sources typically
results in the generation of multiple object �les which
contain the generated program code and data� A
linker is the program responsible for combining the
object �les and resolving inter�object �le references�
The linker manages large�grain code placement within
an executable image� The decisions the linker makes
with respect to code placement� in conjunction with
the granularity of its data� determine whether a proce�
dure is likely to be placed on the same page as the pro�
cedures it references� As program sizes increase� linker
placement policies have an increasing e
ect on work�
ing set size and virtual memory utilization� In this
paper� we are particularly concerned with the Unix



linker� This linker is widely used� and while some of
its shortcomings are particular to Unix� most of its
problems are present in all linkers�

The �rst problem commonly encountered with
linker policies concerns the granularity with which
names are clustered� In an ideal system� if one were
to reference a symbol a� the linker would locate and
extract the code associated with the symbol� then iter�
atively extract only other symbols referenced by that
code� This ideal is di�cult to achieve because most
linkers work at the object �le level� and extracting
symbol a means including all other symbols and asso�
ciated references found within that object �le� includ�
ing but not restricted to those required by a�

Well�organized source �les� compiled and carefully
grouped into libraries of object �les� come close to
achieving the ideal of allowing a partial ordering of
symbol references� More typically� the organization of
object �les re�ects what is convenient for the program�
mer
 the entities found in a relocatable executable are
usually related� but often the relation is at the con�
ceptual level� rather than at the symbol level� Clearly�
if more than one procedure is exported from an object
�le� there exists the possibility of including code not
explicitly referenced in the resulting executable �along
with all the code it references�� As software changes
over time� the chances of grouping non�interdependent
procedures within a single object �le increase�

Another problem is that current linkers rely on the
programmer to tell them what to do� and program�
mers typically specify nothing useful in terms of order�
ing� Linkers obey a series of programmer commands
indicating in what order to bind object �les� The ob�
ject �les bound together consist of either explicitly
speci�ed �les� or selections made implicitly from li�
braries of object �les� In general� the order in which
plain �non�library� object �les are processed by the
linker has no e
ect on the correctness of symbol reso�
lution or program construction� Therefore� program�
mers usually pay little attention to such ordering�

The typical implementation of object �le libraries
further worsens locality� To save time� linkers com�
monly process libraries in one pass� This means that
the programmer must either arrange to reference all
symbols that are to be extracted from the library prior
to its processing� or explicitly process the library more
than once� A side e
ect of this style of library process�
ing is that library elements are extracted breadth��rst�
All procedures extracted from a library are processed
and made physically adjacent in the resulting exe�
cutable before the linker processes subsequent libraries
or object �les� As a result� there is very little chance

that a procedure in one library will be physically ad�
jacent to any procedures it may reference outside the
library� We will see empirical evidence of this fact� as
well as the fact that adhering to depth �rst call�chain
order produces much smaller working set sizes in large
programs�

Finally� a Unix�speci�c library problem has to
do with the processing of common data de�nitions�
Global variables in the C programming language are
examples of common data items� C global variables
may be de�ned �e�g�� int foo�� as often as desired�
as long as they are assigned an initial value only once�
Static storage is allocated for the variable and all com�
mon de�nitions are mapped to the same location when
the program is linked� A pure reference to a global
variable �e�g�� extern int foo�� does not produce a
de�nition�

Di�culty occurs when a commonvariable de�nition
is repeated in more than one library element� When
the variable is referenced� the linker chooses one of
the de�nitions � typically the �rst encountered �
and binds the object �le in which it is found into the
program� If a programmer has de�ned common stor�
age for a symbol in a library header �le instead of
declaring pure references� the e
ect can easily be that
many otherwise unrelated elements de�ne the common
variable� In these cases� a random and completely un�
related object �le� and all other object �les it may
reference� may be linked into the program�

Clearly� these problems are not signi�cant when us�
ing relatively small programs and small numbers of
carefully designed libraries� The issue of locality of
reference has been given attention in the past� when
system memory sizes were small and penalties for non�
local references were high��� �� ��� Even though typ�
ical machine memory sizes have been increasing� ap�
plications tend to grow to �ll available memory� For
contemporary applications such as X window system
clients� whose code sizes are an order of magnitude
greater than those of simple applications such as ls�
the problem of non�local references to procedures is
again signi�cant� In addition� poor locality of refer�
ence puts a burden on other parts of the memory hi�
erarchy� such as the TLB and cache� Applications will
continue to grow in size and levels of the memory hier�
archy will become further separated in performance�
These ensure the continuing need to strive for good
locality within programs�

The solution to the problem of poor locality is to
use a procedure ordering that more closely serves the
needs of the program� rather than the convenience of
the program development environment� For best re�

�



sults� the ordering should take advantage of temporal
information� as well as simple dependency informa�
tion� And� the ordering should be done automatically�
so that it becomes a standard� transparent compiler
optimization� rather than an inconvenient�to�use sep�
arate analysis and transformation procedure�

These goals are achieved by the OMOS object
server� which provides a rich and �exible framework
for manipulating objects and programs� OMOS con�
structs object instances in user address spaces by fol�
lowing construction instructions encoded in an exe�
cutable graph of operations� This graph is known
as an m�graph� The instructions include compilation�
linking� and symbol manipulation directives� By mod�
ifying the m�graph� OMOS can easily perform pro�
gram transformations�

To achieve a better code order within user executa�
bles� we have implemented monitoring and reorder�
ing within the OMOS framework� Because we imple�
ment the Unix program loading facility �exec� using
OMOS primitives� reordering extends transparently
and seamlessly to user programs�

� Server Architecture

��� Overview

The OMOS object�meta�object server is a process
which manages a database of objects andmeta�objects�
Objects are code fragments� data fragments� or com�
plete programs� These objects may embody familiar
services such as ls or emacs� or they may be simpler
�building�block� objects such as hash tables or AVL
trees� Meta�objects are templates describing the con�
struction and characteristics of objects� Meta�objects
contain a class description of their target objects�

OMOS permits clients to create their own meta�
objects� or to load instances of meta�objects into their
address space� For example� given a meta�object for
ls� OMOS can create an ls object for a client� In�
stantiating an object subsumes linking and loading a
program in a more traditional environment� OMOS
is designed to support clients running on a variety
of operating systems� including microkernels such as
Mach��� or Chorus����� or traditional monolithic ker�
nels that have remote mapping and IPC facilities�

Meta�objects contain a speci�cation� known as a
blueprint� which speci�es the rules used to combine
objects and other meta�objects to produce an instance
of the meta�object� These rules map into a graph of
construction operations� the m�graph� with each node
representing one operation�

The nodes in the m�graph de�ne operations used
to generate and modify objects� These operations
include module operations� as de�ned in Bracha and
Lindstrom���� Conceptually� a module is a naming
scope� Module operations operate on and modify the
symbol bindings in modules
 module operations take
modules as input and generate modules as output�
The modi�cations of these bindings de�ne the inher�
itance relationships between the component objects�
Within OMOS� modules are represented as executable
code fragments which are implemented using the na�
tive relocatable executable format �e�g�� a�out��

The m�graph may also include some other non�
module operations� such as operations that produce
modules from source input� operations that produce
diagnostic output� group other operations into lists�
etc� The set of graph operations into which a blueprint
may be translated is described in more detail in Sec�
tion ����

In general� when OMOS receives a request for an
instance of an object it must instantiate the object
from a meta�object� To do this� OMOS compiles the
meta�object into an m�graph� OMOS executes the
m�graph� whose operations may compile source code�
translate symbols� and combine and relocate frag�
ments� M�graph operations may take other m�graphs
as operands� Ultimately� the execution of the m�graph
is resolved to a list of nodes which represent a set of
mappable executable segments� These executable seg�
ments are mapped into the requesting client	s address
space�

��� Server Classes

OMOS is constructed from a set of classes which
provide basic naming� class construction� and instan�
tiation services� Thus� OMOS is not only a server in
an object�oriented or traditional environment� but is
also composed of objects�

Server objects are stored on disk by a persistent
derived class� Each class requiring persistent storage
de�nes its own derived class which is capable of saving
the object state on stable storage� Server objects are
mostly organized in trees� with active portions residing
in OMOS memory� References to server objects are
obtained via a hierarchical name space�

Fragments represent �les containing executable
code and data� They are the concrete implementa�
tion of modules� Fragments export and import their
interface through symbol de�nitions and references�
Symbols in a fragment may already be bound to a
value or they may yet be unresolved�

�



�hide ��REAL�malloc�

�merge

�restrict ��malloc�

�copy�as ��malloc� ��REAL�malloc�

�merge �ro�bin�ls�o �ro�lib�libc�o���

�ro�lib�test�malloc�o��

Figure �� Blueprint Language Example

Meta�objects are central to OMOS� A meta�object
describes the construction process used to instantiate
an object� It is envisioned that meta�objects may also
contain information describing the nature of the ob�
jects they represent� such as a denotational semantics
for the object� a description of exceptional conditions�
robustness constraints� etc� Currently meta�objects
contain only construction information�

A meta�object supports two primary methods
to create an object� decompose and fix� The
decompose operation recursively builds the m�graph
from blueprint information� while fix executes the
m�graph and constructs a set of mappable fragments
from the result� applying traditional relocations in the
process� The result of the fix operation is cached by
the meta�object for future use � subsequent opera�
tions may avoid constructing and executing the m�
graph if there exists an appropriate cached version�

A blueprint lists the set of operations used to trans�
form a collection of meta�objects and fragments into
a set of mappable fragments� Currently the speci�ca�
tion language used by OMOS has a simple Lisp�like
syntax� The �rst word in a list is a module operation
�described below� followed by a series of arguments�
Arguments can be the names of server objects� strings�
or other module operations�

M�graphs are composed of nodes which are graph
operators� meta�objects and fragments� The complete
set of graph operators de�ned in OMOS is described in
���� The graph operators important to this discussion
include�

Merge� binds the symbol de�nitions found
in one operand to the references found
in another� Multiple de�nitions of a
symbol constitutes an error�

Override� merges two operands� resolving
con�icting bindings �multiple de�ni�
tions� in favor of the second operand�

Rename� systematically changes names in
the operand symbol table� and works on

either symbol references� symbol de�ni�
tions� or both�

Restrict� deletes any de�nition of the sym�
bol and unbinds any existing references
to it�

Copy as� makes a copy of a symbol under
a new name�

Hide� removes a given set of symbol de��
nitions from the operand symbol table�
binding any internal references to the
symbol in the process�

List� associates two or more server objects
into a list�

Source� produces a fragment from a source
object�

Most of these operators have modules as operands
and return modules as results� Some operators� like
source� generate modules� and others� like list� con�
nect modules� Various module operations can alter
�symbol�value� bindings within a fragment� Some
operators use Unix regular expressions to perform
changes over groups of symbols in a module�

The example in Figure � shows a blueprint which
produces a new version of the ls program� A spe�
cial version of the procedure malloc found in the �le
�ro�lib�test malloc�o replaces the version found in
the C library� The new version of malloc may refer�
ence the original version by the name REAL malloc�

� OMOS Program Monitoring

We can use the �exible nature of OMOS	 object
framework to implement a transparent program mon�
itoring and optimization facility� To do this� a user �a
system manager� most likely� speci�es a named meta�
object that is to be monitored� When instantiated�
the resulting object includes interposed monitor pro�
cedures� The monitor procedures send an event trace
back to OMOS� which analyzes this information to
derive a desired ordering of procedures within the ex�
ecutable� Then OMOS reorders the base executable

subsequent instantiations use the new� optimized ver�
sion�

��� Monitored Object Setup

The �rst step in this process involves physically re�
placing the meta�object with a derived monitor class
that overrides certain of the meta�object	s procedures�

�



The privileged server method monitor takes the path
name of a target meta�object and constructs the de�
rived meta�object whose blueprint is a copy of the
original blueprint� OMOS replaces the target with the
new� monitor meta�object� Subsequent invocations of
the target meta�object will dispatch to methods over�
ridden by the monitor meta�object which will enact
the monitoring and reordering functions�

The monitor meta�object performs the bulk of its
work when the decomposemethod is �rst invoked� Re�
call� the decompose method generates the m�graph�
the execution of which ultimately creates a set of map�
pable fragments comprising the code and data that
make up the object� The �rst time decompose is
invoked on the monitored meta�object� it invokes a
decompose method on its base class to extract an ini�
tial m�graph� It then recurses through the graph� �nd�
ing all of the fragments contained within� It rebuilds
the graph� prepending a special monitor graph opera�
tion to each fragment�

During execution of the m�graph in the meta�
object fix method� the monitor operation analyzes
its operand� extracting the name of each procedure
entry point in the module� The monitor operation
generates an assembly source �le containing a monitor
stub procedure� or wrapper� for each entry point� Each
wrapper exports an entry point with the same name
as the original procedure� A copy as operation is ex�
ecuted on the fragment� duplicating each entry point
name as an internal name� This internal name will
be referenced by the wrapper� A restrict operation
removes the original name from the operand symbol
table and breaks any existing intra�module bindings
to it� The wrappers are compiled and merged �linked�
with the operand� generating a new fragment� A hide

operation is invoked on the result to eliminate the in�
termediate names produced by the copy as operation�
Thus� the wrapper is transparently interposed between
the caller of each procedure and the procedure itself�

Finally� a special version of exit that knows how
to perform a �nal clean up on the monitor state is
interposed between the client and the system exit

routine� This result is linked with a library of monitor
routines containing the support procedures which are
invoked by the wrapper functions�

��� Monitored Object Execution

After the fixmethod has been invoked on the mon�
itored object� the monitor code is in place and ready to
generate log data� Each procedure wrapper logs infor�
mation about entry and exit to the procedure� When
an instance of the derived meta�object is mapped into

a user program� the rest of the monitoring infrastruc�
ture is constructed� a thread is started in the server to
collect log data which are returned from the monitored
program via a communication channel�

On each invocation of a monitored procedure in
the target process� the wrapper makes an entry in a
log bu
er local to that process� In order to preserve
a valid stack frame� the wrapper replaces the return
address on the stack with the address of an internal
wrapper exit sequence� The wrapper saves the real re�
turn address on a private stack and transfers control
to the monitored procedure� On exit from the moni�
tored procedure� control is passed to the wrapper exit
sequence
 an entry is made in the log bu
er� the real
return address is retrieved from the internal stack� and
control is returned to the caller�

When the log bu
er is full� its contents are written
over the communication channel� The monitor thread
within OMOS collects and stores the contents in a �le�
The monitor version of the procedure exit �ushes
any remaining log information� signals a logical end
of �le to the server� shuts down the communication
channel in the target process� and invokes the system
exit procedure to terminate the program�

��� Event Data Analysis

Once log data have been collected� OMOS runs an
external analysis program to construct a dynamic call
graph of the program from the event log �le� The
event data are of three basic types�

Declare� associates a textual procedure
name and the address of the procedure
with an ordinal procedure index� The
procedure index is unique and used in
subsequent references to the procedure�

Entry� indicates entry to a procedure�

Exit� indicates exit from a procedure��

The dynamic call graph constructed by the analysis
program has a node for each instance of a procedure
that is called� and an arc from the caller to the callee�
The outgoing arcs are ordered temporally� Recursion
is detected and converted to a cyclic arc�

A number of di
erent reordering strategies can be
applied to the log data� The analysis techniques pro�
duce an ordered list of procedure names� The ordering
represents the order in which the procedures should be
placed in physical memory to improve inter�procedure

�Currently� exits must be matched with their corresponding
entries� There is no provision for the use of nonlocal gotos�

�



locality of reference� After an order has been gener�
ated via analysis� OMOS uses the list to reorder the
fragments� as described in Section �� The reordered
version of the program will be used on subsequent in�
vocations�

� Reordering Strategies

The goal of the reordering strategies is to improve
locality of reference� In general� the strategies we fol�
low adhere to call graph order at the granularity of a
procedure� rather than at the granularity of a relocat�
able executable �le which the standard linker uses�

The �rst approach we take is to reorder based on
a static call graph analysis� Static analysis has the
drawbacks that it may be di�cult to do a proper call
graph analysis if procedures are passed as arguments�
and that there is no notion of how often or in what
order procedures are called� Using pro�ling informa�
tion to derive a call graph would provide a better idea
of call frequency� but still lacks ordering information�
In the following analysis techniques we use dynamic
trace information to generate call graphs�

The �rst dynamic reordering strategy we apply �rst
involves separating out singletons � procedures that
are only called once� This strategy divides the world
into the set of commonly called procedures and the set
of procedures that are used only once �and thus� will
not be responsible for repeated page faults�� We then
order the remaining procedures using the dynamic call
graph order� This strategy tends to split out initial�
ization procedures�

The second dynamic strategy involves having the
user explicitly specify which procedure constitutes the
beginning of the central processing loop� This speci��
cation separates the program into two distinct phases�
an initialization phase and a main processing phase�
The main loop is grouped in call graph order� followed
by the set of initialization procedures� This results in
procedures common to both the main loop and the
initialization procedures being grouped with the main
loop� where� over time� they will tend to be called more
often�

The third dynamic strategy involves using a call�
chain order� but �rst splitting out habituals � pro�
cedures called frequently from a number of places �
into a separate set of pages� The problem with habit�
uals� such as bcopy or the string procedures� is that
they may be called often� from a number of di
erent
sources� Placing them with any one call chain may
unfairly make resident the rest of the procedures in

that chain� To solve this� we cluster a number of the
most frequently referenced procedures in the program
by selecting a percentage of the total number of pro�
cedures� These procedures would also be prime candi�
dates for cloning���� which is an enhancement we plan
to investigate in the future�

The fourth dynamic strategy involves ordering the
call chain by frequency of reference� rather than in a
simple �rst�called� depth��rst fashion� This strategy
has the advantage that it will place together proce�
dures in the most heavily traveled paths� The di��
culty with this strategy is that the out degree of any
given node �the count of other nodes that node ref�
erences� may not be a fair measure of the activity on
that path
 a node with a small out degree may still rep�
resent the best choice� because a large amount of ac�
tivity is found beneath it� Among other factors� a call
to a given procedure will result in touching the page of
the callee on invocation and touching the page of the
caller on return� Procedures that make many invo�
cations may be as heavily �used� as procedures that
are invoked many times� To take advantage of this
knowledge� we perform weighting� wherein the weight
of a node is calculated as a function of the number of
times it is called and the weights of its children�

Clearly� di
erent strategies are applicable for di
er�
ent programs or even di
erent runs of the same pro�
gram� Use of shared libraries increases the complexity
of reordering by increasing the number of disparate
uses of a given procedure� In general� there is no op�
timal strategy for reordering all programs� We �nd�
however� that usage information can provide order�
ings that are superior to those arrived through static
mechanisms� We demonstrate some of the particular
strengths and weaknesses of these di
erent techniques
in Section �� where we examine actual reordering re�
sults�

� Fragment Reordering

The reordering transformation of a fragment must
result in a new executable that is equivalent in func�
tion to the original� In principle� the transformation
is simple�

�� Find the starting and ending o
sets of all proce�
dures in the executable code�

�� For each of the procedures in step �� �nd all the
relocations that are applicable to the procedure
and all symbols that are de�ned within the pro�
cedure o
set range�

�



�� For each of the procedures in step �� move the pro�
cedure contents� adjust the symbol values of sym�
bols de�ned within the procedure o
set range�
and adjust the o
sets of the relocations applicable
to the procedure�

In practice� optimizations performed by the com�
piler� linker� and assembler complicate the transforma�
tion� For example� a common compiler optimization
puts constant data �e�g�� strings� in the same segment
with executable code� This makes location of the end
of a procedure more complicated� If the constant data
are moved with the procedure� other procedures refer�
encing the constant data no longer reference the cor�
rect addresses� Furthermore� if the constant data are
referenced via a small pc�relative displacement� and
the constant data are moved� after the move the dis�
placement is wrong in all instructions accessing the
constant data� Worse� the new displacement could
exceed the reach of the instruction�

Another problem results from the assembler and
linker performing optimizations to reduce the number
of relocations that need to be performed during later
steps� For example� references to de�ned symbols can
be relocated by the assembler or linker� If the relo�
cation is performed and the procedure is later moved�
the original relocation becomes invalid� To allow ob�
ject �le reordering� no relocations may be performed
until the reordering has been accomplished� We have
modi�ed versions of the GNU assembler and linker
which inhibit these troublesome behaviors�

� The Results

We tested the OMOS reordering facilities using a
version of OMOS which runs under the Mach ��� op�
erating system� using a single server implementation
of BSD ��� Unix� The machine was an �� MHz In�
tel ����� with �� MB of cache and �� MB RAM� We
used the X program xmh as a test case� since it is con�
structed using layers of modules taken from several dif�
ferent libraries� The binary is ���K of text and ���K
total� In order to produce consistent results� we made
special versions of the procedures that an X applica�
tion uses to receive X input events� These can either
make a record of the incoming events in a �le� or re�
trieve events from a �le and simulate their occurrence�
The retrieval mode allows us to �play back� an earlier
session with an X application� We also made a version
of the procedure exitwhich would report the number
of page faults a program generated during its execu�
tion� since the Mach Unix server does not provide that

information to the time utility� We interposed these
procedures in the application using OMOS facilities�
recorded a �� minute xmh session� then replayed that
session on a quiescent system under a number of dif�
ferent conditions to obtain our performance �gures in
multiple runs�

We tested six di
erent strategies� a control with no
optimization� a test of static call graph analysis� and
the four dynamic strategies described in section �� We
changed the amount of memory available to the sys�
tem by wiring down free pages and observed the e
ect
this had on the application	s execution time� Figures �
and � show the increase in execution time as available
memory decreases� A graph of page faults versus avail�
able memory traces out a near�identical set of curves�
demonstrating the increasing domination of page fault
time as the amount of available memory decreases�

We notice from the numbers in Table � that re�
ordering produces a small compaction in the appli�
cation� resulting in fewer page faults even when the
application is given as much memory as it can use�
We also notice that static reordering produces a sig�
ni�cant improvement in paging behavior� and that the
more subtle improvements found in the more complex
strategies prove to be signi�cant as memory becomes
scarce�

Finally� we notice that the strategies of intermedi�
ate sophistication� such as strategies � and �� actually
do a little worse than the simpler policy of strategy
�� for some intermediate values of available memory�
This decline indicates that there is a cost to separat�
ing frequently called procedures from their callers
 by
putting them on a separate page� the working set is
e
ectively increased by some near�constant amount�
This expenditure becomes e
ective as the rate of page
faults increase and the value of accurate prediction of
which pages are likely to be faulted on increases� This
anomaly reinforces the need to investigate the use of
code duplication for frequently used procedures�

� Related Work

A variety of work has been done on the prob�
lem of automatically improving locality of reference
within programs in overlay systems and early paging
systems��� �� �� ��� Some of this work concentrates
on instruction reference locality
 other concentrates
on data reference locality� More recent work focuses
on the related problem of locality of reference within
a cache���� Hartley��� used procedure replication as
a way to bound the locality of reference for a given
point in the program� Pettis and Hansen���� did work

�



0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800

T
i
m
e

Available memory (4K pages)

None
Static ordering

Strategy 1
Strategy 2
Strategy 3
Strategy 4

Figure �� Time �seconds� versus available memory

50

100

150

200

250

300

350

240 260 280 300 320 340 360 380 400 420

T
i
m
e

Available memory (4K pages)

None
Static ordering

Strategy 1
Strategy 2
Strategy 3
Strategy 4

Figure �� Blowup of time versus available memory

�



Table �� xmh Program Performance Data � elapsed time in seconds

page faults
�

Strategy Available Memory
��� ��� ��� ��� ��� ��� ��� ���

None � ���� 	
� ��� ��
 ��� 
	 ��

� �
�� �	�� �	�� ���	 �

 �	� ���

Static ordering ���� 	�	 �	� �
� ��� �
 	
 ��

���
 ���
 ���� 

� 	�� ��� ��� ���

Strategy � 
�
 ��� �
� �
� ��
 �
 	� �	

���� ��
� ���	 ��� ��� ��� ��
 ���

Strategy � ��� ��� �
� �	� ��� �
 	
 �



��� ��
� ���� 
	� ��� ��� ��� ���

Strategy � 
�� ��� ��� ��� ��� 
� 	
 �	

���� ��
� ��
� 	�	 ��
 ��� ��� ���

Strategy � 
�
 ��
 ��
 ��� 
� �
 	� ��

�


 �
�� �
�	 	
� ��� ��
 ��	 ���

both to improve ordering of procedures and ordering
of basic blocks
 they concentrated more heavily on re�
ordering basic blocks and used a single� straightfor�
ward algorithm for ordering procedures� They found
����� performance increases from better cache and
TLB use� and their work is incorporated in Hewlett�
Packard	s current linker and fdp programs�

All of the schemes we have seen are designed to
be used in response to borderline conditions � ap�
plications which use the limit of available memory
space or bandwidth� The popularity of these schemes
rises and falls over time with changes in the costs of
memory� memory access techniques� application com�
plexity� hardware domain� and other factors� Changes
in the limits of technology may alter the relative im�
portance of this class of optimization� but its validity
does not change� By automating locality of reference
optimizations� we remove them from the category of
special optimizations performed �and reinvented� only
when applications reach the limits of technology� The
relative bene�t of these optimizations may rise and
fall over time� but their general utility remains�

A user�space loader is no longer unusual� Many op�
erating systems� even those with monolithic kernels�
now use an external process to do program loading in�
volving shared libraries� and therefore linking� How�
ever� the loader�dynamic linker is typically instanti�
ated anew for each program� making it too costly for
it to support more general functionality such as in
OMOS� Also� these loaders are not constructed in an
extensible manner�

� Future Work

Many interesting problems remain to be addressed
by OMOS� There is work to be done in the area of
monitoring policy� We currently use the results of one
run to determine what constitutes �typical use� of a
program � the assumption being that the run will be
specially tailored to be representative of typical use�
We plan to look into the policy issues of collecting
and interpreting larger samples of data� We plan on
investigating the merit of duplicating the code of fre�
quently used procedures� rather than trying to deter�
mine the best match for a procedure used heavily in
several places� We will also look into the issues in�
volved in reconciling diverse uses of a common piece
of code� as in the case of shared libraries� where a
single execution pro�le can not accurately represent
the typical use of a set of procedures� And� we plan
to develop policies whereby several instantiations of
an OMOS meta�object � each tuned for a di
erent
use � can be made available to client applications�

Locality of data reference is arguably more impor�
tant than code locality� but is a less tractable problem�
due to the di�culty of monitoring data references and
due to the existence of dynamically allocated data�
However� many numeric applications make heavy use
of large arrays of static data� We plan on analyzing a
set of such programs to assess the worth of reordering
static data�

The extensible nature of OMOS� and its knowl�
edge of everything from source �le to execution traces�

�



make it applicable to other kinds of optimizations re�
quiring run�time data� OMOS could transparently im�
plement the type of monitoring done by MIPS	 pixie
system� to optimize branch prediction���� Another
direction is suggested by OMOS	 natural connection
with program development� OMOS could easily be
used as the basis of a CASE tool� where its ability
to feed back data from program execution� would be
useful for both debugging and optimization�

There are a host of engineering issues to be ad�
dressed in OMOS� protection� consolidating OMOS
servers in a network� implementing a virtual �le sys�
tem interface� and perhaps most important� policies
for managing main memory and backing store�

�	 Conclusion

Most current linking technology makes poor use of
virtual memory by ignoring problems of locality of ref�
erence in large programs� This has adverse e
ects
on total system throughput� OMOS� an extensible
object�meta�object server� provides a framework for
automatically improving the performance of programs
through improved locality of reference� OMOS can
transparently insert performance monitoring code in
applications and gather data about a program	s run�
time behavior� Using this data� OMOS can derive
an improved program layout and reorder executable
code fragments to increase locality of reference� The
most e
ective strategies for determining better frag�
ment ordering are based on data available only from a
run�time monitoring scheme� Signi�cant performance
improvements were gained from this approach�

Acknowledgements

We thank Robert Kessler and Gary Lindstrom for
the time they have spent reviewing this work� Je
rey
Law for helping us make the Mach BSD Server do
new and interesting things� and Bob Baron and Daniel
Julin for providing key services and insights in times
of need�

References

��� Mike Accetta� Robert Baron� William Bolosky�
David Golub� Richard Rashid� Avadis Tevanian�
and Michael Young� Mach� A new kernel foun�
dation for UNIX development� In Proceedings of

the Summer ���� USENIX Conference� pages ���
���� Atlanta� GA� June ����� ����� Usenix Asso�
ciation�

��� Gilad Bracha and Gary Lindstrom� Modularity
meets inheritance� In Proc� International Con�
ference on Computer Languages� pages ��������
San Francisco� CA� April ����� ����� IEEE Com�
puter Society�

��� L� W� Comeau� A study of the e
ect of user pro�
gram optimization in a paging system� In Pro�
ceedings of the ACM Symposium on Operating
Systems Principles� Gatlinburg� Tenn�� October
�����

��� Domenico Ferrari� Improving locality by criti�
cal working sets� Communications of the ACM�
�������������� November �����

��� S� J� Hartley� Compile�time program restruc�
turing in multiprogrammed virtual memory sys�
tems� IEEE Trans on Software Engineering� SE�
����������������� �����

��� D� J� Hat�eld and J� Gerald� Program restruc�
turing for virtual memory� IBM Systems Journal�
�������������� �����

��� J� L� Hennessy and Thomas R� Gross� Post�
pass code optimization of pipeline constraints�
ACM Transactions on Programming Languages
and Systems� ��������� July �����

��� T� C� Lowe� Automatic segmentation of cyclic
program structures based on connectivity and
processor timing� Communications of the ACM�
���������� January �����

��� D� Orr and R� Mecklenburg� OMOS � an ob�
ject server for program execution� In Proc� Sec�
ond International Workshop on Object Orienta�
tion in Operating Systems� Paris� France� Septem�
ber ����� IEEE Computer Society�

���� K� Pettis and R� C� Hansen� Pro�le guided
code positioning� SIGPLAN Notices� ���������
��� June �����

���� D� M� Ritchie and K� Thompson� The UNIX
time�sharing system� The Bell System Technical
Journal� ���������������� July�August �����

���� M� Rozier� V� Abrossimov� F� Armand� I� Boule�
M� Gien� M� Guillemont� F� Herrmann� C� Kaiser�
S� Langlois� P� L�eonard� and W� Neuhauser� The
Chorus distributed operating system� Computing
Systems� ������������� December �����

��


