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Abstract—Integer overflow bugs in C and C++ programs
are difficult to track down and may lead to fatal errors or
exploitable vulnerabilities. Although a number of tools for
finding these bugs exist, the situation is complicated because
not all overflows are bugs. Better tools need to be constructed—
but a thorough understanding of the issues behind these errors
does not yet exist. We developed IOC, a dynamic checking tool
for integer overflows, and used it to conduct the first detailed
empirical study of the prevalence and patterns of occurrence
of integer overflows in C and C++ code. Our results show that
intentional uses of wraparound behaviors are more common
than is widely believed; for example, there are over 200
distinct locations in the SPEC CINT2000 benchmarks where
overflow occurs. Although many overflows are intentional, a
large number of accidental overflows also occur. Orthogonal
to programmers’ intent, overflows are found in both well-
defined and undefined flavors. Applications executing undefined
operations can be, and have been, broken by improvements in
compiler optimizations. Looking beyond SPEC, we found and
reported undefined integer overflows in SQLite, PostgreSQL,
SafeInt, GNU MPC and GMP, Firefox, GCC, LLVM, Python,
BIND, and OpenSSL; many of these have since been fixed.
Our results show that integer overflow issues in C and C++
are subtle and complex, that they are common even in mature,
widely used programs, and that they are widely misunderstood
by developers.

Keywords-integer overflow; integer wraparound; undefined
behavior

I. INTRODUCTION

Integer numerical errors in software applications can
be insidious, costly, and exploitable. These errors include
overflows, underflows, lossy truncations (e.g., a cast of an
int to a short in C++ that results in the value being
changed), and illegal uses of operations such as shifts (e.g.,
shifting a value in C by at least as many positions as its
bitwidth). These errors can lead to serious software failures,
e.g., a truncation error on a cast of a floating point value to
a 16-bit integer played a crucial role in the destruction of
Ariane 5 flight 501 in 1996. These errors are also a source
of serious vulnerabilities, such as integer overflow errors in
OpenSSH [1] and Firefox [2], both of which allow attackers
to execute arbitrary code. In their 2011 report MITRE places
integer overflows in the “Top 25 Most Dangerous Software
Errors” [3].

Detecting integer overflows is relatively straightforward
by using a modified compiler to insert runtime checks.
However, reliable detection of overflow errors is surprisingly
difficult because overflow behaviors are not always bugs.
The low-level nature of C and C++ means that bit- and
byte-level manipulation of objects is commonplace; the line
between mathematical and bit-level operations can often be
quite blurry. Wraparound behavior using unsigned integers
is legal and well-defined, and there are code idioms that
deliberately use it. On the other hand, C and C++ have
undefined semantics for signed overflow and shift past
bitwidth: operations that are perfectly well-defined in other
languages such as Java. C/C++ programmers are not always
aware of the distinct rules for signed vs. unsigned types in C,
and may naı̈vely use signed types in intentional wraparound
operations.1 If such uses were rare, compiler-based overflow
detection would be a reasonable way to perform integer error
detection. If it is not rare, however, such an approach would
be impractical and more sophisticated techniques would be
needed to distinguish intentional uses from unintentional
ones.

Although it is commonly known that C and C++ programs
contain numerical errors and also benign, deliberate use
of wraparound, it is unclear how common these behaviors
are and in what patterns they occur. In particular, there is
little data available in the literature to answer the following
questions:

1) How common are numerical errors in widely-used
C/C++ programs?

2) How common is use of intentional wraparound op-
erations with signed types—which has undefined
behavior—relying on the fact that today’s compilers
may compile these overflows into correct code? We
refer to these overflows as “time bombs” because they
remain latent until a compiler upgrade turns them into
observable errors.

3) How common is intentional use of well-defined

1In fact, in the course of our work, we have found that even experts
writing safe integer libraries or tools to detect integer errors are not always
fully aware of the subtleties of C/C++ semantics for numerical operations.
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wraparound operations on unsigned integer types?
Although there have been a number of papers on tools

to detect numerical errors in C/C++ programs, no previous
work we know of has explicitly addressed these questions, or
contains sufficient data to answer any of them. The closest is
Brumley et al.’s work [4], which presents data to motivate the
goals of the tool and also to evaluate false positives (invalid
error reports) due to intentional wraparound operations.
As discussed in Section V, that paper only tangentially
addresses the third point above. We study all of these
questions systematically.

This paper makes the following primary contributions.
First, we developed Integer Overflow Checker (IOC), an
open-source tool that detects both undefined integer behav-
iors as well as well-defined wraparound behaviors in C/C++
programs.2 IOC is an extension of the Clang compiler for
C/C++ [5]. Second, we present the first detailed, empirical
study—based on SPEC 2000, SPEC 2006, and a number
of popular open-source applications—of the prevalence and
patterns of occurrence of numerical overflows in C/C++
programs. Part of this study includes a manual analysis of a
large number of intentional uses of wraparound in a subset
of the programs. Third, we used IOC to discover previously
unknown overflow errors in widely-used applications and
libraries, including SQLite, PostgreSQL, BIND, Firefox,
OpenSSL, GCC, LLVM, the SafeInt library, the GNU MPC
and GMP libraries, Python, and PHP. A number of these
have been acknowledged and fixed by the maintainers (see
Section IV).

The key findings from our study of overflows are as
follows: First, all four combinations of intentional and
unintentional, well-defined and undefined integer overflows
occur frequently in real codes. For example, the SPEC
CINT2000 benchmarks had over 200 distinct occurrences
of intentional wraparound behavior, for a wide range of
different purposes. Some uses for intentional overflows are
well-known, such as hashing, cryptography, random number
generation, and finding the largest representable value for
a type. Others are less obvious, e.g., inexpensive floating
point emulation, signed negation of INT_MIN, and even
ordinary multiplication and addition. We present a detailed
analysis of examples of each of the four major categories
of overflow. Second, overflow-related issues in C/C++ are
very subtle and we find that even experts get them wrong.
For example, the latest revision of Firefox (as of Sep 1,
2011) contained integer overflows in the library that was
designed to handle untrusted integers safely in addition to
overflows in its own code. More generally, we found very
few mature applications that were completely free of integer
numerical errors. This implies that there is probably little
hope of eliminating overflow errors in large code bases
without sophisticated tool support. However, these tools

2IOC is available at http://embed.cs.utah.edu/ioc/

Table I
EXAMPLES OF C/C++ INTEGER OPERATIONS AND THEIR RESULTS

Expression Result
UINT_MAX+1 0
LONG_MAX+1 undefined
INT_MAX+1 undefined
SHRT_MAX+1 SHRT_MAX+1 if INT_MAX>SHRT_MAX,

otherwise undefined
char c = CHAR_MAX; c++ varies1

-INT_MIN undefined2

(char)INT_MAX commonly -1
1<<-1 undefined
1<<0 1
1<<31 commonly INT_MIN in ANSI C and

C++98; undefined in C99 and C++112,3

1<<32 undefined3

1/0 undefined
INT_MIN%-1 undefined in C11,

otherwise undefined in practice
1 The question is: Does c get “promoted” to int before being incre-
mented? If so, the behavior is well-defined. We found disagreement
between compiler vendors’ implementations of this construct.
2 Assuming that the int type uses a two’s complement representation
3 Assuming that the int type is 32 bits long

cannot simply distinguish errors from benign operations by
checking rules from the ISO language standards. Rather,
tools will have to use highly sophisticated techniques and/or
rely on manual intervention (e.g., annotations) to distinguish
intentional and unintentional overflows.

II. OVERFLOW IN C AND C++

Mathematically, n-bit two’s complement arithmetic is
congruent, modulo 2n, to n-bit unsigned arithmetic for
addition, subtraction, and the n least significant bits in
multiplication; both kinds of arithmetic “wrap around” at
multiples of 2n. On modern processors, integer overflow is
equally straightforward: n-bit signed and unsigned opera-
tions both have well-defined behavior when an operation
overflows: the result wraps around and condition code bits
are set appropriately. In contrast, integer overflows in C/C++
programs are subtle due to a combination of complex
and counter-intuitive rules in the language standards, non-
standards-conforming compilers, and the tendency of low-
level programs to rely on non-portable behavior. Table I
contains some C/C++ expressions illustrating cases that arise
in practice. There are several issues; to clarify them we make
a top-level distinction between well-defined (albeit perhaps
non-portable) and undefined operations.

A. Well-Defined Behaviors

Some kinds of unsigned integer arithmetic uses well-
defined and portable wraparound behavior, with two’s
complement semantics [6]. Thus, as Table I indicates,
UINT_MAX+1 must evaluate to zero in every conforming
C and C++ implementation. nOf course, even well-defined
semantics can lead to logic errors, for example if a developer
naı̈vely assumes that x+ 1 is larger than x.
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Listing 1. Source for overflow.c referred to in the text
1 int foo (int x) {
2 return ( x+1 ) > x;
3 }
4

5 int main (void) {
6 printf ("%d\n", ( INT_MAX+1 ) > INT_MAX);
7 printf ("%d\n", foo(INT_MAX));
8 return 0;
9 }

Many unsigned integer overflows in C and C++ are well-
defined, but non-portable. For example 0U-1 is well-defined
and evaluates to UINT_MAX, but the actual value of that
constant is implementation defined: it can be relied upon, but
only within the context of a particular compiler and platform.
Similarly, the int type in C99 is not required to hold values
in excess of 32,767, nor does it have to be based on a two’s
complement representation.

B. Undefined Behaviors

Some kinds of integer overflow are undefined, and these
kinds of behavior are especially problematic. According to
the C99 standard, undefined behavior is

“behavior, upon use of a non-portable or erroneous
program construct or of erroneous data, for which
this International Standard imposes no require-
ments.”

In Internet parlance:3

“When the compiler encounters [a given undefined
construct] it is legal for it to make demons fly out
of your nose.”

Our experience is that many developers fail to appreciate the
full consequences of this. The rest of this section examines
these consequences.

1) Silent Breakage: A C or C++ compiler may exploit
undefined behavior in optimizations that silently break a
program. For example, a routine refactoring of Google’s
Native Client software accidentally caused 1<<32 to be
evaluated in a security check.4 The compiler—at this point
under no particular obligation—simply turned the safety
check into a nop. Four reviewers failed to notice the resulting
vulnerability.

Another illuminating example is the code in Listing 1.
In this program, the same computation ((INT_MAX+1)
>INT_MAX) is performed twice with two different idioms.
Recent versions of GCC, LLVM, and Intel’s C compiler,
invoked at the -O2 optimization level, all print a 0 for the
first value (line 6) and a 1 for the second (line 7). In other
words, each of these compilers considers INT_MAX+1 to
be both larger than INT_MAX and also not larger, at the
same optimization level, depending on incidental structural
features of the code. The point is that when programs exe-
cute undefined operations, optimizing compilers may silently

3http://catb.org/jargon/html/N/nasal-demons.html
4http://code.google.com/p/nativeclient/issues/detail?id=245

break them in non-obvious and not necessarily consistent
ways.

2) Time Bombs: Undefined behavior also leads to time
bombs: code that works under today’s compilers, but breaks
unpredictably in the future as optimization technology im-
proves. The Internet is rife with stories about problems
caused by GCC’s ever-increasing power to exploit signed
overflows. For example, in 2005 a principal PostgreSQL
developer was annoyed that his code was broken by a recent
version of GCC:5

It seems that gcc is up to some creative reinterpre-
tation of basic C semantics again; specifically, you
can no longer trust that traditional C semantics of
integer overflow hold ...

This highlights a fundamental and pervasive misunderstand-
ing: the compiler was not “reinterpreting” the semantics but
rather was beginning to take advantage of leeway explicitly
provided by the C standard.

In Section IV-E we describe a time bomb in SafeInt [7]: a
library that is itself intended to help developers avoid unde-
fined integer overflows. This operation, until recently, was
reliably compiled by GCC (and other compilers) into code
that did not have observable errors. However, the upcoming
version of GCC (4.7) exposes the error, presumably because
it optimizes the code more aggressively. We discovered this
error using IOC and reported it to the developers, who fixed
it within days [8].

3) Illusion of Predictability: Some compilers, at some
optimization levels, have predictable behavior for some
undefined operations. For example, C and C++ compil-
ers typically give two’s complement semantics to signed
overflow when aggressive optimizations are disabled. It is,
however, unwise to rely on this behavior, because it is not
portable across compilers or indeed across different versions
of the same compiler.

4) Informal Dialects: Some compilers support stronger
semantics than are mandated by the standard. For example,
both GCC and Clang (an LLVM-based C/C++/Objective-C
compiler) support a -fwrapv command line flag that forces
signed overflow to have two’s complement behavior. In fact,
the PostgreSQL developers responded to the incident above
by adding -fwrapv to their build flags. They are now, in
effect, targeting a non-standard dialect of C.

5) Non-Standard Standards: Some kinds of overflow
have changed meaning across different versions of the
standards. For example, 1<<31 is implementation-defined
in ANSI C and C++98, while being explicitly undefined
by C99 and C11 (assuming 32-bit ints). Our experience is
that awareness of this particular rule among C and C++
programmers is low.

A second kind of non-standardization occurs with con-
structs such as INT_MIN%-1 which is—by our reading—well

5http://archives.postgresql.org/pgsql-hackers/2005-12/msg00635.php
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Figure 1. Architecture of IOC

defined in ANSI C, C99, C++98, and C++11. However, we
are not aware of a C or C++ compiler that reliably returns
the correct result, zero, for this expression. The problem
is that on architectures including x86 and x86-64, correctly
handling this case requires an explicit check in front of every
% operation. The C standards committee has recognized the
problem and C11 explicitly makes this case undefined.

III. TOOL DESIGN AND IMPLEMENTATION

IOC, depicted in Fig. 1, has two main parts: a compile-
time instrumentation transformation and a runtime handler.
The transformation is a compiler pass that adds inline
numerical error checks; it is implemented as a ∼1600 LOC
extension to Clang [5], the C/C++ frontend to LLVM [9].
IOC’s instrumentation is designed to be semantically trans-
parent for programs that conform to the C or C++ language
standards, except in the case where a user requests additional
checking for conforming but error-prone operations, e.g.,
wraparound with unsigned integer types. The runtime library
is linked into the compiler’s output and handles overflows
as they occur; it is ∼900 lines of C code.

A. Where to Put the Instrumentation Pass?

The transformation operates on the Abstract Syntax Tree
(AST) late in the Clang front end—after parsing, type-
checking, and implicit type conversions have been per-
formed. This is an appropriate stage for inserting checks
because full language-level type information is available,
but the compiler has not yet started throwing away useful
information as it does during the subsequent conversion into
the flat LLVM intermediate representation (IR).

In a previous iteration of IOC we encoded the required
high-level information into the IR (using IR metadata),
allowing the transformation to be more naturally expressed
as a compiler pass. Unfortunately, this proved to be un-
reliable and unnecessarily complicated, due to requiring a
substantial amount of C-level type information in the IR
in order to support a correct transformation. The original
transformation was further complicated by the lack of a
one-to-one mapping between IR and AST nodes. Also, some
important operations (such as signed to unsigned casts) don’t
exist at the IR level. In short, it is much less error-prone to
do the instrumentation in the frontend where all the required
information is naturally available.

B. Overflow Checks

Finding overflows in shift operations is straightforward:
operand values are bounds-checked and then, if the checks
pass, the shift is performed. Checking for overflow in arith-
metic operations is trickier; the problem is that a checked n-
bit addition or subtraction requires n+1 bits of precision and
a checked n-bit multiplication requires 2n bits of precision.
Finding these extra bits can be awkward. There are basically
three ways to detect overflow for an operation on two signed
integers s1 and s2.

1) Precondition test. It is always possible to test whether
an operation will wrap without actually performing the
operation. For example, signed addition will wrap if
and only if this expression is true:

((s1 > 0) ∧ (s2 > 0)∧(s1 > (INT_MAX− s2)))∨
((s1 < 0) ∧ (s2 < 0)∧(s1 < (INT_MIN− s2)))

In pseudocode:
if (!precondition) then

call failure handler

endif

result = s1 op s2

2) CPU flag postcondition test. Most processors contain
hardware support for detecting overflow: following
execution of an arithmetic operation, condition code
flags are set appropriately. In the general case, it is
problematic to inspect processor flags in portable code,
but LLVM supports a number of intrinsic functions
where, for example, an addition operation returns a
structure containing both the result and an overflow
flag. The LLVM backends, then, emit processor-specific
code that accesses the proper CPU flag. In pseudocode:
(result, flag) = s1 checked_op s2

if (flag) then

call failure handler

endif

3) Width extension postcondition test. If an integer
datatype with wider bitwidth than the values being
operated on is available, overflow can be detected in
a straightforward way by converting s1 and s2 into
the wider type, performing the operation, and checking
whether the result is in bounds with respect to the
original (narrower) type. In pseudocode:
result = extend(s1) op extend(s2)

if (result < MIN || result > MAX) then

call failure handler

endif

IOC supports both the precondition test and the CPU flag
postcondition test; width extension seemed unlikely to be
better than these options due to the expense of emulating 64-
bit and 128-bit operations. Initially we believed that the CPU
flag postcondition checks would be far more efficient but this
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proved not to be the case. Rather, as shown in Section III-D,
using the flag checks has an uneven effect on performance.
The explanation can be found in the interaction between the
overflow checks and the compiler’s optimization passes. The
precondition test generates far too many operations, but they
are operations that can be aggressively optimized by LLVM.
On the other hand, the LLVM intrinsics supporting the flag-
based postcondition checks are recognized and exploited
by relatively few optimization passes, causing much of
the potential performance gain due to this approach to be
unrealized.

C. Runtime Library

To produce informative error messages, IOC logs the
source-code location corresponding to each inserted check,
including the column number where the operator appeared.
(Operating on the AST instead of the LLVM IR makes
such logging possible.) Thus, users can disambiguate, for
example, which shift operator overflowed in a line of code
containing multiple shift operators. Also in service of
readable error messages, IOC logs the types and values of
the arguments passed to the operator; this is important for
operators with multiple modes of failure, such as shift. For
example, an error we found in OpenSSL was reported as:
<lhash.c, (464:20)> : Op: >>, Reason :

Unsigned Right Shift Error: Right operand is negative or is

greater than or equal to the width of the promoted left operand,

BINARY OPERATION: left (uint32): 4103048108 right (uint32): 32.
Based on the value of an environment variable, the IOC

failure handler can variously send its output to STDOUT, to
STDERR, to the syslog daemon, or simply discard the output.
The syslog option is useful for codes that are sensitive to
changes in their STDOUT and STDERR streams, and for codes
such as daemons that are invoked in execution environments
where capturing their output would be difficult.

Finally, to avoid overwhelming users with error messages,
the fault handler uses another environment variable to spec-
ify the maximum number of times an overflow message from
any particular program point will be printed.

D. Runtime Overhead of Integer Overflow Checking

To evaluate the effect of IOC on programs’ runtime, we
compiled SPEC CPU 2006 in four ways. First, a baseline
compilation using Clang with optimization options set for
maximum performance. Second, checking for undefined
integer overflows (shifts and arithmetic) using precondition
checks. Third, checking for undefined integer overflows
(shifts and arithmetic) using the CPU flag postcondition
test. Finally, checking for all integer overflows including
unsigned overflow and value loss via sign conversion and
truncation.

We then ran the benchmarks on a 3.4 GHz AMD Phe-
nom II 965 processor, using their “ref” inputs—the largest
input data, used for reportable SPEC runs—five times and

Table II
TAXONOMY OF INTEGER OVERFLOWS IN C AND C++ WITH

REFERENCES TO DETAILED DISCUSSION OF EXAMPLES

undefined behavior defined behavior
e.g. signed overflow, e.g. unsigned wrapround,
shift error, signed wraparound
divide by zero with -fwrapv

intentional Type 1: Type 2:
design error, no error,
may be a “time bomb” but may not be portable
§ IV-C3, IV-C9 § IV-C2, IV-C5, IV-C8

unintentional Type 3: Type 4:
implementation error, implementation error
may be a “time bomb”
§ IV-C4 § IV-C1, IV-C6

used the median runtime. We configured the fault handler to
return immediately instead of logging overflow behaviors.
Thus, these measurements do not include I/O effects due
to logging, but they do include the substantial overhead of
marshaling the detailed failure information that is passed to
the fault handler.

For undefined behavior checking using precondition
checks, slowdown relative to the baseline ranged from
−0.5%–191%. In other words, from a tiny accidental
speedup to a 3X increase in runtime. The mean slowdown
was 44%. Using flag-based postcondition checks, slowdown
ranged from 0.4%–95%, with a mean of 30%. However,
the improvement was not uniform: out of the 21 benchmark
programs, only 13 became faster due to the IOC implementa-
tion using CPU flags. Full integer overflow checking using
precondition checks incurred a slowdown of 0.2%–195%,
with a mean of 51%.

IV. INTEGER OVERFLOW STUDY

This section presents the qualitative and quantitative re-
sults of our study of overflow behaviors in C and C++
applications.

A. Limitations of the Study

There are necessarily several limitations in this kind of
empirical study. Most important, because IOC is based on
dynamic checking, bugs not exercised by our inputs will
not be found. In this sense, our results likely understate the
prevalence of integer numerical errors as well as the preva-
lence of intentional uses of wraparound in these programs.
A stress testing strategy might uncover more bugs.

Second, our methodology for distinguishing intentional
from unintentional uses of wraparound is manual and sub-
jective. The manual effort required meant that we could only
study a subset of the errors: we focused on the errors in the
SPEC CINT2000 benchmarks for these experiments. For the
other experiments, we study a wider range of programs.

B. A Taxonomy for Overflows

Table II summarizes our view of the relationship between
different integer overflows in C/C++ and the correctness of
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Listing 2. Well-defined but incorrect guard for memcpy in 164.gzip
1 /* (this test assumes unsigned comparison ) */
2 if ( w - d >= e)
3 {
4 memcpy(slide + w, slide + d, e);
5 w += e;
6 d += e;
7 }

software containing these behaviors. Only Type 2 overflows
do not introduce numerical errors into carefully written
C/C++ software. Using IOC, we have found examples of
software errors of Types 1, 3, and 4, as well as correct uses
of Type 2. The section numbers in the table are forward
references to discussions of bugs in the next section. We
found many additional examples of each type of error, but
lack space to discuss them in detail.

C. Wraparound and Overflow in SPEC CINT 2000

To investigate the prevalence of, and use-cases for, over-
flows and wraparounds, we examined SPEC CINT2000 in
detail. The SPEC benchmark suites each contain a care-
fully selected set of C and C++ programs, designed to be
representative of a wide range of real-world software (and
many like GCC, bzip2, and povray, are taken from widely
used applications). Moreover, since they are primary per-
formance benchmarks for both compilers and architectures,
these benchmarks have been compiled and tested with most
optimizing compilers, making them especially good case
studies.

We ran the SPEC benchmarks’ “ref” data sets. Using IOC,
we investigated every addition, subtraction, multiplication,
and division overflow in an attempt to understand what it
is that developers are trying to accomplish when they put
overflows into their code.

Our findings are shown in Table III and described below.
This benchmark suite consists of 12 medium-sized programs
(2.5–222 KLOC), eight of which executed integer overflows
while running on their reference input data sets.

Note: Real C code is messy. We have cleaned up the
SPEC code examples slightly when we deemed this to
improve readability and to not change the sense of the code.

1) 164.gzip: IOC reported eight wraparounds in this
benchmark, all using well-defined unsigned operations. Of
course, even well-defined operations can be wrong; we
discuss an example of particular interest, shown in Listing 2.
The POSIX memcpy function is undefined if its source and
target memory regions overlap. To guard against invoking
memcpy incorrectly, the code checks that e (number of bytes
copied) is less than the distance between w and d (both
offsets into a memory region). If this check fails, a slower
memory copy that correctly handles overlap is invoked.

However, when d ≥ w an unsigned overflow occurs,
resulting in an integer that is much greater than any potential
value for e, causing the safety check to pass even when
the source and target regions overlap. This overflow was

Table III
INTEGER WRAPAROUNDS1 REPORTED IN SPEC CINT2000

Name Location2 Op3 Description
164.gzip bits.c(136:18) +u Bit manipulation
164.gzip bits.c(136:28) −u Bit manipulation
164.gzip deflate.c(540:21) −u Unused
164.gzip inflate.c(558:13) −u Bit manipulation
164.gzip inflate.c(558:22) −u Bit manipulation
164.gzip inflate.c(566:15) −u Incorrect memcpy guard (Listing 2)
164.gzip trees.c(552:25) +u Type promotion
164.gzip trees.c(990:38) −u Type promotion
175.vpr route.c(229:19) −u Hash
175.vpr util.c(463:34) ∗u RNG4(Listing 3)
175.vpr util.c(463:39) +u RNG4

175.vpr util.c(484:34) ∗u RNG4

175.vpr util.c(484:39) +u RNG4

176.gcc combine.c × 6 −s Find INT_MAX (Listing 4)
176.gcc cse.c × 5 +u Hash
176.gcc expmed.c × 15 ±u,s Bit manipulation
176.gcc expmed.c(2484:13) ∗u Inverse of x mod 2n

176.gcc expmed.c(2484:18) −u Inverse of x mod 2n

176.gcc expmed.c(2484:21) ∗u Inverse of x mod 2n

176.gcc insn-emit.c(3613:5) +u Range check
176.gcc loop.c(1611:19) ∗s Cost calculation bug (Listing 5)
176.gcc m88k.c(127:44) −u Bit manipulation (Listing 6)
176.gcc m88k.c(128:20) +u Bit manipulation
176.gcc m88k.c(128:20) −u Bit manipluation
176.gcc m88k.c(888:13) +u Range check
176.gcc m88k.c(1350:38) +u Range check
176.gcc m88k.c(2133:9) +u Range check
176.gcc obstack.c(271:49) −u Type promotion artifact
176.gcc real.c(1909:35) −u Emulating addition
176.gcc real.c(2149:18) ∗s Overflow check
176.gcc rtl.c(193:16) +u Allocation calc bug (Listing 7)
176.gcc rtl.c(193:16) ∗u Allocation calc bug
176.gcc rtl.c(216:19) ∗u Allocation calc bug
176.gcc rtl.c(216:5) +u Allocation calc bug
176.gcc stor-layout.c(1040:7) −s Find largest sint
176.gcc tree.c(1222:15) ∗s Hash
176.gcc tree.c(1585:37) −s Bit manipulation
176.gcc varasm.c(2255:15) ∗s Hash
186.crafty evaluate.c(594:7) −u Bit manipulation
186.crafty evaluate.c(595:7) −u Bit manipulation
186.crafty iterate.c(438:16) ∗s Statistic bug (100*a/(b+1))
186.crafty utility.c(813:14) +u RNG4

197.parser and.c × 6 +u,s Hash
197.parser fast-match.c(101:17) +u Hash
197.parser fast-match.c(101:8) +s Hash
197.parser parse.c × 10 +u,s Hash
197.parser prune.c × 7 +u,s Hash
197.parser xalloc.c(68:40) ∗u Compute SIZE_MAX >> 1 (Listing 8)
197.parser xalloc.c(70:19) +u Compute SIZE_MAX >> 1

253.perlbmk hv.c × 7 ∗u Hash
253.perlbmk md5c.c × 68 +u Hash
253.perlbmk pp.c(1958:14) −u Missing cast
253.perlbmk pp.c(1971:6) +u Missing cast
253.perlbmk regcomp.c(353:26) +s Unused
253.perlbmk regcomp.c(462:21) +s Unused
253.perlbmk regcomp.c(465:21) +s Unused
253.perlbmk regcomp.c(465:34) ∗s Unused
253.perlbmk regcomp.c(465:9) +s Unused
253.perlbmk regcomp.c(584:23) +s Unused
253.perlbmk regcomp.c(585:13) +s Unused
253.perlbmk sv.c(2746:19) −u Type promotion artifact
254.gap eval.c(366:34) ∗s Overflow check requiring -fwrapv
254.gap idents.c × 4 ∗u Hash
254.gap integer.c × 28 ∗s Overflow check requiring -fwrapv
254.gap integer.c × 4 +s Overflow check requiring -fwrapv
254.gap integer.c × 4 −s Overflow check requiring -fwrapv
255.vortex ut.c(1029:17) ∗u RNG4

1 Only Add, Sub, Mul, and Div errors were checked in this experiment.
(No Div overflows were found)

2 Source, and line:column. For space, we summarize frequent ones as ‘× n’.
3 Operation Type(s), and Signed/Unsigned.
4 (Pseudo-)Random Number Generation.
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Listing 3. Correct wraparound in a random number generator in 175.vpr
1 #define IA 1103515245u
2 #define IC 12345u
3 #define IM 2147483648u
4

5 static unsigned int c_rand = 0;
6

7 /* Creates a random integer [0... imax] (inclusive ) */
8 int my_irand (int imax) {
9 int ival;

10 /* c_rand = (c_rand * IA + IC) % IM; */
11 c_rand = c_rand * IA + IC ; // Use overflow to wrap
12 ival = c_rand & (IM - 1); /* Modulus */
13 ival = (int) (( float) ival * (float) (imax + 0.999)

/ (float) IM);
14 return ival;
15 }

Listing 4. Undefined overflow in 176.gcc to compute INT_MAX
1 /* (unsigned) <= 0 x7fffffff is equivalent to >= 0. */
2 else if (const_op == (( HOST_WIDE_INT) 1 << (

mode_width - 1)) - 1)
3 {
4 const_op = 0, op1 = const0_rtx;
5 code = GE;
6 }

reported by IOC and while investigating the report we
discovered this potential bug. Fortunately, the version of gzip
used in this experiment is rather old (based on 1.2.4) and
this issue has already been reported and fixed upstream6

as of version 1.4. Note that this bug existed in gzip as of
1993 and wasn’t fixed until 2010. Furthermore, the initial fix
was overkill and was later fixed7 to be the proper minimal
condition to protect the memcpy. This illustrates the subtlety
of overflow errors, and serves as a good example of well-
defined overflows leading to logic errors. In terms of the
taxonomy in Table II, this wraparound is Type 4.

2) 175.vpr: This benchmark had four unsigned
wraparounds caused by two similar implementations
of random number generation. As shown in Listing 3, the
developers documented their intentional use of unsigned
integer wraparound. These wraparounds are well-defined
and benign, and represent an important idiom for high-
performance code. They are Type 2.

3) 176.gcc: This benchmark had overflows at 48 static
sites, some undefined and some well-defined. Listing 4
shows code that tries to compute the largest representable
signed integer. HOST_WIDE_INT is an int and mode_width

is 32, making the expression equivalent to (1 << 31) - 1.
This expression is undefined in two different ways. First,
in C99 it is illegal to shift a “1” bit into or past the
sign bit. Second—assuming that the shift operation suc-
cessfully computes INT_MIN—the subtraction underflows. In
our experience, this idiom is common in C and C++ code.
Although compilers commonly give it the semantics that
programmers expect, it should be considered to be a time
bomb. A better way to compute INT_MAX is using unsigned

6http://git.savannah.gnu.org/gitweb/?p=gzip.git;a=commit;h=
b9e94c93df914bd1d9eec9f150b2e4e00702ae7b

7http://git.savannah.gnu.org/gitweb/?p=gzip.git;a=commit;h=
17822e2cab5e47d73f224a688be8013c34f990f7

Listing 5. Overflow in loop hoisting cost heuristic in 176.gcc
1 if (moved_once[regno ])
2 {
3 insn_count *= 2 ;
4 ...
5 if (already_moved[regno]
6 || (threshold * savings * m->lifetime) >=

insn_count
7 || (m->forces && m->forces ->done
8 && n_times_used[m->forces ->regno] == 1))
9 {

10 ...

Listing 6. Correct use of wraparound in bit manipulation in 176.gcc
1 #define POWER_OF_2_or_0(I) \
2 (((I) & ( (unsigned)(I) - 1 )) == 0)
3

4 int
5 integer_ok_for_set (value)
6 register unsigned value;
7 {
8 /* All the "one" bits must be contiguous .
9 * If so , MASK + 1 will be a power of two or zero.

*/
10 register unsigned mask = (value | ( value - 1 ));
11 return (value && POWER_OF_2_or_0 ( mask + 1 ));}

arithmetic. This overflow is Type 1.
4) 176.gcc: Listing 5 shows an undefined overflow that

may cause GCC to generate suboptimal code even in the
case where the signed overflow is compiled to a wraparound
behavior. The variable insn_count is used as a score in a
heuristic that decides whether to move a register outside of a
loop. When it overflows, this score inadvertently goes from
being very large to being small, potentially affecting code
generation. This overflow is Type 3.

5) 176.gcc: Listing 6 shows code that determines proper-
ties about the integer passed in at a bit level. In doing so, it
invokes various arithmetic operations (subtraction, addition,
and another subtraction in the POWER_OF_2_or_0 macro)
that wrap around. These are all on unsigned integers and are
carefully constructed to test the correct bits in the integers, so
all of these wraparounds are benign. This example is a good
demonstration of safe bit-level manipulation of integers, a
popular cause of wraparound in programs. This overflow is
Type 2.

6) 176.gcc: In Listing 7 we see an allocation wrapper
function that allocates a vector of n elements. It starts with
16 bytes and then adds (n − 1) ∗ 8 more to fill out the
array, since the beginning rtvec_def struct has room for
1 element by default. This works well enough (ignoring the
type safety violations) for most values of n, but has curious

Listing 7. Wraparound in an allocation function in 176.gcc
1 /* Allocate a zeroed rtx vector of N elements */
2 rtvec rtvec_alloc (int n) {
3 rtvec rt;
4 int i;
5

6 rt = (rtvec) obstack_alloc (rtl_obstack ,
7 sizeof (struct rtvec_def)
8 + (( n - 1) * sizeof (rtunion)));
9 ...

10 return rt;
11 }
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Listing 8. Compute SIZE_MAX >> 1 in 197.parser
1 void initialize_memory (void) {
2 SIZET i, j;
3 ...
4 for (i=0, j=1; i < j; i = j, j = (2*j+1) )
5 largest_block = i;
6 largest_block &= ALIGNMENT_MASK;
7 // must have room for a nuggie too
8 largest_block += -sizeof(Nuggie);

behavior when n = 0. Of course, since we are using a
dynamic checker, it actually is called with n = 0 during
a SPEC benchmarking run.

First, consider this code after the sizeof operators
are resolved and the promotion rules are applied:
16 + ((unsigned)(n-1)) * ((unsigned)8). When
n = 0, we immediately see the code casting −1 to unsigned,
which evaluates to UINT_MAX, or 232 − 1. The result is
then multiplied by eight, which overflows with a result of
232 − 8. Finally, the addition is evaluated, which produces
the final result of 8 after wrapping around again.

Although the overflow itself is benign, its consequences
are unfortunate. Only eight bytes are allocated but the
rtvec_def structure is 16 bytes. Any attempt to copy it by
value will result in a memory safety error, perhaps corrupting
the heap. This is one of the more intricate well-defined but
ultimately harmful overflows that we saw; it is Type 4.

7) 186.crafty: In this benchmark we found some Type 2
wraparounds in evaluate.c used to reason about a bitmap
representation of the chessboard. Additionally, there is a
Type 3 statistic miscalculation that seems like a minor
implementation oversight.

8) 197.parser: This benchmark had a number of over-
flows, including undefined signed overflows in a hash table
as indicated in Table III. Here we focus on an overflow in
197.parser’s custom memory allocator, shown in Listing 8.
This loop computes SIZE_MAX, setting largest_block to
SIZE_MAX >> 1. Unsigned overflow is used to determine
when j exceeds the capacity of size_t (note that i =

j when the loop terminates). While SIZE_MAX wasn’t in-
troduced until C99, it’s unclear why sizeof and a shift
weren’t used instead. This overflow is Type 2: well-defined
and benign.

9) 254.gap: Most of the undefined signed overflows in
the SPEC 2000 suite are currently latent: today’s compilers
do not break them by exploiting the undefinedness. 254.gap
is different: today’s compilers cause it to go into an infinite
loop unless two’s complement integer semantics are forced.
From the LLVM developers’ mailing list:8

“This benchmark thinks overflow of signed mul-
tiplication is well defined. Add the -fwrapv flag
to ensure that the compiler thinks so too.”

We did not investigate the errors in this benchmark due to
the complex and obfuscated nature of the code. However, as

8http://lists.cs.uiuc.edu/pipermail/llvm-commits/
Week-of-Mon-20110131/115969.html

Table IV
EXPOSING TIME BOMBS IN SPEC CINT 2006 BY MAKING UNDEFINED
INTEGER OPERATIONS RETURN RANDOM RESULTS." INDICATES THE
APPLICATION CONTINUES TO WORK;$ INDICATES THAT IT BREAKS.

Benchmark ANSI C / C++98 C99 / C++11
400.perlbench " "

401.bzip2 " $

403.gcc $ $

445.gobmk " "

464.h264ref " $

433.milc $ $

482.sphix3 " $

435.gromacs " "

436.cactusADM " $

shown in Table III, our tool reported many sources of signed
wraparound as expected. The signed overflows are Type 1,
as they rely on undefined behavior and there is no mention
of -fwrapv in the documentation or source code. Using
-fwrapv would make this Type 2, but non-portable because
it would be limited to compilers that support -fwrapv.

10) Shift Overflows: In our examination of SPEC
CINT2000 we also checked for shift errors, finding a total
of 93 locations. Of these, 43 were 1 << 31 which is an
idiom for INT_MIN that’s legal in ANSI C, and another 38
were shifts with a negative left operand which is also legal
in ANSI C. For space reasons, and because this behavior is
fairly benign (and well-defined until C99), these are omitted
from Table III and not discussed in detail.

Summary of Overflows in SPEC CINT2000: As shown
in Table III, we found a total of 219 static sources of
overflow in eight of the 12 benchmarks. Of these, 148 were
using unsigned integers, and 71 were using signed integers
(3̃2%). Overall, the most common uses of overflow were
for hashing (128), overflow check requiring fwrapv (37),
bit manipulation (25), and random number generation (6).
Finally, the vast majority of overflows found (both unsigned
and signed) were not bugs, suggesting occurrence of integer
overflow by itself is not a good indicator of a security
vulnerability or other functional error.

D. Latent Undefined Overflows: Harmless, or Time Bombs?

The presence of integer overflows that result in undefined
behavior in a well-worn collection of software like SPEC
CINT raises the question: Do these overflows matter? After
all—with the notable exception of 254.gap—the benchmarks
execute correctly under many different compilers. For each
undefined overflow site in a benchmark program that exe-
cutes correctly, there are two possibilities. First, the values
coming out of the undefined operation might not matter. For
example, a value might be used in a debugging printout, it
might be used for inconsequential internal bookkeeping, or
it might simply never be used. The second possibility is
that these overflows are “time bombs”: undefined behaviors
whose results matter, but that happen—as an artifact of
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today’s compiler technology—to be compiled in a friendly
way by all known compilers.

To find the time bombs, we altered IOC’s overflow handler
to return a random value from any integer operation whose
behavior is undefined by the C or C++ standard. This creates
a high probability that the application will break in an
observable way if its execution actually depends on the
results of an undefined operation. Perhaps amusingly, when
operating in this mode, IOC is still a standards-conforming
C or C++ compiler—the standard places no requirements
on what happens to a program following the execution of
an operation with undefined behavior.

SPEC CINT is an ideal testbed for this experiment be-
cause it has an unambiguous success criterion: for a given
test input, a benchmark’s output must match the expected
output. The results appear in Table IV. In summary, the
strict shift rules in C99 and C++11 are routinely violated
in SPEC 2006. A compiler that manages to exploit these
behaviors would be a conforming implementation of C or
C++, but nevertheless would create SPEC executables that
do not work.

E. Integer Overflows in the Wild

To understand the prevalence of integer overflow behav-
iors in modern open-source C and C++ applications, we ran
IOC on a number of popular applications and libraries. In all
cases, we simply compiled the system using IOC and then
ran its existing test suite (i.e., we typed “make check” or
similar). For this part of our work, we focused on undefined
behaviors as opposed to well-defined wraparounds. Also, we
explicitly avoided looking for bugs based on the stricter C99
and C++11 shift rules; developer awareness of these rules
is low and our judgment was that bug reports about them
would be unwelcome.

1) SQLite: SQLite is a compact DBMS that is extremely
widely used: it is embedded in Firefox, Thunderbird, Skype,
iOS, Android and others. In March 2011 we reported 13
undefined integer overflows in the then-current version.
Although none of these undefined behaviors were believed
to be sources of bugs at the time, some of them could have
been time bombs. The main developer promptly fixed these
overflows and IOC found no problems in the next version.

IOC also found a lossy conversion from unsigned int to
signed int that resulted in a negative value being used as an
array index. This code was triggered when SQLite attempted
to process a corrupted database file. The SQLite developer
also promptly fixed this issue.9

2) SafeInt and IntegerLib: SafeInt [7] is a C++ class for
detecting integer overflows; it is used in Firefox and also
“used extensively throughout Microsoft, with substantial
adoption within Office and Windows.” We tested SafeInt and
found 43 sites at which undefined overflows occurred, about

9http://www.sqlite.org/src/info/f7c525f5fc

Listing 9. An overflow in IntegerLib
1 int addsi (int lhs , int rhs) {
2 errno = 0;
3 if (((( lhs+rhs )^lhs)&(( lhs+rhs )^rhs))
4 >> (sizeof(int)*CHAR_BIT -1)) {
5 error_handler("OVERFLOW ERROR", NULL , EOVERFLOW);
6 errno = EINVAL;
7 }
8 return lhs+rhs;
9 }

half of which were negations of INT_MIN. The SafeInt devel-
opers were aware that their code performed this operation,
but did not feel that it would have negative consequences.
However, development versions of G++ do in fact exploit the
undefinedness of -INT_MIN and we found that when SafeInt
was built with this compiler, it returned incorrect results for
some inputs. Basically, the G++ optimizer finally triggered
this time bomb that had been latent in SafeInt for some time.
We informed the developers of this issue and they promptly
released a new version of SafeInt that contains no undefined
integer behaviors.

We tested another safe integer library, IntegerLib [10],
which was developed by CERT. This library contains 20
sites at which undefined integer overflows occur. One of
them is shown in Listing 9; it is supposed to check if
arguments lhs and rhs can be added without overflowing.
However, at Line 3 the arguments are added without being
checked, a bug that results in undefined behavior. A reason-
able solution for this case would be to cast the arguments
to an unsigned type before adding them.

3) Other Codes: Six overflows in the GNU MPC library
that we reported were promptly fixed. We reported 30
overflows in PHP; subsequent testing showed that 20 have
been fixed. We reported 18 overflows in Firefox, 71 in GCC,
29 in PostgreSQL, 5 in LLVM, and 28 in Python. In all
of these cases developers responded in a positive fashion,
and in all cases except Firefox and LLVM we subsequently
received confirmation that at least some of the overflows had
been fixed. Finally, we reported nine undefined overflows
in the GNU Multiple Precision Arithmetic Library, one in
BIND, and one in OpenSSL. We received no response from
the developers of these three packages.

Out of all the codes we tested, only three were completely
free of undefined integer overflows: Kerberos, libpng, and
libjpeg. All three of these packages have had security vul-
nerabilities in the past; undoubtedly the more recent versions
that we tested have been subjected to intense scrutiny.

V. PRIOR WORK

Integer overflows have a long and interesting history.
The popular Pac-Man game, released in 1980, suffered
from two known integer overflows that generate user-visible,
and surprising, artifacts [11], [12]. More recently, as buffer
overflows in C and C++ programs have been slowly brought
under control, integer overflows have emerged as an im-
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portant root cause of exploitable vulnerabilities in Internet-
facing programs [3], [13].

Solutions to integer overflow are almost as old as the
problem. For example, the IBM 702 provided a hardware-
based implementation of variable-precision integers more
than 50 years ago [14]. MacLisp, in the 1960s, provided the
first widely-available software implementation of arbitrary
precision arithmetic. Even so, for a variety of reasons, to-
day’s low-level programming languages eschew well-known
integer overflow solutions, forcing programmers to deal with
modulo integers and undefined behaviors.

Although there has been extensive work, especially during
the last decade or so, on tools and libraries for mitigating
integer-based security vulnerabilities, none of these tools
have been used to understand the patterns of integer nu-
merical overflows in real-world programs and benchmarks,
which is the main focus of our work. Instead, those efforts
have focused primarily on developing new tools and libraries
and evaluating their efficacy. In particular, none of these
projects has specifically attempted to examine the prevalence
of undefined behaviors, although there is data in some
of these papers about specific bugs. Moreover, none of
these projects has attempted to examine the prevalence of
intentional wraparound behaviors, or the idioms for which
they are used, except the limited data in the paper on RICH.

The RICH paper presents two relevant pieces of data [4].
First, it classifies integer numerical errors from MITRE’s
CVE database [15] as overflow, underflow, signedness, or
truncation errors. This classification does not show how
prevalent numerical errors are across programs because the
survey only looks at cases where overflows have already
been reported, not a general collection of programs. Second,
they briefly discuss some benign overflow behaviors that
are flagged as errors by their tool, and discuss for what
algorithms those overflows are used. That study provides
limited data about the prevalence and patterns of intentional
uses because their goal was different—to evaluate false
positives from RICH. We study the empirical questions
systematically and in more detail.

Other prior research on mitigating integer-based security
vulnerabilities is more tangential to our work. We briefly
discuss that work to illustrate the solutions available. The
tools vary from static analysis and dynamic instrumentation
to libraries with various strategies to mitigate the problem.

RICH is a compiler-based tool that instruments programs
to detect signed and unsigned overflows in addition to
lossy truncations and sign-conversions [4]. BRICK [16]
detects integer overflows in compiled executables using a
modified Valgrind [17]. The runtime performance is poor
(50X slowdown) and the lack of C-level type information
in executable code causes both false positives and false
negatives. SmartFuzz [18] is also based on Valgrind, but
goes further by using whitebox testing to generate inputs
leading to good test coverage. IntScope [19] is a static binary

analysis tool for integer vulnerabilities.
The As-if Infinitely Ranged (AIR) integer model [20] is

an ambitious solution that is intended to be used online. It
simply provides well-defined semantics for most of C/C++’s
integer-related undefined behaviors. AIR provides a strong
invariant—integer operations either produce representable
results or else trap—while being carefully designed to
minimally constrain the optimizer. An alternative online
solution is provided by libraries such as SafeInt [7] and
IntegerLib [10], where checked operations must be explicitly
invoked and overflows explicitly dealt with. SafeInt, how-
ever, is quite easy to use because it exploits C++’s exceptions
and operator overloading.

VI. CONCLUSION

We have conducted an empirical study of the prevalence
and patterns of occurrence of integer overflows in C and
C++ programs, both well-defined and undefined, and both
intentional and inadvertent. We find that intentional uses
of wraparound behaviors are much more common than is
widely believed, e.g., over 200 distinct locations in SPEC
CINT2000 alone. We identify a wide range of algorithms
for which programmers use wraparound intentionally.

Unfortunately, we also observe that some of the inten-
tional uses are written with signed instead of unsigned
integer types, triggering undefined behaviors in C and C++.
Optimizing compilers are free to generate arbitrary results
for such code. In fact, we identified a number of lurking
“time bombs” that happen to work correctly with some
of today’s compilers but may fail with future compiler
changes, such as more aggressive optimizations. Finally, we
identified a number of previously unknown numerical bugs
in widely used open source software packages (and even in
safe integer libraries!), many of which have since been fixed
or acknowledged as bugs by the original developers. Even
among mature programs, only a small fraction are free of
integer numerical errors.

Overall, based on the locations and frequency of numer-
ical errors, we conclude that there is widespread misunder-
standing of the (highly complex) language rules for integer
operations in C/C++, even among expert programmers. Our
results also imply that tools for detecting integer numerical
errors need to distinguish intentional from unintentional uses
of wraparound operations—a challenging task—in order to
minimize false alarms.
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