
A Distributed Garbage Collection Algorithm

Terence Critchlow

UUCS������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

July ��� ����

Abstract

Concurrent Scheme extends the Scheme programming language� providing par�
allel program execution on a distributed network	 The Concurrent Scheme environ�
ment requires a garbage collector to reclaim global objects
 objects that exist in a
portion of the global heap located on the node that created them	 Because a global
object may be referenced by several nodes� traditional garbage collection algorithms
cannot be used	 The garbage collector used must be able to reclaim global objects
with minimal disturbance to the user program� and without the use of global state
information	 It must operate asynchronously� have a low network overhead� and be
able to handle out�of�order messages	 This thesis describes a distributed reference
counting garbage collector appropriate for the reclamation of global objects in the
Concurrent Scheme environment	



A DISTRIBUTED GARBAGE COLLECTION

ALGORITHM

by

Terence J	 Critchlow

A thesis submitted to the faculty of
The University of Utah

in partial ful�llment of the requirements for the degree of

Masters of Science

Department of Computer Science

The University of Utah

August ����



Copyright c� Terence J	 Critchlow ����

All Rights Reserved



ABSTRACT

Concurrent Scheme extends the Scheme programming language� providing par�

allel program execution on a distributed network	 The Concurrent Scheme environ�

ment requires a garbage collector to reclaim global objects
 objects that exist in a

portion of the global heap located on the node that created them	 Because a global

object may be referenced by several nodes� traditional garbage collection algorithms

cannot be used	 The garbage collector used must be able to reclaim global objects

with minimal disturbance to the user program� and without the use of global state

information	 It must operate asynchronously� have a low network overhead� and be

able to handle out�of�order messages	 This thesis describes a distributed reference

counting garbage collector appropriate for the reclamation of global objects in the

Concurrent Scheme environment	



To Heidi

For Heidi

Because of Heidi



CONTENTS

ABSTRACT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � iv

LIST OF FIGURES � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � viii

ACKNOWLEDGMENTS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ix

CHAPTERS

�� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� PREVIOUS WORK � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�	� Marking Garbage Collectors � � � � � � � � � � � � � � � � � � � � � �
�	�	� Copying Collectors � � � � � � � � � � � � � � � � � � � � � � �
�	�	� Mark and Sweep Collectors � � � � � � � � � � � � � � � � � � �

�	� Reference Counting Garbage Collectors � � � � � � � � � � � � � � � ��
�	� Generational Garbage Collection � � � � � � � � � � � � � � � � � � � ��

�� THE CONCURRENT SCHEME ENVIRONMENT � � � � � � � � � � ��

�	� Extensions to Scheme � � � � � � � � � � � � � � � � � � � � � � � � � ��
�	� Implementation Details � � � � � � � � � � � � � � � � � � � � � � � � ��

�� GLOBAL GARBAGE COLLECTOR FOR CUS � � � � � � � � � � � � � ��

�	� Goals � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�	� An Obvious Solution � � � � � � � � � � � � � � � � � � � � � � � � � �

�	� The Distributed Garbage Collector � � � � � � � � � � � � � � � � � � ��

�	�	� The Data Structures � � � � � � � � � � � � � � � � � � � � � � ��
�	�	� The Initial Algorithm � � � � � � � � � � � � � � � � � � � � � ��
�	�	� The Revised Algorithm � � � � � � � � � � � � � � � � � � � � ��

�	� Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�	�	� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�	�	� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�	�	� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�	
 Proof of Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � ��



�� ANALYSIS AND FUTURE WORK � � � � � � � � � � � � � � � � � � � � � � � ��


	� Analysis of the Algorithm � � � � � � � � � � � � � � � � � � � � � � � ��

	�	� De�ciencies of the Algorithm � � � � � � � � � � � � � � � � � �


	�	� Possible Optimizations � � � � � � � � � � � � � � � � � � � � ��

	�	� Timings and Measurements � � � � � � � � � � � � � � � � � � ��

	�	� Comparison to Other Algorithms � � � � � � � � � � � � � � � 
�


	� Future Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

REFERENCES � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��



LIST OF FIGURES

�	� Potential Copying Protocol Problem � � � � � � � � � � � � � � � � � � � ��

�	� Export Object � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�	� Import Table Entry Object � � � � � � � � � � � � � � � � � � � � � � � � ��

�	� Import Object � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�	� Domain Object � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�	� Required Modi�cations to Existing Functions � � � � � � � � � � � � � � ��

�	
 New Functions Required by Collector � � � � � � � � � � � � � � � � � � � ��

�	� An Initial Network Con�guration � � � � � � � � � � � � � � � � � � � � � �


�	� After Domain B Creates a Closure � � � � � � � � � � � � � � � � � � � � ��

�	� An Initial Network Con�guration � � � � � � � � � � � � � � � � � � � � � ��

�	� Network After Placeholder Sent to Domain A � � � � � � � � � � � � � � ��

�	�� Network After Placeholder Sent to Domain B � � � � � � � � � � � � � � ��

�	�� Network After Garbage Collection in Domain A � � � � � � � � � � � � � ��



ACKNOWLEDGMENTS

I would like to thank Dr	 Mark Swanson for all of his help during the past year	

His patience in guiding me through the intricacies of Concurrent Utah Scheme was

invaluable� and remarkable	

Thanks to Dr	 Robert Kessler and Hewlett�Packard Laboratories for providing

the equipment and funding for this research	

Finally� I would give my thanks to my wife� Heidi Preuss� for supporting me

through everything� and for being a great proofreader	



CHAPTER �

INTRODUCTION

Garbage collection has been used as a way to relieve programmers of the burden

of memory deallocation and allow them to concentrate on the problem they are

trying to solve	 Unfortunately� garbage collection has been an expensive operation�

often halting the user process for several seconds while collection is occurring	 As

a result only a few languages� such as Lisp and Scheme� use garbage collection

techniques	 Most languages place the responsibility of memory allocation and

deallocation on the programmer	 As programs become larger� memory deallocation

becomes an increasingly complex problem	 This increase is particularly true in

parallel programs where programmers must worry about all possible interactions

between processes	 This has caused a renewed interest in garbage collection algo�

rithms	

Problems with traditional� uniprocessor� garbage collectors have been overcome	

These garbage collectors can operate in real time� using only a limited amount

of memory	 Unfortunately� the success of these algorithms does not transfer to

a distributed computing environment	 Distributed garbage collectors have to be

concerned about issues such as node synchronization and network tra�c overhead	

In addition� many systems require the garbage collector to handle delayed and out

of order messages	

The Concurrent Scheme environment requires a global garbage collector to ad�

dress these issues	 Concurrent Scheme is an extension of the Scheme programming

language that provides parallel programming capabilities	 Concurrent Scheme has



�

introduced several global objects to implement this capability	 Unfortunately�

global objects cannot be reclaimed by conventional garbage collectors because they

may be referenced by several nodes simultaneously	 Reclaiming global objects

requires an asynchronous garbage collector that can handle out of order messages

while maintaining a low network overhead	

This work describes a distributed reference counting garbage collector that has

been implemented in the Concurrent Scheme environment	 The algorithm handles

out of order messages and requires no internode synchronization	 The asynchronous

nature of the algorithm contributes to a network overhead of at most one message

per reference	 The initial results from the implementation are encouraging
 the

e�ciency of the algorithm is within acceptable limits� and can be improved even

further	

Other garbage collection algorithms are discussed in the next chapter	 The

Concurrent Scheme environment is described in detail in Chapter �	 Chapter

� describes the distributed reference counting algorithm in detail	 Chapter 


provides an analysis of the algorithm� including timings obtained from the current

implementation� and describes future work which is beyond the scope of this thesis	



CHAPTER �

PREVIOUS WORK

Garbage collectors can be divided into three major types� marking� reference

counting and generational	 Each type of collector has advantages and disadvan�

tages	 Marking collectors are easy to implement and will remove all garbage from a

system	 The amount of work performed by a marking collector is not proportional

to the amount of garbage� mark and sweep collectors do work proportional to the

amount of memory in the system� and copying collectors do work proportional to

the number of live objects in the system	 Reference counting collectors are also

easy to implement but do work proportional to the total number of references to an

object	 The problem with reference counting collectors is their conservative nature


without additional support they are incapable of reclaiming all the garbage in a

system	 In particular� circular references cannot be reclaimed by straightforward

reference counting algorithms	 Generational collectors examine fewer objects per

collection than marking collectors but are still able to reclaim all the garbage	

However� a generational garbage collector requires more computational overhead

to reclaim all garbage in a system than a marking collector	

��� Marking Garbage Collectors

Marking collectors determine what is garbage by �rst determining what is being

used	 Marking collectors use a set of objects known as the root set to determine

what is alive	 By de�nition� all objects not reachable from the root set are garbage	

The basic algorithm used to determine which objects are alive is similar to a graph



�

traversal algorithm	 The root set provides an initial set of unvisited� reachable

objects	 As long as there are reachable objects that have not been visited� visit a

reachable object� mark the object as visited� and mark the objects reachable from

that object as reachable	 Any object not marked at the end of the iteration is

garbage	

There are two basic types of marking collectors� copying collectors and mark

and sweep collectors	 The major di�erence between these types of collectors is

what occurs when a node is marked as visited	 In copying collectors the step of

marking the object visited is a combination of copying the object and replacing it

with a forwarding pointer	 In mark and sweep collectors the process of marking

the active object is followed by a collection step in which all unmarked objects are

placed on a free list	 Some mark and sweep collectors have a compaction phase

in which all live objects are moved together
 reducing page faults	 Both types of

collectors have been used successfully in a variety of applications	

����� Copying Collectors

Baker ��� developed one of the �rst incremental� real�time copying garbage

collectors	 In Baker�s algorithm there are two disjoint heap spaces� TOSPACE and

FROMSPACE	 The user process� or mutator� allocates all cells from TOSPACE	

FROMSPACE contains garbage and the data not yet copied by the garbage col�

lector	 When TOSPACE becomes full the roles of FROMSPACE and TOSPACE

are reversed� or �ipped	 This role reversal is possible because� by the time the �ip

occurs� FROMSPACE contains only garbage	 Immediately following a �ip� the root

set is placed in the new TOSPACE	 Garbage collection begins after a �ip	 Every

time a new cell is allocated� a known number of cells are copied from FROMSPACE

to TOSPACE	 These cells are found by searching through TOSPACE to �nd cells

containing a reference to FROMSPACE	 The cell being pointed to is copied and the






reference is updated to the new cell location	 When a cell is initially copied from

FROMSPACE to TOSPACE a forwarding pointer is left behind so other references

to the cell will refer to the same structure	 All attempts to copy a previously copied

cell return the forwarding pointer	 When there are no pointers from TOSPACE to

FROMSPACE the garbage collection has completed	

The number of cells copied during each allocation must be large enough to

ensure all accessible cells are copied before TOSPACE becomes full	 Every time

the mutator references a cell not yet copied from FROMSPACE� the cell is copied to

TOSPACE	 This helps ensure that the garbage collection will complete before the

mutator �lls TOSPACE	 The method of copying cells distributes references over

a large area of memory	 The result is poor data locality which impairs mutator

performance	 Baker�s algorithm is a real�time algorithm only in the strictest sense	

The amount of time it will take to perform any given operation is bounded by a

constant� but the constant is very large	 This makes the algorithm impractical to

use in a genuine real�time system	 However� Baker�s algorithm provides a basis for

more practical algorithms	

Dawson ���� adapts Baker�s algorithm to improve localization of data	 This

is done in two ways	 First� the root set is slowly moved into TOSPACE� not

immediately placed there after a �ip	 Second� cells are copied to di�erent locations

in TOSPACE depending on the reason the copy occurred	 If the copy was the

result of the mutator attempting to perform an allocation� the cell is copied to one

location	 If the copy was the result of the mutator referencing an uncopied cell� the

cell is copied to a di�erent location	 These minor modi�cations make a signi�cant

improvement in the e�ciency of the mutator	

Appel� Ellis and Li ��� also modi�ed Baker�s algorithm to improve performance

and allow for parallel execution	 Their collector works on a page� at�a�time as

opposed to a cell�at�a�time	 When a �ip occurs� all pages in TOSPACE are



�

read�protected	 The pages in FROMSPACE become TOSPACE	 If there are any

uncopied pages at the time of a �ip� they are copied before the �ip begins	 The

copying of an unknown number of pages means the algorithm is not truly real�time	

However� the authors maintain that the amount of time used by this step is

insigni�cant when compared to the overall operation of the program	 If the mutator

tries to reference an uncopied object� a page fault occurs	 The page is then copied

and unprotected	 A concurrent thread is used to copy pages while the mutator is

running	 This reduces the number of page faults and dramatically improves the

performance of the algorithm	 The results obtained by the initial implementation

of this algorithm� using a single mutator thread� are promising	

����� Mark and Sweep Collectors

Dijkstra� Lamport� Martin� Scholten and Ste�ens ���� developed the �rst con�

current mark and sweep garbage collector	 In their algorithm the mutator and

the collector run in parallel	 The collector works by marking nodes with di�erent

colors	 Initially� the root nodes are marked grey and all other nodes are marked

white	 When a grey node is visited� it is marked as black and all of the nodes

reachable from it are marked grey	 The authors use two invariants to show that

if no grey nodes exist� then all the white nodes are garbage	 When the collector

has determined there are no grey nodes remaining it performs a sweep	 The sweep

consists of moving all white nodes to the free list and marking all other nodes

as white	 After the sweep has been completed� the collection starts over	 For

this to work properly� there must be cooperation between the mutator and the

collector	 All the cells the mutator allocates while a collection is occurring must be

colored grey	 If the mutator allocates nodes during the mark or sweep phase of the

collector� the collector will not know about these nodes for the current collection	

These nodes will not be mistaken as garbage because they have been marked as



�

grey	 The collector will consider these nodes on its next pass	 Dijkstra�s algorithm

has practical value as seen by the number of similar algorithms used in distributed

systems	

Hudak and Keller ���� have modi�ed Dijkstra�s algorithm to work on a dis�

tributed system with a high degree of parallelism	 In Hudak�s algorithm� all nodes

are initially white	 There is a distinguished node called the root node from which

all elements of the root set are reachable	 Garbage collection begins by selecting

the root node and spawning a task for each reference contained in the root node	 A

count of the number of tasks spawned is associated with the root node	 The marking

phase progresses as subtasks are assigned nodes	 If a node is a leaf node� or if the

node has been previously marked� the task immediately returns	 Otherwise� the

task marks the node grey� spawns a subtask for each reference by the node and

keeps count of the number of subtasks spawned	 The task blocks� waiting for the

spawned tasks to return	 When all subtasks have completed the current node is

marked black and the task returns	 The mutator must cooperate in the marking

phase by spawning or executing a marking task under certain circumstances	 In

most cases� the mutator is not a�ected by the collection	 The marking phase is

over when all subtasks spawned by the root task have returned	

The sweeping phase is broken into three subphases	 During the task deletion

phase� any mutator task that references garbage is deleted	 This is done because�

in a pure functional language� these tasks can not contribute to the �nal result

of the program	 After all irrelevant tasks are deleted� the garbage nodes are

reclaimed	 Finally� the remaining nodes are reinitialized	 The authors acknowledge

this algorithm requires a large amount of space but feel the added speed is worth

the expense	 This algorithm is an interesting attempt at constructing a real�time

mark and sweep collector	 Although Hudak�s algorithm meets the de�nition of

real�time stated in the paper� the algorithm is not real time by other standards	



�

Because the execution of a marking task by the mutator may take an arbitrary

amount of time the collector is non�real�time in the sense of all operations being

bounded by a constant	 However� the algorithm is successful in creating a highly

parallel garbage collector that is distributable and able to reclaim irrelevant tasks	

Juul ���� has adapted Dijkstra�s algorithm for use in the Emerald system	 As in

Dijkstra�s algorithm there must be cooperation between the collector and the user

processes for the collector to work properly	 In Juul�s algorithm� this cooperation

occurs in two ways	 First� whenever a user process attempts to access a grey object

a fault occurs� the object is marked black� and the object�s references are marked

grey	 Second� an object is marked black when it is allocated	 This ensures user

processes only see black objects	 The collection process is broken into two levels�

local collection and global collection	 In the global collector� the root objects are

initially marked grey� all other objects are white	 The collector selects a grey object	

If the object is local to the processor it turns the object black� and turns the object�s

references grey	 If the object is not local to the processor� it places the object in a

grey set	 At some point� the collector will send all of the objects in its grey set to

the other processors	 If the other processor is currently performing a global garbage

collection� the information is incorporated immediately	 If the processor is not in

the process of global garbage collection it will begin a global garbage collection and

use the objects provided as part of its root set	 This allows global references to

be found and noted	 This also allows any processor to initiate a global collection	

The marking phase is complete when there are no grey objects on any processor	

The sweep phase of the global collection clears a global reference bit on all objects

that are considered garbage	 Local collection occurs when at least one processor is

unavailable for global garbage collection and the current node has no grey objects	

There are three major di�erences between the local collection algorithm and the

global collection algorithm	 First� the local collector need not send the grey set to



�

other processors	 Second� the root set is expanded to include all objects that have

been referenced by other processors	 These objects can be distinguished because the

global reference bit has been set	 Third� the local collector actually frees memory

used by the objects that it determines are garbage	 This algorithm has not yet

been completely implemented so results are not available	 There are three major

problems with this algorithm� all caused by the sharing of references by passing

objects between processors	 First� it creates a large amount of message overhead

on the network	 Second� it requires a notion of global state to determine when the

marking phase has completed	 Third� it requires synchronizing all processors in

order to perform a global garbage collection	

Shapiro� Plainfoss�e and Gruber ���� ���� have developed an asynchronous� dis�

tributed� mark and sweep collector	 In this algorithm� the network is divided into

several uniquely identi�ed spaces	 Each space maintains an Object Directory Table

�ODT� and an External Reference Table �ERT�	 The ODT contains potential

references by other spaces to objects residing in the current space	 The ERT

contains the location of objects referenced in the current space residing in other

spaces	 When a reference is copied out of a space� an entry containing the reference

and the destination space is created in the ODT	 As a reference is copied into a

space� the reference is replaced by a stub pointing to an ERT entry containing

the reference and the space that sent the reference	 If the stub is referenced� the

value is requested from the space stored in the ERT	 Local garbage collections

occur on a per space basis� the global garbage collector is the result of cooperation

between spaces	 During a local garbage collection the ODT is included in the

root set preventing any externally referenced object from being collected	 At the

end of the local collection� unmarked ERT objects are removed and a message is

sent to the space containing the reference causing the associated ODT entry to

be removed	 To handle out of order messages� Shapiro implemented a time stamp



��

protocol	 This protocol allows out of order messages to be detected and prevents

the garbage collector from reclaiming live objects	 The major problem with this

algorithm is the amount of network overhead generated by handling lost and out

of order messages	 Another� less limiting problem is the amount of memory used

by the ODT and the EDT	

��� Reference Counting Garbage Collectors

Reference counting garbage collectors determine which objects are reclaimable by

noting which objects are not referenced by other objects	 An object not referenced

by any other object cannot be used by the program and is garbage� an object

that is referenced by another object may be used by the program if the object

that references it is accessible by the program	 To determine which objects are

referenced� a reference count is associated with each object	 When an object

is �rst created� it has a reference count of one because it is referenced by the

object creating it	 When a reference to an object is added� the reference count

is incremented	 When a reference to an object is removed� the reference count is

decremented	 When the reference count reaches zero the object is garbage and

can be reclaimed	 Reference counting collectors have two major advantages over

marking collectors	 First� reference counting is inherently an incremental process�

making real�time reference counting collectors easy to develop	 Second� reference

counting algorithms map to distributed systems very easily� because they do not

require global synchronization and can be made to handle out of order messages	

The major problem with reference counting algorithms is cyclic references	 If

object A refers to object B and object B refers to object A neither A nor B will be

reclaimed	 Their reference counts will never drop below one due to the reference by

the other object	 Many algorithms have been developed to overcome this problem	

The most common solution� used in ����� ����� and ����� is the use of an auxiliary�



��

mark and scan collector to aide in the garbage collection process	 The auxiliary

collector is invoked infrequently� as a supplement to the reference counting collector	

If the system being used is able to detect the creation of a circular reference�

as the combinator machine used by Brownbridge ��� is� separate reference counts

can be used for cyclic and noncyclic references	 These reference counts can be

used to reclaim cyclic structures by using an algorithm similar to Bobrow�s ��� to

determine when the structure is no longer referenced externally	 In some cases� a

special feature of the language allows an e�cient algorithm for detecting circular

references to be developed	 Friedman�s collector ��
� exploits the fact that� in a

purely functional language� circular references cannot be created by user programs	

Because circular references can be created only in well�de�ned circumstances� a

specialized mechanism for handling cycles e�ciently can be developed	

Many reference counting algorithms have a problem with the size of the reference

counts	 If the algorithm requires the reference count to be stored with the object

directly� the size of the reference count must be established	 This limits the number

of references to an object that can be accurately recorded by the algorithm	 The

algorithm must outline what action is to be taken when additional references are

required	 In some algorithms� additional references are never reclaimed� in others�

additional memory is used to store the required information about these references	

In either case� additional overhead is consumed dealing with this problem	 Algo�

rithms that do not require the reference count to be stored with the object avoid

this problem by allowing the reference count to grow as required	

One of the �rst distributed reference counting systems was developed by Bevan

�
�	 In this algorithm� when an object is created it is given a reference count

of maxvalue	 The original reference to this object is given a reference weight of

maxvalue	 Maxvalue is an arbitrarily large power of two	 When a copy of a reference

is made the reference weight of the original reference is split equally between the



��

old reference and the new reference	 When a copy is made of a reference having

a reference count of one� a special object� called an indirection cell� is introduced	

The indirection cell points to the object the original reference pointed to and has

a reference count of maxvalue	 The original reference is modi�ed to point to the

indirection cell and is given a reference weight of maxvalue	 The copy is then

performed as normal	 When a reference is deleted� a decrement message containing

the reference weight is sent to the object the reference pointed to	 This value is

subtracted from the reference count of the associated cell	 When the reference

count of an indirection cell reaches zero� the cell sends a decrement message with

value one to the cell it points to and deallocates itself	 When the reference count

of the object reaches zero it is garbage and is reclaimed	 This algorithm provides

an asynchronous collector having low message overhead and low computational

overhead	

The major problem is the trade o� between memory and use of indirection cells	

If maxvalue is large� memory is wasted holding the reference weight	 If maxvalue is

small the number of indirection cells may become large causing increased message

tra�c and response time	 For example� if there are several copies made of a single

reference there will be a linked list of indirection cells	 In order for the newest refer�

ence to access the object it must traverse this list	 If the indirection cells are located

on di�erent nodes this traversal will introduce unnecessary messages and require

more time than an access from the original reference	 The collection algorithm

is claimed to be a real time algorithm	 However� referencing an object may take

an indeterminate amount of time because an unknown number of indirection cells

must be traversed implying the algorithm is not strictly real time	 If the number of

references per object is small this algorithm is real�time and works well	 However�

this algorithm is not scalable to a system where several nodes reference the same

object	



��

Paul Watson and Ian Watson ���� modify a weighted reference counting al�

gorithm credited to K�S Weng ��
� but similar to Bevan�s	 In this algorithm�

when a graph headed by an indirection cell is evaluated� the value is stored in

the indirection cell so the indirection is removed	 This improves the e�ciency of

the original algorithm because redundant values need not be recomputed	 However�

this type of technique requires special hardware� such as a graph based machine�

and is not applicable for languages such as Scheme because di�erent references

may no longer be identical	 These restrictions prevent this algorithm from use in a

general environment	

DeTreville ���� uses a di�erent approach to parallel distributed reference counting

for the Modula��� garbage collector	 In his algorithm� DeTreville di�erentiates

between local references and shared references	 The local references are determined

by scanning the thread state during every garbage collection	 The shared references

are stored with the object and incremented and decremented in the normal way	

When the shared reference count of an object is zero it is placed on a list called the

zero count list �ZCL�	 At the end of the collection� the ZCL is scanned	 Any object

on the ZCL having no shared references and no local references is garbage and is

reclaimed	 If an object on the ZCL has a local reference but no shared references

it remains on the ZCL and is not reclaimed	 If an object on the ZCL has a shared

reference count greater than zero it is removed from the list	 An object on the ZCL

may have a nonzero shared reference count because the mutator may have added a

shared reference to an object that previously only had a local reference	 DeTreville

solved the problem of circular references by adding a mark and scan collector to

the system	 The mark and scan collector acts as a secondary collector	 The major

purpose of this collector is to reclaim circular references	 Because the reference

counting collector is supposed to collect most of the garbage the mark and scan

collector is invoked infrequently	 In addition� the reference counting collector may



��

preempt the mark and scan collector	 The reference counting collector was chosen

as the primary collector for DeTreville�s system because it is faster and more local

than the mark and scan collector	 The use of two di�erent collectors provides a

reasonable level of e�ciency while still reclaiming all garbage in a system	

��� Generational Garbage Collection

A generational garbage collector is based on the premise that most garbage

in a system is created by objects that have short life spans	 If an object has

existed for a long period of time it is unlikely to become garbage soon	 Therefore�

garbage collectors should spend less time collecting old objects and more time

collecting new objects	 Generational collectors achieve this through a process

known as aging	 As an object survives garbage collections� it slowly ages	 Aging

usually� but not necessarily� involves moving older objects to distinct areas so two

di�erent generations of objects do not share the same heap space	 Collection is then

performed on the younger generations on a more frequent basis than on the older

generations	 A generational garbage collector is any garbage collector that attempts

to use aging techniques in conjunction with other garbage collection algorithms to

improve the e�ciency of the algorithm	

Lieberman and Hewitt ���� combine a generational collector with a garbage

collector based on a modi�cation of Baker�s algorithm	 The heap is divided into

several small regions that can be garbage collected independently	 All of the

objects within a region are the same generation	 When a region is collected�

all currently referenced objects are copied to a new region	 Determining which

objects are still alive requires scavenging newer generations for pointers into the

region being collected	 Pointers from older regions into newer regions are kept

in a table associated with the newer region making scavenging regions older than

the current region unnecessary	 Scanning the table is quicker than scavenging the



�


older regions because pointers from older generations to newer ones are uncommon	

When all live objects have been copied the original region is freed	 When an old

region is collected� several regions must be scavenged because most regions are

younger than the current region	 This makes collecting older regions very expensive	

Collecting a newer region requires very little scavenging because most regions are

older than the current region	 This means collecting newer regions is relatively

cheap	 Unfortunately� no results are available for this collector although the authors

speculate the algorithm has the potential for good performance	

Moon ��
� also uses Baker�s algorithm to develop a generational garbage collector

for the Symbolics ���� computer	 Moon�s algorithm di�ers from Lieberman�s in

three major ways	 First� objects of di�erent ages may occupy the same memory

area	 Second� the user may specify the age of an object	 This allows objects that

are known to be static to be removed from consideration during garbage collections	

Third� there are only three ages an object may be� ephemeral� dynamic or static	

The age of an object� and the level of an ephemeral object� is encoded in the objects

address	 Ephemeral objects are objects that are expected to have short life spans	

There are several levels of ephemeral objects
 by default newly created objects

exist on level one	 As a level �lls� objects are moved to the next level	 Ephemeral

objects of the highest level are aged into dynamic objects	 A special table is used

to maintain the references to ephemeral objects by objects of other ages	 This

table is used to improve the e�ciency of ephemeral garbage collections	 Garbage

collection of dynamic objects is performed less frequently� and is more expensive�

than for ephemeral objects	 Static objects are assumed to live forever	 They can

be reclaimed by an explicit garbage collection call� but will never be reclaimed by

normal system operation	 If the entire system state is saved� all objects are garbage

collected before the system is written to disk	 When a saved state is restarted� all

objects are considered static	 The use of specialized Lisp hardware� in particular



��

tagged memory� has made this algorithm very e�cient� compared to other collectors	

Goldberg ���� combined a generational garbage collector with a reference count�

ing algorithm	 The result is a collector that will work in a distributed environment	

In this algorithm� an object keeps track of its copy count and its generation	 When

a new object is created it has generation zero and copy count zero	 The object

also has an associated ledger� stored on the processor where the object was created	

The ledger is an array that contains information about the number of outstanding

references for each generation	 The ledger is initialized to have a value of one for

generation zero� and zero for all other generations	 When a copy of the object

is made� the object�s copy count is incremented	 The copy of the object has a

generation one greater than the copied object	 When an object has been discarded�

the ledger is sent a message containing the generation� g� and the copy count� c� of

the discarded object	 The ledger then subtracts one from the value stored at index

g� and adds c to the value stored at index g��	 When all indexes of the ledger are

zero� the object can be reclaimed	 The use of the ledger allows for the possibility

of out of order messages	 The message overhead of this algorithm is exactly one

message per reference	 This low overhead is the major bene�t of this algorithm	

There are two major problems with this algorithm	 The �rst problem is the

amount of space used to implement the algorithm	 There is a small cost associated

with each reference of the object and a large cost associated with the ledger	

The second problem is the amount of computational overhead introduced by this

algorithm	 Each time an object is created� the copy count� generation and ledger

must be initialized	 This is true even if the object is never referenced again	 There

is also additional overhead involved in the copying and deletion of objects	 The

algorithm used to discard individual references is not described� presumably some

other garbage collection algorithm is used	



CHAPTER �

THE CONCURRENT SCHEME

ENVIRONMENT

The Concurrent Scheme �CS� language was developed by Swanson at the Uni�

versity of Utah ���� ��� ���	 The current implementation of CS� Concurrent Utah

Scheme �CUS�� is supported on three platforms� May�y ��� ���� HP��� and HP���	

The May�y architecture is an experimental parallel architecture possessing several

unique features	 Each node in the May�y architecture is connected to other nodes

to form a processing surface� or hexagonal mesh	 The processing surfaces are

connected together to form the network	 Messages are passed from node to node

using a dynamic routing scheme that guarantees the messages will be delivered

to their destination� but may arrive out of order	 The May�y is designed to be a

highly scalable architecture
 the current system is capable of scaling to over 
������

nodes	 The HP��� and HP��� architectures are simply networks of homogeneous

workstations	

The motivation behind CS was to design a language scalable to a highly parallel

system
 to achieve this� two basic goals were formalized	 First� communication

between nodes must be asynchronous	 There are many reasons for this� the most

compelling being the amount of network tra�c generated by synchronization mes�

sages	 The network is a critical resource and a potential bottleneck	 Second� no

concept of global state may exist	 If a node were responsible for maintaining the

state of the network� it would become a bottleneck� the state of the system cannot



��

change faster than the node can keep track of it	 These goals are based on the

observation that any bottleneck will reduce scalability	

In order to achieve user speci�ed parallelism� Swanson extended the traditional

Scheme language to include domains� threads� placeholders and ports	 Copying

semantics were introduced to maintain consistency between domains	 The seman�

tics ensures all references within a domain are consistent and cannot be modi�ed

by other domains	 These extensions to the base language are discussed in Section

�	�	 In Section �	� a detailed description of the implementation is given	 This

description will form the basis for an explanation of the global garbage collection

algorithm	

��� Extensions to Scheme

When the CUS environment is initialized� the number of nodes to be used in the

network� n� is speci�ed	 Each node in the network is assigned a unique identi�cation

number from the range ���n � ��	 The May�y system assigns nodes from the available

processors	 The other platforms require a special �le containing names of potential

network nodes	 The machines speci�ed in the �le are tried in sequential order until

the required number of machines are allocated	 Each node executes an identical

copy of the environment	

CUS domains have spatial characteristics	 All computations occur within do�

mains and all variables live within domains	 Local garbage collections occur on a

per domain basis using a copying collector	 Domains form the basic unit of mutual

exclusion
 only one thread may be executing in a domain at a time	 This ensures

that the programmer need not worry about locking protocols for local variables	

Domains may be created on any node by specifying the desired node number when

the domain is created	 If the node number� m � exceeds the number of nodes in the

system� n� the domain is created on node �m mod n�	



��

Threads are the instrument of parallelism	 When a thread is created it is given

a procedure to execute	 If the procedure is a closure ��� the thread executes in the

domain in which the closure was created	 If the procedure is not a closure� a domain

in which to execute the procedure must also be given	 The execution of a thread

occurs on the node containing the required domain	 When there are several active

threads on a single node the resources are time shared to give pseudo�parallelism	

True parallelism occurs when threads execute on di�erent nodes at the same time	

A placeholder may be used to return the value of the thread at completion	

Placeholders represent the promise of a potential value at some point in the

future	 After creation they can be manipulated like most other types	 However� if an

operation occurs for which the value of the placeholder must be known� the thread

requiring the information blocks until the placeholder is determined	 A thread

may be forced to block until a placeholder is determined by using an operator that

returns the value of the placeholder	 The value of the placeholder is determined

by a function call	 This function requires the placeholder to be determined and the

value to which it is to be determined	 Once a placeholder has been determined�

threads waiting for the value are placed on the active queue	 A placeholder may be

determined only once	

Ports are a built�in implementation of �rst�in� �rst�out queues	 When a port is

created the user speci�es the number of objects the port will bu�er	 The program

may then add and remove objects from the port one at a time	 If the port is empty

and a thread tries to read from the port the thread will block until an object is

sent to the port	 If a thread tries to send an object to a full port the thread will

block until an object is read from the port	

��� Implementation Details

The CUS system was designed for the May�y parallel computer architecture	 In

this architecture a node contains two processors	 One processor� the mp� is used



��

primarily for systems support operations	 It handles the sending and receiving of

messages and performs scheduling operations	 Threads running on this processor

cannot be interrupted	 Thus the mp provides a convenient location for atomic

operations to be performed	 The other processor� the ep� is used primarily for user

processes	 All of the high�level operations execute on this processor	 The ep is time�

shared between all active threads	 System calls exist to switch the current thread

from one processor to the other	 The thread is blocked while the switch is taking

place	 If there is a thread running on the desired processor the migrating thread

is added to a queue and resumed in turn� otherwise it is executed immediately	

It is possible to have processes executing on both the mp and the ep at the same

time allowing true parallelism on a single node	 The architectural uniqueness of the

May�y is simulated by low�level software on other CUS platforms	 This simulation

allows the advantages of the mp to be utilized even when the processor does not

exist	

All communication between domains takes place via message passing	 When

a domain communicates with another domain the information to be shared is

sent to an export function	 The information is completely dereferenced removing

all pointers into the current heap	 When all references have been resolved the

information is copied into a message packet	 If the message is too large to be sent in

one packet multiple packets are used	 The information is sent to the requested node

by the mp	 The message is received by a thread running on the remote node�s mp

and copied into the appropriate domain�s heap	 Once the copy has been completed

the thread switches to the ep to process the information	

Domains� threads� placeholders and ports are represented as structures that exist

outside the scope of any domain�s heap	 This is necessary because the copying

protocol must not a�ect the uniqueness of these objects	 Consider the sequence of

expressions in Figure �	�	 If placeholders existed within domains� when placeholder



��

�set� aa �make�placeholder�� 

 in domain A
�set� bb �touch aa�� 

 in domain B
�set� cc �touch aa�� 

 in domain C
�determine aa �list �� ���� 

 in domain A
�set� dd �touch aa�� 

 in domain D

Figure �	�	 Potential Copying Protocol Problem

aa was exported to domain B a copy of the entire placeholder structure would

be sent	 Similarly� when aa is sent to domain C a di�erent copy of the structure

would be sent	 Each of the three copies of the placeholder would be equal but not

identical	 When aa is determined in domain A only the structure local to domain A

would be determined	 The copies of the placeholder in domains B and C would not

be determined because they are di�erent	 At this point bb and cc would be equal

to each other but not to aa	 When aa is copied to domain D it has already been

determined and its value will be assigned to dd	 To avoid this inconsistency and to

maintain the copying protocol Swanson introduced immediate objects	 Immediate

objects are one word tagged objects that contain all information required to locate

the structures they represent	

Swanson uses an export table to organize the global objects	 The export table

is an array of export objects� shown in Figure �	�� that contain pointers to the real

global objects	 When a global object is created� the actual structure is allocated

out of the global heap	 This object is then assigned to an entry in the export

table	 Based on the entry assigned� the node where the object was allocated and

the type of global object created� an immediate object is generated and returned	

This immediate object is used by all higher level functions	 The immediate object

is unique because there is exactly one export table per node and all global objects

created by a node are referenced by the export table on that node	 Because the



��

�defstruct �export�
object 

 the object being exported
 nil��invalid
link 

 ptr to next export for owning domain or next available
owner 

 pointer to owning domain

�

Figure �	�	 Export Object

immediate object is one word the copying protocol does not have any indirections to

follow when the object is exported	 When detailed information about the object is

required� for example the value of a placeholder� the immediate object is dissected

to reveal the location of the real object	 The real object is accessed directly and

the required information is returned	 Because all copies of the immediate object

point to the same location� there cannot be any consistency problems	

Closures pose an anomaly to the copying protocol	 Although no domain is

allowed to contain a direct pointer into another domain a closure by de�nition is

a pointer into a domain	 Therefore whenever a closure is exported a pointer is

created from one domain to another domain	 To resolve this problem� Swanson

created immediate closures to represent exported closures	 When a closure is to

be exported� an entry is reserved in the export table	 The object in the export

table points to the closure within the exporting domain	 This does not violate

the copying protocol because the export table exists outside of all domains	 An

immediate closure object is then created and exported in place of the closure	

When an immediate closure is copied into a domain� or imported� it is immediately

wrapped in a special closure called a gateway	 A gateway is a closure containing

an immediate closure object in its local state	 Gateways are easily distinguishable

from other closures because they have a special form	 When a gateway is executed�

the associated immediate object is used to reveal the location of the real closure



��

that is executed in the proper environment	

The root domain is used to store global variables	 It is di�erent from other

domains because a copy of the root domain is kept on every node in the network	

This allows for quick access to global variables	 However� there is a great deal of

overhead associated with keeping all copies of this domain consistent	 Any time a

global variable is added or modi�ed the change must be broadcast to all nodes in

the network	 For this reason Swanson discourages the use of globals	

The domain level garbage collector is a copying collector	 The roots of the

domain are taken from the domain�s current environment� the current stack� and

the thread currently running in the domain	 Additional roots are provided by

threads waiting to enter the domain� threads whose execution stack includes the

domain� and closures that have been exported from the domain	 The root domain

includes the symbol table in its root set	 The collector allocates a new heap for the

domain from the global heap� copies over all objects accessible from the root set

and returns the old heap to the global heap	



CHAPTER �

GLOBAL GARBAGE COLLECTOR

FOR CUS

In the current implementation of CUS� global objects are not collected	 This

results in the size of the export table increasing monotonically	 At some point� the

export table� and associated objects� consumes all available heap space and threads

are unable to execute within domains	 This problem can be avoided by the use of

a garbage collector for global objects	 It is possible� but unlikely� for the export

table to over�ow even when all of the garbage is collected	 A distributed reference

counting algorithm is presented that will solve the global garbage collection problem

in CUS	

The requirements for the collector are outlined in Section �	�	 Section �	�

describes an obvious solution to the problem which� although incorrect� does provide

useful insight	 Section �	� describes the algorithm in detail	 Section �	� provides

three examples of the algorithm�s execution	 Section �	
 proves the algorithm to

be correct	

��� Goals

Several problems must be overcome to satisfy the requirements placed on a

global garbage collector in CUS	 Garbage collection algorithms that require a large

number of messages to be passed between nodes are unsuitable for this environment	

The resulting increase in network tra�c would slow the network an unacceptable



�


amount	 The collector must operate asynchronously	 Any attempt to synchronize

the garbage collector would result in problems with network tra�c and dramatically

reduce the computational e�ciency of the entire system	 The amount of work

required by the collector should not depend on the number of nodes in the system	

Dependency on the network size will reduce the scalability of the collector	 Messages

arriving out of order should not cause the collector to perform incorrectly or to

incur any additional computational overhead	 The collector should not stop user

threads for an extended period of time to perform a collection	 This implies either

the collector should be executed in parallel with the user threads or the collector

should be a real time algorithm	

��� An Obvious Solution

If a reference counting garbage collector is to be used to collect global objects in

CUS� an obvious algorithm would store an objects reference count with the object	

When a reference to the object is created� an increment message is sent to the node

on which the object resides	 When a reference to an object is removed� a decrement

message is sent to the object	 Unfortunately� this algorithm will not work	 Consider

the following sequence of actions on a three node network�

� Node � creates a global object� A
 A has a reference count of one	

� A reference to A is created on node �
 A has a reference count of two	

� A reference to A is created on node �	 An increment message is sent to node

�� but the increment will not occur until the message arrives	

� Node � reclaims its reference to A and sends a decrement message to node �	

A�s reference count is still one� because neither the increment or the decrement

message has arrived	



��

� The decrement message arrives at node �	 A�s reference count becomes zero

and A is reclaimed	

� The increment message arrives at node �� causing an error because A does not

exist	

In a reference counting system� an increment must occur before the correspond�

ing decrement occurs in order to guarantee correctness	 This property does not

hold in the obvious solution because a race condition exists between increment and

decrement messages when in�order delivery is not guaranteed	 One solution to this

problem is to introduce synchronization messages	 When a node sends an increment

message� it waits for the destination node to send a reply con�rming it received the

increment	 Unfortunately� the node cannot continue its normal operation until

this reply arrives� introducing an unacceptable amount of waste into the system	

Another� more practical solution� is to force all increments to occur locally	 If an

increment occurs locally� it can be guaranteed to occur before the corresponding

decrement� eliminating the race condition without additional network overhead	

��� The Distributed Garbage Collector

This section describes the algorithm developed to solve the problem of global

garbage collection in CUS	 Section �	�	� explains the data structures used to im�

plement the algorithm described in Section �	�	�	 Section �	�	� describes a revised

algorithm� which� although equivalent to the initial algorithm� may be easier to

understand	

����� The Data Structures

The implementation of the algorithm required the introduction of a new data

structure to the system	 This structure� the import table� is an array of import



��

table entry objects� shown in Figure �	�	 There is a unique import table residing

on every node in the system	 This table contains one entry for every node in the

network	 The purpose of this table is to hold all immediate objects imported to

the current node	 A variable length array of import objects is stored with each

table entry	 The array associated with import table index i on node n contains all

immediate objects imported by node n that reside on node i	 The time required

to locate an element in the used list is proportional to the number of elements

currently imported from the node	 Insertion and deletion of import objects can be

performed in constant time once the list has been searched	

The import objects described in Figure �	� are used to hold all information

associated with an imported object	 This information is retrieved by a linear search

�defstruct �import�table�entry

��constructor create�import�entry�

��print�function print�import�entry��

size � current size of the array being pointed to

free � pointer to the head of the free list

used � pointer to the head of the used list

array � the array of objects imported from here

�

Figure �	�	 Import Table Entry Object

�defstruct �import

��constructor create�import�

��print�function print�import��

object � the item that we have imported

link � pointer to the next element

contact � the node that we originally got the object from

exported � has this object been exported from this node

ref�count � the number of references to this import

�

Figure �	�	 Import Object



��

for the immediate object through the appropriate import table entry array�s used

list	 The reference count represents the number of domains on this node that

know about the object	 The contact �eld is the number of the node that initially

sent the object to the current node	 The exported �eld is used to determine if

the current node has exported the immediate object	 This �eld is used only if the

immediate object does not reside on the node	 The link �eld is used to maintain

either the used list or the free list for the current import table entry	

In addition to the introduction of the import table� two modi�cations were made

to existing data structures	 The �rst was the modi�cation of the export object

structure to include a reference count	 This reference count represents the number

of copies of an immediate object sent from this node not yet accounted for	 The

other modi�cation was the addition of the import �eld to the domain structure of

Figure �	�	 This �eld is used to determine which immediate objects the domain

�defstruct �domain

��constructor create�domain�

��print�function print�domain��

name � just a symbolic name for debugging

link � ptr to next domain on node

entry�count � count of nested entries by the cur thread

thread � thread occupying the domain

waiting � list of threads waiting to get in

touchers � threads that TOUCHed with wait�outside�T

delay�queues � list of delay queues associated with the domain

heap�base � ptr to base of current heap

heap�limit � ptr to upper bound of current heap

heap�next � ptr to next available location in cur heap

exports � ptr to list of exported closures and phs

phs � placeholders imported to this domain

imports � list of imported objects

external � exportable id of this domain

�

Figure �	�	 Domain Object



��

references	 The import �eld references a list of paired objects	 The �rst element in

the pair is used as a mark for the local garbage collector	 The mark allows the local

collector to determine when there are no references to the immediate object within

the domain	 The second element in the pair is a pointer to an import object	

����� The Initial Algorithm

Figures �	� and �	
 provide a general outline of the proposed distributed reference

counting algorithm	 Figure �	� describes the modi�cations required in the export

and garbage collection functions	 Figure �	
 describes two additional functions

required to implement the garbage collection algorithm	 The algorithm is described

in detail below	

The garbage collection algorithm is a distributed reference counting algorithm	

The collector knows an object is garbage when the export table reference count for

the object reaches zero	 When an object becomes garbage� the collector frees the

memory used to contain the global object and adds the export object to the export

table�s free list	

When an immediate object is sent to another domain� the local export table

reference count must be incremented	 If the object resides on the current node� the

increment can be performed immediately	 If the object resides on another node� a

local export object exists only if the object has been previously exported from this

node	 In order to determine if the object has been previously exported the import

table is searched for the associated import object	 If a local export table entry for

the object exists� the exported �eld of the import object will contain the index into

the export table where the entry is located	 The reference count for this entry is

incremented	 If a local export object does not exist� an export object is allocated	

The export table reference count for this entry is incremented	 The exported �eld

of the import object is set to the index into the export table where the export



��

�defun export�an�object �object�

�if �local object�

�increment�export�count �export�table�loc object��

�let ��export�entry � determine if prev exported

�export�status �import�object object����

�if export�entry

�increment�export�count export�entry�

�let ��export�entry � have to create export entry

�allocate�export�table�entry object���

�update�export�status export�entry object�

�increment�export�count export�entry���

�increment�import�count object����

�defun local�collection ��

�for�the�entire�heap

�if �immediate�object current�object�

�mark�and�copy current�object�

�copy�and�return current�object���

�for�each�element�in�the�import�list

�if �marked object�

�copy�to�new�import�list object�

�progn �decrement�import�count object�

�if �eq �import�count object� ��

�send�decrement�message�to�contact object������

Figure �	�	 Required Modi�cations to Existing Functions

object is located	 The import reference count is incremented in order to ensure the

object will not be removed from this node while the export table still references it	

When a decrement object message is received by a node� the export object

associated with the immediate object is found	 The reference count associated

with the export object is decremented	 If the reference count of the object is zero�

the object is garbage and can be removed	 If the object resides on the current node�

the object �eld of the export object points to the global object which is deleted and

the associated memory is deallocated	 The immediate object is forgotten and may

be reused	 The export object is cleared and added to the export table free list	 If

the object does not reside on the current node� the import table is searched to �nd



��

�defun decrement �object�

�let ��export�entry �find�export object���

�decrement�export�count export�entry�

�if �eq �export�count export�entry� ��

�progn � have to free export table entry

�if �local object�

�reclaim object�

�progn �decrement�import�count object�

�when �eq �import�count object� ��

�progn

�send�decrement�message�to�contact object�

�reclaim�import object�����

�reclaim�export�object export�entry�����

�defun import�object �object domain sender�

�if �previously�imported�to�node object�

�progn � already in import table� may be in domain

�send�decrement�message�to�sender object sender�

�if �not �previously�imported�to�domain object domain��

�add�to�import�list object domain���

�progn �add�to�import�table object sender�

�add�to�import�list object domain����

Figure �	
	 New Functions Required by Collector

the associated import object	 The import reference count is decremented and the

exported �eld is set to NIL	 The export object is cleared and added to the export

table free list	

As an immediate object is imported it is added to the local import table	 In

order to determine if the object has been imported to the current node before� the

import table entry array is searched	 If the object has been previously imported an

associated import object will exist	 In this case� a decrement message is sent to the

node that sent the immediate object to the current node� and the current domain�s

import list is searched to determine if the object has been previously imported to

the domain	 If the immediate object has not been imported to the current domain

before� the import reference count is incremented and the import object is added

to the current domain�s import list	 If the immediate object has not been imported



��

to the node before� an import object is allocated from the appropriate import table

entry array to store the object	 The contact �eld is set to the node that sent the

message containing the immediate object	 The reference count is initialized to one

and the exported �eld is cleared	 The import object is added to the domain�s

import list	

The local garbage collection is responsible for decrementing the import reference

count	 When an immediate object is copied by the collector the corresponding pair

in the import list is updated	 The current domain�s import list is searched until the

desired pair is found and marked	 When the garbage collection is complete� each

pair in the domain�s import list is examined	 If the pair was marked by the garbage

collection� the mark is cleared and the pair is copied into the domain�s new heap	

If the pair was not marked� the import reference count is decremented and the

pair is removed from the domain�s import list	 When an import object�s reference

count reaches zero� the import thread is scheduled	 The import thread is a special

thread that searches the import table for import objects having a zero reference

count	 When such an object is found� the thread sends a decrement message to

the contact� clears the import and adds the import to the import table entry�s free

list	 The use of an additional thread allows the user program to be resumed with

minimal delay by increasing parallelism and asynchronicity between the garbage

collector and the user process	

The export reference count of an object represents the number of nodes that

may contain references to the object and the import reference count of an object

represents the number of domains on the current node that have references to the

object	 Unfortunately� there are other references that must be considered	 Indirect

references may be created when a global object references another global object	

For example� an immediate closure references the domain in which it resides
 an

active thread references itself
 a thread references the domain in which it is currently



��

executing� and any domain through which it must return to successfully complete

execution	 The reference counts must take indirect references into account	 Because

there is no general way to determine when an indirect reference is created� special

cases are used for each type of indirect reference	 Fortunately� only the types of

indirect references mentioned above are possible	 When an operation creates or

destroys an indirect reference� the export reference count is manipulated appropri�

ately	

����� The Revised Algorithm

In the revised algorithm� only the import reference count is used
 making this

algorithm easier to understand than the initial version� though no more e�cient	

The data structures are the same as for the initial algorithm except for the export

table which does not need to maintain a reference count	 The initial algorithm has

been implemented in CUS and is the algorithm discussed throughout the rest of

the thesis	 The modi�ed algorithm is presented only as an aid to understanding

the initial algorithm	 The modi�ed algorithm is as follows�

When an object is initially imported to a node� it is added to the local import

table	 The object�s contact is set to be the node that sent the reference to the

object	

When an object is to be sent from one domain to another� the reference count for

the object is incremented before the message is sent	 When a message containing a

reference to an object that has been previously imported is received� a decrement

message is sent to the node that has sent the reference	 If the object has not been

imported to the requested domain before� the local reference count is incremented

and the object is added to the domain�s list of imports	

When a decrement message is received by a node� the reference count for the

object is decremented	 Once the reference count for an object reaches zero� the



��

import object can be reclaimed	 If the actual object resides on the current node� it

can be reclaimed	 Otherwise� a decrement message is sent to the object�s contact

node	

The local garbage collection is responsible for determining when a domain ceases

to reference an object	 When an object is copied by the collector the corresponding

entry in the current domain�s import list is marked	 When the garbage collection

is complete� each entry in the domain�s import list is examined	 If the entry was

marked by the garbage collection� the mark is cleared and the entry remains on the

import list	 If the entry was not marked� the reference count is decremented and

the entry is removed from the domain�s import list	

��� Examples

����� Example �

This example uses a network with one node� node zero� containing one domain�

domain A	

Consider the creation of a placeholder in domain A	 The placeholder structure

is allocated from the global heap� and an export object is allocated to point to

it	 An immediate object is generated to represent the placeholder and is imported

into domain A	 An import object is allocated from the array pointed to by import

table entry zero	 The import object is assigned a copy of the immediate object

and a reference count of one	 The contact for the import is the current node� node

zero� because that is where the immediate placeholder came from	 A pointer to the

import object is added to domain A�s import list	

When domain A loses its reference to the placeholder� the reference can be

reclaimed	 During the next local garbage collection� domain A�s import list entry

for the placeholder will not be marked	 This causes the entry to be removed from

the import list and the import reference count to be decremented	 Because no



�


other domains have a reference to the placeholder� the import thread is scheduled

to reclaim the object	 The import thread clears the import object�s �elds and

sends a message to the contact node to decrement the placeholder�s export reference

count	 When the message is received� the decrement causes the export table entry�s

reference count to become zero	 The placeholder structure is freed� the export

object�s �elds are cleared� and the export object is added to the export free list	

����� Example �

For this example� consider the two node network shown in Figure �	�	 Assume

there are threads running on both nodes	 Domain A resides on node zero and is

referenced on nodes zero and one	 Domain B resides on node one and is referenced

only on node one	 The number associated with an export table entry represents

the export reference count for the object	 The numbers associated with an import

table entry are the reference count and the contact node respectively	 Consider the

following sequence of actions with respect to this network	

��
��

�

Export Table

Domain A �

Import Table R C

NIL
Domain A � ��

��
��

�

Export Table

Domain B �

Import Table R C

Domain A � �
Domain B � �

�

�

Figure �	�	 An Initial Network Con�guration



��

Domain B exports a closure to domain A	 An export table entry is created

on node one� and an immediate closure is generated	 The export table entry is

assigned a reference count of one	 The export table reference count for domain B is

incremented because there is an indirect reference to the domain by the exported

closure	

When the immediate closure is received by node zero� an import table entry is

created for it	 The import object has a reference count of one and a contact of one	

The immediate closure is wrapped in a gateway and copied into domain A	 The

state of the network at this point is shown in Figure �	�	

Domain B sends another copy of the closure to domain A	 The local export

reference count for the closure is incremented before the closure is sent	 When

the message is received� a decrement message is immediately sent to node one

because the closure has already been imported by node zero	 This causes the

export reference count on node one to be decremented	 The import reference count

on node zero is not incremented because the closure has already been imported to

domain A	

��
��

�

Export Table

Domain A �

Import Table R C

Domain A � �

Closure � �

�

�

��
��

�

Export Table

Domain B �

Closure �

Import Table R C

Domain A � �
Domain B � �

�

�

Figure �	�	 After Domain B Creates a Closure



��

Domain A discards its reference to the closure and performs a local garbage

collection	 The import reference count is decremented and� because the reference

count is zero� a decrement message is sent to node one	 When this message is

received� the export reference count for the closure is decremented	 The export

table entry is cleared and the export reference count for domain B is decremented	

This returns the network to the initial state shown in Figure �	�	

����� Example �

Consider the network of three nodes shown in Figure �	�	 Assume there are

threads running on all three nodes	 The export and import entries for the threads

are not shown because they are irrelevant for this example	 Each import table

contains three entries� one for each node in the system	 Domain A exists on node

��
��

�

Export Table

Domain A �

Import Table R C

NIL
NIL

�Domain A � �

��
��

�

Export Table

Domain B �

Import Table
R CNIL

NIL
Domain B � ��

��
��

�

Export Table

Domain C �

Import Table R C

Domain A � �
Domain B � �

Domain C � �

�

�

�

Figure �	�	 An Initial Network Con�guration



��

zero and is referenced on nodes zero and two	 Domain B exists on node one and is

referenced on nodes one and two	 Domain C exists on node two and is referenced

only on node two	 The number associated with an export table entry is the export

reference count for the object	 Both domain A and domain B are referenced on two

nodes so their export reference count is two	 Domain C is referenced on only one

node� node two� so it has an export reference count of one	 The numbers associated

with an import object are the import reference count and the contact respectively	

Each domain has been imported from the node on which it resides	 Consider the

following sequence of actions with respect to this network	

Domain C creates a placeholder and sends it� and a reference to domain B� to

domain A	 The new network state appears in Figure �	�	 An import object exists for

the placeholder on node two because the placeholder was imported into the domain

��
��

�

Export Table

Domain A �

Import Table R C
�

�

�

Domain A � �
Domain B � �

Plholdr D � �

��
��

�

Export Table

Domain B �

Import Table
R CNIL

NIL
Domain B � ��

��
��

�

Export Table

Domain C �
Plceholder �
Domain B �

Import Table R C

Domain A � �
Domain B � �
Domain C � �

Plholdr D � �

�

�

�

Figure �	�	 Network After Placeholder Sent to Domain A



��

that created it	 The export entry for the placeholder on node two has a reference

count of two because the placeholder was exported to both node zero and node two	

The export table entry for domain B on node two was added because the domain

was exported from a node other than the node on which it resides	 This export

caused the import reference count for domain B on node two to be incremented	

Node zero has modi�ed its import table to re�ect the immediate objects imported

into domain A	 Note that the import objects are stored with the import table entry

indexed by the node where the objects reside� not by the node that sent the object	

Domain C removes its reference to the placeholder and has a garbage collection	

This causes the import reference count for the placeholder to be decremented	

Because the import reference count becomes zero� the import can be cleared and

added to the free list	 The export reference count for the placeholder is decremented	

Domain A sends the placeholder to domain B and forgets its reference to domain

B� changing the network state to that shown in Figure �	��	 An export object is

allocated on node one for the placeholder because it does not reside there	 The

export reference count is set to one	 The import reference count for the placeholder

is incremented	 Node one creates an import object for the placeholder imported to

domain B	

Domain A performs a garbage collection causing the import reference count for

domain B on node zero to be decremented	 The import object is then cleared

and added to the free list because its reference count reached zero	 A decrement

message is sent to node two� the contact for the domain	 When node two receives

the decrement message the export reference count for domain B is decremented	

The import reference count for domain B is decremented and the export object is

cleared and added to the free list	 The current state of the network is shown in

Figure �	��	

Domain A loses the placeholder reference and performs another garbage collec�



��

��
��

�

Export Table

Domain A �
Plceholder �

Import Table R C
�

�

�

Domain A � �
Domain B � �

Plholdr D � �

��
��

�

Export Table

Domain B �

Import Table
R CNIL

Domain B � �

Plholdr D � �

�

� ��
��

�

Export Table

Domain C �
Plceholder �
Domain B �

Import Table R C

Domain A � �
Domain B � �
Domain C � �

�

�

�

Figure �	��	 Network After Placeholder Sent to Domain B

tion causing the placeholder�s import reference count to be decremented	 Domain

B loses its reference to the placeholder and performs a garbage collection	 The

placeholder�s import reference count on node one is reduced to zero	 The import

object on node one is cleared and added to the free list	 A decrement message is

sent to node zero	 When node zero receives this message the placeholder�s export

reference count is decremented	 Because the export reference count is zero the

export object is deallocated and the import reference count is decremented	 The

import object is cleared and a decrement message is sent to node two	 When node

two receives this decrement message the export reference count for the placeholder

is decremented	 The export object is cleared and the memory used to store the

placeholder is deallocated	 This returns the network to the initial con�guration

seen in Figure �	�	



��

��
��

�

Export Table

Domain A �
Plceholder �

Import Table R C

NIL

�

�

Domain A � �

Plholdr D � �

��
��

�

Export Table

Domain B �

Import Table
R CNIL

Domain B � �

Plholdr D � �

�

� ��
��

�

Export Table

Domain C �
Plceholder �

Import Table R C

Domain A � �
Domain B � �
Domain C � �

�

�

�

Figure �	��	 Network After Garbage Collection in Domain A

��� Proof of Correctness

Assumption � The export table is contained within its own domain

Assumption � Determined placeholders are contained within their own domain

De�nition � N is the number of nodes in the network

De�nition � Import�count�i�o� is the import table reference count for object o

on node i

De�nition � Export�count�i�o� is the export table reference count for object o

on node i



��

De�nition � Mess�i�o� returns the number of messages sent from node i con�

taining a reference to object o

De�nition � Num�i�o� returns the number of domains on node i that reference

object o

De�nition � Ref�i�o� returns one if node i contains a reference to object o� and

zero otherwise

De�nition � Res�o� returns the number of the node on which object o resides

Assertion � Reference� and message� counts cannot become negative

Assertion � References to an object may be made by a domain or a message only

Assertion � An object o is garbage collected when Export�count�Res�o��o� � �

Goal The algorithm is correct if an object is collected if� and only if� there are no

references to that object�

Lemma � ��o� �
P

N��

i��
Import�count�i�o� �

P
N��

i��
Num�i� o�

Proof	

When a message containing a reference to object o is received by node i and

imported to domain d� the import reference count is incremented only if o is not

currently referenced by d	 Therefore� Import�count�i�o� � Num�i� o�	 When a

reference to an object o is removed from a domain d� the import reference count

is decremented	 Therefore� Import�count�i�o� � Num�i� o�	 Therefore� Import�

count�i�o� � Num�i� o�	



��

Lemma � ��o� �
P

N��

i��
Export�count�i�o� �

P
N��

i��
Mess�i� o��

P
N��

i��
Ref�i� o�

Proof	

Before a message containing a reference to object o is to be sent by node i to

node j� the export reference count for o is incremented	 The decrement message

corresponding to this increment message will be sent either if j has a reference to

o� or when Num�j� o� � �	 If j had a reference to o� then there is always a message

containing a reference to o in the network	 If j did not have a reference to o� then

the decrement will not occur until j no longer has a reference to o	

Theorem � If an object is reclaimed� there are no references to it�

Proof	

o is garbage collected � Export�count�Res�o��o� � � �

Mess�Res�o�� o� � Ref�Res�o�� o� � � �

Mess�Res�o�� o� � � and Ref�Res�o�� o� � �

Ref�Res�o�� o� � � � ��o� � �

Theorem � If there are no references to an object� then it is reclaimed

Proof	

��o� � � �
P

N��

i��
Ref�i� o� � �

P
N��

i��
Mess�i� o� �

P
N��

i��
Ref�i� o� � � �

��o� � � � o is reclaimed



CHAPTER �

ANALYSIS AND FUTURE WORK

��� Analysis of the Algorithm

The original version of the garbage collection algorithm has been successfully

implemented in the Concurrent Utah Scheme environment	 This implementation

has been tested extensively� and manually validated to ensure all garbage objects�

and no active objects� are collected	 This validation was performed by observing

local garbage collections to determine which objects were reclaimed� then examining

the import and export tables to ensure the results were propagated correctly	

This algorithm has the ability to handle out�of�order messages	 Out�of�order

messages are problematic because they may cause an object to be reclaimed while

it is still being referenced	 In a reference counting algorithm� this problem arises

when a decrement message arrives before the corresponding increment message has

arrived	 If an out�of�order decrement causes the reference count to reach zero� the

object is mistakenly reclaimed	 Because all increments occur locally� and atomically�

in this algorithm� it is impossible for a decrement message to be received before the

corresponding increment has occurred	

The asynchronous nature of this algorithm contributes to a network overhead

of at most one message per reference	 Every reference to a global object passed

between domains requires a decrement	 However� a reference passed between

domains on the same node does not require that a message actually be sent	 In

this case� the decrement can be performed locally� by a thread operating in parallel



�


with the user thread	 Therefore� the number of decrement messages may actually

be less than the number of interdomain references	

There are several features of this algorithm that enable it to scale to highly

parallel systems	 First� the ability to reclaim garbage without the use of global

state information has a dramatic e�ect� because it ensures there will not be a node

that becomes a garbage collection bottleneck	 Second� the low communication

overhead reduces the possibility of the network becoming a bottleneck	 Finally�

because reclaiming an object requires interaction between at most two nodes� the

introduction of additional nodes into the system does not a�ect the e�ciency of

the collector	

There is very little computational overhead introduced by this collection algo�

rithm due to its incremental nature	 In addition� most of the work can be performed

by threads running in parallel with the user process	 The decrementing of export

objects and the clearing of both import and export objects can be performed in

parallel with the user process	 This reduces the interruption of user processes by

the collector and increases the utilization of the processor	 Other operations such

as importing an object and decrementing the import count of an object must be

performed by the user process	 However� these operations do not require much

time� and occur while the user process is performing expensive operations� such as

local garbage collection� so the increase in execution time is not noticeable	

����� De�ciencies of the Algorithm

The major problem with this algorithm is the inability to reclaim cyclic ref�

erences	 If closure A references closure B and closure B references closure A� the

reference count for closures A and B will never be less than one	 This means neither

closure will be collected	 The problem of cyclic references between global objects is

unlikely to become signi�cant	 Although it is possible for a cyclic reference between



��

global objects to be created it happens too infrequently to cause concern	 It is

important to note this problem does not a�ect the correctness of the algorithm	 The

algorithm describes a conservative garbage collector that will collect only objects

known to be garbage	 In the case of cyclic references the collector does not know

the objects are garbage� so it will not collect them	

Unfortunately� the CS environment is too general to allow trivial detection or

removal of cyclic references	 If cyclic references become a problem� one of several�

more complicated� techniques may be used to eliminate them	 The common solution

to the problem� using a marking collector as an auxiliary� is a possible solution	 The

auxiliary collector would be invoked only under certain circumstances� for example

when there are a large number of global objects with low reference counts� and

would reclaim all the garbage in the system	 The problem with a marking collector

is the high cost of forcing all the nodes in the system to perform a garbage collection

at the same time	 However� because the collector will be invoked infrequently� this

overhead may be acceptable	

A less costly solution is used by Shapiro in his garbage collector	 In this

algorithm� if an object is not referenced on the node on which it resides� it is

moved to a node that might contain a reference to it	 The object may be moved to

nodes that do not reference it� but� eventually� it will �nd a node that references

it	 Once the object is on the same node as its reference� it is easy to determine

if a circular reference exists	 The major cost in this algorithm is incurred by the

movement of the object from one node to another� and will vary depending upon

the object moved	 For example� in most cases� it costs more to move a domain than

a placeholder	 This algorithm also has the unfortunate side e�ect of changing the

degree of parallelism exhibited by a program	 If domains become clustered on a

single node� the majority of computation will be performed on that node� and the

bene�ts gained by the distributed computing environment will be lost	



��

The algorithm requires local garbage collections to occur in order for global

objects to be reclaimed	 If these collections do not occur� it is possible for old

references to objects to persist inde�nitely	 This prevents these objects from being

reclaimed	 In order to prevent this� it may be necessary to force local garbage

collections to occur in domains that do not collect frequently	 By forcing local

garbage collections� it can be assured unused references to an object will eventually

be removed	

The amount of memory used by the import and export tables may pose problems

for user programs	 Memory usage is high because individual table entries are large

and many objects are used during program execution	 The import and export

objects do not need to be as large as they are	 Memory can be saved by reducing

each �eld in the object to the minimum required size	 The size of the import table

may be reduced by restructuring the table into a single array of imports containing

a linked list for each node in the network	 Even without the above modi�cations�

the memory usage is not critical and is overshadowed by the algorithm�s success at

solving the problems posed by the CUS environment	

����� Possible Optimizations

Although the base algorithm has a very low network overhead� it is still possible

to improve on it	 One improvement is to reduce network overhead by piggy�backing

decrement messages on other messages	 This reduces the amount of information

sent across the network by removing the header and trailer information contained

in an individual message	 Another improvement is to batch decrement messages to

the same node	 There are several di�erent ways this could be done	 A simple� but

e�ective� solution is to store the number of decrement messages that should be sent

to an object�s contact with the object�s import table entry	 Then� when the import

entry is freed� a single messages containing the number of times to decrement the



��

reference count is sent to the contact node	� Another solution is to record the

number of decrements associated with an object�s contact� as above� but to change

the contact whenever the object is received from a di�erent node	 This would be

e�ective for those programs that exhibit locality of reference with respect to global

objects	

Much of the computational overhead required by the algorithm could be elim�

inated by using a more e�cient data structure	 A signi�cant amount of time is

spent searching� adding to� and deleting from the import table	 With additional

research� it is likely an e�cient hash function could be found	 The use of a hash

table would dramatically reduce the time required for import table manipulations	

During the execution of a program� it is possible for long chains of references

to evolve	 A link in the chain is formed when an object is no longer referenced

on the current node� but is referenced by nodes which obtained their reference

from the current node	 Each link in the chain contains an import table entry

for the object� which is only referenced by the export table	 These links waste

space because there are no references to the object on the node� only references

the node has given to other nodes	 It is possible to remove these excess references

cheaply	 Currently� when an object is dereferenced� a message is sent to the node

on which the object resides requesting information about the object	 The requested

information is sent back as a new message	 This existing communication could be

used as a synchronization protocol for reducing chain size	 If the node containing

the object incremented its export reference count every time it received a request

for information� and the node requesting the information updated its contact for

the object when it received this information� chain size could be reduced with

minimal additional cost	 It is unlikely long chains will evolve in this environment

�This optimization has been implemented� See Section ����� for results�



��

because most nodes eventually dereference imported objects� and referencing an

object prevents a node from entering a chain� except as the �rst element	

����� Timings and Measurements

A suite of six representative user programs was used to generate the test results

discussed below	 The test suite was executed using three di�erent versions of CUS
 a

version of the orginal implementation without global gabrage collection capabilities�

a version of the basic garbage collection algorithm� and an optimized version of the

garbage collection algorithm	 The test suite generates a total of ��� reclaimable

global objects� all of which were reclaimed by both the basic and optimized versions

of the garbage collection alogirthm	

Table 
	� shows the timing results obtained for the algorithms� execution on a

single node network	 Both the base algorithm and the optimized versions perform

well in this environment� increasing execution time by only ��� and ��� respec�

tively	 The optimizations do not appear to have a signi�cant e�ect in a single node

network	

However� on a multinode system� the optimized version drastically outperforms

the base version	 Table 
	� shows that the base algorithm requires ���� more

exectution time than the original implementation	 This is over three times the

Table 
	�	 Timings for Algorithms on a Single Node

Original Base Algorithm Optimized Algorithm
Test � 
�
�� 
���� 
����
Test � ����� ����� ���
�
Test � ����� ����� ���


Test � ����� ����� �����
Test 
 ������ ������ ������
Test � 
�
�� ����� �����
Total ������ ���
�� ������
� Inc	 � �� ��




�

Table 
	�	 Timings for Algorithms on Multiple Nodes

Original Base Algorithm Optimized Algorithm
Test � ����� ����
 ���
�
Test � ����� �
���� ������
Test � ����� ����� �����
Test � ��
�� ��
�
 ������
Test 
 ���

� ����
� ������
Test � ���

� ����
� ������
Total 
����� ������� ������
� Inc	 � ��� ��

increase of ��� required by the optimized version	 A brief examination of Table


	� explains the drastic di�erence	 The optimized version of the algorithm uses less

than half the decrement messages required by the base algorithm	 The di�erence

in e�ciency between the optimized and nonoptimized versions underscores the

importance of low network overhead in a distributed garbage collection algorithm	

����� Comparison to Other Algorithms

Few garbage collection algorithms are appropriate for the Concurrent Scheme

environment	 The two most acceptable algorithms are Shapiro�s algorithm and

Bevan�s algorithm	

Table 
	�	 Message Counts for Algorithms on Multiple Nodes

Original Base Algorithm Optimized Algorithm
Test � �� ��� ��

Test � �
 ��
 ���
Test � ��� ��� ���
Test � ��� ��
 ��

Test 
 ���� ����� �����
Test � ��� �
� ���
Total ������ ������ �
����

Number Decr	 � ������ 
����




�

Although the two table approach used by Shapiro is similar to the initial ver�

sion of the proposed algorithm� the resulting collectors are signi�cantly di�erent	

Shapiro�s approach uses only slightly more memory than the proposed algorithm�

and reclaims all the garbage in the system
 even cyclic references	 The time stamp

protocol used by Shapiro introduces additional operational� and network� overhead

in an attempt to handle out�of�order messages	 The result is a reduction in the

overall e�ciency of the algorithm	 In a network where out of order messages cannot

occur� the time stamp protocol can be removed
 unfortunately� this is not the case

in Concurrent Scheme	 Because of the requirements of the time stamp protocol�

Shapiro�s algorithm is not as suited to the Concurrent Scheme environment as the

proposed algorithm is	

Bevan�s weighted reference counting algorithm appears to be an excellent solu�

tion to the problem of global garbage collection in Concurrent Scheme	 There is

one major problem with it� however� determining the size of the reference count	 If

the reference count is too small� a large number of indirection cells will be created�

increasing network tra�c to an unacceptable level	 If the reference count is too

large� memory is wasted	 Adding complexity to this problem is the knowledge that

the number of nodes used may greatly a�ect the number of references to an object	

If the object is stored as a global variable� each node in the network will have at least

one reference to it	 However� the number of nodes in the network is not determined

until run�time	 Due to the wide range in the number of nodes in the network� from

one to several hundred thousand� the choice of an appropropriate reference count

size is almost impossible	 In most situations� the proposed algorithm will require

less memory� less network overhead� or less memory and network overhead than

Bevan�s algorithm	 Therefore� it is more appropriate for the Concurrent Scheme

environment than Bevan�s weighted reference counting algorithm	




�

��� Future Work

There are several optimizations that have not yet been implemented	 Some�

in particular the restructuring of the import table� will de�nitely improve the

performance of the algorithm	 Others require further research to determine if the

potential performance increase is worth the additional complexity	 This research

can be performed as the number� and complexity� of user programs increases	

Although this algorithm is currently implemented only in CUS� there is no reason

why it could not be implemented in a wide variety of environments	 For example�

this algorithm may be used to implement the no�senders noti�cation option for

Mach ports ����	 In Mach� a task creates a port� to which it has read rights	 It

then distributes send rights to other tasks� which can also distribute send rights

to other tasks	 The no�senders option noti�es the task with the read right when

there are no tasks with send rights	 Currently� this is done by passing a token

message between each node in the system at least twice� a very ine�cient method	

An e�cient garbage collection algorithm could be very useful in this situation	

Further research should prove useful in determining other environments in which a

distributed garbage collection algorithm would be bene�cial	



REFERENCES

��� H	 Abelson and G	 Sussman	 Structure and Interpretation of Computer Pro�
grams	 MIT Press� ���
	

��� Santosh G	 Abraham and Janak H	 Patel	 Parallel garbage collection on a
virtual memeory machine	 Parallel Processing� ����	

��� Andrew W	 Appel� John R	 Ellis� and Kai Li	 Real�time concurrent collection
on stock multiprocessors	 In Proceedings of the SIGPLAN ��� Conference on
Programming Language Design and Implementation� ����	

��� H	G	 Baker	 List processing in real time on a serial computer	 Communications
of the ACM� �������������� April ����	

�
� D	 I	 Bevan	 Distributed garbage collection using reference counting	 PARLE�
���������� June ����	

��� Daniel G	 Bobrow	 Managing reentrant structures using reference counts	
ACM Transactions on Programming Languages and Systems� �������������
����	

��� D	 R	 Brownbridge	 Cyclic reference counting for combinator machines	 In
Functional Programming Languages and Computer Architecture� pages ����
���� ���
	

��� Jacques Cohen	 Garbage collection of linked data structures	 ACM Computing
Surveys� �������������� ����	

��� Al Davis	 May�y� A general purpose� scalable� parallel processing architecture	
Technical report� Hewlett�Packard Laboratories �L� ����	

���� Al Davis	 May�y� A general purpose� scalable� parallel processing architecture	
International Journal on Lisp and Symbolic Computation� 
����������� May
����	

���� Je�rey L	 Dawson	 Improved e�ectiveness from a real time Lisp garbage
collector	 In ACM Symposium on Lisp and Functional Programming� pages
�
������ ����	

���� John DeTreville	 Experience with concurrent garbage collectors for Modula�
��	 Technical Report ��� Digital� November ����	




�

���� L	 P	 Deutsch and D	 G	 Bobrow	 An e�cient� incremental� automatic garbage
collector	 Communications of the ACM� ������
���
��� September ����	

���� Edsger W	 Dijkstra� Leslie Lamport� A	J	 Martin� C	S	 Scholten� and E	F	M	
Ste�ens	 On�the��y garbage collection� An exercise in cooperation	 Commu�
nications of the ACM� �������������
� November ����	

��
� Daniel P	 Friedman and David S	 Wise	 Reference counts can handle the
circular environments of mututal recursion	 Information Processing Letters�
���������
� ����	

���� Benjamin Goldberg	 Generational reference counting� A reduced communica�
tion distributed storage reclamation scheme	 In Proceedings of the SIGPLAN
��� Conference on Programming Language Design and Implementation� pages
�������� ����	

���� P	 Hudak and R	M	 Keller	 Garbage collection and task deletion in distributed
applicative processing systems	 In ACM Symposium on Lisp and Functional
Programming� pages �������� ����	

���� John Hughes	 A distributed garbage collection algorithm	 In Functional
Programming Languages and Computer Architecture� pages �
������ ���
	

���� Joseph S	 Barrera III	 A fast Mach network IPC implementation	 In Proceed�
ings of the USENIX Mach Symposium� pages ����� ����	

���� Niels Christian Juul	 A distributed faulting garbage collector for Emerald	 In
OOPSLA Workshop on Garbage Collection� ����	

���� R	 Kessler� H	 Carr� L	 Stoller� and M	 Swanson	 Implementing Concurrent
Scheme for the May�y distributed parallel processing system	 International
Journal on Lisp and Symbolic Computation� 
������������ May ����	

���� Henry Lieberman and Carl Hewitt	 A real�time garbage collector based on the
lifetime of objects	 Communications of the ACM� �������������� ����	

���� Alejandro D	 Mart� nez and Rosita Wachenchauzer	 Cyclic refence counting
with local mark�scan	 Information Processing Letters� ����������
� ����	

���� Shogo Matsui� Yoshinobu Kato� Shinsuke Teramura� Tomoyuki Tanaka�
Nobuyuki Mohri� Atsushi Maeda� and Masakazu Nakanishi	 SYNAPSE� A
multi�microprocessor Lisp machine with parallel garbage collector	 In Parallel
Algorithms and Architectures International Workshop� pages �������� May
����	

��
� David A	 Moon	 Garbage collection in a large Lisp system	 In ACM Symposium
on Lisp and Functional Programming� pages ��
����� ����	







���� F	 Lockwood Morris	 A time� and space�e�cient garbage compaction algo�
rithm	 Communications of the ACM� ������������
� August ����	

���� Marc Shapiro	 A fault�tolerant� scalable� low�overhead distributed garbage
detection protocol	 In IEEE 	�th Symposium on Reliable Distributed Systems�
����	

���� Marc Shapiro� David Plainfoss�e� and Olivier Gruber	 A garbage detection pro�
tocol for a realistic distributed object�support system	 Technical Report �����
Institut National de la Recherche en Iformatique et Automatique� November
����	

���� Heonshik Shin and Miroslaw Malek	 Parallel garbage collection with associa�
tive tag	 IEEE Parallel Processing� pages ������
� ���
	

���� M	 R	 Swanson	 Concurrent Scheme� A Language for Concurrent Symbolic
Computing	 PhD thesis� Department of Computer Science� University of Utah�
Salt Lake City� Utah ������ January ����	

���� M	 R	 Swanson and R	 R	 Kessler	 Parallel Lisp
 Languages and Systems�
volume ��� of Lecture Notes in Computer Science� pages �������	 Springer�
Verlag� ����	

���� Douglas M	 Wasahbaugh and Dennis Kafura	 Incremental garbage collection
of concurrent objects for real�time applications	 IEEE Real�Time Systems
Symposium� pages ������ ����	

���� Paul Watson and Ian Watson	 An e�cient garbage collection scheme for
parallel computer architectures	 PARLE� �� June ����	

���� Joseph Weizenbaum	 Recovery of reentrant list structures in SLIP	 Commu�
nications of the ACM� �������������� July ����	

��
� K�S Weng	 An abstract implementation for a generalized data�ow language	
Technical Report ���� MIT Laboratory for Computer Science� ����	


