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ABSTRACT

This dissertation provides a framework for modularity in programming lan�

guages� In this framework� known as Jigsaw� inheritance is understood to be an

essential linguistic mechanism for module manipulation�

In Jigsaw� the roles of classes in existing languages are �unbundled�� by pro�

viding a suite of operators independently controlling such e	ects as combination�

modi�cation� encapsulation� name resolution� and sharing� all on the single notion

of module�

All module operators are forms of inheritance� Thus� inheritance is not in con
ict

with modularity in this system� but is indeed its foundation�

This allows a previously unobtainable spectrum of features to be combined in a

cohesive manner� including multiple inheritance� mixins� encapsulation and strong

typing�

Jigsaw has a rigorous semantics� based upon a denotational model of inheritance�

Jigsaw provides a notion of modularity independent of a particular computa�

tional paradigm� Jigsaw can therefore be applied to a wide variety of languages�

especially special�purpose languages where the e	ort of designing speci�c mecha�

nisms for modularity is di�cult to justify� but which could still bene�t from such

mechanisms�

The framework is used to derive an extension ofModula�� that supports the new

operations� An e�cient implementation strategy is developed for this extension�

The performance of this scheme is on a par with the methods employed by the

highest performance object�oriented language processors currently available�
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CHAPTER �

INTRODUCTION

Language design is reminiscent of Ptolemaic astronomy � for ever in
need of further corrections�
Jean�Yves Girard

This dissertation addresses two problems� the problem of multiple inheritance

in object�oriented programming languages� and the problem of modularity in pro�

gramming languages�

On the surface� it may appear that these are two separate problems� and should

be dealt with separately� Indeed� this study began as an investigation of multiple

inheritance� A chief conclusion of that study is that the two problems are deeply

related� and that solving either problem implies solving the other� In a sense� the

two problems are one and the same�

This chapter aims to provide the reader with a bird�s eye view of the dissertation

as a whole� Accordingly� the chapter is structured as a dissertation in miniature�

Each of the following sections mirrors one of the succeeding chapters�

Following a brief overview of the problem in section ���� section ��� discusses a

partial solution� Then� in section ��� a comprehensive solution is sketched� The

theoretical foundation for this work is outlined in section ���� Section ��� shows how

the solution manifests itself in the context of an existing programming language�

and section ��� discusses implementation� The chapter concludes with a summary�
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��� Understanding the Problem

The �rst order of business is to understand what the problems are� Chapter �

is entirely devoted to that task� Here� only highlights are given� with the objective

of reviewing fundamental concepts� and establishing that a problem does in fact

exist�

����� Inheritance

The �rst and foremost concept in this dissertation is inheritance itself� Inheri�

tance is a powerful linguistic mechanism� introduced by object�oriented languages

���� ���� Inheritance allows an incremental style of programming� Given an existing

piece of software� the programmer can create a new one� simply by specifying how

the new piece di	ers from a preexisting one�

The term �piece of software� is rather imprecise� It is more accurate to say that

inheritance allows the programmer to create de�nitions� by specifying how new

de�nitions di	er from previous ones�

In object�oriented languages� software de�nitions that may be inherited are

usually called classes�

Figure ��� shows an example of single inheritance� In single inheritance� a single

preexisting de�nition is used as a basis for a new de�nition�

In this example� two classes are de�ned� The syntax class Id is � � � binds the

identi�er Id to a class� speci�ed by whatever constructs follow the keyword is� The

class road vehicle is
number of wheels � ��
number of axles � number of wheels���
end�

class eighteen wheeler is inherit road vehicle
number of wheels � ���
gross weight � ������
end�

Figure ���� A simple example of inheritance





�rst class is de�ned by specifying its attributes� Various object�oriented languages

support di	erent kinds of attributes� with varying characteristics and terminology�

Chief among these are methods� which are function valued attributes which may

be rede�ned via inheritance� as described below� Other kinds of attributes are not

important at this point�

What is important is how the second class is de�ned by inheriting from the �rst�

as indicated by the phrase inherit road vehicle� As a result� class eighteen wheeler

has all attributes of road vehicle� except those attributes it has overridden by

supplying alternate de�nitions� such as number of wheels� The inheriting class may

also add additional attributes� such as gross weight�

This situation is often depicted using graphs� as in Figure ���� Graphs for single

inheritance are always trees� In multiple inheritance� a new de�nition is created

using several prior de�nitions� The graph induced is a DAG �directed acyclic graph��

Single inheritance has won substantial acceptance as a useful technique for

structuring programs� Multiple inheritance is much more controversial� There is no

agreement on the appropriate semantics for multiple inheritance� In most current

languages� multiple inheritance violates encapsulation ����� The rules governing

��
��

��
��

�

road vehicle

eighteen wheeler

Figure ���� Inheritance hierarchy
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multiple inheritance are complex� Proponents of multiple inheritance argue that it

is essential� while critics contend that the perceived need for multiple inheritance

is a symptom of poor program design� and that single inheritance is su�cient�

Finding a formulation of multiple inheritance that is rigorous� semantically clean

and preserves modularity remains a di�cult yet important problem�

����� Abstract Classes and Frameworks

One of the most useful ideas in object�oriented programming has been that of

an abstract class� An abstract class is an incomplete class de�nition� in which

one or more of the methods used by the class are not de�ned�� The expectation

is that these missing method de�nitions will be provided in subsequently de�ned

subclasses� In some languages� abstract classes have no special linguistic support�

Programmers de�ne �dummy� routines that typically produce an error if executed�

More recent languages ��� ��� explicitly recognize abstract classes� In these lan�

guages� methods that are unde�ned in the abstract class are identi�ed by special

syntax� Here such methods are referred to as pure virtuals� using the terminology

of C���

Abstract classes are essential to the de�nition of frameworks ��� A framework

is a collection of classes designed to support a particular application in a modi�able

and extensible manner� A framework is used as a basis for an application� Typically�

some of the framework�s abstract classes are modi�ed and extended by inheritance

to tailor them to speci�c needs� Examples of frameworks are ���� ��� ��� ���

Abstract classes support a powerful form of parameterization� unique to the

object�oriented paradigm� While standard parameterization allows structures to

refer to parameters� abstract classes close the loop by also allowing parameters

�In some languages� a declaration of the unde�ned method may be provided� giving only type
information�



�

to refer to the parameterized structure� Abstract classes are fundamental to the

research presented in this dissertation�

����� Module Manipulation

Many non�object�oriented languages support some formal notion of module�

However� there are usually only very limited facilities for manipulating modules�

Mechanisms are provided for module interconnection� but these are usually ad

hoc� An important exception is ML ����� which provides a well developed module

manipulation language ����� Integration of inheritance intoML in a modular fashion

is the subject of ongoing research ����

This thesis argues that inheritance is really an essential module manipulation

mechanism� In languages without inheritance� its e	ects are obtained by extra�

linguistic means �e�g�� text editing�� Thus� inheritance represents a natural step in

the progression of linguistic support for modularity� Just as modules and interfaces

subsume some functions supported by linkers� inheritance subsumes some functions

of text editors� Incorporating inheritance in module manipulation languages is

therefore a necessity�

In summary� the problem this dissertation addresses can be stated in two ways�

�nd a formulation of multiple inheritance that is expressive� rigorous� semantically

clean and preserves modularity� or� develop a comprehensive module manipulation

language incorporating inheritance�

��� Mixins

Having described the problem� it is time to consider solutions� This section

presents one solution� albeit partial� Valuable in itself� the partial solution is also

a step leading to a more complete solution in section ���
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The key to a solution is to stop thinking about inheritance in operational terms�

Consider the de�nition of eighteen wheeler in example ��� once again� The de�nition

binds the identi�er eighteen wheeler to the structure given after is�

To understand the meaning of a complex construct� it is useful to subdivide

it into parts� and attempt to understand each part separately� The meaning of

the structure as a whole should then be constructed from the meanings of its

components� In this case� there are three parts� The keyword inherit� an identi�er�

road vehicle� and the rest of the declaration� It is clear that road vehicle represents

the superclass� but what does the keyword inherit actually stand for� And what

is the entity de�ned by �the rest of the declaration�� something there does not

even appear to be a name for� It turns out that inherit denotes an operator� that

combines the other two parts of the structure� The third part of the declaration

is something that will be called a mixin� Note that mixins cannot be named in

existing programming languages� They are always an anonymous component of a

larger class structure�

The easiest way to understand a mixin is to view it as a function from classes

to classes� In that case� inherit stands for a form of function application� With

this understanding� an improved formulation of inheritance is possible� The fact

that mixins cannot be given names is now an obvious anomaly� and itself violates

modularity� Once this anomaly is corrected� a form of multiple inheritance that

preserves encapsulation is natural� However� this formulation� known asmixin�based

inheritance� does not solve all the problems a module manipulation language must

face�

Mixin�based inheritance is derived from an understanding of what mixins are�

and will be described in detail in Chapter � Another insight has been that mixins

and classes are composed by means of operators� This leads to a better solution�

as outlined below�
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��� Jigsaw

Jigsaw is a framework for modular programming languages� The word �frame�

work� is used here in the much same sense given in subsection ������ The precise

nature of the Jigsaw framework is the topic of Chapter ��

The word �modular� here is used� quite deliberately� in two distinct ways� First�

the languages designed using Jigsaw are �modular programming� languages� they

support modular programming since programs in these languages may be divided

into separate modules� Second� Jigsaw is highly modular in its own conception� per�

mitting various module combinators to be included� omitted� or newly constructed

in various realizations� This modular structure is inherited by all languages derived

from the Jigsaw framework� Consequently� the languages produced are modular

�programming languages��

In Jigsaw� the roles of classes in existing languages are �unbundled�� by pro�

viding a suite of operators independently controlling such e	ects as combination�

modi�cation� encapsulation� name resolution� and sharing� all on the single notion

of module�

Inheritance is understood to be an essential linguistic mechanism for module

manipulation� All module operators are forms of inheritance� Unlike most formu�

lations of inheritance� here inheritance is not in con
ict with modularity� On the

contrary� inheritance is the basic mechanism for module interconnection�

This allows a previously unobtainable spectrum of features to be combined in a

cohesive manner� including multiple inheritance� mixins� encapsulation and strong

typing� Traditional multiple inheritance is interpreted as an unsuccessful attempt

to enhance the modularity of object�oriented programs� In the new framework�

the distinction between single and multiple inheritance disappears� but the desired

functionality remains available�

Jigsaw provides a notion of modularity independent of a particular computa�

tional paradigm� Jigsaw can therefore be applied to a wide variety of languages�
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especially special�purpose and �little�languages� ��� Column ��� where the e	ort of

designing speci�c mechanisms for modularity is di�cult to justify� but which could

still bene�t from such mechanisms�

Jigsaw can be thought of as an abstraction� to be rei�ed by application to a

computational sublanguage� Lc� Jigsaw abstracts over Lc� but the abstraction is

not merely parameterization� The interaction between Jigsaw and the language

of computation is potentially bidirectional� This structure is exactly analogous to

that typical of abstract classes and frameworks in object�oriented languages�

��� Semantics

Jigsaw has a rigorous semantics� based upon a denotational model of inheritance

���� ���� Indeed� Jigsaw would not have been conceived without the insights derived

from the study of the denotational semantics of object�oriented languages� The

Jigsaw framework maps very directly to the underlying semantics� Modules have

simple denotations� which are just functions from records to records� All module

manipulation operators are de�ned by means of operations upon the denotations

of modules� The denotational semantics are simpler than those of existing object�

oriented languages� even though expressive power has been enhanced� Of course�

the reason for this is that the linguistic constructs were inspired by the denotational

semantics�

The reader should understand that this study does not introduce new theory�

Instead� recent theory is applied to produce a new language design� Much work in

denotational semantics is concerned with explaining existing linguistic constructs�

That is one phase in a two phase process� The second step is using the under�

standing gleaned in the �rst phase to design better languages� This dissertation is

concerned with this second phase�
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��� Modula��

Modula�� is an extension of Modula�� ���� that supports some of the key oper�

ations of the Jigsaw framework� The purpose of this extension is to demonstrate

the applicability of Jigsaw to realistic programming languages�

Extending an existing language has several bene�ts� An upwardly compatible

extension means that existing code is not invalidated� The existing implementation

can be used as a basis for the extension� As a result� realistic performance can

be achieved� For the language designer� using an existing language as a base is a

mixed blessing� Designing an upwardly compatible extension is a di�cult challenge�

Many irrelevant details must be considered� and the purity of the model may be

compromised� On the other hand� the rich functionality of the base language is

already de�ned� The end result can be a tool that is realistic and practically useful�

both in the range of its features and in its performance� It would be di�cult� if not

impossible� to achieve this goal within the scope of a dissertation� if a new language

were to be de�ned and implemented�

A programming language�s value is greatly enhanced if it can be implemented

e�ciently� This is discussed in the next section�

��	 Implementation

Jigsaw is a linguistic framework� applicable in many di	erent contexts� Each

such context may place di	erent requirements on an implementation� The main

focus of implementation in this work has been on the Modula�� language�

The uniform structure of Jigsaw allows for a simple yet e�cient implementation

scheme� Simple modules �or object types in the case of Modula��� are translated

into dispatch tables which refer to methods� Object type instantiation� as usual�

leads to the creation of an object� containing data and housekeeping information�

Objects of course refer to the dispatch tables�
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Given this representation� module operators are implemented as operations on

dispatch tables� concatenating or modifying them as appropriate� The representa�

tions of corresponding instances are also manipulated in a similar manner�

The exact scheme used is presented in Chapter �� It is an extension of existing

techniques for implementation of object oriented languages ���� The performance

of this scheme is on a par with the methods employed by the highest performance

object�oriented language processors currently available�

There are also published schemes for implementing more 
exible language con�

structs� and their application to a language like that described in Chapter � is

brie
y analyzed�

��
 Conclusions

In conclusion� it is appropriate to summarize key results� disclose some of the

present research�s limitations� and examine possible lines for future inquiry�

The solutions investigated here still leave certain issues unresolved� but they

go a long way toward a fully satisfactory answer� and they point out promising

directions toward a complete solution�

Jigsaw�s chief limitation is that it is restricted to structural typing� Structural

typing is fundamental to a truly modular system� and has naturally been the main

focus of this work� Nevertheless� name�based typing and abstract datatypes are

important issues that should be addressed� The prospects for an extension of Jigsaw

dealing with name based typing are good� Abstract data types present a more

di�cult challenge� Jigsaw is de�ned by means of a denotational semantics� An

axiomatic characterization of Jigsaw would be desirable as well�

Despite the admitted weaknesses just mentioned� a general and useful framework

has been established for modular� incremental software construction� A module ma�

nipulation language that meets the criteria of expressiveness� theoretical soundness�

e�ciency and language independence has been developed�
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All of the above issues� as well as related work� are discussed in Chapter �� Now

it is time to move on� to a full treatment of all the issues raised in this chapter�



CHAPTER �

THE PROBLEM

Operational reasoning is a tremendous waste of mental e	ort�
Edsger Dijkstra�

This chapter illustrates the problem that this dissertation addresses� the di��

culties of existing programming languages with respect to modularity� The concept

of module is de�ned� and criteria for a modular programming language are given�

Then� the evolution of programming language design toward enhanced support for

modularity is examined�

Limitations of existing programming languages are discussed in light of the

analysis mentioned above� No existing language meets all the criteria for a modular

programming language� Special scrutiny is reserved for languages with inheritance�

These languages have a variety of problems with respect to modularity� The well

known encapsulation problems �rst demonstrated by Snyder ���� ��� are reviewed�

In the process of evaluating current language designs with respect to modularity�

some novel insights are gained� Inheritance is identi�ed as a necessary module

manipulation mechanism� In addition� another important limitation on modularity�

the absence of mixins� is discussed�

The chapter is organized by topic� not by language� Speci�c languages that

exhibit a particular problem are mentioned in the appropriate section� The �nal

section summarizes the problems of a variety of important programming languages�
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��� Modules and Modularity

����� What is a Module�

The terms module� interface and system are de�ned informally below� The

de�nitions are mutually recursive�

A system is a group of interconnected modules� that together ful�ll some useful

functionality�

An interface speci�es a set of services� including conditions which must be met

so that the services can be provided� Ideally� such an interface constitutes a logical

speci�cation of a module� stating necessary and su�cient conditions for its use� and

giving a description of the system state after the module has provided a particular

service�

In practice� such speci�cations cannot be veri�ed automatically� and so� pro�

gramming language interfaces are restricted to syntactic information that can be

statically checked� A module is anything that supports an interface�

Using modules has two main implications�

�� Many di	erent modules can be used at a given point� to provide a particular

functionality� Anywhere a certain interface is required� any module that

supports that interface can be used� Alternative modules can implement an

interface� and can be interchanged freely� without in
uencing other modules

in a system� It is therefore easier to locate and correct a performance problem

or a reliability problem� Systems can be designed so that every module has

sole responsibility for a particular function� Multiple modules can implement

an interface simultaneously� In the context of programming languages� this

means multiple implementations coexisting in a single program�

�� A module can be used at many di	erent points� A module supporting an

interface can be used wherever the interface is required� This means that
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the same module can be �re��used in many di	erent contexts� Correcting a

de�ciency in the design of a module� corrects the de�ciency everywhere the

module is used�

Both these phenomena contribute to localization� making it easier to maintain

a system� Because a module is independent of its context� it can be developed and

understood independently� making it easier to design and maintain�

����� Desiderata for Modules

�� Encapsulation� Modules must be able to encapsulate information within them�

selves� so that no other module may access it� This guarantees that a module

can be used only in accordance with its interface�

�� Composability� Any module can be combined with any other module with a

compatible interface� The behavior of an assembly of modules can be deduced

from the behavior of its component modules and their common interfaces�

� Hierarchy� Modules can be built out of smaller modules� which in turn can

be built out of smaller modules� and so on� This is distinct from composition�

where modules are combined at the same level�

�� Modi�ability� This property actually stems from hierarchy and composition�

ality� A module can be extended by combining it with other modules� or

submodules of it can be replaced by alternate submodules� The replacement

can be a modi�cation of the original submodule�

�� Static safety� As noted above� it is generally impossible for a compiler to

verify statically that a module is used correctly with respect to its interface�

However� those syntactic properties that can be statically veri�ed� should be

checked�
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�� Separate Compilation� A module may be separately compiled� This is nec�

essary for parallel development� and re
ects the fact that modules can be

independently developed�

�� Generality� This is a rather vague notion� One advantage of modularity is

reusability� The more general a module is� the more contexts it can success�

fully be reused in� The constructs of the language determine what degree of

generality can be achieved by modules in that language� Polymorphism is a

very important property that in
uences the degree of generality attainable�

Polymorphism is a natural consequence of untyped speci�cations� but obtain�

ing polymorphism while maintaining static typing is a di�cult problem�

�� Manipulability� Ideally� modules are �rst class values in the language� This

allows combinations of modules to be described in the language� and hence to

be modularized themselves�

����� The Trend Toward Modularity

There has been a historic movement in programming language design toward

providing increasing support for modularity� The trend has been to move function�

ality that was supported by tools in the program development environment into the

language� Explicit linguistic support for modularity has several advantages� Various

language�speci�c semantic consistency constraints can be imposed� Features are

also much more likely to behave in a standard and portable way if they are de�ned

within the language than if they are implementation dependent�

The need for separate compilation was recognized early on� beginning with FOR�

TRAN� Separate compilation has been supported through external linkage� The

minimum requirement is that the language processor recognize external references�

and produce su�cient information for an extra�linguistic tool �the linker� to e	ect

the module interconnection�
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This state of a	airs has several well known drawbacks� No static typechecking is

performed across module boundaries� There is also poor support for encapsulation�

typically� all globals in a module are available to other modules�

Later languages such as CLU ���� Ada ���� Modula�� ����� Modula�� and others

provide a structured way of specifying modules and their interconnection� Formal

notions of module and interface are part of the language� The language semantics

guarantee that modules are used in accordance with their interface� This means that

modules may explicitly encapsulate information� and that intermodule typechecking

is supported�

Unfortunately� many functions related to modularity are still not supported in

these languages� In practice� tools from the surrounding environment are used to

perform these functions� This will be demonstrated in the following sections� where

modularity problems in existing languages are examined�

��� Modularity Problems in Existing Languages

����� Flat Global Name Spaces

In most languages� there is a 
at� global name space for modules� This makes it

di�cult to resolve name con
icts� If a con
ict arises� one of the con
icting modules

must be renamed� Since modules are de�ned at the �top level�� there is no scope

in which a renaming operator can operate within the language� The only way to

achieve the desired renaming is then physical editing of the module text� Editing

is undesirable for several reasons� First� it is a manual process and hence laborious

and error prone� Second� editing leads to the creation of multiple versions of a

module� complicating program maintenance� Third� it requires recompilation of

the edited modules� The disadvantages of renaming by editing are aggravated by

references to a module in other modules� Such references often arise when specifying

intermodule connectivity� Examples would be the use of class declarations in C��

header �les� or the use of import declarations in the Modula language family�
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This is illustrated in Figure ���� where renaming module� requires changing not

only module� itself� but additional modules� such as module	� Each such additional

module now has the same problems of multiple versions and recompilation� Fur�

thermore� if source code is not available for both con
icting modules� renaming by

editing is not possible� If large scale reuse ���� becomes a reality� object modules

provided by di	erent vendors have to be combined� and name con
icts will become

harder to avoid�

In practice� verbose naming conventions are used to minimize name con
icts�

and the scale of reuse is presently small enough for the problem to be kept under

control� Of course� if the problem is not addressed� the scale of reuse may never

grow�

A global name space is a violation of the hierarchy criterion �� mentioned above�

There must not be a �top level� of the module hierarchy� As noted by Bertrand

Meyer� real systems have no top �����pg� ����

����� Lack of Inheritance

This subsection makes the case that inheritance is really a module manipulation

mechanism� This is demonstrated in Figures ��� and ���

In Figure ���� two classes are de�ned� The �rst class� Point� describes points in

the plane� A Point has coordinates x and y� and two methods� The dist method

computes the distance to another Point passed as a parameter� The method closer

determines if the Point is closer to the origin than its parameter� aPoint�

module module	�
import module�
 module��
�
�
�
module��procedure��module��function	���  ���

Figure ���� Use of import declarations
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class Point is
x � �� y � ��
dist � function�aPoint�

f
sqrt�sqr��x � aPoint�x��  sqr��y � aPoint�y���

g
closer � function�aPoint�

f
dist�Point��
��� � aPoint�dist�Point��
���

g
end�

class ManhattanPoint is inherit Point
dist � function�aPoint�

f
�x � aPoint�x�  �y � aPoint�y�

g
end�

Figure ���� Code for Point and Manhattan Point�
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Figure ��� Inheritance as module manipulation�
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The second class� Manhattan point� is derived from Point by inheritance� The

only di	erence between a Point and a Manhattan point is the notion of distance

they employ� Note that when the closer method is invoked on a Manhattan point�

the new dist method will be used� even though no explicit change has been made

in the closer method� This illustrates an essential characteristic of inheritance�

modi�cations are re
ected in all self�reference within a structure�

The process of inheritance is represented graphically in Figure ��� using the

metaphor of a jigsaw puzzle� Figure ���a� shows a pictorial representation of class

Point� The Point class is a module� composed of submodules which are its attributes�

The derivation of Manhattan point from Point is schematized in ���b� and �c�� The

original de�nition of distance� Dist� is removed in �b�� Then� a new de�nition�

Dist�� is inserted instead� The references to the distance function in other parts

of the class now refer to the new de�nition� This is exactly what one expects to

happen when replacing one physical part by another within an assembly of parts�

In a modular system� it is always possible to remove a module from a larger

assembly of modules� and then insert another� compatiblemodule into the assembly�

In the jigsaw puzzle metaphor� inheritance amounts to picking up a piece of the

puzzle� and replacing it with another piece� The new piece must �t in the slot

occupied by the original� This re
ects the need for interface compatibility� so that

existing references not be invalidated�

Inheritance is a language construct for expressing the sort of module manip�

ulation discussed above� A language that does not support such a construct is

clearly de�cient in its support for module manipulation� violating the modi�ability

criterion �� above��

In practice� modular programming languages provide no notation to express

inheritance� Usually� there is no notation for manipulating modules at all� Even

languages that do support module manipulation �e�g��ML� Jade ���� � are hampered
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by lack of inheritance� Modi�cation is achieved using an extra�linguistic tool�

a text editor� Again� all disadvantages noted earlier apply� Access to source

code is required� Recompilation is necessary� Multiple copies of modules are

introduced� No semantic constraints are enforced� Errors are easily introduced� and

the entire process entails more work than necessary� Another di�culty is that the

granularity of module constructs is often inappropriate� Often� the changes needed

are replacements of individual functions within a module� as the last example has

shown�

In summary� inheritance is a linguistic mechanism that supports actions that

occur naturally and frequently in modular systems� Its introduction into program�

ming languages is an extension of a natural progression of increasing support for

modularity in programming languages�

��� Di�culties with Inheritance

In contrast to the interpretation of inheritance as a modularity mechanism given

above� the actual inheritance mechanisms available in current languages are in fact

in con
ict with modularity� This section discusses the modularity problems that

arise in languages that incorporate inheritance� Snyder�s classic paper ���� showed

how inheritance commonly undermines modularity� Snyder�s observations are re�

called here� since they are central to this work� A modularity problem not discussed

in ���� is that certain program constructs cannot be e	ectively modularized� This

is addressed in section �����

The next three subsections illustrate di	erent manifestations of essentially the

same problem� exposure of a class� use of inheritance to its clients� This violates

criterion � � encapsulation� Inheritance is used to construct modules� it is an

implementation mechanism� If it is visible to clients� then these clients may come

to rely on the inheritance structure used� If that structure is changed� clients may

cease to function correctly�
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Subsection ���� discusses how inheritance may make visibility control unnec�

essarily complex� and constrain a client�s design� Finally� subsection ���� shows

how the absence of mixins makes most object�oriented languages incomplete with

respect to modularity�

����� Classes and Types

In many object�oriented languages� types are identi�ed with classes and subtyp�

ing with inheritance�

The distinction between class and type is absolutely crucial� A class is a unit

of implementation �ideally� a modular unit�� A type is a �partial� description of

behavior � a statically veri�able interface� The distinction is essentially that between

interface and implementation� and is well understood with respect to abstract data

types� A class always has a type associated with it� but not vice versa� A type can

be implemented by many di	erent classes� as shown below�

������� Multiple Implementations of an Abstraction

Identi�cation of classes and types would seem to preclude supporting multiple

implementations of an interface within a single program� In practice� when multiple

implementations of an abstraction are required� the notion of abstract class is

often pressed into service as a substitute for interfaces� In this case� the abstract

class provides no de�nitions at all� only declarations� This is inescapable when a

language fails to distinguish between types and classes� A major disadvantage of

this technique is that it requires advance planning� In languages where types and

subtyping are separated from classes and inheritance� this subterfuge is unnecessary�

������� Subtyping and Inheritance

If classes and types are identi�ed� so� per force� are the subtyping and inheritance

hierarchies�
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If a class A is de�ned by inheriting from classes B and C� then A is also

understood to be a subtype of B and of C� From the viewpoint of modularity�

this is undesirable� Should the designer of class A later wish to reimplement A

using� say� D�E and F � the change would be visible to clients of A� because they

may rely on the subtyping relation previously de�ned� In e	ect� the ancestors of

A are part of its interface� By transitivity� the entire inheritance graph upstream

of A is part of A�s interface� Any change to this graph may a	ect the validity of

class usage downstream of the change� This is an unbounded region� since new

classes may be derived at any time� In practice� new classes are likely to de�ned at

remote sites� that should not even be aware of the existence of the base class being

changed� Consider an application based upon a framework supplied by a vendor�

If the vendor chooses to reimplement a class� the application may fail�

In reality� inheritance hierarchies are hard to design correctly the �rst time� and

need to be changed repeatedly� Changes in the hierarchy are di�cult to make in

languages with classes as types� because of the problem outlined above�

In C��� inheritance may be decoupled from subtyping� by declaring access to a

base class to be private� However� this is of limited use� since the language provides

no form of subtyping except that based on inheritance� If a class inherits without

becoming a subtype� instances of the class cannot be used polymorphically�

C�� classes are distinguishable from types� but not in a very clear cut way�

Membership in a type implies membership in a class�� and so subtyping implies

subclassing� However� the converse is not always true� since an object of a subclass

of some class A might not be a member of a subtype of the type of A� The fact that

subtyping implies subclassing is valuable in an implementation� since it guarantees

a large measure of structural compatibility among the objects operated upon by

polymorphic code�

�Except for primitive types such as int� �oat� etc�
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It is also possible to imagine a situation in which subclassing implied subtyping

but not vice versa� This policy� suggested in ���� does not violate encapsulation�

since information about the inheritance graph is not exposed through the type

system� Multiple implementations of an interface are also possible� Inheritance is�

however� restricted to create subtypes only� This limits the ways in which modules

can be manipulated� The literature contains many examples of cases in which

such restrictions are too harsh ��� �� ���� Current languages which unify types and

classes� either restrict expressiveness in this way �e�g� C���� or have unsound type

systems �e�g�� Ei�el�� In the case of unsound type systems� the problems may be

recti�ed by use of dynamic typing� as in Beta �����

������� Other Considerations

The separation of classes and types makes it easier to de�ne orthogonal con�

structs for renaming ��� pp� ���� and visibility control� There are other reasons for

separating classes and types� These have less to do with modularity� The interested

reader is referred to ��� �� ��� ����

It is worth noting that there are arguments for merging the concepts of type and

class� Programming languages have a long tradition of using type information for

implementation purposes� Identifying the type of an object with its implementation

is a natural consequence of that tradition� and makes it easier to devise an e�cient

language implementation�

Another longstanding tradition is that of name�based typing� Name based typing

is motivated by modeling considerations� modules that share a common syntactic

interface may represent semantically incompatible entities� Name�based� as opposed

to purely structural� typing� can help prevent confusion between such modules� In

the context of name�based typing� identifying classes with types seems natural�
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Nevertheless� the disadvantages of merging types and classes seem to outweigh

the advantages� especially as far as modularity is concerned�

����� The Diamond Problem

One of the delicate problems raised by the presence of multiple inher�

itance is what happens when a class is an ancestor of another in more

than one way� If you allow multiple inheritance into the language� then

sooner or later someone is going to write a class D with two parents B

and C� each of which has a class A as a parent � or some other situation in

whichD inherits twice �or more� fromA� This situation is called repeated

inheritance and must be dealt with properly�

Bertrand Meyer�

In multiple inheritance� a class may inherit from an ancestor along multiple

paths in the inheritance graph� The simplest such situation is shown in Figure ����

The situation shown raises thorny questions� Does a FillCircle object contain

one Ellipse subobject� or perhaps two �one for each path from Ellipse to FillCircle��

Name collisions must result from this state of a	airs� Are these regarded as errors

or not� If not� how are the con
icts resolved� Di	erent languages treat these

problems in di	erent ways� It is instructive to review the approach taken by most

major object�oriented languages�

Many languages follow a policy that is intuitive� and seemingly innocuous� The

name clashes are harmless� the con
icting names all refer to the same method�

The compiler can distinguish between cases such as that shown in Figure ���� and

�real� name clashes� where the con
icting names arise from di	erent de�nitions�

This solution relieves the programmer from the tedious task of resolving many of

the con
icts that arise in practice� This is the policy followed by Ei�el ����� Owl
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Figure ���� The �diamond� problem

����� CLOS ��� and SELF ���� ���� The reader may wish to ponder the obvious

common sense of this approach before continuing�

The only modular solution is to treat the name collisions as errors� just as if the

con
icting names had been de�ned in di	erent classes� Similarly� each path in the

graph must contribute a subobject� To do otherwise requires global knowledge

of the inheritance graph� A class must not care about the provenance of the

implementation of a particular method it is inheriting� If this is not so� a change

in a remote ancestor can cause a class to break� as shown in Figure ���� Assume

the hierarchy is reorganized � so that all �lling is derived from a common root class

FillGraphic� Fill classes must change� but not users of Fill classes� Since Ellipse and

FillGraphic are likely to have method names in common �e�g�� draw�� name clashes
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Figure ���� �Opening� the diamond�

will occur� Essentially� the problem is similar to that introduced by merging classes

and types� knowledge of the entire inheritance graph �leaks� into the interface�

����� Accessing Indirect Ancestors

It is often necessary to access code that has been overridden� In some languages�

the mechanism provided is to pre�x the overridden method�s name by the name

of the class from which it was inherited� This is illustrated in Figure ���� Care

must be taken that such access is allowed only within the inheriting class� and that

only immediate ancestors may be referenced this way� Languages likeOwl ���� that

allow arbitrary ancestors to be accessed this way� expose the use of inheritance

to clients� Consider Figure ���� FillCircle has a gratuitous dependency on the



��

class FillEllipse is inherit Ellipse
draw � function��

f
Ellipse��draw���
Fill���
���
g

end�

Figure ���� Accessing an overridden method�

class FillCircle is inherit FillEllipse
radius � function��

f
return Ellipse��minor axis���
�� Should have used FillEllipse��minor axis �
g

���
end�

Figure ���� Accessing indirect ancestors violates encapsulation�

implementation of FillEllipse� The programmer has assumed that the method for

computing the minor axis of the ellipse was inherited from Ellipse� If the inheritance

hierarchy is changed� FillCircle will either not compile� or worse� malfunction� Again�

the problem is that changing the inheritance hierarchy has the e	ect of breaking

downstream classes� as outlined in subsection �����

����� Visibility control

In an object�oriented language� a class has two kinds of clients� users and heirs�

Users utilize classes in the same way as client modules in more traditional languages

use server modules� by invocation� Heirs inherit from a class� modifying it as

necessary�

Heirs and users di	er in the interface they require to the original class� Typically�

heirs require access to a �wider� interface than users� in order to implement modi��

cations and extensions e�ciently� If only one interface is provided� it may be either
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too �narrow�� denying heirs the access needed for e�cient implementation� or it

may be too �wide�� granting users unnecessary and potentially dangerous privileges�

Designers of object�oriented languages have found it necessary to introduce two

kinds of interface� corresponding to the two kinds of clients�

In C��� these interfaces are known as public �for users� and protected �for

heirs�� In Owl� heirs have access to a subtype visible interface� Similar ideas

appear under the names of �internal� and �external� interfaces� in ����

While these constructs do not strictly violate modularity� they seem overly

complex� and introduce a subtle anomaly� pointed out in ����� Once certain features

of a class have been placed in the protected interface� those features can be

accessed only via inheritance� A nested instance of the class does not provide

access to that feature� since it is not in the public interface� This constrains the

designers of client software� The choice between inheritance and nesting is no longer

available to them� Modularity should guarantee the ability to associate multiple

interfaces with a module� not just two� Furthermore� the linguistic mechanisms for

using an interface should be orthogonal to what interfaces are available�

����� Limits on Module Construction

Previous sections have shown how languages make it di�cult to combine mod�

ules� or impossible to de�ne modules� This section illustrates restrictions on the

way a module can be constructed�

Object�oriented languages originally supported single inheritance� The question

whether single inheritance is su�cient is still the topic of some controversy �����

Proponents of single inheritance argue that multiple inheritance is complex and

poorly understood� that it is frequently abused� and that cases in which it is used

could be better handled by single inheritance� Conversely� supporters of multiple

inheritance argue that it is both natural and required� Arguments on both sides
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are often anecdotal� and the debate sometimes su	ers from confusion as to the

relationship between inheritance� subtyping and modularity�

The essential characteristic of single inheritance is that it is not possible to

combine several classes into one� Rather� one class may be modi�ed to produce

another� This process may be iterated� producing a path of successively more

re�ned classes� Since a class may be modi�ed in any number of di	erent ways� this

leads to a tree structured inheritance hierarchy� Usually this hierarchy also serves as

a classi�cation hierarchy� One common argument against single inheritance is that a

tree structured classi�cation scheme is inadequate to model relationships in the real

world� However� the viewpoint advocated here is that inheritance is a modularity

mechanism� not a classi�cation mechanism� While tree structured classi�cation

is indeed limited� it is not a fundamental characteristic of single inheritance� If

inheritance is divorced from subtyping� a language can support single inheritance

simultaneously with overlapping �graph structured� classi�cation� The fact that

subtyping does indeed induce a lattice structure was demonstrated in the classic

paper by Cardelli ������

There are� however� valid arguments against the restriction to single inheritance�

Viewed as a modularity mechanism� single inheritance seems very constraining� It

allows modi�cation to a module� but does not allow for combination of modules�

Multiple inheritance can thus be viewed as an attempt to make object�oriented

languages more modular� Ironically� existing languages have tended to undermine

modularity when introducing multiple inheritance�

A clear limitation on modularity in all existing object�oriented languages with

static types is the existence of an entire class of software de�nitions that cannot

be modularized at all� These de�nitions are known as mixins� Consider Figure

�The paper�s title� �A Semantics of Multiple Inheritance�� is a misnomer� It actually de�nes
subtyping� not inheritance� The distinction is not made clear in the paper�
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���� This example is very similar to that given in Figure ���� The only di	erence

is that Ellipse has been replaced by Rectangle� In most object�oriented languages�

and certainly in all those that employ static typing� there is no way to factor out

the commonality evident in the example into a separate abstraction� let alone a

separately compilable module� An important contribution of this chapter is the

identi�cation of mixins as candidates for programming language support� Their

absence is a violation of modularity in a language supporting inheritance�

��� Problems by Language

This chapter has surveyed the serious modularity problems that exist in today�s

programming languages� To facilitate understanding� the presentation has been

organized by problem� not by language� In order to convince the reader that

there is no programming language that does not su	er from some of the problems

discussed above� the relevant properties of most important programming languages

are summarized in Table ����

The languages listed include both the major languages in use today� and lan�

guages that are important for their innovative constructs� even if they are not widely

used�

Each row in a table corresponds to one of the problems cited earlier in this chap�

ter� and each column corresponds to a particular programming language� An entry

marked �X� signi�es that the language in question su	ers from the corresponding

class FillRectangle is inherit Rectangle
draw � function��

f
Rectangle��draw���
Fill���

g
���

end�

Figure ���� Lack of mixins causes repetitive code�
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Table ���� Problems by language
Language Ada Beta C�� CLOS CLU CommonObjects
Problem
Global Name Space X X X
Class � Type X X
Diamond problem X
Remote ancestor access
No Inheritance X X
Single Inheritance X
No Static Typing X X
No Mixins X X X

Table ���� � Continued
Language Ei	el Haskell Jade ML Modula��
Problem
Global Name Space X X X
Class � Type X
Diamond problem X
Remote ancestor access
No Inheritance X X X X
Single Inheritance
No Static Typing
No Mixins X

Table ���� � Continued
Language Modula� Oberon Owl Self POOL Smalltalk
Problem
Global Name Space X X X X X
Class � Type X
Diamond problem X X
Remote ancestor access X
No Inheritance X
Single Inheritance X X
No Static Typing X X
No Mixins X X X X
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problem� A blank entry means either that the problem is handled correctly� or that

the issue does not arise � for example� the diamond problem of subsection ����

does not arise in languages with only single inheritance� and the absence of mixins

is not a de�ciency in languages that do not support inheritance at all�

One of the things Table ��� makes clear is that there is no language supporting

inheritance that combines static typing with the ability to express mixins� The

following chapter studies mixins in detail� and shows how they may be used to

address some of the problems this chapter has raised�



CHAPTER �

MIXINS

It was not obvious how to combine the C�� strong static type check�
ing with a scheme 
exible enough to support directly the �mixin� style of
programming used in some LISP dialects� The C�� Annotated Reference
Manual�

As mentioned in Chapter �� mixins can be used as the basis of a powerful form

of inheritance� mixin�based inheritance ���� Now is the time to investigate mixins

more thoroughly� This chapter examines di	erent ways in which mixins can be in�

corporated as full�
edged constructs in programming languages� and demonstrates

the usefulness of such an endeavor� A more theoretical treatment of mixins is left

for section ����

The chapter begins with a review of the informal use of mixins in current

programming languages� Next� the nature of mixins as abstractions is discussed�

Appropriate linguistic formulations of mixins and mixin�based inheritance are then

presented� In conclusion� the limitations of mixin�based inheritance are reviewed�

This in turn� sets the stage for a more comprehensive approach to inheritance and

its problems� in the next chapter�

��� Mixins in Existing Languages

The previous chapter introduced the notion of mixin� a construct that seems

to be missing in existing object�oriented programming languages� In fact� mixins�

as an informal construct� are present in several dynamically typed object�oriented

programming languages� This is analogous to the use of while loops in FORTRAN

programs � the construct is in use� but the language does not support it�
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����� CLOS

The use of the word mixin as a technical term originates with the LISP com�

munity� It was �rst used by the developers of the Flavors ���� language� In CLOS�

mixins are available as a result of two factors� dynamic typing and the notion of

linearization�

In CLOS� all classes that contribute to an object�s behavior are ordered linearly

in a class precedence list� The ordering is determined by a linearization algorithm�

Various algorithms may be used ����� but they all produce a linear ordering that

preserves the partial ordering inherent in the original graph� Each contributing

class occurs only once in the resulting precedence list� Linearization serves to

disambiguate name clashes in multiple inheritance� but has serious negative con�

sequences� Encapsulation is violated� as discussed in section ����� In addition� a

class may not be adjacent to its immediate ancestors in the class precedence list

produced� This may a	ect program behavior� and is heavily dependent on the

speci�c linearization algorithm used� and on the global structure of the inheritance

graph�

Classes in CLOS may refer to their ancestors using a special function� call�next�

method� This allows access to overridden methods� as mentioned in section ����

When executing a method� an invocation of call�next�method will invoke the method

of the same name� as de�ned on the next class on the class precedence list�

Given the absence of static checking� it is possible to place an invocation of

call�next�method in a class that does not have any ancestors� Of course� the in�

vocation will fail if the class is used by itself� The designer of a mixin relies on

the linearization algorithm to place the mixin before other classes in the class

precedence list to achieve the e	ect of binding a mixin to a parent� Thus� mixins

are expressible in CLOS as a by�product of the procedural model of inheritance

used by the language� Mixins are not expressed as explicit abstractions� nor do



�

they have any formal language support� CLOS is representative of the approach

taken by a variety of LISP dialects with respect to inheritance� The main exception

is CommonObjects ��� ���� which is discussed in Chapter � in the context of related

work�

����� SELF

SELF� like CLOS� is dynamically typed� Unlike CLOS� it is not based upon a

linear form of inheritance� but rather upon delegation ��� �� ��� ���� Delegation is

a form of inheritance that occurs between objects �often referred to as prototypes�

at execution time� rather than between classes at the time of compilation�

Like CLOS� SELF has a built�in mechanism for accessing overridden methods

�known as resend�� Since no static typechecking is performed� it is possible to

de�ne objects which use resend without binding them to parents� Using delegation

these objects can be bound to a parent object later in the program execution� It is

the programmer�s responsibility to ensure that such a mixin object is bound to a

parent before being used�

Since objects are �rst�class values that may be abstracted over� it is also easy

to write a method that takes an object as an argument and uses it as a parent for

another object� This method insures that binding to a parent takes place� However�

in SELF this assurance is of limited value� because there is still no guarantee that

the parent will support the interface expected of it�

SELF�s approach is much more satisfactory than the one taken by CLOS� since

mixins are available as a natural consequence of delegation� rather than as an

artifact of undesirable linearization�

����� Beta

Beta uses a form of single inheritance called pre�xing� When a class �known as

the pre�x� is modi�ed through pre�xing� the language guarantees that the pre�x�s
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original code will be executed� The pre�x determines if� and at what point in the

code� the modi�cation�s �extension in Beta parlance� code will be invoked� This is

indicated by the keyword inner�

Beta uses the concept of pattern uniformly for classes� types� functions and pro�

cedures� Beta�s syntax can be disconcerting for novices� so here a more conventional

notation is used��

Figure �� is an example demonstrating how pre�xing works in Beta� Two

classes� Graduate and Person� are de�ned� The de�nition of Graduate is said to be

pre�xed by Person� Person is the superpattern of Graduate� which� correspondingly�

is a subpattern of Person� Display is declared to be virtual� which means that it

may be extended in a subpattern� This does not mean that it may be arbitrarily

rede�ned� as in most object�oriented languages�

The behavior of the display method of a Person is to display the name �eld and

then perform the inner statement� For a plain Person instance� which has no inner

behavior� the inner statement is a null operation �i�e�� skip or no�op�� When a

subpattern of Person is de�ned� the inner statement will execute the corresponding

display method in the subpattern�

�This syntax is used by the implementors of Beta for tutorial purposes �	
��

Person� class
�� name � string�

display� virtual proc
�� do name�display� inner ���

���

Graduate� class Person
�� degree� string�

display� extended proc
�� do degree�display� inner ���

���

Figure ��� Beta pre�xing
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The subpattern Graduate extends the behavior of the Person display method by

supplying inner behavior� For a Graduate instance G� the initial e	ect of G�display

is the same as for a Person� the original method from Person is executed� After the

name is displayed� the inner procedure supplied by Graduate is executed to display

the graduate�s degree� The use of inner within Graduate is again interpreted as

a no�op� It only has an e	ect if the display method is extended by a subpattern

of Graduate� Notice how in Beta pre�xing� the pre�x controls the behavior of the

result�

Figure �� shows how a mixin can be de�ned in Beta� The objective is to capture

the �graduate behavior� embedded in the subpattern �� degree� ���� display� ��� ��

in an abstraction� so it need not be repeated time and again� The mixin is called

GraduateMixin� and is de�ned in a rather involved way� GraduateMixin comprises two

nested classes� Super and Result� GraduateMixin should be thought of as a function

from classes to classes� Super represents the function�s formal parameter� its input�

Displayable� class �� display� virtual proc �� inner �� ���

Person� class Displayable �� name� �String�
display � extended proc �� do name�display� inner �� ���

GraduateMixin� �� Super � virtual class Displayable� �� Formal Parameter ��
Result� class Super �� degree� �String �

display � extended proc
�� do

degree�display
��

�� �� Desired Combination ��
��

GraduatePattern� class GraduateMixin �� Super � extended class Person ���
�� Pass �Person� as actual parameter ��

Graduate� class GraduatePattern�Result �� Extract Final Result ��

Figure ��� Mixins in Beta
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Result represents the function�s output� Super must be a subclass of Displayable�

Displayable is an abstract class whose purpose is to serve as an interface speci�cation�

or �type�� for Super� This kind of use of abstract classes is always necessary when

types and classes are not clearly distinguished� and was discussed in section ������

What the GraduateMixin �function� computes is a new class� Result� which

extends the input parameter Super with �graduate� information� The �invocation�

of GraduateMixin proceeds in two stages� First� an extension GraduatePattern is

de�ned� The extension re�nes the class Super to be class Person� This is the analog

of passing Person in as an actual parameter� Person is a subclass of Displayable� so

it is a valid argument� The second stage is to explicitly retrieve the �output�� This

is done by selecting Result from GraduatePattern�

The solution takes advantage of Beta�s unusual ability to nest classes in an

arbitrary fashion� and rede�ne nested classes via inheritance� The approach taken

here is closely related to Beta�s use of nested patterns to represent genericity or

procedures as parameters �����

Support for mixins in Beta is not deliberate� however� until an early version of

this work was circulated� no one� including Beta�s designers� had investigated use

of mixins in Beta ����� This explains why it is rather awkward to de�ne a mixin in

Beta�

The idea that mixins can be treated as functions from classes to classes is

valuable� In the next section this idea will be made readily apparent� free of Beta�s

somewhat idiosyncratic syntactic and conceptual baggage�

��� Mixins as Abstractions

Tennent�s principle of abstraction ���� page ���� states that �any semantically

meaningful syntactic class���can in principle be used as the body of a form of

abstract�� The introduction of mixins into object�oriented languages is a direct

application of this principle� Since a mixin is not inextricably bound to any
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particular parent� we can regard a mixin as being parameterized by a parent� which

it is modifying� So mixins can be treated as functions from classes to classes�� This

is shown in Figure �� The BorderWindow function accepts an argument W� which

must be a Window� and returns a result that is a modi�ed version of the input

class W� The modi�cation adds a border� to be displayed around the window� This

requires a new display routine� which �rst displays the window�s body� and then

surrounds it with a border�

The notation W � Window requires some discussion� This syntax is clearly

analogous to standard programming language notations like i � Integer� which signify

that i is a variable denoting a value belonging to a collection of values known as

Integer� Similarly�W denotes a class that belongs to the collection of classes known

asWindow� Such collections of classes will be referred to as interfaces� The intuition

is that W must be a class that supports the interface speci�ed by Window�

Existing object�oriented languages do not have a formal notion of interface�

However� many have a notion of type �which may be distinct from the notion of

class� but usually is not��� In that case� an alternative notation� W �� Window�

can be used� This can be interpreted as stating that W is a class whose instances

have type Window �or some subtype of Window�� The most common situation is

�In fact� that is one of several semantic views of mixins� and not exactly the one originally
developed in ���� See section �� for more details�

BorderWindow�W � Window� � inherit W
borderWidth � �� borderColor � red�
display � function�dontCare� Unit�

f
W�display���
displayBorder���

g
displayBorder � function�dontCare� Unit� f ��� g

Figure �� Generics as mixins



��

that classes and types are identi�ed �as discussed in Chapter ��� The reading of

W �� Window then reduces to �W is a subclass of Window��

A corollary of the view of mixins as functions from classes to classes is that

if classes and inheritance are �rst class operations� mixins fall out automatically�

That is essentially what happens in SELF� where objects and delegation are �rst

class� as noted in section �����

Making inheritance a runtime operation may not be desirable� One consideration

is that a high performance implementation becomes much more di�cult� Another

complication is that static typechecking of such constructs is problematic to say

the least� This last problem will be discussed shortly� However� it is also possible

to de�ne abstractions over classes without taking the radical step of making inher�

itance a �rst class �runtime� operation� Such abstractions are the topic of the next

subsection�

����� Mixins and Type Abstraction

Many programming languages support abstractions over �second�class� entities�

such as types� classes or modules ��� �� ��� ��� ��� �� ���� These constructs

are often referred to as generics� In some languages� generics are merely macros�

separately expanded and recompiled for every application of the abstraction� This

is the case in Ada� Modula�� and C��� Such constructs are easily incorporated

into almost any language� However� they preclude separate compilation of the

abstraction they represent� and are nothing more than syntactic devices� with no

semantic content�

More signi�cant are constructs such as Owl type modules and ML functors�

which are compiled only once� In object�oriented languages� generics have been

used to de�ne container classes� such as stacks or linked lists� that are conveniently

parameterized by the type �or class� of objects they contain� It appears that one
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could easily use such a construct to express example �� Still� existing languages

preclude such usage�

The reason is that guaranteeing the type�correctness of such an abstraction is

in general extraordinarily di�cult� Figure �� illustrates the problem� A mixin M

is de�ned that adds a boolean�valued method x to its argument� M is then applied

to class P� P meets the requirements in the abstraction�s header� P �� A� However�

C is a malformed class because the x attribute of P con
icts with the x attribute

added on by the abstraction� Note that if the type of the actual parameter �P in this

case� was known exactly then this problem could not arise� However� a typical mixin

is not useful unless it can be applied to classes with various interfaces� In other

words� useful mixins are polymorphic	 they are meaningfully applied to arguments

of di	erent �though related via subtyping� types� The di�culty is that while useful

mixins are polymorphic� it appears that without exact type information� one cannot

guarantee the type safety of inheritance�

Various typing schemes have been developed in an attempt to address this prob�

lem ��� ����� None seems to present a solution that is simple and understandable

enough to be useable by programmers� e�ciently implementable� and covers the

important cases� The problem is an exceedingly di�cult one� and remains the

subject of intense research� Related typing problems will arise repeatedly in this

dissertation�

Rather than attempt �or wait for� a general solution� an alternative is to restrict

�Typically� what is actually studied is polymorphic record concatenation� but the problems are
essentially the same�

P � A inherit x� Bool � Bool � ���� ��� end�
M�B �� A� � B inherit x� Real to Real � ���� ��� end�
C � M�P��

Figure ��� Mixin application
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the problem� While the ability to inherit within a polymorphic abstraction is

su�cient to de�ne typed mixins� it is not necessary� De�ning dedicated constructs

for expressing mixins is a pragmatic alternative� discussed next�

����� A Dedicated Construct for Mixins

Mixins� expressed as abstractions� have a common form� as indicated in Figure

��� A mixin�s signature contains su�cient information to determine the type

correctness of an application �assuming exact type information about the actual

parameter is available�� The key is to recognize the characteristic form of a mixin�s

signature� especially its range�

First� some notation must be introduced� The leftward arrow � is the override

operation on interfaces� If R
S are interfaces� R override S is the interface that

results when R and S are concatenated� with the proviso that� if any attribute

names are de�ned in both R and S� then

� the attribute value from S is used in the result�

� the type of the S attribute value must be a subtype of the type of the R

attribute value�

The notation forall T �� S� type�expr means that within the type expression

type�expr
 T is a bound variable that denotes a type that is guaranteed to be a

subtype of S� The types in question should be interpreted as the interfaces associated

with classes�

Figure �� shows that the actual result type of the mixin depends on the type of

its actual argument� The mixin aMixin can be thought of as a polymorphic function

aMixin�T �� S� � T inherit some modi�cations

Figure ��� The common form of mixins�
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between classes� For all classes with interface T� where T is a subinterface of S�

aMixin takes a class and produces a new one� whose interface is given by �T � � � ���

At the point of application� the result type will be malformed if the argument is

inappropriate� One can then detect statically any maltyped mixin applications� As

long as inheritance manifests itself in the abstraction�s signature� type safety can

be guaranteed�

It is therefore imperative to ensure that every use of inheritance inside an

abstraction is indeed re
ected in its signature� and thus propagated to the top

level� where exact type information is available� The easiest solution is to de�ne a

dedicated construct� as in Figure ��� A mixin abstraction of this form could be

invoked with an actual parameter just like an ordinary generic� The meaning of the

invocation is de�ned as M�R� � R inherit body� The crucial restriction is that the

formal parameter R may not be inherited from� directly or indirectly in body� The

invocation is legal as long as R �� S and the result type of the mixin invocation

�which depends on R� is well�formed� This handles many interesting cases� and

guarantees type safety�

����� Mixin	based inheritance

The use of mixins naturally introduces a new form of multiple inheritance�mixin�

based inheritance� Mixin�based inheritance subsumes other forms of linear multiple

inheritance� typical of LISP based object�oriented languages� If formulated with

care� mixin based inheritance is a truly modular form of inheritance�

aMixin� forall T �� S� T � �T � � � ��

Figure ��� The signature of a mixin�

M � mixin�T �� S� body end

Figure ��� A dedicated mixin construct�
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Figure �� shows a simple multiple inheritance hierarchy� This hierarchy can be

linearized in two di	erent ways� as illustrated in Figure ��� Both linearizations

can be de�ned using mixins� The �rst corresponds to C�B�A�Base���� where Base is

a simple base class with no attributes� The second linearization is likewise repre�

sentable by C�A�B�Base���� In general� any linear encoding of a multiple inheritance

hierarchy can be represented by a series of nested mixin invocations� as long as all

classes �except Base� are represented as mixins�

Note that modularity need not be violated here� No implicit linearization

is performed� The linear order is determined explicitly by the programmer� If

the other precepts of ���� are followed� this form of inheritance does not violate

encapsulation�

The formulation described up until now provides essentially the same level of

functionality provided in ����� Further re�nements are developed below�

The next logical step is to de�ne combinations of classes as mixins� so that when

the new combination is used� the same 
exibility is available� Instead of writing

C�B�A�Base���� de�ne mixin CBA�X� C�B�A�X��� end� This raises a problem� The

argument X is being inherited from� within the body of the abstraction� contrary to

��
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Figure ��� Linearized hierarchies

the restriction given above� Fortunately� the restriction can be eased in this case�

since the use of inheritance is re
ected in the signature of the mixin CBA�

Prior to instantiation� mixins must be bound to a parent� as in new CBA�Base��

The type system will be able to determine if Base is a valid parameter for the mixin

being instantiated� If not� the mixin is not ready for instantiation� since it still

makes nontrivial use of its parameter�

����� Mixin Composition

Mixins like CBA are more concisely formulated via mixin composition� In this

context� mixin composition is exactly function composition� De�ne

�M� �M���M�� �M��M��M����
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Then CBA � C � B � A�

The style of programming that emerges from the examples above is one in which

all user�de�ned classes are de�ned either as mixins or mixin compositions� This

leads to the idea that only one construct� the mixin� is really needed by users� and

that mixin composition is the normal mode of combining these constructs� This

design is explored next�

��� Elevating Classes to Mixins

Instead of representing mixins with a new construct� an existing construct� the

class� can be generalized� In some cases� this approach is more natural� For example�

in Beta� the entire language is centered around a single abstraction� the pattern�

Adding a new� special�purpose construct solely for mixins would not �t in such a

framework at all�

The main attraction of this approach is uniformity� The language retains a single

abstraction� the class� for module de�nition� All classes are considered to be mixins�

and are always combined by means of the composition operator� Ordinary classes

need not declare a formal parameter� Nonetheless� they are viewed as shorthand for

degenerate mixins that do not make use of their parent parameter� Mixins thereby

generalize Smalltalk classes� Beta patterns and CLOS style mixins� A mixin is

complete if it does not refer to its parent parameter� and de�nes all �elds that it

refers to in itself� Otherwise� it is partial� Only complete mixinsmay be instantiated

meaningfully� This can easily be enforced by the type system� This approach was

�rst presented in ����

The advantages of uniformity are�

� It makes the language simpler�

� As shown above� this simpli�es the expression of useful classes�
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� It allows inheritance to viewed as an operator over a uniform space of values

�mixins�� This represents a radical shift in thinking about inheritance� Instead

of viewing inheritance operationally in terms of graphs and algorithms for

traversing them� inheritance is thought of in a declarative way� These obser�

vations will be exploited in the next chapter� to develop a more comprehensive

yet simpler solution�

����� Extending Existing Languages

Mixin�based inheritance can be incorporated in a natural way into programming

languages that employ a linear inheritance scheme� These include single inheritance

languages such as Beta� Smalltalk or Modula�� ���� It also includes languages such

as CLOS� which use linear multiple inheritance� CLOS is a particularly attrac�

tive candidate for experimentation� because it incorporates a meta�object protocol


MOP���� that was speci�cally designed to allow for easy language modi�cation�

In fact� a CLOS implementation of mixin�based inheritance was seriously considered

as part of this work� It was rejected because a compiler that actually implemented

the MOP was not available�

��� Limitations

While mixin�based inheritance o	ers signi�cant improvement over other linear

inheritance schemes �both single inheritance and linearized multiple inheritance�� it

still inherits the fundamental limitations of the linear approach� There is only one

way to resolve name con
icts � placing the mixins with the con
icting attributes in

a certain order� This leads to three main problems�

�� There is no allowance for selectively choosing attributes from various mixins�

�� No means is provided for resolving incidental name con
icts�

� No warning is given about con
icts � they are resolved automatically�
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There are various other re�nementsmissing from the presentation so far� Notions

of information hiding have not been discussed� The ability to distinguish between

static and dynamic binding of methods is absent� One could elaborate the mixin

construct to support these last two� with a corresponding loss of simplicity�

Rather than extending the concept of mixin� it will be advantageous to simplify

it� I have chosen to focus on the idea that inheritance is an operation over a uniform

space of values� as discussed in section �� This idea lends itself to a clean extension

that deals with all of the problems mentioned here� The next chapter explores that

approach� which is at the heart of this dissertation�



CHAPTER �

JIGSAW

�� jig�saw n � a machine saw with a narrow vertically reciprocating
blade for cutting curved and irregular lines or ornamental patterns in
openwork �� jigsaw vt �� to cut or form by or as if by a jigsaw �� to
arrange or place in an intricate or interlocking way
Unix Webster online dictionary�

This chapter argues that inheritance� properly formulated� is a powerful modu�

larity mechanism that can constitute the basis of a module manipulation language�

The formulation of inheritance presented herein is derived by observing that in

languages supporting multiple inheritance �e�g�� ��� ��� ����� classes are burdened

with too many roles� The class construct is �large� and monolithic� Here classes

are simpli�ed� and their functionality is partitioned among separate operators�

Classes are reduced to a simple notion of module � a mutually recursive scope�

These modules form a uniform space of values upon which operators act� The

operators accept modules as arguments� and produce modules as results� The

notion of module with its associated operations can thus be viewed as an abstract

datatype�

The set of operators presented supports encapsulation� multiple inheritance�

mixins and strong typing in a single� cohesive language� These features have not

been successfully combined before�

Apart from the obvious relevance to object�oriented programming languages� the

Jigsaw framework can be used to introduce modularity into a variety of languages�

regardless of whether they support �rst class objects�



��

The approach is itself modular� Language designers can use this approach�

and add� remove or replace operators� This makes the bene�ts of extensibility and

modi�ability associated with object�oriented programming available at the language

design level�

These points are demonstrated via the module manipulation language Jigsaw�

For concreteness� assume that Jigsaw manipulates modules written in an applica�

tive language with a type system based upon bounded universal quanti�cation

����� However� the discussion remains virtually unchanged if modules are written

in another language� For instance� although a subtype relation is assumed� its

particulars are not relied upon� Hence the approach applies to languages without

subtyping as well� These have type equivalence as a degenerate subtyping relation�

The remainder of the chapter is structured as follows� Section ��� discusses

the many roles played by classes in object oriented languages� Section ��� then

demonstrates how each of these roles is supported by Jigsaw�s operators� Jigsaw

allows arbitrary nesting of modules� and this is the subject of section ��� A Jigsaw

interpreter is sketched in section ���� This is followed by section ���� which shows

how Jigsaw can be applied to a variety of languages� and why Jigsaw can justi�ably

be considered a framework in the sense used in the object�oriented programming

community� as mentioned in Chapter ��

��� Roles of a Class

In a language supporting multiple inheritance� the class construct typically

supports a large subset of the following functions�

�� De�ning a module�

�� Constructing instances of a module de�nition�

� Combining several classes together� This is characteristic of multiple inheri�

tance�
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�� Modifying a class� This function is characteristic of all inheritance systems�

single or multiple�

�� Resolving name con
icts among class attributes� This can be done in various

ways� by renaming or by explicitly specifying the desired attribute�

�� De�ning sharing constraints among classes� When classes are combined� cer�

tain attributes or groups of attributes may exist in several of the classes being

combined� The question is whether these attributes should be duplicated for

each participant class� or shared� Too often� the language designer has decided

on a particular answer� In fact� di	erent applications have di	erent needs in

this respect� and programmers should be able to make the choice�

�� Restricting modi�ability� Usually� all visible attributes of a module are subject

to modi�cation� It is sometimes desirable to restrict this 
exibility� and state

that a certain attribute may not be modi�ed by inheritance� This is useful

both from a design point of view� and also for optimization�

�� Determining attribute visibility� Di	erent mechanisms may be available� to

determine visibility to users� heirs or �friends��

�� Accessing overridden attributes� It is common that a method in a modi�ed

class makes use� during computation� of the method it has overridden� using

special notation�

In addition� if the language is strongly typed� one often �nds that a class ful�lls

additional roles�

��� De�ning a type�

��� De�ning a subtyping relation�
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Jigsaw separates inheritance from subtyping to preserve encapsulation� as dis�

cussed in Chapter ��

The following section presents Jigsaw�s operator suite� The roles detailed above

are examined in turn� and� for each role� the relevant operator�s� described�

��� The Jigsaw Operator Suite

����� Module De�nition

The primary de�nitional construct in Jigsaw is the module� A module is a

self�referential scope� binding names to values� A binding of name to a value is a

de�nition� Unlike ML ����� modules do not bind names to types� Type abbrevia�

tions may be used� as syntactic sugar�� Typing in Jigsaw is purely structural�

Modules may include not only de�nitions� but declarations� A declaration gives

the type of an attribute� but no value for it� Declarations are used to de�ne

�abstract classes�� Modules may be nested� Every module has an associated

interface� which gives the types �or interfaces� for nested modules� of all visible

attributes of a module� The subtyping relation on interfaces is de�ned as interface

equivalence� Two interfaces are equivalent if they have exactly the same attribute

names� and the attributes have equivalent types or interfaces�

Modules have no free variables� and module operators do not require access to

the source code of their operands� This allows for separate compilation� including

inheriting from separately compiled modules�

����� Instantiation

A module M is instantiated by the expression instantiate M� The result of this

expression is known as an object or instance� The module in Figure ��� is similar

�In ML terms� only type declarations� not datatype declarations� are supported�
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module
f x � �� y � ��

dist � function�aPoint�f x�Int
 y�Int g�
f

sqrt�sqr��x � aPoint�x��  sqr��y � aPoint�y���
g

g � f de�ne x�Int
 y�Int
 dist�f x�Int
 y�Int g � Real g

Figure ���� A module and its interface

to the class shown in Figure ���� and can be instantiated into a point object with

coordinates at the origin�

In an applicative language� all instantiations of a module are identical� Then

why distinguish between a module and its instance� The main reason is typing� It

is extremely desirable to use instances polymorphically� On the other hand� module

operations require exact knowledge of the type of their operands� Distinguishing

modules from instances allows separate type rules to be given for each�

An alternative would be to introduce a new judgement into the type system�

indicating that a value is exactly of some type� in addition to the ordinary judgement

that a value has some type� This solution is more verbose� Also� the solution chosen

here is more natural� since modules do denote a di	erent kind of value than objects�

This will be discussed in Chapter ��

Another reason for keeping modules and instances distinct is that the decision to

make module instances �rst class values �as in �Class�based� languages ����� need

not imply that modules themselves are �rst class values� If modules are identi�ed

with instances� the two decisions cannot be separated� The use of Jigsaw should not

constrain language designers in this way� Subsection ��� discusses a language design

where neither modules nor instances are values� Chapter � refers to a language

where instances are values� but modules are not� in Jigsaw� both modules and their

instances are �rst class values �the fourth option� making modules values while

instances are not� is self�contradictory��
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Of course� imperative languages based on Jigsaw are of great practical interest�

In this case� the distinction between modules and objects is essential� Some impera�

tive object�oriented languages provide constructors or destructors for initializing or

eliminating objects� Jigsaw does not support such constructs� Instead� modules are

expected to incorporate an initialization method that can be invoked immediately

after instantiation� This solution is also advocated in Modula���

����� Combining Modules

Two modules may be combined using the merge operation� The result is a

new module� in which all names declared in either of the inputs are declared�

Name con
icts are not permitted� and result in a static error� Note that the

merge operator does not provide any mechanism for resolving such con
icts� Other

operators are used for this purpose� This is one example of how de�nitions are

simpli�ed in this approach�

Merge is commutative and associative� Themerge operator is discussed further

in the context of sharing �subsection �������

����� Modi�cation

One module may be modi�ed by another� This is an asymmetric operation� in

which one module overrides the other� This is supported by the override operation�

M� override M�� The override operator takes two modules and combines them�

If an attribute is de�ned by both modules� then the type of the attribute in M�

must be a subtype of its type in M�� In that case� the value from M� will appear

in the result�

Override is associative and idempotent� but not commutative�
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����� Name Con�ict Resolution

Name con
icts can be resolved in several ways� One can explicitly choose one of

the con
icting attributes in preference to all others� This eliminates the con
ict�

but requires that all modules share a common version of the attribute� This may

not always be desired� Furthermore� the types of the con
icting attributes may be

incompatible� in which case such sharing is impossible� Sharing is discussed in the

following subsection�

An alternative is to eliminate the con
ict by renaming� This is always possible�

and all attributes remain available� The one drawback is that in a structure�based

type system� attribute names are meaningful for subtyping� and renaming may

adversely a	ect polymorphism�

The renaming operator changes the name of a single attribute�

M rename a to b

The e	ect is equivalent to a textual replacement of all occurrences of the attribute

name a in M� by the name b� Attribute a must be declared by M� and b neither

declared nor de�ned�

The type rule for rename must ensure that the attribute is renamed in the type

of the result�

It is worth pointing out that a dedicated renaming operator is more than just

a convenience� A naive interpretation of renaming would lead one to the idea that

to rename a to b� it su�ces to add a b method that invokes a� and then hide a�

This is a valid way to de�ne renaming for records� However� when inheritance is

involved� this solution is not equivalent to textual substitution� When a modi�ed

version of b is introduced� the expectation is that all internal references will invoke

the new b method� Since many of these references actually refer to the old name�

a� they will not invoke the revised method� This behavior is di	erent from what
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would have occurred had renaming not taken place� The desired property is that

rename distributes over override� and is illustrated in Figure ����

����� Sharing

When modules are merged in Jigsaw� multiple de�nitions of an attribute give

rise to errors� In contrast� multiple declarations of an attribute are shared� and are

perfectly legal�

Of course� this is only valid as long as the declaration agrees with the de�nition�

The de�nition must have a type that is a subtype of the declaration� Similarly� two

declarations may clash� as long as they have a subtype in common� Existing object�

oriented languages that recognize the notion of �pure virtual� do not make this

distinction� and treat identically all name clashes between classes being combined�

In contrast� in Jigsaw� declarations can help specify sharing constraints among

modules being combined� at the granularity of attributes�

Sharing is facilitated by the restrict operator� The e	ect of a restrict operation

is to eliminate the de�nition of an attribute� but retain its declaration� Unlike

records� it is not generally possible to completely remove an attribute from a mod�

ule� because the module may contain internal references to the attribute� Restrict

creates an abstract class� by making an attribute �pure virtual�� Therefore� abstract

classes may be created �after the fact�� The attribute being restricted must be

de�ned by the argument module� The restrict operation is associative�

When several modules are combined viamerge� sharing of con
icting attributes

may be speci�ed by restricting all but one� This supports con
ict resolution via

explicit speci�cation� a feature that was missing in mixin�based inheritance�

�m� rename a to b� override �m� rename a to b� � �m� override m��
rename a to b

Figure ���� Rename distributes over override
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Project is a dual of restrict� Rather than specifying which attribute to remove�

project speci�es which attributes to retain� A module� M� and a list of attributes�

A� are the inputs to the project operation� Project requires that all names in A

be de�ned by M�

����� Restricting Modi�cations

The freeze operator accepts an attribute name� a� and a module as parameters�

and produces a new module in which all references to a are statically bound�

Some languages support this using the notion of nonvirtual attributes �static

binding�� However� this does not allow for changing the status of a virtual attribute

to nonvirtual �e�g�� as in Beta ����� In addition� it complicates the model� since not

all methods are de�ned in the same way � there are two kinds� declared di	erently�

In the Jigsaw model� it is preferable to have only virtual attributes declared� and

perform the change by means of an operator on modules� The attribute being

frozen must be de�ned�

Freeze has a dual operation� freeze all except M A� that freezes all features

of a module M� except those speci�ed in the list A� The attributes listed in A must

be de�ned by M�

����� Attribute Visibility

Visibility control is implemented by means of the operations hide and show�

M hide a eliminates a from the interface of M� The attribute a must be de�ned by

M�

Conversely� M show A hides everything except the speci�ed attributes� All

attributes listed in A must be de�ned by M�
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����� Access to Overridden De�nitions

Access to overridden de�nitions is supported through the use of the copy	as

operator� M copy a as b creates a copy of the a method� under the name b� The

a method can now be overridden� while the old implementation remains available

under the name b� M must not declare an attribute b� but must de�ne a�

Consider Figure ��� which also demonstrates how Jigsaw emulates mixins�

Recall that the intent here is that the BorderMixin module modi�es the Window

module by adding a border� to be displayed around the window� The new display

routine �rst displays the window�s body� and then surrounds it with a border�

BorderMixin declares an unimplemented routine displayBody� which is invoked within

the display routine� Before overriding Window with BorderMixin� Window�s display

routine is copied as displayBody�

Note that renaming display to displayBody in Window would be inappropriate�

When display was modi�ed by BorderMixin� references to display within Window

would not be modi�ed� De�ning a displayBody routine that called display and

BorderMixin � module
f borderWidth � �� borderColor � red�
display � function�dontCare� Unit�

f
displayBorder���
displayBody���

g
displayBorder � function�dontCare� Unit� f ��� g
displayBody � Unit � Unit�
g

Window � module
f x � �� y � ��
display � function�dontCare� Unit� f ��� g
g

BorderWindow � Window copy display as displayBody override BorderMixin�

Figure ��� Using a mixin
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adding that to Window would yield an in�nite recursion once the modi�cation by

BorderMixin was performed�

Another point is that BorderMixin is not technically a mixin� in the sense de�ned

in Chapter � BorderMixin is not a function on classes or modules� but an ordinary

module �albeit an abstract class�� However� it ful�lls the same purpose as a mixin�

since it is a modi�cation that stands on its own� and can reference functionality it

overrides� This is done without recourse to more elaborate structure� Instead� the

functionality is delivered using additional operators�

��� Nesting Modules

The ability to nest modules within one another was mentioned in Chapter �

as an important requirement for modularity �criterion �� Nesting addresses the

global name space problem� The former global space is a module� It can be

extended� modi�ed� renamed� etc� Renaming means name con
icts are never an

issue� Modules developed at remote sites are in their separate �global� modules�

These can be merged� and con
icts resolved by sharing� hiding and renaming�

Consequently� class libraries are simply modules� with ordinary classes as nested

modules� In particular� note that frameworks �as de�ned in Chapter �� are class

libraries designed to be extended with additional classes� many of which extend the

classes de�ned within the framework� So the process of completing a framework

can be viewed as extension of a module containing nested modules�

In principle� nested modules have many additional applications� including mod�

ifying entire class hierarchies via inheritance and use as �factories� that produce

instances of nested modules while serving as shared data repositories for all these

instances� Unfortunately� the limited nature of subtyping on modules restricts these

solutions� Chapter � includes an overview of the exciting possibilities mentioned

here� and what steps might be taken to support them� The only language that
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currently supports unrestricted class nesting is Beta� Again� Chapter � discusses

class nesting in Beta�

Given nested modules� running a program is simply instantiating the �top�level�

module and invoking some user�written initialization method� To illustrate the

use of Jigsaw for the purposes discussed above� a conceptual sketch of a Jigsaw

interpreter follows�

��� An Interactive Jigsaw Interpreter

In this section� an outline of an interactive interpreter based on Jigsaw is de�

scribed� The interpreter will be used to demonstrate how one would actually utilize

Jigsaw to obtain the advantages described above�

Jigsaw de�nes a language for manipulating modules� Jigsaw�s notion of module

is a mutually recursive scope� so Jigsaw module operators are also operators on

scopes� This makes Jigsaw well suited to handling problems that arise in interactive

language systems�

Consider the usual ML top level interpreter� It takes the view that every

expression submitted to it is implicitly pre�xed by a let� and followed by an in�

creating the top level scope �known as the top level environment in ML��

This is appealing as it makes the interpreter behave like a language processor�

according to the lexical scope rules of the language� Unfortunately� it also means

that it is often impossible to interactively correct a bug� Suppose f is a function

whose de�nition is buggy� If one realizes this and submit a new de�nition for f �

it shadows the old one� This is consistent with the notion of lexical scoping in

nested let expressions � the innermost de�nition shadows all others� However� any

other function using f remains bound to the previous de�nition� and will not be

corrected� This defeats the much of the purpose of having an interactive language

processor� The only workable way to develop programs is through editing �les�

outside the interpreter�
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One should point out that the approach taken by ML and others has the

advantage that code can be compiled as it is submitted� Later changes will not

require existing code to be adapted� by� say� linking in updated de�nitions of

functions� Another advantage is that there is no typing constraint on the new

de�nitions� since they are in a new scope�

LISP interpreters usually have a more intuitive behavior� A new de�nition will

a	ect the execution of earlier code using it� Of course� these interpreters rely on the

late binding of names to values� with a corresponding cost in performance� Typing

is not a problem in these languages either� since they are typically dynamically

typed�

A new de�nition is an extension of the existing environment� or scope� A revised

de�nition means that the existing environment is being overridden� To shadow an

existing de�nition� one may hide it and extend it with a new one� The concepts

of extension �via merge� and overriding are exactly those supported by Jigsaw�

Unlike a LISP interpreter� Jigsaw performs static typechecking� and can compile

modules as they are submitted like an ML interpreter�

The operation of a Jigsaw interpreter can now be described� A Jigsaw language

processor expects to be presented with a module expression� Such an expression is

either a single module� or a series of modules composed by operators�

The Jigsaw interpreter would �rst read in the initial environment �I�O routines�

system calls� standard utilities� etc��� In practice� this environment may be built

in� but conceptually this makes no di	erence� This standard environment is a

module expression� The interpreter would then expect a connecting operator� such

as merge override rename and so forth� followed by a new module expression�

The user thus speci�es how to modify the top level environment� Each succeeding

input expression continues to modify the environment in this way�
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If the type of a function is being revised in an inconsistent way� the interpreter

will insist that the old version be hidden� All functions referencing the old de�nition

need to be rede�ned with new type information in any case� so the interpreter may

eventually eliminate the old de�nition� when it is no longer referenced�

The interpreter must support commands for saving and retrieving modules to

and from the �le system� Call these commands save and retrieve� Retrieve

is a function that takes a string specifying a �lename� and returns the module

expression contained in that �le� A program created separately using a text editor

can then be added to the existing environment in several ways� Retrieve �lename

is an expression� that can be placed wherever a module expression is expected� In

this way� one can either import all the de�nitions in a �le� using amerge operator�

merge retrieve �lename

or� one can import them at a nested level� as in

merge module m � retrieve fn end

This latter form might be useful for importing an entire class library� which

might then require renaming� etc�

A save command would simply have the e	ect of writing out the value of the

current environment into a �le whose name is speci�ed� This �le can then be

retrieved in a later interpreter session� Similar utilities that save and retrieve

compiled modules are also required�

��� Adding Modules to Existing Languages

Many languages do not have adequate modularity constructs� These include

widely used programming languages �e�g�� C ���� Pascal ����� as well as countless

special�purpose and �little�languages� ��� Column ��� where the e	ort of designing

speci�c mechanisms for modularity is di�cult to justify� but which could still bene�t

from such mechanisms�
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The simple notions of module and interface de�ned above are largely language

independent� This is because neither the value set used in de�nitions nor the form

of the types used in declarations are speci�ed by Jigsaw� One requirement is that

the language being �modularized� support recursion� since modules are mutually

recursive scopes� When working with a language that does not support recursion�

users may accidentally create mutually recursive de�nitions which are in fact illegal�

and not get any compile time error or warning� �

Suppose one wishes to de�ne and manipulate modules consisting of statements

in some programming language� Lc� The de�nitions in modules will bind names to

denotable values of Lc� For example� if Lc � C� the denotable values will include

C functions and variables� Declarations and module interfaces will bind names to

Lc types �in fact� since modules may be nested� de�nitions may also bind names

to modules� and declarations may bind names to interfaces�� Again using C as our

example� the typing rules for module operators will rely on C type equivalence as

the subtyping relation � mentioned above�

The resulting language is not object�oriented� since it does not support �rst

class objects� Nevertheless� it employs inheritance� Inheritance supports module

interconnection by combining self reference among modules� and� of course� allows

existing code to be extended and modi�ed�

A wide range of languages can be extended as described here� Many of these

languages are dynamically typed� In this case� the subtyping relation is simply

true� This restricts the degree of static interface checking possible� However� any

language that is extended with Jigsaw style modules gains substantial bene�ts from

encapsulation� separate compilation �for compiled languages�� modi�ability and the

ability to de�ne partially speci�ed modules analogous to abstract classes�

�A specialized version of Jigsaw could be created to deal with this problem in some way� e�g��
by banning cyclic references�
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����� Jigsaw as a Framework

Throughout this dissertation� Jigsaw is often referred to as a framework� As

discussed in section ������ the term framework has a particular meaning in the

context of object�oriented programming� The purpose of this section is to explain

the exact sense in which Jigsaw can be considered a framework�

Jigsaw de�nes a number of abstractions that are useful in the context of module

manipulation� These abstractions include those of module� interface and instance�

Of course� each of these abstractions has associated with it syntax and semantics�

Both the syntax and semantics of Jigsaw are de�ned relative to other� incompletely

speci�ed abstractions such as value� type and even label� which represents the

lexical form of attribute names� This second set of abstractions belongs to the

computational sublanguage�

One way of reifying Jigsaw is to associate a class with each of the key abstractions

it de�nes� Classes representing Lc are pure virtual classes� The result of this

rei�cation is a collection of �abstract� classes� that together form a basis for imple�

menting a modular programming language processor� This is a framework� in the

sense used in the object�oriented programming community� A particular modular

programming language can be implemented� by supplying de�nitions for the pure

virtual classes� These de�nitions are an implementation of the computational

sublanguage� Pseudo�code for such a framework is shown in Figure ���� Such a

framework could be coded up in Beta� a language that supports nested classes and

name�based typing� The pseudo�code shows many of the functions that would be

needed in such a framework� but does not purport to be complete� For example�

many functions would also need to access a module wide symbol table� but that is

not described here�

Jigsaw relates to this framework as a language de�nition relates to a compiler

�see Figure ����� It is therefore a framework speci�cation� This last phrase has
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class Jigsaw Interface

class module�

function make module�value bindings� List��label
value or module����module�
function interface of���interface�

function merge�b� module��module�
function override�b� module��module�
function restrict�l�label��module�
function project�l� List�label���module�
function rename�l�
l��label��module�
function freeze�l�label��module�
function freeze all except�l� List�label���module�
function hide�l�label��module�
function show�l� List�label���module�
function copy as�l�
l��label��module�
function instantiate���instance�

function parse module�s� stream��module�

end� �� module

class interface�

function make interface�bindings� List��label
type or interface����interface�

function interface eq�i�� interface�� boolean�
function subinterface�i�� interface�� boolean�

function parse interface�s� stream��interface�

end� �� interface
�� Continued in next �gure ��

Figure ���� A framework implementing Jigsaw
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class label� �� pure virtual

function label eq�l�� label�� boolean� �� pure virtual

function parse label�s� stream��label� �� pure virtual

end� �� label

class value� �� pure virtual

function parse value�s� stream��value� �� pure virtual

function type of���type� �� pure virtual

end� �� value

class type� �� pure virtual

function type eq�t�� type�� boolean� �� pure virtual
function subtype�t�� type�� boolean� �� pure virtual

function parse type�s� stream��type� �� pure virtual

end� �� type

class instance�

function select�l� label��value�

end� �� instance

type value or module � value j module�
type type or interface � type j interface�

end�

Figure ���� � Continued
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Figure ���� Jigsaw speci�es implementation frameworks

a double meaning� Jigsaw speci�es how frameworks for implementing modular

languages should behave� Jigsaw is also a framework for speci�cations� Just

as implementation frameworks are completed by implementations� speci�cation

frameworks are completed with speci�cations �Figure ����� Completing Jigsaw with

speci�cations for Lc yields a speci�cation for a particular modular programming

language� Figure ��� shows all the relationships between Jigsaw� frameworks for

implementing modular programming languages� modular programming language

speci�cations and modular programming language processors�

It is important to realize that Jigsaw is indeed a framework� If Jigsaw was only

parameterized by Lc� then it could be thought of as a function from languages to

languages� After all� given a language Lc� Jigsaw produces a modular version of
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Figure ���� Speci�cation frameworks are like implementation frameworks

that language� However� the relationship between a parameterized abstraction and

its parameter is unidirectional� The abstraction may refer to the parameter� but

not vice versa� As noted in Chapter �� abstract classes present a bidirectional form

of abstraction� This is an important characteristic of frameworks�

Obviously� Jigsaw depends on Lc� To see that the relationship between Jigsaw

and Lc is bidirectional� consider a language with �rst class objects� In such a

language� the Jigsaw statement instantiate M is available within Lc� Lc depends

on Jigsaw�s notion of object� It is interesting to note that it is exactly when

Jigsaw is used in an object�oriented way� as a true framework rather than just

as a parameterized abstraction� that the resulting language is object�oriented�

One of the welcome properties of inheritance is that it can be applied repeatedly
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Figure ���� The big picture

to both complete and incomplete structures� An abstract class can be made

concrete� or it may be merely extended or modi�ed but still remain abstract� Even

a concrete class can easily be modi�ed� Similarly� a framework can be 
eshed out

into an application� but it can also be extended and modi�ed without becoming

a complete application� When a framework is completed� the set of classes that

comprise it can still be modi�ed further�

Jigsaw retains these properties as well� Variations on Jigsaw can be de�ned�

that are not complete language speci�cations� When a full language speci�cation

is derived from Jigsaw� it is still structured so that it can be changed with relative

ease�

Conceptually� di	erent interfaces are associated with di	erent uses of the Jigsaw
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framework� If the framework is being extended to create a new framework with� say�

additional operations on modules� the structure of modules is considered public� and

can be taken advantage of when new operators are de�ned� On the other hand� to

the language designer using a particular variant of Jigsaw� the module abstraction

is an abstract datatype� which provides certain known operations such as merge

override rename� etc�

One implementation of Jigsaw would be a framework like that described in

Figure ���� Such a framework could be the basis for a family of interoperable

language processors�

As noted earlier� Jigsaw permits type de�nitions in modules as a syntactic

shorthand� but does not support a semantic notion of types as module components�

Support for named typing is important when modularizing languages like Pascal�

whose type system is name�based� If Jigsaw modules could include types in this

manner� Jigsaw could be represented in itself� It does not seem di�cult to extend

Jigsaw in this manner� While the details of such an extension are left for future

work� an outline is given in Chapter ��

Even more valuable would be support for abstract datatypes� This is more

challenging problem� again discussed in Chapter ��



CHAPTER �

SEMANTICS

The formalism remains an unaccommodating object of study� without
true structure� a piece of soft camembert� Jean�Yves Girard

This chapter presents the theoretical basis of the dissertation� The work pre�

sented here is an application of denotational models of inheritance� as pioneered

by Reddy ���� and especially by Cook ����� It also builds on the extensive body of

work on typing object�oriented languages� starting with ����� Readers unfamiliar

with the details of the aforementioned work need not worry� the background section

provides all the requisite information for understanding this chapter�

Those readers whose primary interest is pragmatic can skip this chapter al�

together� without loss of continuity� Conversely� anyone whose main concern is

theoretical may �nd this chapter an interesting application of theory� but should

be warned again that this dissertation does not introduce new theory� but rather

utilizes theory to gain insight into language design� Finally� this chapter should be

of considerable interest to those computer scientists eager to translate theoretical

progress into improved language design�

One of the main points of this thesis is an elucidation of the meaning and

importance of the notion of mixin� Three di	erent approaches to modeling mixins

denotationally are presented� These approaches represent a historical succession�

each progressively more uniform and simpler than its predecessor� This succession

culminates in the semantic de�nition of Jigsaw�

Jigsaw is a framework for modular programming language design that abstracts

over the computational sublanguage used� Lc�
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Naturally� the formal de�nition of Jigsaw must also be abstract with respect

to Lc� There are several places in the de�nition where this abstraction is evident�

These include the context�free syntax� the type rules �context�sensitive syntax� and

the semantics�

In the context�free syntax� certain nonterminals are not de�ned� These include

expr and type� which represent the language Lc and its type�expression sublan�

guage� respectively� These must be provided by Lc�

In the type rules� some rules are left unspeci�ed� Jigsaw gives rules for well�typed

module values� but not for well�typing values of Lc� The situation is similar with

respect to rules for subtyping� type equivalence and type formation�

In the semantics� there are semantic clauses used� that are not given by Jigsaw�

Jigsaw�s semantics are de�ned by a translation to an untyped � calculus augmented

with basic types� records� record operators� and let and where constructs�

The interesting part of the translation is that which de�nes modules and the

operations upon them� The translation of other parts of the language is simply

that de�ned by Lc�

Jigsaw is a typed language that guarantees the type safe use of module operators�

However� the operators are de�ned in an untyped � calculus� A typed calculus is

not used� because no known typed calculus can express all the module operators

de�ned here in their full generality�

Section ��� gives a brief review of prior work on the semantics of object oriented

languages� Knowledge of this work is essential for understanding the semantics of

Jigsaw� Section ��� describes how to model the notion of mixin� Section �� presents

the semantic basis for Jigsaw in informal terms� A complete formal de�nition of

Jigsaw follows in Section ���� Section ��� presents denotational semantics for an

imperative version of Jigsaw�
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��� Background

����� Generators

In object oriented programming� objects include data� and code that operates

upon that data� Objects are thus inherently self�referential� The standard technique

for modeling self�reference is �xpoint theory ����� Using �xpoint theory� an object

may be modeled using a record�generating function �called a generator following

Cook ������ Figure ��� shows a simple object and its associated generator function�

This function takes a record as a parameter� and returns a record as a result� The

result record is similar to the object being modeled� The object�s methods� such as

dist� are represented by function valued �elds in the result� The object�s data are

represented by �elds with ordinary values �e�g�� x and y�� All self�reference in the

object is replaced by reference to the generator�s formal parameter� s� The desired

object is the least �xed point of the generator function Y �Pgen��

An abstract class may be modeled as an inconsistent generator� An inconsistent

generator has the form �s � ��e� where e � �� and � is a subtype of �� ����� This

captures the fact that self�reference within the class ��� assumes more methods than

the class provides ����� One cannot take the �xpoint of such a generator� since its

domain is a proper subtype of its range� This models the fact that abstract classes

must not be instantiated�

P � object
f x � �� y � ��
dist � function�aPoint�

f
sqrt�sqr��x � aPoint�x��  sqr��y � aPoint�y���

g
g

Pgen � �s�f x � �� y � ��

dist � �aPoint�
q
��s�x� aPoint�x�� � �s�y � aPoint�y���g

Figure ���� An object and its generator
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����� Records

The record operations used in this chapter are de�ned in this subsection� Similar

operations have been used in the study of typed record calculi ��� ��� ��� ����

However� this dissertation is not concerned with the typing problems raised by

these operators� Here� record operations are only used in the de�nitions of module

operators� These� in turn� are used only when the types of their operands �i�e��

modules� are exactly known� so that type safety is easily guaranteed�

The meaning of each record operator is explained informally in this section� It

is not di�cult to encode these operators in � calculus� �rst� records are taken to

be a syntactic shorthand for functions from a domain of labels to the domain of

values� Using this representation for records� all operators used here are also easily

expressed� Records are not self�referential� Other mechanisms such as generators

are needed to induce self�reference� See ���� for more details�

Each record operator has a corresponding operator for generators �see section

���� Related operators are distinguished by subscripts �e�g�� �r is a record operator�

and �g is a generator operator��� Records are denoted by r� r�� r�� names of record

attributes by a� b� and lists of attribute names by A�

The operators used here are�

� Merge� kr� r� kr r� yields the concatenation of r� and r�� The records must

not have any attribute names in common�

� Restrict� nr� rnra removes the attribute named a from r� If a is not de�ned in

r� rnra � r�

� Project� �r� r�rA projects the record r on the names A� The use of the

word project is by analogy with relational algebra� The result of this operation

�For a record operator �r � �g is usually what is referred to in ���� as the distributed version of
��
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consists exclusively of the �elds named in A� The names in A must be de�ned

in r�

� Select� �r� r�ra returns the value of the attribute named a in r� The name a

must be de�ned in r�

� Override� �r� r� �r r� produces a result that has all the attributes of r�

and r�� If r� and r� have names in common� the result takes its value for the

common names from r��

� Rename� � � �r� r�a � b�r renames the attribute named a to b� a must be

de�ned in r� and b must not�

The syntax used here for records is a list of label bindings enclosed in braces�

record ��� fdef listgj
record� kr record� j
recordnrlabel j
record �r label list j
record �r labelj
record� �r record� j
record�label� � label��

label list ��� label j
label label list

def list ��� nonempty def list j
empty

nonempty def list ��� def j
def� nonempty def list

def ��� label � expr

����� Inheritance

This subsection discusses the denotational semantics of inheritance ��� ��� ����

Inheritance provides a way of modifying self�referential structures ����� When a

value is modi�ed via inheritance� all self�reference within the result refers to the

modi�ed value� Inheritance involves manipulating the self�reference within objects�

Technically� this is achieved by manipulating generators� before taking their �xpoint
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����� ����� Figure ��� illustrates this process� The object MP inherits from P�

but specializes the dist method� MP is modeled by a generator that invokes the

generator for P� This invocation yields a record� that is combined using the override

operation with another record which represents the specialized or new methods� In

the modifying record� self�reference is modeled in the usual way� by reference to

the generator�s parameter� P�s generator is passed this parameter as well� thereby

binding self�reference in all methods to the modi�ed object�

Modeling practical object�oriented languages has required slightly more involved

constructs� The main reason is to allow access to prior de�nitions� as discussed in

subsection ���� In that case� modi�cations are modeled as wrappers� of the form�

�self��super�f� � �g

The parameter super is a record representing the attributes of the ancestor being

inherited from� The wrapper will produce a record representing the new attributes

being added during inheritance� Inheritance is then an operation on a generator

and a wrapper� yielding a new generator�

C �g�w W � �s��Cs��r �Ws�Cs��

The expression �Cs� represents the subobject corresponding to the parent class�

This is passed to the wrapper �along with s� representing self�reference�� The record

MP � P override
f dist � function�aPoint�

f
�x � aPoint�x�  �y � aPoint�y�

g
g

MPgen � �s�Pgen�s��r fdist � �aPoint��s�x� aPoint�x� � �s�y � aPoint�y�g

Figure ���� A manhattan point inherits from a point
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corresponding to the new attributes is returned by the wrapper application� and

added to original by the �r operation�

As with all the formulations presented in this chapter� care must be taken when

extending this formulation to imperative languages� so that the instance variables of

the superclass are only allocated once� In the applicative case� repeated applications

of the generator C are equivalent� but in imperative extensions� a let must be used

to express the sharing of instance variables�

The following section shows that the semantic notion of wrapper corresponds to

the linguistic notion of mixin�

��� Modeling Mixins

This section shows how to model a language with mixins� as discussed in Chapter

� Two approaches are presented� Subsection ����� discusses a direct generalization

of ����� Subsection ����� gives an alternative approach in which mixin composition

is viewed as a special kind of function composition�

����� A Mixin Composition Operator

Mixins can be modeled as special functions called wrappers� Mixin composition
can be modeled as a binary operation on wrappers� �w� which returns a wrapper
as its result�

M� �w M� � �s��j�M��s��j��r M��s��j �r M��s��j��
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This operator is associative�

�M� �w M���w M� �
�s��j��M� �w M���s��j��r M��s��j �r �M� �w M���s��j�� �
�s��j��M��s��j��r M��s��j �r M��s��j����r

M��s��j �r �M��s��j��r M��s��j �r M��s��j����

M� �w �M� �w M�� �
�s��j�M��s��j��r �M� �w M���s��j �r M��s��j�� �
�s��j�M��s��j��r �M��s��j �r M��s��j���r

M��s���j �r M��s��j���r M��s��j �r M��s��j����

Assuming that �r is associative� then

�M� �w M���w M� �
M� �w �M� �w M�� �
�s��j�M��s��j��r M��s��j �r M��s��j���r

M��s��j �r M��s��j��r M��s��j �r M��s��j���

This operator was �rst de�ned in ����� That account deliberately omitted the

discussion of self�reference� in order to simplify the presentation�

����� Mixin Composition as Function Composition

Here is another formulation of mixins� which seems more intuitive� A mixin is

modeled as an abstract subclass� The superclass is explicitly abstracted over� as in

�p��s�p�g �s�e

where p is a generator� not a record� representing the superclass� e is a record valued

expression� and �g is the override operation on generators� de�ned as�

g� �g g� � �s�g��s��r g��s�

Such wrappers can be composed via ordinary function composition� If C and P

are such wrappers� one has

�Thanks to William Cook for help in de�ning this operator� and in proving associativity�
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C � P � �g�C�P �g��

This formulation has the advantage of simplicity� Its relationship to the language

constructs of Chapter  is obvious�

In this version� mixin composition is precisely function composition� so it is

clearly associative� Instantiation involves passing an empty generator BASE as

a parameter� and then taking the �xpoint of the result� The keyword super is

modeled as p�s��

Note that this formulation is not equivalent to the previous one� In section ������

mixins were modeled as wrappers of type

Record� Record� Record � Record� Generator

Here� wrappers have type

Generator� Generator

The fact is that even this formulation is overly complex� As shown in earlier

chapters� the important functionality of mixins can be expressed based on a uniform

notion of module� augmented with judiciously chosen operations� The rest of

this chapter is devoted to giving a precise semantic characterization of the Jigsaw

framework�

��� Modeling Jigsaw

In the semantics of Jigsaw� all modules are modeled as generators� Module

combination operators are then modeled as functions that manipulate generators�

and return new generators as results� The operator de�nitions make use of the

record operations introduced in section ������ All module operators employ the tech�

nique demonstrated above to manipulate self�reference� Modules with declarations

are modeled as inconsistent generators� Module operators can take inconsistent

generators as operands and may return them as results�
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The rest of this section de�nes the set of operations upon generators used in this

chapter� These are then used in the translation to ��calculus de�ne in subsection

�����

The merge operator� kg� is de�ned below� It takes two generators as parameters

and produces a new generator as a result� Note that self�reference in the two

generators is shared in the resulting generator� since they are both applied to same

argument� s�

kg� �g���g���s�g��s� kr g��s�

kg is commutative and associative� The proofs of both properties are immediate�

based upon the commutativity and associativity of kr�

kg commutes�

m� kg m� �
��g���g���s�g��s� kr g��s��m�m� �
�s�m��s� kr m��s� � �s�m��s� kr m��s� �
��g���g���s�g��s� kr g��s��m�m� �
m� kg m�

kg associates�

�m� kg m�� kg m� �
���g���g���s�g��s� kr g��s��m�m�� kg m� �
��s�m��s� kr m��s�� kg m� �
��g���g���s�g��s� kr g��s����s�m��s� kr m��s��m� �
�s���s�m��s� kr m��s���s� kr m��s� �
�s��m��s� kr m��s�� kr m��s� �
�s�m��s� kr �m��s� kr m��s�� �
�s�m��s� kr ��s�m��s� kr m��s���s� �
���g���g���s�g��s� kr g��s��m���s�m��s� kr m�s�� �
m� kg ��s�m��s� kr m�s�� �
m� kg ���g���g���s�g��s� kr g��s��m�m�� �
m� kg �m� kg m��
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Override is de�ned as�

�g� �g���g���s�g��s��r g��s�

�g is associative and idempotent� but not commutative� To show that � asso�

ciates� substitute� for k in the associativity proof above� The idempotency of�g

also follows directly from the corresponding property of �r�

m�g m � ��g���g���s�g��s��r g��s��m m � �s�m�s��r m�s� � �s�m�s� � m

�g may also be derived from the combination of merge and restrict �de�ned below��

There are several alternatives for de�ning the renaming operator� Rather than

present a single formulation� it seems valuable to discuss the various possibilities�

From this� one may better understand the trade�o	s and subtleties involved in

formulating these operations�

Unlike other generator operations� �a� b�g is not exactly a distributed version

of �a� b�r� The result generator�s argument� s� cannot be passed unchanged to the

input generator g� The reason is that g expects an argument with type � � fa � �g

for some �� whereas s � � � fb � �g� the value associated with a in g� is named b in

s�

A �rst formulation of �a� b�g might therefore be

�g��s�g�s�b� a�r��a� b�r

This assures that g gets a parameter of the desired type� with the �right� value

for a� Unfortunately� this is not correct� The record renaming operator assumes

that the new name is not already de�ned in the argument record� otherwise� a name

would be doubly de�ned� and thus ambiguous� This is a type error� However� the

generators de�ned here are to be used polymorphically� The argument s may very

well have a de�ned� since it originates in a module derived later� In fact� this the
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usual case for renaming� The reason for renaming an attribute is typically to avoid

con
ict with another attribute with the same name� prior to a merge� So if one

attribute named a is being renamed� it is very likely that another attribute named

a will be part of the module� Certainly this possibility cannot be precluded� If this

is the case� the de�nition above will fail� it will pass on to g a malformed argument

with multiple attributes with the same name� a�

Figure �� shows the next attempt� which uses �r instead of �a� b�r� Though

this seems slightly less natural� it is necessary to avoid the problem mentioned in

the preceding paragraph�

This version also raises problems� The di�culty here is related to the fact that

it is possible to rename not only de�ned attributes� but attributes that have only

been declared �pure virtuals�� If a denotes a pure virtual� than the result returned

by g does not include an attribute named a� The question then is whether renaming

an unde�ned attribute is legal� This depends on the underlying record calculus�

It seems quite reasonable to allow such renaming� and expect it to have no e	ect�

However� in existing record calculi� renaming is often derived from restriction and

merge� In this case� renaming a nonexisting attribute is invalid� since it implies

selecting the attribute� If one wishes to inherit all the valuable results proved for

such a calculus� it may be worthwhile to change the de�nition of �a� b�g� as shown

in Figure ����

It is tempting to de�ne rename by composing the generator versions of restrict

and merge� This is not possible� due to the presence of self�reference� The type

rule for rename must ensure that the attribute is renamed in the type of the result�

�a� b�g � �g��s�g�s�r fa � s�rbg��a� b�r

Figure ��� A valid de�nition of renaming�
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�a� b�g � �g��s�g�s�r fa � s�rbg��a� b�r

If g de�nes a� else

�a� b�g � �g��s�g�s�r fa � s�rbg�

Figure ���� An alternative de�nition of renaming�

A very important property of the renaming operator is that it distributes over

override �see section ������� namely�

�m� �g m���a� b�g � �m��a� b�g��g �m��a� b�g�

Using de�nition ���� this is not strictly true� distributivity holds whenever all

operations are type correct� but that need not always be the case� Using de�nition

��� their is no such problem� The proof� as usual� follows from the corresponding

property for record operations� The distributive property holds always if rename

is de�ned as a primitive in the record calculus� such that renaming a nonexistent

attribute is allowed� If rename is a derived operation� distributivity holds whenever

the expression is type correct� The upshot of all this is that users can rely on the

distributivity property� since it holds in all type�correct programs�

The restrict operation is de�ned below� and is associative� Again� proof of

this property follows trivially from the same property for the corresponding record

operator�

nga � �g��s�g�s�nra

The semantic de�nition for projectg is
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�g A � �g��s�g�s��rA

and the de�nition for freeze is

freeze a � �g�Y ��f��s�g�s�r fa � f�s��rag��

This de�nition deserves some discussion� The result is a generator� the �xpoint

of a generator generating function� q � �f� � � �� The generator Y �q� agrees with g�

with the exception of its self�reference to attribute a� Regardless of the value of s�

all references to s�a within the methods of Y �q� are bound to f�s��ra � Y �q��s��ra�

When the �xpoint is taken again� all references to s�ra will be equal to Y �Y �q���ra �

Y �g��ra�

Similarly�

freeze all except A � �g�Y ��f��s�g�s�r f�s��r �s�rA���

Overriding s with f�s�� rather than just fa � f�s��rag� means that all de�ned

attributes are being frozen� We then override again� with s�rA� guaranteeing that

the attributes in A will indeed get their values from s� and therefore still be subject

to rede�nition�

Here are the de�nitions of show and hide�

hide a � �g��s��freeze a��g��s�nra

show A � �g��s��freeze all except A��g��s��rA

The duality between show and hide is apparent in the use of �r instead of nr�

and in the use of freeze all except instead of freeze�

The de�nition of copy as is straightforward
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copy a as b � �g��s�let super � g�s� in super kr fb � super�rag

This concludes the de�nitions of generator operations� which constitute the core

of Jigsaw�s semantics� The de�nitions given above will be used in the full semantics�

given in section ����

��� Formal De�nition of Jigsaw

����� Syntax

mexpr ��� module binding list end j
mexpr� k mexpr� j
mexpr� � mexpr� j
mexpr�label�� label�� j
mexprnlabel j
mexpr � label list j
mexpr freeze label j
mexpr freeze all except label list j
mexpr hide label j
mexpr show label list j
mexpr copy label� as label�

iexpr ��� instantiate mexpr

label list ��� label j
label label list

binding list ��� nonempty binding list j
empty

nonempty binding list ��� binding j
binding� nonempty binding list

binding ��� decl j
def

decl ��� label � type j
label � mtype

def ��� label � expr j
label � mexpr

mtype ��� fde�ne decl list declare decl listg
itype ��� fvdecl listg
decl list ��� nonempty decl list j

empty
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nonempty decl list ��� decl j
decl� nonempty decl list

vdecl list ��� nonempty vdecl list j
empty

nonempty vdecl list ��� vdecl j
vdecl� nonempty vdecl list

vdecl ��� label � type

As noted early in this chapter� the nonterminals expr and type are not de�ned as

part of Jigsaw� They must be provided by the language of computation� Lc� Jigsaw

itself provides two kinds of expressions� mexpr�s� which denote modules� and iexpr�s

which denote module instances� In some cases� Lc may de�ne expr so that some

derivations of expr lead to iexpr� This shows that Lc is not merely a parameter to

Jigsaw� but that there is a bidirectional interaction� characteristic of inheritance�

Expr refers back to iexpr� precisely when the resulting language is object�oriented�

the language supports module instances �objects� as values� Going further� expr

may derivemexpr�� In this case� module de�nitions themselves are �rst class values�

Associated with mexpr and iexpr are mtype and itype� representing interfaces and

instance types� The terminal symbol label is also not determined by Jigsaw� but

by Lc� according to its lexical conventions�

����� Type Rules

In this subsection� the type rules of Jigsaw are given� The rules are given in a

natural deduction notation� Each rule consists of antecedents� or assumptions� and

a conclusion that is true provided all the antecedents are true� The antecedents

and conclusion are separated by a horizontal line� The conclusion and some of the

antecedents are in the form of assertions� An assertion has the form � � a� and

means that in context �� assertion a is provable�

�It does not appear useful for expr to derive mexpr but not iexpr� Such a language can
manipulate modules� but never instantiate them�
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������� Judgements

Judgements are generic assertions that one wants to prove within a type �or

other� calculus� The judgements of Jigsaw are described in this section�

First� it must be clear what entities are being reasoned about� These are

modules� including literal modules as well as compound module expressions� The

goal of the system is to verify that a module denoted by a module expression has

a valid interface� Modules have expressions �and other modules� as components�

Expressions denote values of Lc� Expressions are associated with types� and the

type rules of Lc determine the types of expressions� In addition to types and

interfaces �the types of modules�� it is useful to de�ne the concept of a signature�

signature ��� type j interface

Since modules may contain both expressions and other modules� interfaces must

contain both types and other interfaces� It is convenient to reason about them

collectively� as signatures�

In addition� there are instance expressions� which have instance types� Whether

instance expressions �types� are expressions �types� of Lc depends on the particular

choice of Lc�

The judgements are summarized in Figure ���� The purpose of the rules given is

to give an unambiguous description of the semantics� Those rules deemed relevant

have been included� while others� necessary for formal soundness and completeness�

have been omitted� The most important rules in Jigsaw are those for the judgements

M � I and O �� 	� These rules are given in the following section�

A complete formalization of the Jigsaw type system includes rules for all the

judgements mentioned in Figure ���� Note that several of the judgements listed are

judgements of Lc� These include e � �� � type and � � � � These may be considered

to be pure virtual judgements�
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e � � Expression e has type �
M � I Module expression M has interface I
V �  Value V has signature  
O �� 	 Object O has object signature 	
	 osig Object signature 	 is well formed
� context Context � is well formed
� type Type � is well formed
I interface Interface I is well formed
 signature Signature  is well formed
� �T � Type � is equivalent to type �
I �I K Interface I is equivalent to interface K
 �S T Signature  is equivalent to signature T
� �T � Type � is a subtype of �
I �I K Interface I is a subinterface of K
 �S T Signature  is a subsignature of T

Figure ���� Judgements of Jigsaw�

A considerable number of rules of a purely technical nature� For example� there

must be rules to allow permutation of the order of attributes in interfaces and

object signatures� Other rules relate types and interfaces to signatures� as well as

subtypes and subinterfaces to subsignatures� Essentially these rules state that a

type is a signature� an interface is a signature and the signature equivalence and

subsignature relationships follow from the corresponding relationships on types and

interfaces� Likewise� if a value has a type or interface� that type or interface is its

signature� All these rules� as well as those governing well�formedness� have been

omitted here�

������� Key Rules

The following notational conventions are used throughout this subsection� Mod�

ule attributes are denoted by the letters a� b� c� d� e� f�Their signatures are �� 
� �� �� 

and �� respectively� Attribute values are denoted by the letter v� Attribute names

and values are indexed with the letters i� j� k� l�m� n� p� q� r� s� Contexts are denoted

by �� The notation � 	 � denotes the least common subsignature of � and �� For
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interfaces� this is de�ned only when � � � � For types� this depends on Lc�s type

system� Each rule is preceded by its name� written in italics�

The ruleModule speci�es how to deduce the signature of a module� One di�culty

that may arise is that it may not always be possible to infer the type �i of a value

de�nition vi� because of recursion or due to idiosyncracies of the type system of Lc�

Assume that an explicit declaration ai � �i � vi is given in such cases�

Module

�� a� � ��� � � � � am � �m� d� � ��� � � � � dk � �k � �� signature�

� � � �
�� a� � ��� � � � � am � �m� d� � ��� � � � � dk � �k � �k signature�

�� a� � ��� � � � � am � �m� d� � ��� � � � � dk � �k � v� � ���
� � � �
�� a� � ��� � � � � am � �m� d� � ��� � � � � dk � �k � vm � �m�


i � � � � �m�
j � � � � �m�i �� j  ai �� aj�


i � � � � � k�
j � � � � � k�i �� j  di �� dj�


i � � � � �m�
j � � � � � k�ai �� dj
� �module

a� � v�� � � � � am � vm�

d� � ��� � � � � dk � �k
end � fde�ne

a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg

The next two rules� Merge and Override� are the most involved� and employ

the following additional notational conventions� The attributes a�i� i � � � � �m� are

those de�ned only in m�� Likewise� the attributes a�i� i � � � � �n� are those de�ned

only in m�� Similarly� the attributes d�i� i � � � � � k� are those declared only in m��

and d�i� i � � � � � l� are those declared only in m�� Attributes bi� i � � � � � p� are

de�ned in m� and also declared in m�� while ci� i � � � � � q� are de�ned in m� and

also declared in m�� Finally� attributes ei� i � � � � � r� are declared in both m� and

m��
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Merge

� � m� � fde�ne
a�� � ���� � � � � a�m � ��m�
b� � 
��� � � � � bp � 
�p

declare
c� � ���� � � � � cq � ��q�
d�� � ���� � � � � d�k � ��k�
e� � ��� � � � � er � �rg

� � m� � fde�ne
a�� � ���� � � � � a�n � ��n�
c� � ���� � � � � cq � ��q

declare
b� � 
��� � � � � bp � 
�p�
d�� � ���� � � � � d�l � ��l�
e� � ��� � � � � er � �rg�


i � � � � � p�� � 
�i �S 
�i�


i � � � � � q�� � ��i �S ��i�


i � � � � � r�� � �i 	 �i signature�

i � � � � �m�
j � � � � � l�a�i �� d�j�


i � � � � �n�
j � � � � � k�a�i �� d�j�


i � � � � � k�
j � � � � � l�d�i �� d�j�


i � � � � �m�
j � � � � �n�a�i �� a�j
� � m� k m� � fde�ne

a�� � ���� � � � � a�m � ��m� a�� � ���� � � � � a�n � ��n�
b� � 
��� � � � � bp � 
�p�
c� � ���� � � � � cq � ��q

declare
d�� � ���� � � � � d�k � ��k� d�� � ���� � � � � d�l � ��l�
e� � �� 	 ��� � � � � er � �r 	 �rg

The Override rule uses on additional notational convention� attributes fi� i �

� � � � s� are those de�ned in both m� and m��
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Override

� � m� � fde�ne
a�� � ���� � � � � a�m � ��m�
b� � 
��� � � � � bp � 
�p�
f� � ���� � � � � fs � ��s

declare
c� � ���� � � � � cq � ��q�
d�� � ���� � � � � d�k � ��k�
e� � ��� � � � � er � �rg�

� � m� � fde�ne

a�� � ���� � � � � a�n � ��n�
c� � ���� � � � � cq � ��q�
f� � ���� � � � � fs � ��s

declare
b� � 
��� � � � � bp � 
�p�
d�� � ���� � � � � d�l � ��l�
e� � ��� � � � � er � �rg�


i � � � � � p�� � 
�i �S 
�i�


i � � � � � q�� � ��i �S ��i�


i � � � � � r�� � �i 	 �i signature�

i � � � � � s�� � ��i � ��i�


i � � � � �m�
j � � � � � l�a�i �� d�j�


i � � � � �n�
j � � � � � k�a�i �� d�j�


i � � � � � k�
j � � � � � l�d�i �� d�j�


i � � � � �m�
j � � � � �n�a�i �� a�j
� � m� � m� � fde�ne

a�� � ���� � � � � a�m � ��m� a�� � ���� � � � � a�n � ��n�
b� � 
��� � � � � bp � 
�p�
c� � ���� � � � � cq � ��q�
f� � ���� � � � � fs � ��s

declare
d�� � ���� � � � � d�k � ��k� d�� � ���� � � � � d�l � ��l�
e� � �� 	 ��� � � � � er � �r 	 �rg
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Rename Def

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg�


i � � � � � k�b �� di�


i � � � � �m�b �� ai
� � m�am � b� � fde�ne

a� � ��� � � � � b � �m

declare
d� � ��� � � � � dk � �kg

Rename Decl

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg�


i � � � � � k�e �� di�


i � � � � �m�e �� ai
� � m�dk � e� � fde�ne

a� � ��� � � � � am � �m

declare
d� � ��� � � � � e � �kg
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Restrict

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg

� � mnam � fde�ne
a� � ��� � � � � am�� � �m��

declare
d� � ��� � � � � dk � �k� am � �mg

Project

� � m � fde�ne
a� � ��� � � � � am � �m� b� � 
�� � � � � bn � 
n

declare
d� � ��� � � � � dk � �kg

� � m��b�� � � � � bn� � fde�ne
b� � 
�� � � � � bn � 
n

declare
a� � ��� � � � � am � �m�

d� � ��� � � � � dk � �kg

Freeze

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg

� � m freeze am � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg
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Freeze all except

� � m � fde�ne
a� � ��� � � � � am � �m� b� � 
�� � � � � bn � 
n

declare
d� � ��� � � � � dk � �kg

� � m freeze all except �b�� � � � � bn� � fde�ne
a� � ��� � � � � am � �m�

b� � 
�� � � � � bn � 
n
declare

d� � ��� � � � � dk � �kg

Hide

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg

� � m hide am � fde�ne
a� � ��� � � � � am�� � �m��

declare
d� � ��� � � � � dk � �kg

Show

� � m � fde�ne
a� � ��� � � � � am � �m� b� � 
�� � � � � bn � 
n

declare
d� � ��� � � � � dk � �kg

� � m show �b�� � � � � bn� � fde�ne
b� � 
�� � � � � bn � 
n

declare
d� � ��� � � � � dk � �kg
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Copy as

� � m � fde�ne
a� � ��� � � � � am � �m

declare
d� � ��� � � � � dk � �kg�


i � � � � � k�b �� di�


i � � � � �m�b �� ai
� � m copy am as b � fde�ne

a� � ��� � � � � am � �m� b � �m

declare
d� � ��� � � � � dk � �kg

Instantiate

� � m � fde�ne a� � ��� � � � � am � �mg
� � �� type� � � � �� � �m type

� � instantiate m �� fa� � ��� � � � � am � �mg

����� Translation to � calculus

The meaning of Jigsaw expressions can now be de�ned by a translation function

T that translates Jigsaw syntax into ��calculus�

T ��module binding list end�� � �s�T ��binding list�� �����

T ��m� k m��� � kg T ��m���T ��m��� �����

T ��m� � m��� ��g T ��m���T ��m��� ����

T ��m�a� b��� � �a� b�gT ��m�� �����

T ��mna�� � �nga�T ��m�� �����

T ��m�A�� � ��gA�T ��m�� �����
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T ��m freeze a�� � �freeze a�T ��m�� �����

T ��m freeze all except A�� � �freeze all except A�T ��m�� �����

T ��m hide a�� � �hide a�T ��m�� �����

T ��m show A�� � �show A�T ��m�� ������

T ��m copy a as b�� � �copy a as b�T ��m�� ������

T ��instantiatem�� � Y �T ��m��� ������

T ��decl� binding list�� � T ��binding list�� �����

T ��def� binding list�� � T ��def �� kr T ��binding list�� ������

T ��label � expr�� � flabel � T ��expr��g ������

T ��label � mexpr�� � flabel � T ��mexpr��g ������

T ��expr�� � TLc
��expr�� ������

The �pure virtual� function TLc
de�nes the meaning of Lc expressions by trans�

lating them into ��calculus as well�

��� An Imperative Jigsaw

This section shows how to modify Jigsaw to support imperative computational

sublanguages� One cannot just �plug in� an imperative language as Lc� The module

operators de�ned in section �� are no longer su�cient� However� entirely analogous

de�nitions that are cognizant of imperative constructs� can be substituted for the

applicative module operator de�nitions�

In ����� Andreas Hense showed how the applicative semantics of inheritance given

by Cook ���� could be extended to model imperative object oriented languages�

The key problem is how to formulate the domains� In particular� the domains of

generators must somehow model the fact that instantiation e	ects the store� The

semantics given below use the solution proposed in ����� applied to the operator

based formulation of Jigsaw�
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The basic intuition behind these semantics is that when the �xpoint of a gen�

erator is taken� the result is a constructor function that may be invoked upon a

particular store� to create an instance� This insight is due to Hense� Used in

the context of Jigsaw rather than in that of a more conventional object�oriented

language� the semantics become simpler� due to the uniformity of the Jigsaw

approach�

����� Denotational Semantics of Imperative Jigsaw

����� Syntactic Domains

Id I Identi�ers
Bl B Binding lists
Mdl M Module expressions
SyntaxLc

L Syntax of Lc denotable values
V al �Mdl � SyntaxLc

V Denotable values
Uop U Unary operators
Bop D Binary operators
Typ T Types and Interfaces

����� Semantic Domains

DvLc
Lc Denotable values

Loc l Locations
Sv Storable values
Dv � DvLc

�Object� Loc �Generator v Denotable values
Env � Id� Dv r Environments
Object � Env Objects
Store � Loc� Sv s Stores
Constructor � Store� Object� Store c Object constructors
Generator � Constructor� Constructor m Classes or Modules
UnaryOp � Generator � Generator u Unary operators
BinOp � Generator� Generator � Generator d Binary operators

�curried�

����� Semantic Functions

The de�nitions of semantic functions make use of the auxiliary function new �

Store� Loc � Store� This function allocates a new location in the store�
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MLc
� SyntaxLc

� Env � DvLc

B � Bl � Env � Store � Env � Store

B�� v � T �� r s � �fg� s�

B�� v �� V �� r s �
let �l� s�� � new s � V��V �� r� in

�fv � l g� s��

B�� v � V �� r s � �f v � V��V �� r g� s�

B�� B�� B��� r s �
let �r�� s�� � B��B��� r s in

let �r�� s�� � � B��B��� r s�� in

�r� kr r�� s��

V � V al � Env � Dv

V��L�� r � MLc
��L�� r

V��M �� r � M��M �� r

M � Mdl � Env � Generator

M�� module B end �� r �
� cself � � screate�

let �rself � � � cself screate in

B��B�� �r �r rself � screate

M��M� D M� �� r �
let m� � M��M��� r in

let m� � M��M��� r in

D��D�� m� m�

M��M U �� r �
let m � M��M �� r in

U ��U �� m

D � Bop � BinOp

D��D�� �
� m�� � m�� � cself � � screate�

let �r�� s�� � m� cself screate in

let �r�� s�� � m� cself s� in
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�r� Dr r�� s��

U � Uop � UnaryOp

U ��U �� �
� m� � cself � � screate�

let �r� s� � m cself screate in

�r Ur� s�



CHAPTER 	

MODULA��

Be real� Lambdaman� This isn�t a POPL conference� Harry Hackwell

In view of the di�culty of introducing new languages into widespread use� it

is extremely valuable to be able to incorporate new linguistic developments in an

evolutionary manner� Adding operators like those de�ned in the previous two

chapters to existing languages is therefore an attractive possibility�

This chapter presents an upwardly compatible extension of Modula��� incor�

porating most of the operators described in Chapter �� In this extension� the

operators are applied not to the modules of Modula�� but to its classes �known as

object types���

Naturally� the full 
exibility of Jigsaw is not supported� Still� the resulting lan�

guage supports strong typing� multiple inheritance and mixins in an encapsulated

manner�

This design represents a particular con�guration of Jigsaw� In this con�guration�

the language of computation is a general purpose� object�oriented programming

language� and Jigsaw modules serve as classes in the computation language� Fur�

thermore� the language incorporates certain restrictions intended to accommodate

e�cient implementation� without sacri�cing the general principles of modularity�

Section ��� explains whyModula��� rather than another programming language�

was chosen as a candidate for extension� Section ��� presents a review of the salient

features of Modula��� for those unfamiliar with the language� Section �� then

discusses the extension� Modula���

�An early� less ambitious version of this work appeared in ����
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	�� Choice of Language

Modula�� ���� was chosen as a basis for an extension incorporating Jigsaw style

inheritance operators� The particular form of inheritance developed below will

be referred to as operator�based inheritance� Modula�� is well suited for such an

extension� because

�� It supports single inheritance� Single inheritance naturally generalizes either

to mixin�based inheritance or to Jigsaw style inheritance� Languages that

already provide a notion of multiple inheritance are harder to modify cleanly�

�� It is is strongly typed� Strong typing is necessary for safety� and is a desirable

property in a modular language� as re
ected in criterion � of Chapter �� The

type regime of Modula�� also allows for an e�cient implementation� One of

the goals of this extension was to show how Jigsaw style operations could be

incorporated in a high�performance language�

� It employs structural subtyping� Jigsaw already employs a form of structural

subtyping� because structural subtyping is preferable to name based typing

when separately developed modules must interact ���� section �����

	�� A Review of Modula��

The purpose of this section is to present an overview of the keyModula�� features

necessary to understand the language extension� Readers are referred to ���� for a

complete language de�nition�

����� Modula	� Inheritance

Modula�� supports inheritance via object types� Object types are roughly anal�

ogous to classes in most object�oriented languages� An example of object types in

Modula�� is given in Figure ����



���

type Person �
object name� string
methods display�� �� displayPerson
end�

type Graduate � Person
object degree� string
overrides display �� displayGraduate
end�

procedure displayPerson�self� Person� �
begin
self�name�display���
end displayPerson�

procedure displayGraduate�self� Graduate� �
begin
Person�display�self��
self�degree�display��
end displayGraduate�

Figure ���� Modula�� object types

In the example� Person de�nes an instance variable name of type string� and a

method display� The method is de�ned by providing a name� followed by a signature�

or formal parameter list� In this case� the signature is empty� The method is then

assigned a value� which is a separately de�ned procedure� displayPerson� If o is an

object of type Person� o�display�� is interpreted as displayPerson�o��

The de�nition of Graduate has two parts� A preexisting de�nition� Person� and

a modi�cation given by the object � � �overrides � � � end clause� Graduate is

a subtype of Person� which is its supertype� Graduate inherits from Person� but

includes a method override for display� The method override names the method

being overridden� and then assigns a new value to it� namely displayGraduate� A

signature is not given� since it will always be identical to the signature of the

�Modula�� uses text for character strings� However� it is assumed that string has been de�ned�
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corresponding method in the supertype� The overridden methods of Person may be

referred to by Graduate through the syntax Person�methodname� This is similar to

super in Smalltalk� but more general�

����� Other Salient Features

Modula�� programs are composed of separately compilable parts� Speci�cations

�only syntactic� are given by interfaces� and implementations are de�ned by mod�

ules� It is important not to confuse these modules and interfaces with those of

Jigsaw�

Module interconnection is by means of import and export clauses� A module

may export several interfaces� Other modules may import such interfaces� estab�

lishing a connection between modules�

Data abstraction is supported by the notion of opaque types� The concepts of

interface� import�export� and opaque types are well known� and need not be treated

extensively here� The Modula�� language does introduce several newer ideas which

must be understood before the language extension can be presented�

One of the relatively new constructs supported byModula�� is that of a partially

opaque type� Unlike completely opaque types� some information about the structure

of a partially opaque type is publically available�

Modula�� relies on structural typing� However� in order to support name�based

typing as well� brands are used� A type may have a unique brand associated

with it� which distinguishes the type from all other types that would otherwise

be structurally equivalent�

Modula�� distinguishes between traced and untraced references� Traced refer�

ences are are automatically reclaimed by the garbage collector� while untraced

references are not� This allows writing both low�level code that may be impaired

by the presence of built in storage reclamation� and higher level code that bene�ts

from garbage collection�
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In some cases� the static typechecking of Modula�� is deemed too rigid� and

so dynamic typechecks are also supported� Of special interest in this chapter is

the narrow construct� Using narrow� it is possible to explicitly coerce a type

into one of its supertypes or subtypes �the latter option induces a dynamic check��

Narrowing also occurs implicitly during assignments and parameter passing�

Revelations are a mechanism that allows information about opaque types to

be selectively distributed� Like the friend clauses of C��� revelations allow �ner

control over information hiding� Revelations can be full or partial� just like opaque

types�

Revelations and partially opaque types are features new in Modula�� and their

interaction with inheritance is subtle� This subtlety is what makes the extension of

Modula�� with Jigsaw style operators challenging� as section ���� demonstrates�

����� Typing

As noted above� Modula�� employs structural typing� In this section� typing

of objects is discussed� The subtyping relation is di	erent from Jigsaw�s� and is

more sensitive to the needs of an e�cient implementation� This relation will be

modi�ed in the language extension� but its basic premises will be preserved� The

rules de�ning Modula���s subtype relation on object types are shown in Figure ����

Object types are a special kind of reference type� As described above� there are

two kinds of references� traced and untraced� The type of all traced references is

refany� while that of untraced references is address� Analogously� there are traced

and untraced objects� which belong to types root and untraced root respectively�

root �� refany
untraced root �� address
null �� T object ��� end �� T

Figure ���� Modula�� subtyping rules for object types�
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All traced objects are also traced references� and likewise for untraced objects and

references� The type null includes only the special reference nil� the null reference�

nil is a member of every reference type� Finally� object types are always subtypes

of their ancestors�

The subtyping relation recognizes the boundaries between object constructors�

It makes the order of these constructors� and of the attributes within them� signif�

icant� This is di	erent from the subtyping relation used in Jigsaw� Object types

that support the same protocol may not be the same� restricting reusability� On

the other hand� this subtyping relation makes it easy to ensure a commonality of

structure among subtype representations� allowing a more e�cient implementation�

	�� Modula��� An Extension of Modula��

The goal of the extension was to provide as much of the power of the Jigsaw

framework as possible� in the context of an upwardly compatible extension of an

existing language� Such an extension must be syntactically� semantically and

pragmatically upward compatible� Syntactic and semantic compatibility are widely

recognized needs� In a situation like this� pragmatic compatibility is also crucial�

Modula�� was engineered to work well in certain contexts� The extension should

not violate the language�s assumptions as far as performance �compilation and

execution time and space� etc�

����� Object Types and their Operators

The extension is based on an analogy between object types and Jigsaw modules�

Object type expressions will be constructed using Jigsaw�style operators� Object

type expressions can be either primitive or compound�

The primitive constructor for object types is

object �eldlist methods methodlist end�



���

Such clauses are then connected by means of object�type operators� The oper�

ators are� merge override restrict project rename copy as show and

shadow� The operators are essentially the same as in Jigsaw� except for show and

shadow�

����� Type Abstraction

In the context of Modula��� the use of merge poses some di�culties� The

Jigsaw type system was based upon the assumption that the exact signature of

every module was known� Translating this assumption into terms of Modula���

this means that all the �elds and methods of an object type are completely known

when any operator acts upon an object type� This assumption is not valid in

Modula� due to the presence of abstract data types�

For example� given the declarations of Figure �� one cannot determine whether

there are any con
icts between T� and T	� If T� � T� T�
 and T	 � T� T�
 then

the above declaration should be 
agged as illegal� But if T� and T� do not con
ict�

we have no way of knowing of a con
ict� In fact if T� � T�
 T	 � T�
 there need

not be a con
ict� It could be argued that since the con
ict is invisible� we can

ignore it� since no ambiguity can arise� However� there may be scopes in which

enough information is known for the ambiguity to surface� To see this� consider a

scope which imports T� and includes revelations for T� and T	� It would appear

that �partially� opaque object types cannot be used in object type expressions�

T� �� T�
T	 �� T�

T� � T� merge T	

Figure ��� Di�culty with merge and abstract data types�
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This another manifestation of the problem mentioned in Chapter � Inheritance

in the presence of polymorphic type abstraction poses a serious challenge to static

typechecking�

In Jigsaw� the general approach to solving problems is to introduce appropriate

operators� In this case� the show operator is used� The main purpose of the show

operation is to resolve problems that arise due to opacity and revelations�

A show B is similar to the Jigsaw show operation� except that the parts �hidden�

by the operation are potentially observable via narrowing� The show operator is

used to ensure that only known �elds of the operands of merge are accessible�

The type system requires that all accessible �elds in both arguments to merge be

known� This forces the user to explicitly hide any potentially con
icting �elds� The

example given above can be rewritten as

T� � �T� show T�� merge �T	 show T��

Of course� if T� and�or T� are not completely known� this will not be su�cient�

and the process may have to continue� In other scopes� the explicit use of show

will prevent additional knowledge of potential con
icts from becoming a problem�

show has no e	ect except for typing� A show B is well formed only when A �� B�

����� Subtyping

This section presents the typing rules for object types in Modula���

Type identity is de�ned as in Modula��� Two types are identical i	 their

expanded de�nitions are identical� The subtyping relation on mixins� T �� S

�read T is a subtype of S� or S is a supertype of T � is de�ned in Figure ���� The

shadow operation shown in the �gure is discussed in the following subsection�

�� is re
exive and transitive�
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object � � � end �� root� All object types are subtypes of root�
T� merge T� �� T�
T� merge T� �� T�
T� override T� �� T�
T� override T� �� T�
T� show T� �� T�
T� show T� �� T�
T� shadow T� �� T�
T� shadow T� �� T�
T project a
b
c ��� �� T
T restrict a �� T
T rename a as b �� T
T copy m as n �� T
object ��� methods ��� m����� �� p ��� end copy m as n ��
object methods n����� �� p end

Figure ���� Modula�� object type subtyping

����� Compatibility

In order to obtain a language compatible with Modula��� an additional operator

is introduced� and some syntactic adjustments are made�

Recall that in Modula��� inheritance is expressed by adjacent object�type con�

structors� The semantics are de�ned so that the modifying object�type constructor

�shadows� the supertype� Fields and methods in con
ict between the two are

resolved in favor of the extension� but the shadowed �elds and methods can be

accessed by means of narrowing� Overriding of methods is by means of a special

override clause�

To emulate this behavior� the shadow operator is introduced� A shadow

operator is placed implicitly between every pair of adjacent object types in a type

declaration�

A shadow B returns a type in which all �elds and methods of B are accessible�

as well as all �elds and methods of A that do not recur in B� This implies that

if A and B have �elds and methods in common� their values are taken from B�
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The �hidden� �elds and methods are accessible via narrow or via assignment and

parameter passing�

The overrides clause of Modula�� is considered syntactic sugar for an override

operator followed by a separate object�type constructor� This de�nes a translation

from Modula�� syntax into the syntax of object�type expressions� and preserves

syntactic and semantic compatibility�

One minor incompatibility relates to pure virtuals� An uninitialized method is

considered a pure virtual� and is not initialized to nil� Modula�� does not support

the notion of a pure virtual method� This change allows the de�nition of abstract

classes� and their interconnection by means of merge�

It is� however� a checked runtime error to invoke such a pure virtual method�

It is not an error to instantiate an abstract class� This is for compatibility with

Modula��� It is conceivable that some programs might instantiate abstract classes�

but not invoke the nil methods of those classes� Such programs should continue

to run under the new language� Another reason for not enforcing a policy against

instantiating abstract classes is that syntax changes would be needed to detect this

across modules in some cases�

	�� Assessing Modula��

Applying the framework to a realistic programming language teaches valuable

lessons� First� support for the functionality of name�based typing is possible in the

context of structural typing� using Modula���s concept of brands� Second� a way of

supporting abstract data types has been developed� The technique used does not

have the same formal foundation as the original Jigsaw framework� but it can be

used in a practical setting�

Evaluating Modula�� against the modularity criteria of Chapter � shows that

it is still not a completely modular programming language� Nesting of object

types is not supported� and modularity operations have not been applied to the
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language�s modules� Modula�� also retains some of the de�ciencies of Modula���

For example� though structural typing is used� it is de�ned in such a way that

multiple implementations of the same protocol yield distinct types� This situation

is similar to that of object�oriented languages that employ name�based typing� It

is tempting to forego compatibility on this point�

The measures described in section ���� make Modula�� syntactically and se�

mantically compatible with Modula��� The issue of pragmatic compatibility has

not yet been addressed� The key requirement for pragmatic compatibility is an

implementation strategy for the new language that is competitive with existing

implementation techniques� The following chapter discusses such a strategy�



CHAPTER 


IMPLEMENTATION

Theorists need not bother� The European Common Market already
has a glut of butter� milk� wine� and theorems� Andy Tanenbaum

A major factor in the success of any piece of software is its performance� The

most elegant design may be virtually ignored unless it can be used e	ectively�

Conversely� e�ciency can compensate for almost any other weakness in a software

system� The time has come to face the issue of implementation�

Most of this chapter is devoted to the presentation of a pragmatic and highly

e�cient implementation technique for the language Modula�� discussed in Chapter

��

The implementation is e�cient enough to �t into a practical programming

language like Modula��� Modula�� restricts subtyping by making it dependent

on the order in which attributes are speci�ed� and on the boundaries between

constituent object types� These restrictions� coupled with the fact that Jigsaw

modules never have any free variables� lead to an implementation based upon a

straightforward extension of standard dispatch table techniques�

This dissertation presents no new techniques for implementing interface�based

type systems such as Jigsaw�s� It has been noted in the literature ���� �� that

interface�based type systems contribute little to e�cient implementation� in con�

trast to more traditional type systems�

Operator�based inheritance was derived from Jigsaw by modifying the notion of

interface to reveal enough about the structure of modules for an e�cient implemen�

tation� In Jigsaw itself� interfaces disclose no such information�
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Traditionally� an implementation of a type system like Jigsaw�s might involve

searching for an attribute at run time� and cacheing its value� Even the best

such schemes are not competitive with the approaches discussed in this chapter�

Recently� alternative schemes have been proposed ����� While still not as e�cient

as the scheme proposed below� the gap is smaller than with cache based lookup

techniques�


�� Implementation of Modula��

This section describes the proposed implementation technique for operator�based

inheritance in Modula���

Implementations of single inheritance languages such as Modula�� support the

notion of virtual procedures by associating with each class a table whose entries

are addresses of the class� methods� Each instance of a class contains a reference

to the class method table� It is through this reference that the appropriate method

to be invoked on an instance is located�

Under multiple inheritance� the above technique must be modi�ed� since the

superclasses of a class no longer share a common pre�x� O	sets must be added

to an object� so that the appropriate subobjects are passed to methods de�ned

by superclasses� Since methods may be overridden� these o	sets must be part of

the class� method table� The o	sets are di	erent for every superclass� so a separate

subtable is created for each superclass� The size of the tables is linear in the number

of superclasses�

Operator�based inheritance incorporates a structural subtyping discipline� This

requires that the implementation completely preserve algebraic properties of oper�

ators� Traditional multiple inheritance schemes do not do this� A further problem

is that in operator�based inheritance� the number of supertypes of a type grows

quadratically with the number of component types� Using the traditional approach

would require quadratic table space� which is unacceptable� The solution is to
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factor out the pre�x o	sets� which are statically known� and retain only the o	sets

due to method rede�nition in the tables� As a result� only one table per component

is created� and table space is linear in the number of components�

The following two subsections review dispatch table based implementation tech�

niques for single and multiple inheritance� respectively� Subsection ���� discusses

the basic implementation of object types and binary operators upon them� Subsec�

tion ����� discusses the treatment of pure virtuals� Subsection ����� discusses the

implementation of unary operators� while subsection ����� discusses operators not

included in Modula��� Subsection ����� brie
y discusses various other implementa�

tion issues� such as garbage collecting� dynamic type checking and the like�

����� Implementing Single Inheritance

In single inheritance� every class has a unique superclass� A class has the form

Cnew � Cold!� where Cold is the superclass� and ! represents the additions and

changes given by the new class� An instance of Cnew is represented by concatenating

the representation of the �elds added by ! to the representation of an instance of

Cold� It follows that every class shares a common pre�x with all of its subclasses�

It is therefore possible to compile code acting upon a statically known class� based

on its known structure� This structure will be repeated in all subclasses� making

the code reusable by the subclasses�

Virtual methods introduce a complication� since the exact method to be invoked

is no longer statically known when code is compiled� The solution is to have every

instance point at a method table �henceforth referred to as an mtbl�� Each entry

in the table contains the address of a method� Calls to a method become indirect

calls� via a �xed entry in the mtbl� There is a table for each class� The table for

Cnew is created by copying the table for Cold� and appending entries for any new

methods� If Cnew overrides previously de�ned methods� the appropriate entries in
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the table are changed accordingly� Again� the structure of a class� table is a shared

pre�x of the tables of all its subclasses� The size of a class� table is linear in the

size of components and deltas�

tablesize�C� !� � � �!n� � tablesize�C�� �  n
i��tablesize�!i��

����� Implementing Multiple Inheritance

Multiple inheritance can be implemented by a direct generalization of the tech�

nique described in the prior section� This technique has been used to implement

multiple inheritance in C�� ���� and was pioneered by Krogdahl ����� Other

approaches are possible� but I focus on this one� since it forms the basis for my

implementation of operator�based inheritance�

Instances of a class that does not inherit from any other class �a base class�� can

be represented by a record of their instance variables� To support virtual methods�

method tables are used� and each instance includes a pointer to a method table� as

explained above�

In general� however� a class has the form Cnew � C�C� � � �Cn!� where the

Ci are parents of Cnew� Instances of Cnew are represented by concatenating the

representations of instances of C� � � �Cn with the representation of the �elds added

by !� An instance of Cnew is thus composed of subobjects� where each subobject

corresponds to a particular superclass� Each subobject has its own pointer to a

suitable method table�

In this case� it is no longer true that a class� representation is a pre�x of the

representations of all of its subclasses� Each subobject begins at a di	erent o	set

from the beginning of the complete Cnew object� These o	sets can be computed

statically� from the de�nition of Cnew� Figure ��� de�nes O�set�A�B� to be the

relative o	set of a B subobject within an A object� if A is a subclass of B �written

A �� B�� If B �� A� the function gives the negative o	set from the A subobject to
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O�set�C�Ci � � �Cj� �
�O�set�Ci � � �Cj� C� �
 i��
k��Size�Ck� where C � C� � � �Cn� � � i � j � n�

Figure ���� The O�set function�

the B object� O�set relates any two classes where one is a subclass of the other�

In any other case� it is unde�ned�

When a method f of Cnew invokes a method g of some superclass Ci� an o	set

must be added to the beginning of the object� so that g operates on the correct

subobject�

Virtuals once again complicate matters� When a virtual method is rede�ned by

a subclass� the new de�nition may require access to all attributes of the subclass�

and not only to the attributes of the superclass that originally de�ned it� As a

result� the o	set required when invoking such a method may be changed when a

class is inherited from� The o	set� like the identity of the virtual function itself� is

an attribute of the actual class of the object� and must be available at run time�

Typically� the o	set is stored in the method table� alongside the address of the

virtual method� When a virtual method is invoked� the o	set from the table is

added to the address of the instance� before it is passed to the method�

There is one further complication� A rede�ned method may be invoked from the

superclass Ci or from Cnew� The o	set� in each case� is di	erent� As a result� an

additional table is generated for Cnew� This table is constructed by concatenating

all the method tables of Cj � � � j � n and the table for !� and resetting the o	set

�elds as needed� Space can be saved� by realizing that C� does share a common

pre�x with Cnew� and that ! will not be used independently of Cnew� These tables

need not be duplicated� and are best collapsed into the table for Cnew�

For a class C � C� � � �Cn!� the table space required is � n
i��tablesize�Ci� �

tablesize�C�� � tablesize�!�� It is therefore linear in the size of the components�

and always less than twice the sum of the component sizes�
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type A � object a� integer methods Ma����� Pa� end�
B � object b� integer methods Mb����� Pb� end�
C � A B�
D � object d� integer methods Md����� Pd� end�
E � D C�
F � D A B�
G � D A�
H � G B�

Figure ���� Associativity

����� Basic Implementation of Operator	based Inheritance

This section is divided into three parts� First� section ������ illustrates why the

technique used above to implement multiple inheritance is not directly applicable

to operator�based inheritance� Then� the implementation techniques for primitive

and composite object types are demonstrated�

������� Problems with standard techniques

The fundamental di�culty in implementing operator�based inheritance stems

from the interaction between structural subtyping and the algebraic properties of

the merge and override operators�

Consider the class de�nitions of Figure ���� Expanding the de�nitions of all

names �as dictated by structural typing�� one �nds that by associativity� E � F �

H� This equivalence dictates that all three classes have the same type� so that they

can be used interchangeably� This in turn requires that all three have the same

representation� However� using the techniques of section ������ these three classes

have di	erent representations�

If name�based typing were used� E would be a subtype of D
C
A and B �but not

G�� F would be a subtype of D
A and B �but not C�� and H would be a subtype of

G
D
A
 and B �but not C�� and the classes E
F and H would not be in any subtyping

relationship� In this case� E
F and H would have to behave the same under attribute
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accesses �they represent equivalent values� by associativity�� but that would not

necessitate identical representations� since these classes are not equivalent in the

eyes of the type system�

A requirement for an implementation of operator�based inheritance is that the

algebraic properties of operations be preserved when the operations are performed

by the compiler upon the representations of object types and objects�

The system Stroustrup uses is not associative� but can be adjusted to be so�

The essence of the Krogdahl�Stroustrup approach is to generate a table for every

superclass �including the class being de�ned�� but optimize so that superclasses

sharing a common pre�x share the same table� With Modula���s de�nition of

subtyping� this generates a table for every su�x of C � C�C� � � �Cn� resulting in

tables for C� � � �Cn� C� � � �Cn� � � � � Cn��Cn� Cn� The size of these tables is

n� tablesize�Cn� � �n � �� � tablesize�Cn��� � � � � � �� tablesize�C�� �

 n
i���i� tablesize�Ci�� �

n�n���
�

� tablesize�Ci�

where tablesize�Ci� represents the weighted average table size� This is still unac�

ceptable� Table size for a class must be linear in the sizes of its components�

Linear table size can be achieved if tables of component classes appear only once

in a compound class� table� This� in turn� requires that tables be independent of

the pre�x of the class� If the pre�x o	set is statically incorporated in every call�

the table o	set �elds only need to include the changes introduced by overriding

methods� which are relative� not absolute� The details of this technique appear in

the following subsections� which give an approach to implementation based upon

the following inductive de�nition of object types�

A object type may take one of the forms given in Figure ��� Object types

of the �rst form are known as primitive object types since they contain no other

object types as components� Object types of the other forms are called compos�

ite object types� Note that the �rst composite form is actually a shorthand for

Otype� shadow Otype�� introduced for syntactic compatibility� as discussed in the
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Otype � object �eldlist methods methodlist end j
Otype� Otype� j
Otype� merge Otype� j
Otype� override Otype� j
Otype� show Otype� j
Otype restrict label j
Otype project labelList j
Otype copy label� as label� j
Otype rename label� as label��

Figure ��� Constructors of object types

previous chapter �section ������ The next two subsections show how to represent

primitive and composite object types�

������� Implementing Primitive Object Types

Instances of an object type of the form

type T � object f� � � � fn methods m� � � � mk end

are each represented by a header word� followed by storage for the �elds� The

header word points to a method table� There is one mtbl for every object type�

Each entry in the mtbl corresponds to one of the methods mi� � � i � k� There are

two �elds per entry � the address of the procedure implementing the method� and

an o	set �eld� All address �elds are set to the address of the appropriate method

value� O	set �elds are usually� but not always� set to zero�

If aT is an instance of class T � an invocation of aT�mi is compiled into an indirect

procedure call� using a statically determined entry in the mtbl� The address of aT

is added to the o	set stored in the same entry in the mtbl� and passed as the �rst

parameter to the procedure� This is the same procedure used in ����

A simple example is the class A in Figure ���� whose layout is shown in Figure

��� �Note that the method names shown in the �gure are for expository purposes

only� they are not present in the physical implementation��
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type A � object f�� integer methods m��� �� p�
 m��� �� p� end�

procedure p��anA�A��
procedure p��anA�A��

Figure ���� A primitive object type

anA

�A mtbl ptr

f�� integer �� bytes�

A mtbl

m� addr�p�� �

m� addr�p�� �

aB

�B mtbl ptr

f�� real �� bytes�

B mtbl

m� addr�p��� �

aC

�

�

A mtbl ptr

f�� integer �� bytes�

C mtbl

m� addr�p��� �

m� addr�p�� �

B mtbl ptr

f�� real �� bytes�

m� addr�p��� �

aD

�

�

�

Anonymous mtbl ptr

f� char �� byte�

A mtbl ptr

f�� integer �� bytes�

D mtbl

m addr�p� �

m� addr�p��� �

m� addr�p�� �

B mtbl ptr

f�� real �� bytes�

m� addr�p��� �

Figure ���� Layout of primitive and composite object yypes
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������� Implementing Object Type Composition

The most involved operations on object types are those that compose object

types� i�e�� themerge� shadow and override operations� Apart from typechecking�

merge is just a special case of override� Similarly� shadow is implemented

just like merge� This presentation therefore focuses on the override operation�

Everything said applies to the merge and shadow operations as well�

When composing two object types� as in

type C � A override B

objects of class C are represented by the concatenation of the A and B object

representations� in that order�

As with ordinary multiple inheritance� the mtbl contains an o	set �eld� As

indicated above� the strategy is to separate the o	set into two components � the

static o	set� which is inserted into any code referencing C objects� and the dynamic

o	set� which is stored in the mtbl�

The static o	set is de�ned as �

StaticO�set� object f� � � � fn methods m� � � �mk end �mi� � �� � � i � k

StaticO�set�A override B�m� � Size�A��StaticO�set�B�m� if m is declared in

B else StaticO�set�A�m�

StaticO�set�C�m� is unde�ned if m is not declared in C� This poses no problem�

since m cannot be referenced by C objects�

The dynamic o	set will vary for each mtbl entry for m� A class C has an mtbl

entry for m for every primitive component object type S �� C that references m�

That entry is referred to as mtbl�C�S�m��

Let m be a method de�ned by some class C� De�ne defaultValue�C�m� to be

the default value of m for class C� and let defaultClass�C�m� denote the class of

the �rst parameter of defaultValue�C�m��

If C �� S and mi is a method referenced by S� the o	set �eld of mi for S in C

is de�ned as shown in Figure ����
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mtbl�C�S�mi��o�set�
O�set�C�defaultClass�C�mi���O�set�C�S��StaticO�set�S�mi��

Figure ���� O	set value in the mtbl�

References to methods of C are compiled as calls to procedures stored at par�

ticular entries in the C object�s mtbl � that is� each method corresponds to a �xed

o	set from the C object�s mtbl pointer� which is stored in the object� When such a

method� m� is called� its �rst parameter �self� is the address of the C object� plus

the o	set for the subobject that declared it �StaticO�set�C�m��� plus the o	set

stored in the method�s entry in the mtbl �mtbl�C�C�m��� This ensures that a B

method is called with a self object corresponding to the B part of C� The extra

o	set from the mtbl ensures that if the method is overridden later� an appropriate

adjustment is made so that the overriding method gets the correct self pointer�

This same technique can be used if a method is overridden at object creation time�

Figures ��� and ��� show several object types� and the layout for their instances�

respectively�

This example shows the use of an anonymous object type� a object type which

has not been named� but is nevertheless used as a component of a composite object

type� In D� an anonymous object type de�nes �eld f	 and method m	� Notice that

defaultClass�D�m� � A� and that the o	set �eld for m	 in the anonymous object

type�s subtable re
ects this� This is the only case where a primitive object type

will have a nonzero o	set in its mtbl�

B � object f�� real methods m��� �� p�� end
C � A override B
D � object f	� char methods m	�� �� p	 end C

procedure p���aB�B�
procedure p	�anA�A�

Figure ���� Several composite object types
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����� Pure Virtuals

A pure virtual method of a class C is a method that is declared� but given no

de�nition �not even nil�� the intent being that de�nitions may be supplied by other

classes that are composed with C�

The above approach handles pure virtual methods as well� Note that if m is

pure virtual in C� defaultValue�C�m� is unde�ned� and so are defaultClass�C�m�

and mtbl�C�S�m�� This is of no consequence� since both the method value and the

o	set stored in the mtbl will never be used� since C must not be instantiated� What

is important is that StaticO�set�C�m� be de�ned� The original de�nition remains

valid for pure virtuals�

In operator based inheritance� we have the unusual situation that a pure virtual

de�nition may be supplied by either of the object types being combined� Contrast

this with the asymmetric situation in conventional object�oriented languages� where

only the modi�cation may provide such a de�nition� If the actual method used

comes from the modi�ed class� a negative o	set is used� Figure ��� gives examples�

The corresponding layouts are given in Figure ���� The symbol " denotes an

unde�ned o	set value�

The use of negative o	sets is also useful when working with anonymous object

types �see section ����� above��

E � object methods m��� end
F � E override B �� Pure virtual given value by modifying class ��
G � B override E �� Pure virtual given value by modi�ed class ��
H � object methods m���
 m��� �� p� end
I � E override H �� Two pure virtuals combine ��

procedure p��anH�H�

Figure ���� Examples of pure virtual methods�
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anE

�E mtbl ptr

E mtbl

m� nil "

anF

�

�

E mtbl ptr

F mtbl

m� addr�p��� �

B mtbl ptr

f�� real �� bytes�

m� addr�p��� �

aG

�

�

E mtbl ptr

G mtbl

m� addr�p��� ��

B mtbl ptr

f�� real �� bytes�

m� addr�p��� �

anH

�H mtbl ptr

H mtbl

m� nil "

m� addr�p�� �

anI

�E mtbl ptr

H mtbl ptr �

I mtbl

m� nil "

m� nil "

m� addr�p�� �

Figure ���� Layout of classes with pure virtuals
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����� Other Operations

� Restrict and Project� The appropriate entries in the mtbl �those being made

pure virtual� are nulli�ed� The main e	ect of these operations is through the

type system�

� Copy As� This operation has the e	ect of adding a new method to an object

type� This is easily implemented by extending the method table with an

additional entry for the extra operation� The contents of this entry are identical

to those of the entry for the copied method� Of course� ifa the copied method is

overridden� the entry for the new method will remain unchanged� and therefore

available�

� RenameAs� Renaming does not have any in
uence on a class� representation�

Only the compiler�s symbol tables are aware of the di	erence�

� Show� This operator has no e	ect except for typing�

����� Jigsaw Operations Not in Modula	�

Freeze operations are fairly redundant in Modula�� �see Chapter ��� However�

they could easily be added� The freeze operation has no impact on the representa�

tion of a class� However� if a method has been frozen� it may be possible to generate

code that uses it as an in�line function�

Hide and show operations are not needed� as Modula has its own encapsulation

facilities� Furthermore� they do not �t in well with the notion that subobject

boundaries are signi�cant for typing�
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����� Additional Details

There are many additional details that must be handled� including�

�� Assignment� Assigning an instance of class C to a variable of class S �� C�

involves adding O�set�C�S� to the address of the instance and assigning the

result to the variable� The opposite case is when S �� C� This cannot be

shown to be correct statically� However� Modula allows this� and generates a

dynamic check to verify the correctness of the code� The o	set is added� as

before� The implementation of the dynamic check is discussed below�

�� Dynamic typechecking� In Modula��� dynamic typechecks may be generated

implicitly in some situations� or explicitly by the user using the constructs

istype narrow and typecase� The condition tested is whether one type

is a subtype of another� All solutions discussed below associate a typecode

with each distinct object type� which may be stored in the �rst word of each

subobject� This typecode is also needed to support the typecode expression

of Modula���

For single inheritance� a dynamic typecheck may be implemented in constant

time and linear space ����� Under the new subtyping rules� this is no longer

possible� It is possible to determine whether one type is a subtype of another

in linear time and space� for instance by maintaining a list of each object type�s

supertypes� and testing recursively against this list� This is not an appealing

option� since dynamic tests must be fast �especially since some are implicit��

Alternately� a table� whose size is the square of the number of types in the

program� could explicitly state if any type is a subtype of any other� This

takes constant time� but quadratic space �though each entry only occupies a

single bit�� For most programs� the overhead would be acceptable� A program

with a thousand object types would require a million bits for table space� Given
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that a program with that many object types is clearly a substantial one� the

overhead of ��� kilobytes of storage is not unreasonable� Still� reliance on a

quadratic algorithm is worrisome�

A third option is described in ��� A compressed transitive closure of the

subtype relation is maintained� This structure allows testing in at worst

O�logn� time� but in practice gives constant time performance�

� Garbage Collection� Each subobject should have a pointer to the beginning

of the entire object� This is needed� because there may very well be pointers

into objects �i�e�� references to subobjects� while no pointer to the object as a

whole exists�

�� Separate Compilation� The implementation scheme discussed above relies on

knowledge of the size of objects� If the object type is a �partially� opaque type�

its size is not known at compile time� Nevertheless� o	sets need to put into

code� and into tables� while the size of subobjects of opaque types is unknown�

These o	sets must be �xed at link time� If combinations of o	sets need to be

computed� and the linker cannot do this� then some initialization code might

be needed� This is not a new problem� it already exists in Modula���

This concludes the discussion of operator�based inheritance and its implemen�

tation�



CHAPTER 

FINALE

How many good ideas can there really be� Luca Cardelli�

There is one remaining task� to summarize the the contributions of this research�

compare them with other work� and suggest directions for the future�

Section ��� surveys various studies related in some way to the research reported

on in this dissertation� Future work is discussed in section ���� Conclusions are

given in section ���

�� Related Work

����� Jade

Jade is a module manipulation system based upon Emerald� In many ways� Jade

is Jigsaw�s closest relative� Emerald and Jade clearly distinguish subtyping from

inheritance� and support only the former� Jade rejects inheritance due to the many

di�culties it has traditionally raised� as described in Chapter �� As an alternative�

Jade de�nes parameterized abstractions called components� Like Jigsaw modules�

components have no free variables� so they are �self�su�cient� constructs� External

dependencies are expressed using habitats� a compile time parameterization mecha�

nism� This is similar to the use of declarations in Jigsaw for module interconnection�

However� habitats support parameterization of components but not inheritance�

Modi�cations to components must be done either manually or with environmental

support� In ����� the idea of automating such operations using �simple set theoretic

operators� is suggested� but not explored� The essential di	erence between such
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operators �if they were developed� and those of Jigsaw is that the bidirectional

relationship between abstraction and parameter characteristic of abstract classes is

not available�

����� CommonObjects

The de�nitive study of inheritance with respect to encapsulation is ����� which

has been cited extensively in this dissertation� In conjunction with that study� Sny�

der developed an object�oriented LISP dialect called CommonObjects���� Com�

monObjects was the �rst object�oriented language that did not violate encap�

sulation� It also allowed the de�nition of mixins� However� the language was

dynamically typed� re
ecting its LISP heritage� Though encapsulation is a key

aspect of modularity� it is not the only one� Other issues� such as hierarchy� were

not considered�

Mixins were recognized as an important programming idiom in ���� but were not

considered as a full 
edged construct� CommonObjects employed a formulation of

inheritance called tree inheritance� The terminology re
ects the operational� graph�

oriented approach to inheritance prevalent at the time the study was undertaken�

Despite the di	erences in terminology and outlook� tree inheritance is very similar

to mixin based inheritance� In both cases� ancestors of a class that are reachable by

multiple paths in the inheritance hierarchy are re
ected multiple times in the class�

instances� However� in tree inheritance a class has multiple immediate ancestors�

and has direct access to all of them� Tree inheritance is therefore not a purely

linear approach� but rather� as its name implies� a tree structured one� Classes in

CommonObjects could be viewed as mixins with multiple arguments�



���

����� Mixins

This work grew out of an earlier study of mixin�based inheritance ���� Some of

the limitations of mixin based inheritance have been addressed here� These include

the absence of �ne�grain sharing� of renaming facilities and of a symmetric merge

operation�

Until now� mixins have been modeled as parametric abstractions called wrappers�

Cook used an operator combining a generator and a wrapper in his compositional

semantics of inheritance ����� This operator was also used by Hense ����� In ����

the override operation was de�ned as a binary operation on wrappers� enabling

composition of mixins� Here� an alternate formulation of wrappers as functions

from generators to generators has been given� The main purpose of wrappers was

to allow access to overridden de�nitions� The required functionality can be achieved

using an explicit operator for this purpose� This allows the use of generators instead

of wrappers� simplifying de�nitions� This re
ects the strategy of simplifying the

structure and pushing more functionality into the operator set�

����� Generator Operations

Many of the operators presented here were �rst proposed by Cook in ����� There�

a general mechanism for deriving generator operations from record operations was

described� However� the operators de�ned by Cook were used to illustrate the

principle of manipulating self�reference by means of generators� In modeling pro�

gramming language constructs� more elaborate operators were used� In particular�

it was necessary to introduce wrappers� as discussed in section �����

The novelty here is in providing a comprehensive suite of operations� and making

them explicit linguistic constructs� In addition� the uniform use of generators to

model all de�nitional structures is new� The operator suite also includes new

operations �namely hide show freeze freeze	except and copy	as��



��

����� Mitchell

Mitchell� in ���� presented an extension to the ML module system that is in

some ways similar to this work� Mitchell also chose to incorporate inheritance into

a module language� an extension of the ML module system ����� Some similar

operations are supported� embedded in a more conventional syntax� Underlying

both systems are denotational models involving the manipulation of self�reference�

and typing based on bounded quanti�cation� There are many di	erences� however�

Central to this thesis is the notion that inheritance itself can be used as a modu�

larity mechanism� Inheritance is an essential part of the module language� �gluing�

modules together by merging self�reference� Such a formulation of inheritance

must preserve encapsulation� This contrasts with Mitchell�s view of inheritance

as �a mechanism for using one declaration in writing another�� Even though

inheritance is part of the module system� it is not essential to it� Instead� the

ML notions of structures and functors are used to de�ne and interconnect modules�

Some of the inheritance constructs de�ned in ��� violate encapsulation �viz� copy

except copy only�� These constructs inherently require knowledge of the internal

structure of the �parent� module�

A consequence of the semantics of copy except copy only is that separate

compilation is compromised� A parent module must always be compiled before its

use� and any change to it requires recompilation of its heir modules ����� Jigsaw

supports inheriting from separately compiled modules without restriction�

The approach presented in this dissertation has the bene�ts of simplicity and

modularity� It does not rely upon dependent sums or products� or on multiple

universes of types� It is explicitly formulated as a framework for manipulating

modules where all functionality is supported by operators� Making its structure

explicit facilitates applying the framework to a broad spectrum of languages� Lan�
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guage designers may easily add or modify operations as necessary� An expression

based language also allows users to compose operations more freely�

The Jigsaw framework supports abstract classes and mixins�� Mixins cannot be

expressed in the framework of ���� and there is no explicit support for abstract

classes �though the traditional device of giving dummy de�nitions for pure virtual

methods is always available� with its concomitant disadvantages��

On the other hand� Mitchell�s approach supports modules implementing abstract

data types� This allows for combining traditional algebraic �or higher order� data

types with object�oriented formulations� Jigsaw supports only the pure object�

oriented approach� It would be desirable to extend the framework with an analogous

set of operators for abstract data types� However� there are technical di�culties

related to the typing of existential data types�

A related issue is the use of structural subtyping� in contrast to �name�based�

subtyping in ���� Both forms are useful� here� the focus is on structural subtyping�

which is more appropriate between di	erent modules or programs �����

Finally� unlike ���� precise semantic de�nitions of all operations have been given�

�� Future Work

����� Name	based Typing

Jigsaw� as presently formulated� does not support name based typing� However�

this does not seem to present a serious di�culty� In Chapter �� the brand mechanism

ofModula�� was used to obtain the functionality of named types in a structural�type

setting� This is a generally applicable solution� Brands are viewed as parameters to

type constructors� and are components of a type�s structure ����� The uniqueness

of brands can be enforced syntactically� as in Modula��� Within a Jigsaw module�

a brand can be given by the user only once� When modules are combined� it is

�Abstract classes are mentioned in �	�� but only as substitutes for interfaces�
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necessary to guarantee that brands are unique across modules� In e	ect� the brands

introduced by a module are part of its interface� and may not be duplicated by other

modules� This can be checked when modules are combined�

An alternative is to provide an intrinsic notion of name�based typing in Jigsaw�

This could be done by adding types as components of interfaces and modules�

Formalizing this would mean that generators would become dependent products

and records dependent sums� The details of this �especially with respect to recursive

types� have not been studied carefully� however�

����� Abstract Data Types

Abstract data types are both more useful and more problematic than named

types� A formalization based on existentially quanti�ed types is problematic�

because of type abstraction� In particular� creating new abstract data types by

combining the abstract types form two modules runs into the same di�culty that

has arisen time and again in this dissertation � how to typecheck inheritance in the

presence of type abstraction� A rigorous de�nition of inheritance on ADTs is an

important and substantial research issue�

����� Formal Speci�cation of Inheritable Modules

A primary motivation for Jigsaw is reusability� One of the possible side�e	ects

of increased reuse is an increased emphasis on formal speci�cation and veri�cation

of software components� The reason for this is economic in nature� The larger the

market for a component� the more feasible it is to invest in the expensive process

of formally verifying a software component� Conversely� users of �o	�the�shelf�

components may begin to demand more precise speci�cations of the software they

purchase�

The preceding observations draw attention to a problem not yet addressed by

the formal methods community� While there is an abundance of work on specifying



�

how software behaves when used� there is a dearth of research into how to specify

how software behaves when inherited�

There is a need to specify how a class will respond when modi�ed� which implies

knowledge of method interdependencies� In addition� if a revised method is changed�

even if it preserves the previous version�s speci�cation� it may induce other changes

to the object�s state� It may be desirable to specify that certain methods do not

have any additional e	ects �a form of frame problem��

One reason that this problem has not yet come to the forefront of attention is

that in most programming languages� there is no way to inherit from a separately

compiled class or module� This implies that source code is always available� and

this source is the speci�cation used to understand how the class will behave when

modi�ed� An exception is Modula��� where one can inherit from a separately com�

piled object type� Specifying how to do this is challenging� and is done informally�

in English� For some excellent examples� see ���� Chapter ���

The semantic framework of Jigsaw may suggest a starting point of attacking this

problem� Traditional speci�cation deals with the behavior of records with function

valued attributes� The problem just posed may be thought of as specifying how

generators behave�

����� Prototypes

Jigsaw was originally designed to deal with inheritance among classes� Though

there are some di	erences� the framework can be carried over into the world of

delegation�

Typing of delegation raises the same acute problems that inheritance in any

polymorphic context does� Therefore� typechecking will be ignored here�

Assuming Jigsaw modules are �rst class entities� and Jigsaw operations are

executed at run time� the e	ect of say� a override operation is to produce a new
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module� which contains copies of the two modules that were arguments to the

override operation� with the attributes of the dominant module overriding those

of the other module�

In contrast� no new object �module� is created under delegation� The delegating

object references the delegate� As a consequence� the state of the delegate is shared

with all its delegators�

The principle di	erence between Jigsaw�s semantics and those of a delegation

based language like SELF is that between copy semantics and reference semantics�

An equivalent conclusion is reached independently by Taivalsaari in �����

Based on this insight� SELF style delegation can be supported with a suite

of inheritance operators� The description will have an uncomfortably operational


avor� but remember� delegation is an inherently operational notion�

At this point� a single example will be shown� to give some insight� Deriving a

full denotational semantics of a modular form of delegation based on this insight

seems fairly straightforward�

o� override o� produces a new object� whose only function is to forward messages

to o�� with a revised self �client�� If the messages are not understood by o�� they

are forwarded to o��

The space of values being manipulated does not really consist of objects� but of

references to functions of type Filter� such that

Filter � Filterref �Msg � V alue

In other words� Filter�s are functions that take a reference to a Filter �repre�

senting self�� a message� and produce a value� Filters are analogous to generators�

The conventional syntax o�m really stands for o�o��m�� In other words� a message

send in a delegation language really invokes a generator�

All operators can now be de�ned in a manner completely analogous to their

generator versions� The results are always references to Filter functions� which
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perform the necessary manipulations upon self and �lter messages as appropriate

before sending them to the original operands�

Implementation of a delegation based language along these lines is an interesting

variation on the Jigsaw framework� in which interface checking would be overridden

by true� generators replaced by Filters� and module operators rede�ned accordingly

�including dynamic interface checking��

����� Nested Modules Revisited

In Beta� nested classes can be virtual� as shown in section ���� The same

applies in Jigsaw� However� Jigsaw adopts a purely static type system� restrict�

ing subtyping �subinterfacing� on modules to type �interface� equivalence� Beta

supports subtyping on patterns� and relies on dynamic typechecks to guarantee

safety� This 
exibility is what enables Beta to express mixins as shown in Chapter

� Useful mixins are polymorphic class abstractions� In Jigsaw modules are treated

monomorphically� Similarly� Beta allows entire class hierarchies to be modi�ed

by inheritance� This is not well supported in Jigsaw� Of course� Jigsaw supports

mixins more directly� as shown in section ������ Inheriting entire hierarchies seems

valuable however� If Jigsaw adopted dynamic typechecking to augment its type

system� this could be supported� though it would be costly�

Another distinction is that Beta identi�es classes and types� This has the

disadvantages mentioned in Chapter �� but allows Beta to support type abstraction

using the same virtual pattern mechanism used for inheritance �����

Nested modules in principle also support the notion of class variables found in

languages like Smalltalk� Class variables are variables shared by all instances of a

class� A module that nests another module inside it� can serve as a �factory� ����

and produce initialized instances of the nested module� The surrounding module

serves as a repository of shared data among all instances of the nested module�
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Again� module subtyping restricts the usefulness of such designs� A richer notion of

module subtyping would allow Jigsaw to support these highly expressive constructs�

Use of dynamic typing� as in Beta is one option� but a costly one� In ���� static

type systems that address some of these problems are discusses�

����� Process Calculi

Object orientation presents a natural model of concurrency� and concurrent

object�oriented programming has been the focus of considerable attention �����

The operator based approach advocated in Jigsaw seems to �t well with process

calculus models of concurrency in the style of CCS ����� Nierstrasz has investigated

such calculi in an object�oriented context ����� More recent work by Nierstrasz

investigates the integration of process and � calculi ����� In ����� it is shown how to

express the �xpoint operator in such an integrated calculus� It should therefore be

possible to integrate Jigsaw style generator de�nitions into this framework� This

leads toward the exciting possibility of an expression based language for composing

modular� concurrent object de�nitions�

�� Conclusion

This dissertation has provided a framework for modularity in programming

languages� In this framework� known as Jigsaw� inheritance is understood to

be an essential linguistic mechanism for module manipulation� The framework

is unusually expressive� theoretically sound� e�ciently implementable and language

independent�

Speci�cally� the dissertation has made the following contributions�

� Inheritance has been characterized as a module manipulation mechanism�

� The notion of mixins has been identi�ed as an important abstraction miss�

ing from current object�oriented programming languages� in contravention of

established principles of language design�



��

� For the �rst time� a broad array of linguistic features has been integrated in

a cohesive manner� including multiple inheritance� mixins� encapsulation and

strong typing�

� A clean� modular semantics for multiple inheritance has been developed�

� A linguistic framework based directly on the semantics has been constructed�

This serves as a framework for modular language speci�cation� and as a speci�

�cation of a framework for modular language implementation� independent of

a particular computational paradigm�

� The applicability of the framework to existing programming languages has

been demonstrated�

� An e�cient implementation scheme for the constructs introduced has been

described�

Beyond the speci�c contributions� the dissertation demonstrates once again the

importance of denotational semantics to programming language design�
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