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Abstract
We designed, implemented, and deployed Alive2: a bounded
translation validation tool for the LLVM compiler’s interme-

diate representation (IR). It limits resource consumption by,

for example, unrolling loops up to some bound, which means

there are circumstances in which it misses bugs. Alive2 is

designed to avoid false alarms, is fully automatic through

the use of an SMT solver, and requires no changes to LLVM.

By running Alive2 over LLVM’s unit test suite, we discov-

ered and reported 47 new bugs, 28 of which have been fixed

already. Moreover, our work has led to eight patches to the

LLVM Language Reference—the definitive description of the

semantics of its IR—and we have participated in numerous

discussions with the goal of clarifying ambiguities and fixing

errors in these semantics. Alive2 is open source and we also

made it available on the web, where it has active users from

the LLVM community.

CCS Concepts: • Software and its engineering→ Soft-
ware verification; Software verification and validation;
Compilers; Semantics; • Theory of computation→ Pro-
gram verification; Program semantics.

Keywords: Translation Validation, Compilers, IR Semantics,

Automatic Software Verification
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1 Introduction
LLVM is a popular open-source compiler that is used by

numerous frontends (e.g., C, C++, Fortran, Rust, Swift), and

that generates high-quality code for a variety of target ar-

chitectures. We want LLVM to be correct but, like any large

code base, it contains bugs. Proving functional correctness of

about 2.6 million lines of C++ is still impractical, but a weaker

formal technique—translation validation—can be used to cer-

tify that individual executions of the compiler respected its

specification.

A key feature of LLVM that makes it a suitable platform

for translation validation is its intermediate representation

(IR), which provides a common point of interaction between

frontends, backends, and middle-end transformation passes.

LLVM IR has a specification document,
1
making it more

amenable to formal methods than are most other compiler

IRs. Even so, there have been numerous instances of ambi-

guity in the specification, and there have also been (and still

are) points of disagreement between the specification and

the implementation. These disagreements span the spectrum

from straightforward bugs all the way to fundamental flaws

in the IR’s design.

The technical core of our work is Alive2, the first fully

automatic bounded translation validation tool for LLVM that

supports all of its forms of undefined behavior (UB). Alive2

works with any intra-procedural optimization, and does not

require any changes to the compiler. It checks pairs of func-

tions in LLVM IR for refinement. A refinement relation is sat-

isfied when, for every possible input state, a target function
displays a subset of the behaviors of a source function. Refine-
ment allows a transformation to remove non-determinism,

but not to add it. In the absence of undefined behaviors,

refinement degenerates to simple equivalence.

Handling undefined behavior (UB) is important because

LLVM’s optimizers frequently take advantage of it. UB is

heavily used by frontends to communicate invariants about

the code to optimizers. Therefore, in practice, any optimiza-

tion verification tool that targets LLVM (or any other modern

compiler) needs to support UB; otherwise the number of false

alarms would make the tool impractical.

1https://llvm.org/docs/LangRef.html
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Making Alive2 fully automatic necessitated some com-

promises. Our goal is a zero false-alarm rate, so we err on

the side of soundness. We make use of bounded translation

validation to bound the resources used by each verification

task. For example, we unroll loops up to a given bound, and

we limit execution time as well as memory consumption.

Alive2 has found, and continues to find, bugs in LLVM

where optimization passes violate refinement. Some of these

bugs stem from routine implementation errors, but the broader

situation is much more interesting. LLVM is a large project

that moves rapidly and has hundreds of people actively con-

tributing to its code base. Given the highly informal English-

language IR specification and the loose coordination among

developers, it is inevitable that the lack of consensus on cor-

ner cases in the semantics leads to subtle compiler defects.

For example, the LLVM IR specification was vague about the

interaction between the select instruction (similar to C’s

ternary operator) and poison values (a form of UB). There

are at least five possible semantics for this interaction and,

using Alive2, we found that several of them were in active

use in different parts of the compiler! This discrepancy led to

end-to-end miscompilations in the wild. Fixing this kind of

defect goes well beyond what would normally be considered

formal methods research: we had to explain the problem

to the LLVM developer community, present the different

choices for the semantics, reach consensus on which one of-

fered the best overall set of tradeoffs, and then help fix both

the specification and the incorrect elements of the imple-

mentation. To be clear, we do not insist that LLVM conforms

to our formalization of its semantics, but we do insist that

it conforms to some semantics, and we have been iterating

with the community in order to figure out what it should be.

Our work has emphasized transitioning formal methods

tools and their results into the LLVM community, including:

• Creating several Alive2-based tools such as plugins

for opt (LLVM’s standalone IR optimizer) and Clang

(LLVM’s C/C++ frontend) that can be used to check

refinement after every optimization pass, and a refine-

ment checker for pairs of files containing LLVM IR.

• Since summer of 2019, continuously monitoring the

LLVM unit test suite using Alive2, resulting in 47 bug

reports, of which 28 have been fixed.

• Contributing 7 bug fixes to LLVM.

• Contributing 8 patches to LLVM IR’s specification doc-

ument and leading the discussion for fixing several

other inconsistencies in the semantics.

• Running larger-scale experiments doing translation

validation while compiling small applications.

• Engaging with the LLVM community on mailing lists

and at their annual developers’ meeting, where we

have presented three talks about our work.

• ReleasingAlive2 as open-source software (https://github.
com/AliveToolkit/alive2) and also making it available

through a web site (https://alive2.llvm.org/), obviating
the need for most developers to compile our tools.

Our long-term goal is to collaborate with the LLVM com-

munity to iteratively improve the compiler implementation

and the semantics of its IR, bringing the two into confor-

mance while still meeting LLVM’s other goals such as high-

quality code generation. We also want to make Alive2 usable

enough that LLVM developers can easily check candidate

transformations for correctness before pushing them into

the compiler.

2 Overview of LLVM
LLVM has a typed, SSA-based IR, supporting fixed bit-width

integers, floats, pointers, vectors, arrays, and structures. Vec-

tors are meant to be used in SIMD operations and only sup-

port indexing with constants, while arrays can be indexed

with variables. Vectors are homogeneous whereas structures

(which also only support indexing with constants) are het-

erogeneous.

LLVM’s IR has two forms of undefined behavior (UB): im-

mediate UB and deferred UB (undef and poison values) [24].

Immediate UB (or just “UB,” for short) is the strongest form

of undefined behavior and it is used for operations that trap

on common CPUs, such as division by zero or dereferencing

a null pointer. These operations cannot, in general, be spec-

ulated by compiler transformations, because this can make

a program more undefined.

Deferred UB is used to define the semantics of operations

for which the compiler either does not wish to impose a

specific result, for performance reasons, or the operation is

mathematically undefined. For example, shifting an integer

by an amount not less than its bit-width produces different

results on ARM and x86 CPUs, and therefore LLVM defines it

as poison. Using poison rather than UB is important because

it permits the compiler to speculatively execute potentially-

undefined operations, for example by hoisting them out of

loops or by flattening simple conditional code.

Deferred UB can turn into immediate UB when observed

by certain operations. For example, branching on an undef or
poison value is UB. In contrast, arithmetic operations simply

propagate poison (akin to NaN in IEEE floating point).

Undef values are weaker than poison: they represent any

value of their type and they do not taint operations like

poison. A complication with undef values is that they may

yield a different value each time they are observed. For exam-

ple, undef & 1 can arbitrarily take the value 0 or 1 each time

this expression is observed, while poison & 1 is poison. Un-
def values are mostly used to define the semantics of loading

non-initialized memory.

Figure 1 illustrates some features of LLVM IR. This func-

tion takes two 32-bit integers as arguments, but there are

actually 2
2
32

possible values for each argument because each

https://github.com/AliveToolkit/alive2
https://github.com/AliveToolkit/alive2
https://alive2.llvm.org/


Alive2: Bounded Translation Validation for LLVM PLDI ’21, June 20–25, 2021, Virtual, Canada

define i32 @fn(i32 %a, i32 %b) {
%t = add i32 %a, %a
%c = icmp eq %t, 0
br i1 %c, label %then, label %else

then:
%q = shl i32 %a, 2
ret i32 %q

else:
%r = and i32 %b, 1
ret i32 %r

}

Figure 1. Example LLVM IR function

may be poison or (perhaps partially) undef .2 The first line
of the function adds the first argument %a to itself. This is

not equivalent to multiplying %a by two (resulting in an even

number or poison) if %a is undef . Since undef may yield a

different value each time it is observed, the two references to

%a in the add instruction may not resolve to the same value

and therefore the result of the addition could be odd.

The function then branches based on whether the result of

the addition is zero or not. The branch instruction triggers UB

if its input is either undef or poison. Therefore, the compiler

can assume that from that point on %c is not poison, nor is
%t or %a (as the integer comparison and integer arithmetic

instructions propagate poison).
The then basic block returns %a left shifted by two, and

because of the reasoning of the previous paragraph, we know

that %q is not poison. The else basic block returns an ex-

pression based on %b. If %b is undef , the returned value is a

partial undef value that can evaluate to zero or one.

Besides undef values, LLVM has one more form of non-

determinism through its freeze instruction. This instruction
is used to control UB by stopping propagation of undef and
poison. The result of freeze is a well-defined, arbitrarily

chosen singleton value. Consider the following example:

%f = freeze i32 %a
%b = add i32 %f, %f

If %a is undef , %f will take an arbitrary, yet fixed value.

Therefore, %b will always be an even number.

3 Encoding LLVM IR Semantics in SMT
In this section we explain how Alive2 encodes the state of

an LLVM IR function and how the semantics of the IR are

specified. Figure 2 defines values, the register file, and the

program state. A program state consists of a register file, a

2
A large number of LLVM bugs have been caused by developers who ne-

glected to consider the possibility that values flowing into a transformation

they implemented could be undef or poison. The huge number of possi-

ble values for each argument is because partial undefs are effectively a

powerset of its type’s values.

Num(sz) : := { 𝑖 | 0 ≤ 𝑖 < 2
sz }

BlockID : := N
Offset : := Num(64)
Pointer : := BlockID × Offset

DefinedValue : := Int ⊎ Pointer ⊎ Float

Value : := P(DefinedValue) ⊎ { poison } ⊎ Aggregate

Aggregate : := list Value

Memory : := BlockID → MemBlock

RegFile : := string → Value

State : := RegFile ×Memory × bool

ValueNoRet : := Value ⊎ { noreturn }
FinalState : := ValueNoRet ×Memory × bool

Figure 2. Definitions. P is the power set operation.

(𝜄 = “𝑟 = add isz 𝑜𝑝1, 𝑜𝑝2”)
add-poison

⟦𝑜𝑝1⟧𝑅 = poison ∨ ⟦𝑜𝑝2⟧𝑅 = poison

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ poison], 𝑀,𝑏⟩

add

⟦𝑜𝑝1⟧𝑅 = 𝑣1 ⟦𝑜𝑝2⟧𝑅 = 𝑣2 𝑣1, 𝑣2 ∈ P(Int)
𝑣 ′ = { (𝑖1 + 𝑖2)mod 2

sz | 𝑖1 ∈ 𝑣1 ∧ 𝑖2 ∈ 𝑣2 }

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ 𝑣 ′], 𝑀,𝑏⟩

(𝜄 = “𝑟 = add nuw isz 𝑜𝑝1, 𝑜𝑝2”)
add-nuw-overflow

⟦𝑜𝑝1⟧𝑅 = 𝑣1 ⟦𝑜𝑝2⟧𝑅 = 𝑣2 𝑣1, 𝑣2 ∈ P(Int)
∃𝑖1 ∈ 𝑣1, 𝑖2 ∈ 𝑣2 . 𝑖1 + 𝑖2 ≥ 2

sz

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ poison], 𝑀,𝑏⟩

(𝜄 = “𝑟 = udiv isz 𝑜𝑝1, 𝑜𝑝2”)
udiv-ub

⟦𝑜𝑝2⟧𝑅 = 𝑣2
𝑣2 = poison ∨ 0 ∈ 𝑣2

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅,𝑀, true⟩

udiv-poison

⟦𝑜𝑝1⟧𝑅 = poison ⟦𝑜𝑝2⟧𝑅 = 𝑣2
𝑣2 ∈ P(Int) ∧ 0 ∉ 𝑣2

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ poison], 𝑀,𝑏⟩

(𝜄 = “𝑟 = freeze isz 𝑜𝑝”)
freeze-poison

⟦𝑜𝑝⟧𝑅 = poison
𝑣 ∈ Num(sz)

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ {𝑣}], 𝑀,𝑏⟩

freeze-pick

⟦𝑜𝑝⟧𝑅 = 𝑣 𝑣 ′ ∈ 𝑣

𝑣 ∈ P(DefinedValue)

⟨𝑅,𝑀,𝑏⟩ 𝜄
↩−→ ⟨𝑅 [𝑟 ↦→ {𝑣 ′}], 𝑀,𝑏⟩

Figure 3. Semantics of selected instructions

memory, and a flag stating whether the program has exe-

cuted UB. The program state is updated after the execution

of each instruction.

A register file assigns a valuation to each register. A value

is either poison or a set of integer/floating-point numbers or

pointers. The set of values is not a singleton if the value is

undef . When a value is used, one of the elements of the set is

picked non-deterministically. Memory is a map from block id

to its properties, including the block’s data, size, alignment,

whether it is alive, etc. Each allocation gets a fresh block.

We give the semantics for a few example instructions in

Figure 3. Let tuple 𝑆 = ⟨𝑅,𝑀,𝑏⟩ be a program state (resp.
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register file, memory, UB flag). The notation 𝑆
𝜄
↩−→ 𝑆 ′ defines

the resulting state S’ of executing instruction 𝜄 on state 𝑆 .

The final state is similar to a register valuation, but in-

cludes the symbol noreturn. In LLVM, functions can end

with a call instruction to a function that does not return (e.g.,

exit). This is a code-size optimization as it enables the com-

piler to skip inserting code to cleanup the stack and return

to the callee, for example.

3.1 Register File
For each program register in the register file, we maintain

a pair of SMT expressions: (value, ispoison). The second el-

ement is a Boolean indicating whether the value is poison

or not. The first element’s value is only meaningful when

the ispoison flag is false. The value is an SMT expression

of appropriate type, depending on the program register’s

type. Integers are encoded with bit-vectors, while floats use

SMT’s FPA theory. Aggregates (arrays, vectors, and structs)

are encoded by converting each element to a bit-vector and

then concatenating them. Similarly, pointers are encoded

with a bit-vector concatenation of the individual components

(block id and offset).

3.2 Function Arguments
We assume function arguments can be arbitrary, and there-

fore these can be either undef , poison, or well-defined. We

use four SMT variables to encode each function argument:

two Booleans to indicate if the argument is undef or poison,
a variable to hold the well-defined value, and a fresh quan-

tified variable to represent all the values of a type for the

undef case.
Putting it together, the encoding of a function argument

%a is the pair: (ite(isundef%a, undef1,%a), ispoison%a). For
aggregates, we compute this expression element-wise, allow-

ing for example each element to be poison or not indepen-

dently.

Our encoding for undef values is an under-approximation,

since we only allow an argument to be either fully undef
or not undef at all. This disallows behaviors where, e.g.,

only one of the input bits is undef (like the result of “and
i32 undef, 1”). Partial undef values spawn a doubly-

exponential state space (2
2
𝑛−1 for each n-bit integer). By sup-

porting only fully undef values, we reduce the complexity

to a “mere” exponential state space. We believe the potential

for missed bugs is small, and that this is a good tradeoff.

3.3 Undef Values
We have seen that undef can yield a different value each time

it is observed. Therefore, we need to create a fresh variable

for each undef each time a value is observed. We keep track

of the undef SMT variables used for each expression in the

register file. When we lookup a value in the register file, we

rewrite all undef variables with fresh variables.

For example, assume that we have the following value in

the register file for %a:

𝑅 [%a] = (ite(isundef%a, undef1,%a), ispoison%a)
Evaluating the instruction %b = add %a, %a yields the

following expression for the value (ignoring the poison bit):

ite(isundef%a, undef2,%a) + ite(isundef%a, undef3,%a)
Variables undefi are appropriately quantified so they can

take any value of the type. We describe this process later in

Section 5.

The freeze instruction stops propagation of both undef
and poison. The only difference between freeze undef and
undef is that the former evaluates to the same (arbitrary)

value on every use. Therefore, we just need to clear the set of

undef SMT variables in the register file such that the undef

variables are not replaced with fresh ones on each lookup.

Detecting undef boils down to detecting if an expression

can evaluate to more than one value. The straightforward

way for checking this for an expression 𝑒 with the set of un-

def variables 𝑣 is to check if ∃𝑣,𝑤 . 𝑒 ≠ 𝑒 [𝑤/𝑣] is satisfiable
(with 𝑤 being a set of fresh variables). To reduce the num-

ber of variables, we use an alternative encoding: we replace

variables 𝑣 with a constant, 𝑒𝑘 = 𝑒 [𝑘/𝑣]. If the comparison

𝑒 = 𝑒𝑘 is valid, then 𝑒 is not undef since there is no model for

the undef variables that makes 𝑒 different than a base value

(𝑒𝑘 ). We tried the values 0 and 1 for this constant, but neither

worked well because they are identity/absorbent for some

arithmetic operations and are folded away by the solver. This

tends to destroy syntactic similarity between 𝑒 and 𝑒𝑘 , con-

fusing our SMT solver’s quantifier instantiation algorithm.

The constant 2 also does not work well: it is a power of 2 and

thus simplifies, e.g., multiplications. Therefore, we replace

undef values with 3 when creating 𝑒𝑘 .

3.4 Control Flow
The flow of execution in LLVM is controlled using (condi-

tional) branch, switch, function calls (Section 6), and ex-

ceptions (invoke instruction). Support for loops in Alive2 is

described in Section 7.

As LLVM’s IR is in SSA form, merge of values from differ-

ent paths through the control-flow graph (CFG) is already

explicit through the phi instruction. We merge the multiple

SMT expressions from the incoming paths of a basic block

trivially using the phi instructions, ending up with a single

SMT expression per register per function. We do not fork

expressions across paths in the CFG.

3.5 Floating-Point Numbers
LLVM’s floating-point (IEEE-754) instructions trivially map

to SMT’s FPA theory. A notable exception is LLVM’s re-

mainder operation (equivalent to C’s fmod) which has dif-

ferent rounding behavior than SMT’s (equivalent to C’s

remainder). Additionally, we do not support non-IEEE-754
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types such as x86’s 80-bit floats, as SMT’s FPA theory does

not support those either.

In IEEE-754, the bit representation of NaN is not unique,

and different CPUs use different bit patterns in practice. This

leaves us with the question of what should be the semantics

of the bitcast instruction from float to integer (not to be

confused with an arithmetic cast, where the float’s value is

truncated to an integer).

There are essentially two choices:

• bitcast from integer to float and then back to integer

preserves the bit pattern (such a round-trip is a NOP).

• bitcast does not preserve NaN’s bit pattern. When

a NaN is bit casted to integer, it gets assigned a non-

deterministic bit pattern.

Unfortunately, either semantics makes some of LLVM’s

optimizations incorrect. At the time of writing there was

no consensus in the community on which of the semantics

to adopt. We chose the second one in Alive2, as it supports

processors that canonicalize NaN bit patterns when a NaN

is loaded into a floating-point register.

3.6 Return Value
As previously mentioned, a function in LLVM may either re-

turn a value or reach a “no-return” instruction. We therefore

compute two expressions: the returned value, and a Boolean

indicating in which cases the function reaches a “no-return”

instruction. To compute the final state, we merge the states

of each of the return instructions through a linear chain of

ite expressions.
The SMT encoding for the register file of the function

shown in Figure 1 is:

𝑅 [%a] = (ite(isundef%a, undef1,%a), ispoison%a)
𝑅 [%b] = (ite(isundef

%b, undef2,%b), ispoison%b)
𝑅 [%t] =

(
ite(isundef%a, undef3,%a) + ite(isundef%a, undef4,%a),
ispoison%a

)
𝑅 [%c] =

(
ite(ite(isundef%a, undef5,%a) +

ite(isundef%a, undef6,%a) = 0, 1, 0), ispoison%a
)

𝑅 [%q] = (shl(%a, 2), false)
𝑅 [%r] = (ite(isundef

%b, undef7,%b) & 1, ispoison
%b)

Each use of an undef value creates a new fresh variable to

account for the case that each observation may yield a differ-

ent value. Perhaps the most surprising is the value of 𝑅 [%q]
as it ignores the cases when %a is undef or poison. This is an
optimization: since branching on a non-well-defined value

is UB, we can assume that %t is well-defined and transitively
%a as well.

Another expression that might be surprising is that of

𝑅 [%c]. LLVM has no Boolean type and uses 1-bit integers

instead, which explains the extra ite to convert the Boolean

expression to a bit-vector.

The final state for the same function is as follows:

𝑟𝑒𝑡𝑣𝑎𝑙 =
(
ite(%a + %a = 0, shl(%a, 2),

ite(isundef
%b, undef7,%b) & 1),

ite(%a + %a = 0, false, ispoison
%b)

)
𝑢𝑏 = isundef%a ∨ ispoison%a
𝑛𝑜𝑟𝑒𝑡 = false

We perform the same optimization as described for the

register file. By taking advantage of the cases that are guar-

anteed to be UB, we are able to simplify the formulas for the

return value.

3.7 Additional Optimizations
We do several optimizations to shrink the size of SMT formu-

las by taking advantage of invariants that are deduced dur-

ing verification condition generation. For example, we track

whether a register is undef or poison in a flow-sensitive way.

This information is deduced from the cases where it would be

UB if a register was undef or poison (such as when branch-

ing on that register). It does not matter whether a value is

well-defined if the program already triggered UB.

Another set of facts we propagate in a flow-sensitive way

is the set of unused undefi variables to avoid rewriting expres-
sions on each register file lookup. When we lookup the value

of, say, %r in the register file, the undefi variables are not
rewritten if this register was not used before in the current

basic block or in any predecessor. This reduces the number

of formula rewrites and the number of quantified variables.

As shown in the previous example, we attempt to compute

closed-form expressions to determine when registers are

undef for common patterns. For example, the expression

ite(isundef%a, undef1,%a) = 0 is undef iff isundef%a is true.
This expression is simpler than the general formula and does

not use quantified variables.

We instantiate the isundef%r variables in the final SMT

formula (i.e., replace∃𝑥 . 𝑓 (𝑥) with∃𝑥 . (¬𝑥∧𝑓 (false))∨(𝑥∧
𝑓 (true))), up to a bound to limit the exponential growth. This

helps refinement proofs substantially as the non-undef case
often becomes trivial and the fully undef case also becomes

simpler (as the SMT solver can replace, e.g., undef1 + undef2
with undef ′ as these undefi variables often only appear once

in the formula).

3.8 Dealing with Unsupported LLVM Features
In its role as a robust IR supporting a number of source

languages, a number of target architectures, and aggressive

optimization, LLVM IR has accrued many features. Alive2

does not handle them all; we have not yet supported excep-

tions (the invoke instruction), function pointers, volatile

variables, pointer-to-integer casts, type-based alias analy-

sis,
3
and many of LLVM’s intrinsics, which are essentially

non-core IR instructions. Out of the 258 non-experimental

platform-independent intrinsics, we support 54 (21%).

3
No formal model of type-based aliasing exists, so far.
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Beyond intrinsics, LLVM has coarse-grained semantics for

463 library functions including some from the C library, C++

library, Objective C runtime, etc. These specifications include

predicates such as: the function always returns a non-null

pointer, the function always/never returns, the function only

reads/modifies objects referenced by the arguments, and so

on. Since LLVM optimization passes take advantage of these

predicates to limit the scope of behavior of function calls,

Alive2 has to mirror this knowledge. For example, LLVM

transforms a printf() of a constant string into a call to

puts(); this looks like a failure of refinement unless we

equip Alive2 with analogous knowledge about this pair of

functions. So far we have special-cased the semantics of 117

library functions, some of which only partially.

Amajor design goal of Alive2 is to avoid false alarms while

attempting to verify as much as possible. Therefore, when it

encounters an unsupported feature, Alive2 attempts to pro-

duce an over-approximation of the semantics of that feature.

For example, if we encounter a call to an unsupported intrin-

sic, we encode it as a call to an unknown function, which can

potentially modify all the memory and return an arbitrary

value. To avoid false alarms, we tag the function call as being

an over-approximation. If later on Alive2 finds a bug in a

transformation, we check whether an over-approximation

was involved. To this end, we record all SMT expressions

produced when encoding over-approximated features. Since

the SMT solver we use produces partial models (i.e., it may

leave some variables unassigned when it declares a formula

satisfiable if those variables can take any value without mak-

ing the formula unsatisfiable), we check if any expression

from over-approximated features is in the model. If not, it

means the bug Alive2 found is real as it does not depend on

the specifics of an over-approximated feature. Otherwise, if

some expression is in the model, we cannot conclude any-

thing: it may or may not be a bug in LLVM. In this case, we

do not report the transformation as incorrect, but instead

list the over-approximated features that prevented Alive2

from verifying the transformation.

Some features are not easily over-approximated, such as

function pointers (unsupported at the moment). We skip

functions containing any of such features.

4 Encoding Memory in SMT
We briefly describe our SMT encoding of LLVM’s memory

model [21].
4
In this paper, we only consider logical pointers

(i.e., integer-to-pointer casts are not supported) and a single

address space.

Memory blocks. The unit of memory allocation is the

memory block. Each stack/global variable gets a distinct

block, and calls to malloc create a fresh block. Each block is

uniquely identified with a non-negative integer bid.

4
A more detailed description is given in [23].

After loops are unrolled, we statically compute the maxi-

mum number of memory blocks a program can touch so we

can bound the number of bits needed to encode bid. We need

to take into account the number of pointer inputs, stack and

global variables, and instructions that may return a fresh

pointer (e.g., function calls that return a pointer).

Pointers. A pointer is defined as a pair (bid, off) which is

encoded as a bit-vector by concatenating bid and off (SMT

variables if the pointer may alias multiple blocks). null is

defined as (0, 0) pointing to a null block having size 0. undef
pointers are defined as (𝛽,𝜔) where 𝛽 , 𝜔 are fresh variables.

The pointer arithmetic instruction (gep 𝑝𝑡𝑟, 𝑖) returns a

new pointer with 𝑖 added to 𝑝𝑡𝑟 ’s offset (bid is unchanged).

If the inbounds attribute is present, the result is poison if

either the base or the resulting pointers are out-of-bounds.

Block attributes and bytes. Each block has associated

properties such as size, alignment, whether it is read-only,

whether it is alive, allocation type, and physical address.

To encode a memory block’s value, we use an SMT array

from pointer to byte. Bytes have three possible types: poison,

pointer, and non-pointer. A non-pointer byte uses an 8-bit

bit-vector for the value, as well as an 8-bit mask to record

which bits are poison. Floats are converted to bit-vectors for

storage.

Memory accesses. Apossiblymulti-byte load/store is split

into single-byte loads/stores. These are then combined to

produce a value of appropriate type (and size, as types’ sizes

are not necessarily multiples of bytes).

The result of a load is poison if any of the following holds:

(1) any of the loaded bytes is poison, (2) some of the loaded

bytes have different types, (3) the load type does not match

the stored byte’s type (e.g., attempt to load a pointer from a

block that has an integer stored).

We keep track of the undef variables used in stored values

and pointers. These have to be replaced with fresh variables

in each loaded value. Memory accesses using out-of-bounds

pointers or to already-freed blocks trigger UB. Store opera-

tions also trigger UB if the block is read-only.

The free(𝑝𝑡𝑟 ) operation updates the liveness of the corre-

sponding block. It triggers UB if the block is already dead or

not allocated on the heap, or if the offset is not zero.

5 Verifying Correctness of Optimizations
To verify correctness of LLVM optimizations, we establish

a refinement relation between source (original) and target

(optimized) code. We cannot simply check for equivalence

because UB-related transformations are ubiquitous.

Given functions 𝑓𝑠𝑟𝑐 and 𝑓𝑡𝑔𝑡 , a set of input and output vari-

ables 𝐼𝑠𝑟𝑐 /𝐼𝑡𝑔𝑡 and𝑂 (which include, e.g., memory, side effects,

and the return value), a set of non-determinism variables
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element-nonptr

𝜈 ∈ Int ⊎ Float

𝜈 ⊒𝑒 𝜈

element-ptr

𝜈, 𝜈 ′ ∈ Pointer pointerRefined(𝜈, 𝜈 ′)
𝜈 ⊒𝑒 𝜈 ′

value-poison

𝑣 ∈ Value

poison ⊒ 𝑣

value-noreturn

𝑣 = noreturn

𝑣 ⊒ 𝑣

value-undef

𝑣 ∈ P(DefinedValue)
𝑣 ′ ∈ P(DefinedValue)

∀𝜈 ′ ∈ 𝑣 ′ . ∃𝜈 ∈ 𝑣 . 𝜈 ⊒𝑒 𝜈 ′

𝑣 ⊒ 𝑣 ′

value-aggregate

𝑣, 𝑣 ′ ∈ Aggregate

|𝑣 | = |𝑣 ′ |
∀𝑖 . 𝑣 [𝑖] ⊒ 𝑣 ′[𝑖]

𝑣 ⊒ 𝑣 ′

final-state-ub

𝑟, 𝑟 ′ ∈ ValueNoRet

𝑀,𝑀 ′ ∈ Memory

𝑢𝑏 ′ ∈ bool

⟨𝑟, 𝑀, true⟩ ⊒𝑠𝑡 ⟨𝑟 ′, 𝑀 ′, 𝑢𝑏 ′⟩

final-state

𝑟, 𝑟 ′ ∈ ValueNoRet

𝑀,𝑀 ′ ∈ Memory

𝑟 ⊒ 𝑟 ′ 𝑀 ⊒𝑚 𝑀 ′

⟨𝑟, 𝑀, false⟩ ⊒𝑠𝑡 ⟨𝑟 ′, 𝑀 ′, false⟩

Figure 4. Refinement of value and final state

𝑁𝑠𝑟𝑐 /𝑁𝑡𝑔𝑡 , 𝑓𝑠𝑟𝑐 is refined by 𝑓𝑡𝑔𝑡 iff:

∀𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ,𝑂 .
(
𝐼𝑠𝑟𝑐 ⊒ 𝐼𝑡𝑔𝑡 ∧ ∃𝑁𝑡𝑔𝑡 . 𝑓𝑡𝑔𝑡 (𝐼𝑡𝑔𝑡 , 𝑁𝑡𝑔𝑡 ,𝑂)

)
=⇒

(∃𝑁𝑠𝑟𝑐 . 𝑓𝑠𝑟𝑐 (𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ,𝑂))

In other words, for any fixed input 𝐼𝑠𝑟𝑐 , if the target func-

tion 𝑓𝑡𝑔𝑡 produces a given output 𝑂 with some internal non-

determinism 𝑁𝑡𝑔𝑡 and refined input 𝐼𝑡𝑔𝑡 (equal to or more

defined than 𝐼𝑠𝑟𝑐 ), the source functionmust produce the same

output for some internal non-determinism 𝑁𝑠𝑟𝑐 . Therefore,

the target function is allowed to remove non-determinism

so it generates fewer outputs for a given input, but not the

other way around.

We only support intraprocedural optimizations, and there-

fore checking refinement of each function individually is

sufficient to establish refinement of an entire program. The

definition above ensures compositionality: if a function’s in-

puts are refined, so are the outputs. This definition is assumed

at call sites, and established for each function, justifying why

checking each function individually is sufficient.

In LLVM, loops tagged with the mustprogress attribute
must either terminate or perform externally observable ac-

tions infinitely often. The function triggers UB otherwise.

Therefore, every function in LLVM with only such loops

terminates, perhaps triggering UB. In practice, the compiler

can only prove non-termination of simple cases and there-

fore we only need to support those. Moreover, given that

we do bounded translation validation, we do not support

non-terminating loops without the mustprogress attribute.

5.1 Refinement of Program State
We start by defining refinement between values. A value 𝑣 is

refined by another value 𝑣 ′, or 𝑣 ⊒ 𝑣 ′, if 𝑣 ′ is equivalent to or
more defined than 𝑣 . Figure 4 gives rules for the definition

of 𝑣 ⊒ 𝑣 ′.

For integer and floating-point numbers, refinement holds

between two equal numbers (element-nonptr). For point-

ers, we cannot simply use equality because local pointers

(such as pointers to stack-allocated memory blocks) in source

and target are internal to each of the functions. Therefore,

we use a function that compares local and non-local pointers

appropriately (element-ptr). poison is refined by any value

(value-poison). noreturn is refined by itself only (value-

noreturn). A (partially) undef value is refined by another

undef value that is equally or more defined (value-undef).

Finally, aggregate values are compared element-wise (value-

aggregate).

Next, we define refinement between final states. A final

state is defined as a tuple ⟨𝑟, 𝑀,𝑢𝑏⟩, where 𝑟 is the return
value,𝑀 the memory at the return site, and𝑢𝑏 a Boolean flag

indicating whether the function triggered UB before return-

ing. A memory𝑀 is refined by𝑀 ′
,𝑀 ⊒𝑚 𝑀 ′

, if refinement

holds between blocks in 𝑀 and 𝑀 ′
(value and remaining

attributes). A final state 𝑠 is refined by 𝑠 ′, or 𝑠 ⊒𝑠𝑡 𝑠
′
, if (1) 𝑠 is

undefined (final-state-ub), or (2) refinement between their

respective return values and memories holds (final-state).

Using ⊒𝑠𝑡 , we define correctness of an optimization as

follows. If functions 𝑓𝑠𝑟𝑐 and 𝑓𝑡𝑔𝑡 are deterministic, 𝑓𝑠𝑟𝑐 is

refined by 𝑓𝑡𝑔𝑡 if:

∀𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 . 𝐼𝑠𝑟𝑐 ⊒ 𝐼𝑡𝑔𝑡 ∧ valid(𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ) =⇒
⟦𝑓𝑠𝑟𝑐⟧(𝐼𝑠𝑟𝑐 ) ⊒𝑠𝑡 ⟦𝑓𝑡𝑔𝑡⟧(𝐼𝑡𝑔𝑡 )

The valid predicate encodes the global precondition. For

example, it states that global variables should be assigned

non-null and disjoint addresses. ⟦𝑓 ⟧(𝐼 ) is the final state after
executing function 𝑓 with input 𝐼 .

5.2 Nondeterministic Execution
The previous definition of correctness does not take non-

determinism, such as undef values and freeze instructions,
into account. Let 𝑁𝑠𝑟𝑐 and 𝑁𝑡𝑔𝑡 be the set of variables used

to encode non-determinism in functions 𝑓𝑠𝑟𝑐 and 𝑓𝑡𝑔𝑡 , respec-

tively. We extend the previous definition of refinement to

support non-determinism as follows:

∀𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ,𝑂𝑡𝑔𝑡 . 𝐼𝑠𝑟𝑐 ⊒ 𝐼𝑡𝑔𝑡 ∧ valid(𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ) ∧(
∃𝑁𝑡𝑔𝑡 . pretgt (𝐼𝑡𝑔𝑡 , 𝑁𝑡𝑔𝑡 ) ∧ ⟦𝑓𝑡𝑔𝑡⟧(𝐼𝑡𝑔𝑡 , 𝑁𝑡𝑔𝑡 ) = 𝑂𝑡𝑔𝑡

)
=⇒

(
∃𝑁𝑠𝑟𝑐 . presrc (𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ) ∧ ⟦𝑓𝑠𝑟𝑐⟧(𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ) ⊒𝑠𝑡 𝑂𝑡𝑔𝑡

)
Predicate pre represents the precondition of a function,

which is used to constrain the non-determinism and the

inputs a function can take. For example, in LLVM a function’s

argument can be marked as non-null. Constraints like this

are added to pre.

Sometimes the precondition for the source function does

not hold for a particular input 𝐼𝑠𝑟𝑐 for any non-determinism

but it may hold for the target function. For example, LLVM is

allowed to remove the non-null attribute of a function’s argu-

ment. The formula above fails in that case, since then presrc

makes the right-hand side of the implication become false.
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call

𝑎𝑟𝑔𝑠, 𝑎𝑟𝑔𝑠 ′ ∈ list Value (𝑀𝑜 , 𝑣𝑜 , 𝑢𝑏𝑜 ) = call(𝑓 𝑛, 𝑎𝑟𝑔𝑠, 𝑀)
𝑀,𝑀 ′ ∈ Memory (𝑀 ′

𝑜 , 𝑣
′
𝑜 , 𝑢𝑏𝑜′) = call(𝑓 𝑛, 𝑎𝑟𝑔𝑠 ′, 𝑀 ′)

𝑀 ⊒𝑚 𝑀 ′ ∀𝑖 . 𝑎𝑟𝑔𝑠 [𝑖] ⊒arg 𝑎𝑟𝑔𝑠
′[𝑖]

𝑀𝑜 ⊒𝑚 𝑀 ′
𝑜 ∧ 𝑣𝑜 ⊒ 𝑣 ′𝑜 ∧ (𝑢𝑏 ′𝑜 =⇒ 𝑢𝑏𝑜 )

Figure 5. Refinement between the inputs and outputs of two

function calls

To support such cases, we extend the previous refinement

condition to arrive at the final version that Alive2 actually

uses:

∀𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ,𝑂𝑡𝑔𝑡 . valid(𝐼𝑠𝑟𝑐 , 𝐼𝑡𝑔𝑡 ) ∧(
∃𝑁𝑠𝑟𝑐 , 𝑁𝑡𝑔𝑡 . presrc (𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ) ∧ pretgt (𝐼𝑡𝑔𝑡 , 𝑁𝑡𝑔𝑡 ) ∧

⟦𝑓𝑡𝑔𝑡⟧(𝐼𝑡𝑔𝑡 , 𝑁𝑡𝑔𝑡 ) = 𝑂𝑡𝑔𝑡

)
=⇒

(
∃𝑁𝑠𝑟𝑐 . presrc (𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ) ∧ ⟦𝑓𝑠𝑟𝑐⟧(𝐼𝑠𝑟𝑐 , 𝑁𝑠𝑟𝑐 ) ⊒𝑠𝑡 𝑂𝑡𝑔𝑡

)
5.3 SMT Encoding
To check refinement using an SMT solver, the last formula

from the previous subsection is negated and the SMT solver is

asked to prove unsatisfiability. Rather than running a mono-

lithic query, we check refinement as a sequence of simpler

queries; this helps provide detailed error messages to users

and also reduces the burden on the solver. We check if:

1. Any of the preconditions is always false; this can hap-

pen because of bugs or limitations in the encoding.

2. The target triggers UB only when the source does.

3. The return domain of the target is equal to that of the

source, except for when the source triggers UB.

4. The return value of the target is poison only when the

source’s return value is poison.
5. The return value of the target is undef only when the

source’s return value is undef or poison.
6. The return value of the source and target are equal

when the source value is neither undef nor poison.
7. Finally, if memory is refined.

6 Function Calls
A call to an unknown function may change the memory in

an arbitrary way. Wemodel the semantics of call instructions

as a pure function that takes its arguments as well as the

current memory as inputs, and returns a value and a fresh

memory. Let (𝑀𝑜 , 𝑣𝑜 , 𝑢𝑏𝑜 ) = call(𝑓 , 𝑎𝑟𝑔𝑠, 𝑀) denote a call.

Relating two function calls. When considering multiple

calls to the same function, we may need to relate the impact

each has on the program state. For the purpose of refinement

checking, there are three cases to consider: (1) two calls in

source, (2) two calls in target, (3) a call in source and another

in target.

For the first case, we consider all pairs of calls in the

source to a same function and constrain their behavior such

that their outputs are refined if the inputs are refined (c.f.

Figure 5). We need to consider this case because LLVM has

an optimization that removes duplicated calls. For example, if

a function is known to not read or write to memory and it is

called twice with the same arguments and one call dominates

the other, LLVM removes the dominated call. In practice,

LLVM’s optimizer only de-duplicates calls with equal inputs

(rather than refined), so similarly we make the condition for

input refinement stronger (for performance reasons) without

introducing false alarms.

Relating two calls in the target is not necessary: these calls

must already exist in source (with potentially less defined

inputs) and therefore they are already appropriately related,

or else refinement does not hold as it is illegal to introduce

new function calls. Relating calls in source and target is

similar to the first case, but we need to use the full refinement

rule as shown in Figure 5.

SMT encoding. Each call in the source function gets a

fresh variable for each of its outputs (memory, return value,

and UB flag). Calls in the target are encoded differently, as

these must refine at least one of the source’s calls since no

new calls can be introduced.

Focusing just on poison, a value 𝑣 is refined by 𝑣 ′ iff 𝑣 is

poison or 𝑣 = 𝑣 ′. Same reasoning applies for undef . There-
fore, we consider the two parts of the encoding differently:

(1) the poison flag, and (2) the value (only meaningful when

the poison flag is false). For the poison flag, we introduce a

fresh variable for each call in the target. For the value part,

we have to pick one of the source call’s values or use a fresh

one in case the source’s value is poison.

Given that the non-deterministic variables of source and

target are bound to different quantifiers in the refinement

query, it is not trivial to encode the value part. Let𝐶
𝑓
𝑠𝑟𝑐 be the

set of calls to function 𝑓 in the source. We introduce a fresh

variable 𝑖 such that 0 ≤ 𝑖 ≤ |𝐶 𝑓
𝑠𝑟𝑐 |. Then, in the precondition,

we encode that 𝑖 = 𝑗 holds iff the 𝑗th call in |𝐶 𝑓
𝑠𝑟𝑐 | is refined

by the target’s call, except for 𝑖 = |𝐶 𝑓
𝑠𝑟𝑐 | that holds iff no

source’s call is refined. The target’s value is encoded with an

ite expression that ranges over 𝑖 and yields the corresponding
source’s value. The target triggers UB if 𝑖 = |𝐶 𝑓

𝑠𝑟𝑐 |, i.e., when
the call does not correspond to any of the source’s.

A limitation of our current implementation is that local

variables are never modified by function calls even if their

address has escaped.

Optimizations. The number of function call pairs that

may need to be related grows quadratically with the number

of calls to the same function. We use a dataflow analysis

to cheaply prune call pairs that definitely do not have their

inputs refined. For each call, we compute (in a path-sensitive

way) the min/max number of calls of each function that were

made in all preceding paths. Then we only consider call pairs

with overlapping ranges. If ranges do not overlap, one of

the calls must have had at least one more call beforehand

which could have changed the memory that is read by the
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function under consideration. Therefore, this is a sound over-

approximation of possibly-related call pairs.

7 Loops
Alive2 performs bounded translation validation by unrolling

loops in the source and target functions by a specified factor.

Thus, it will find any failure of refinement that is triggered

within the specified bound, and will miss refinement failures

that require more loop iterations to manifest.

Alive2 implements Tarjan-Havlak’s loop analysis algo-

rithm [14] for recognizing the loops in a function and their

nesting relation. The result of the analysis is a loop nesting

forest (a collection of trees). In a nesting tree, each node

represents a loop header and its children are the headers of

the immediately nested loops.

Alive2 unrolls loops inside-out by traversing each loop

nesting tree in post-order with a DFS. An advantage of this

order is that the number of unrolls is linear in the number of

loops and unroll factor instead of being exponential if done

in the reverse order.

Alive2 unrolls a loop by repeatedly duplicating the loop

until the unroll factor is reached. After duplication, three

things need fixing: (1) instruction operands, (2) targets of

jump instructions, and (3) introduce/patch 𝜙 nodes.

Operands are patched during basic block duplication. Alive2

maintains a map that records the duplicates of each of the

original SSA values. When an instruction is duplicated, its

operands are replaced with the latest duplicate in this map.

Jump targets are patched by replacing each target with its

next duplicate. If no such basic block (BB) exists, it means

it is a backedge in the last unroll. We redirect these jumps

to a special sink BB. The reachability domain of the sink BB

is negated and added to the precondition of its respective

function. Since the amount of unrolled computation of the

source/target functions may not be synchronized (e.g., for

loop-manipulating optimizations), we need to restrict refine-

ment checking such that the control flow cannot reach any

of the sink BBs. The usage of sink BBs allows us to avoid

false positives, but it prevents us from supporting infinite

loops since we can only check refinement of paths that reach

a return instruction.
Some instructions inside a loop may have their result used

outside the loop.We need to patch such users so they observe

the right values depending on how many loop iterations

are executed. We implemented a conservative solution with

three cases: patch existing 𝜙 nodes (just add more predeces-

sors), introduce a new 𝜙 when the loop has a single exit to a

BB that dominates [7] the user’s BB, and otherwise fallback

to using memory. Complex cases may require introducing

several 𝜙 nodes [3]; we introduce a new stack variable to

avoid having to maintain the SSA form altogether.

Picking the right unroll factor involves a tradeoff between

coverage and run time. We note that the unroll factor should

be at least two for optimizations that do not manipulate

loops so we can cover the backedge entry in 𝜙 nodes. For

loop-manipulating optimizations, this may have to go as

high as 64, depending on the optimization. Vectorization

may optimize, e.g., 32 iterations of the source loop into a

single (vectorized) iteration, hence we need to unroll the

source loop at least 64 times so it covers two iterations of

the target loop.

8 Implementation and Evaluation
This section describes the implementation of Alive2, and

evaluates its utility and its impact on the LLVM compiler

and community.

8.1 Implementation
Alive2 consists in about 23,000 lines of C++ and uses Z3 [12]

for SMT solving. Besides its own source code, the trusted

computing base for Alive2 includes Z3 and functionality

from LLVM for parsing binary and textual LLVM IR into an

in-memory representation. Because a premise of our project

is that we do not trust LLVM to be correct, Alive2 does not

rely on code from LLVM to perform tasks such as computing

points-to sets or dominator trees.

Tools. Alive2 includes multiple tools for different use

cases:

• A plugin for clang (LLVM’s C/C++ frontend) that val-

idates all optimizations performed by LLVM.

• A plugin for opt (LLVM’s standalone optimization

tool). We add a -tv argument so the user can choose

after which optimizations Alive2 should run (to sup-

port batching), e.g., opt -tv -sroa -instcombine
-tv -gvn -tv file.ll.

• alive-tv, a standalone tool that takes two LLVM IR

files and checks refinement between each function

present in the two files.

• A pair of compiler drivers, alivecc and alive++, that
respectively invoke clang and clang++ with options

that cause our translation validation plugin to be loaded,

and then to validate every intra-procedural IR-level

transformation that the compiler performs.

Our LLVM plugins implement a trivial (but effective) ad-

ditional optimization beyond those described earlier in this

paper, which is to avoid running Alive2 at all when an LLVM

pass does not make any changes.

8.2 Translation Validation of LLVM’s Unit Tests
As of version 11, the LLVM test suite contains around 168,000

functions in LLVM IR that are variously optimized, analyzed,

and compiled to machine code during testing. About 36,000

of these functions test IR-level transformations and this sub-

set has been the focus of our translation validation efforts.

LLVM’s unit test framework. This is a typical test case:
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; RUN: opt < %s -instsimplify -S | FileCheck %s

define i1 @max1(i32 %x, i32 %y) {
; CHECK-LABEL: @max1(
; CHECK: ret i1 false
;
%c = icmp sgt i32 %x, %y
%m = select i1 %c, i32 %x, i32 %y
%r = icmp slt i32 %m, %x
ret i1 %r

}

It ensures that the instruction simplifier—a collection of

peephole optimizations—can recognize that the maximum of

two integer values cannot be smaller than the first of those

values. The first line specifies that the opt tool should run

the instruction simplifier and pipe its output through the

FileCheck tool, which fails the test unless the function is

optimized to return false.

To run one or more of these test cases through Alive2, we

ask lit, the LLVM unit test runner, to call a program that we

wrote, instead of calling opt. This program runs optwith our
plugin and skips unsupported transformations (e.g., inter-

procedural optimizations). Our plugin then works in three

stages. First, it translates the original LLVM IR into Alive2

IR and stores it in memory. Second, it runs the specified (un-

modified) LLVM transformations (managed by LLVM’s pass

manager itself). Finally, it translates the optimized LLVM

code into Alive2 IR and checks if it refines the original IR

that was saved earlier. Thus, the LLVM unit tests can be run

seamlessly through Alive2.

Results. We detected 121 violations of refinement in the

unit tests:

• 43 optimizations that are incorrect when undef is

given as input or constant

• 18 optimizations that introduce a branch on undef or
poison, which is UB

• 9 bugs due to the mishandling of vector operations

• 5 UB-related bugs while optimizing select instruc-

tions

• 4 incorrect arithmetic operations

• 4 loop optimizations incorrectly handling memory ac-

cesses

• 3 occurrences of incorrect handling of floating point

“fast-math” flags

• 3 bugs due to the ambiguous semantics of bitcast be-

tween integer and floating points

• 17 memory-related miscompilations

• 15 failures due to bugs in Alive2, or tests that are de-

signed to fail when an external module like Alive2 is

invoked

We reported 47 miscompilation bugs to the LLVM commu-

nity after identifying the root causes of unit test failures. We

did not report every bug detected by Alive2 as some were
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Figure 6. Effect of changing the unroll factor when validat-

ing LLVM’s unit tests.

already known. At the time of publication, 28 of the bugs we

reported have been fixed, including 7 patches that we wrote

ourselves. The remaining fixes were done by LLVM devel-

opers, and we actively led discussions around finding good

solutions for the bugs. In several cases, compiler developers

used Alive2 to help validate that their fixes were correct.

Moreover, several members of the LLVM community have

become Alive2 users, and have gone on to fix LLVM bugs

detected by Alive2, even though we never reported them.

Selected bug #1: Vectorization. Here %x is a pointer to
an array of 8-bit integers:

%a = load i8* %x
%b = load i8* (%x+1)
%c = load i8* (%x+2)
%d = load i8* (%x+3)
%r = %a +nsw %b +nsw

%c +nsw %d

⇏ %v = load <4 x i8>* %x
%w = %v[0:1] +nsw %v[2:3]
%r = %w[0] +nsw %w[1]

This transformation, which exploits the associativity of

addition to reduce the number of instructions using vector

addition, is not a refinement. The problem is that LLVM’s

addition operator, when qualified by the nsw flag (which

turns signed overflows into poison values), is not associative.

The fix was to drop the nsw flag from the code on the target

side of this transformation.

Selected bug #2: Floating point. This transformation is

not a refinement:

%c = fmul nsz %a, %b
%r = fadd %c, +0.0
ret %r

⇏
%c = fmul nsz %a, %b

ret %c

The nsz (non-signed-zero) flag is an assertion that %c is
nondeterministically +0.0 or −0.0 if %a × %b = 0. However,

%r is +0.0 even if %c = −0.0 due to the definition of floating

point addition. Thus, the target code displays a behavior not

observed in the source, violating refinement.

Performance. Running the LLVM unit test suite under

Alive2 takes about 2.5 hours on an 8-core Intel workstation.

Figure 6 shows the trend of the number of passed tests, refine-

ment failures, and running time when increasing the unroll

factor. The number of passed tests decreases with the unroll

factor due to timeout or out-of-memory. The wall-clock time

increases in a linear manner.
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Discussion. Onemightwonderwhy the LLVMunit tests—

which seldom fail on the main LLVM development branch—

would be a fruitful place to look for compiler bugs. The

answer is that Alive2 is a far more discerning test oracle

than are the syntactic oracles, such as the CHECK: line in

the example at the start of this subsection, that are built

into the unit tests. Moreover, Alive2 has the virtue of being

consistent: it expects all test cases to follow the same rules.

8.3 Updates to the LLVM IR Semantics
When we found ambiguities in the LLVM Language Refer-

ence, we initiated discussions in order to clarify the docu-

ment. Overall, we wrote 5 patches and contributed advice

or ideas to 3 patches written by LLVM developers. Here are

some specific examples.

GEP. When we started our work, it was not clear whether

LLVM’s gep inbounds operator for pointer arithmetic inter-

preted its index argument and the base pointer’s offset value

as signed or unsigned integers, for purposes of computing

“inboundedness” of the resulting address. Also, the assump-

tions that an object cannot be larger than half of the size of its

address space, and that no “inbounds” address computation

can overflow an unsigned value, needed to be clarified.

Branches and UB. In the past, we proposed that branch-

ing on an undef value should be UB [24], but the eventual

adoption of this idea as the official LLVM semantics was

guided by Alive2. This semantics justifies optimizations that

rely on branch conditions, but makes it illegal to introduce

new conditional branches in many situations. Alive2 found

that LLVM was doing this kind of (now unambiguously in-

correct) optimization.

Vectors and UB. LLVM’s shufflevector instruction sup-

ports permuting two input vectors, returning an output vec-

tor that has the same number of elements as its mask argu-

ment:

; Shuffles two vectors with mask <3, 2, 1, 2>
%v = shufflevector <10, 20>, <30, 40>, <3, 2, 1, 2>
; result: %v = <40, 30, 20, 30>

Initially, we believed that when the mask operand con-

tained one or more undef values, poison elements in the in-

put vectors would be propagated to the output. We reported

optimizations that were incorrect under these semantics, and

this led to discussions with LLVM developers followed by a

decision that undef in the mask operand does not result in

the propagation of poison values.

Other changes. We helped make several clarifications

regarding the interaction between undef and padding in

aggregates. For example, freeze has no effect on padding

values. Additionally, we clarified that a pointer given to a load

or store instruction is not allowed to be a non-deterministic

value.

Prog. LoC Pairs Diff Time ✓ ✗ TO OOM Unsup.

bzip2 5.1K 282K 2.2K 1.26 333 10 540 195 1,125

gzip 5.3K 371K 2.6K 1.74 884 4 905 60 754

oggenc 48K 215K 1.8K 1.63 440 4 588 72 663

ph7 43K 1.7M 5.6K 3.15 1,393 28 1,337 35 2,755

SQLite3 141K 3.9M 12.2K 6.37 2,314 38 2,102 100 7,543

Figure 7. Results for single-file benchmarks. From left to

right, the columns indicate the program name, the number

of lines of code, the total number of source/target function

pairs (intraprocedural optimizations only), the number of

non-identical pairs considered for translation validation, to-

tal wall-clock time taken (in hours), pairs successfully val-

idated, violations of refinement, timeouts, out-of-memory

conditions, and pairs containing at least one feature unsup-

ported by Alive2.

8.4 Translation Validation for Applications
Although our focus has been on validating transformations

for core elements of LLVM IR, we also wanted to see how

Alive2 would work while compiling applications. We chose

five single-file benchmarks: bzip2, gzip, oggenc,
5
ph7 2.1.4,

6

and SQLite 3.30.1 amalgamation,
7
and compiled them at the

-O3 optimization level, and using the -fno-strict-aliasing
flag to disable type-based alias analysis. We extracted pairs

of IR files corresponding to the code before and after every

optimization pass ran on every function in the code being

compiled. We timed out individual invocations of Z3 after

one minute and limited its RAM usage to 1GB.

We batched optimization passes for oggenc, ph7, and

SQLite, in order to reduce the total verification time. In-

stead of calling Alive2 after each optimization, we batched

optimizations between pairs of unsupported optimizations,

such that only supported transformations occurred between

those two optimizations. Batching, however, incurs a slight

risk of hiding bugs, as an optimization may accidentally fix

the miscompilation of a previous optimization.

The results of this experiment, run on an 8-core machine,

are shown in Figure 7. Quite a few functions in these pro-

grams make use of features not yet supported by Alive2;

fixing these is a matter of ongoing work. The most com-

mon unsupported features are function pointers and missing

semantics for some string and I/O library functions. Further-

more, LLVM IR has a long tail of features that have been

added over the years, and supporting them requires signifi-

cant engineering effort.

The last five columns almost add up to the “Diff” col-

umn, which is the number of function pairs for which we

run Alive2. The remaining few pairs not shown in the table

could not be proved correct or incorrect due to Z3 giving up

because of incomplete handling of quantifiers.

5http://people.csail.mit.edu/smcc/projects/single-file-programs
6http://www.symisc.net/downloads/ph7-amalgamation-2001004.zip
7https://www.sqlite.org/2019/sqlite-amalgamation-3300100.zip

http://people.csail.mit.edu/smcc/projects/single-file-programs
http://www.symisc.net/downloads/ph7-amalgamation-2001004.zip
https://www.sqlite.org/2019/sqlite-amalgamation-3300100.zip
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Figure 8. Effect of changing the SMT solver timeout for

the single-file benchmarks. In the third graph, at the right,

running times are normalized to the time taken by that bench-

mark when the timeout is set to one minute.

We manually inspected every failure of refinement ob-

served during this experiment. The bulk of them are due to an

incorrect transformation done by LLVM,where in some cases

select instructions with Boolean operands are replaced with

and/or instructions. For example, LLVM currently replaces

select %x,%y, false with and %x,%y. This transformation is

incorrect if %ymay be poison as the select instruction would
yield false if %x = false (short-circuiting semantics), while

the and yields poison. A fix is ongoing and has required fix-

ing several optimizations to accept the new canonicalization,

as well as fixing the backend (SelDAG) to produce good code

for Boolean select instructions.
If this experiment had been the first thing we did using

Alive2 (as opposed to spending more than a year iteratively

improving LLVM by reporting and fixing bugs found by

running Alive2 on the unit test suite) then we would have

found many more refinement failures. Of course our long-

term goal is to fix LLVM until Alive2 finds no failures.

Measuring the effect of SMT solver timeout. To better

understand the impact of the SMT solver’s timeout, we ran

the single-file benchmarks with timeouts varying from one

second to five minutes; the results are shown in Figure 8.

While the running time of Alive2 increases approximately

linearly with the solver timeout, the number of times Alive2

reached a definitive result plateaus once the timeout reaches

one minute. Increasing the solver timeout from one to five

minutes increased the number of pairs proved correct and

incorrect by less than 5% and 17%, respectively.

8.5 Reproducing Known LLVM Bugs
To test whether Alive2 misses bugs in practice, we used it

to analyze some incorrect intra-procedural transformations

that were reported publicly, but not by us. We investigated

36 bug reports picked at random. 29 of these refinement fail-

ures were detected by Alive2 and the remaining seven were

missed. Of the missed alarms, one was due to the existence of

an infinite loop (unsupported), one was due to the required

unroll factor being too large (the loop requires about 2
16

iterations to exit), and five were because our memory encod-

ing assumes that function calls do not modify escaped stack

variables. Full support for LLVM’s memory model is out of

scope of this paper. We manually changed the tests to have

loops with fewer iterations or to escape local variables to

globals, and confirmed that Alive2 could find all bugs except

for one that fails to validate within a one-hour timeout.

8.6 Z3 Bugs Found While Developing Alive2
Although finding defects in Z3 was not one of our goals,

we did encounter solver bugs while performing this work.

We found six soundness bugs, six crashes, and one timeout

violation. All but one of these bugs have been fixed; two by

us, and the rest by the Z3 developers.

We also hit some performance issues in Z3. We found

that one of Z3’s internal timer mechanisms was incurring

significant overhead because it created a new helper thread

on every use of the timer. By patching Z3 to use a thread

pool for its scoped_timer abstraction, we realized a 20–30%
speedup for a collection of Alive2 processes running on a

large multicore. We also found an issue in the structural

hashing mechanism that was having too many collisions in

the hash table. Fixing this issue led to a 3x speedup in the

sqlite3 benchmark. Finally, we introduced a new API in Z3 to

reset the solver’s memory, to reduce memory fragmentation;

this fixed an issue where the performance of long Alive2 runs

degraded over time. All these patches have been upstreamed.

9 Related Work
Translation validation. Early translation validation (TV)

tools supported only transformations that did not change the

control-flow or the loop structure (e.g., loop unroll, software

pipeline) of the program [37]. TV tools were then extended

to accept hints from the compiler (witnesses) to simplify

their job [16, 34, 35, 38]. Witnesses are especially useful for

validating optimizations that change the loop structure. Wit-

nesses do not have to be correct, since they are validated by

the TV tool. When the compiler provides sufficient informa-

tion, validation can be done mostly syntactically [17]; there

is something of a tradeoff between the amount of changes

required in the compiler and the computational and imple-

mentation complexity of the TV tool.

Some tools, such as CoVaC [49], Counter [13], DDEC [40],

JTFG [9], and trace alignment [6], search for cut points be-

tween source and target programs such that some relation

between the two programs can be automatically synthe-

sized. When such relations are found, verification can be

split into smaller tasks. Moreover, this technique supports

some control-flow-changing transformations. TVOC [1, 52]

also has heuristics to support transformations that change

loop structure.

LLVM-MD [43] and Peggy [42] are TV tools for LLVM that

work by rewriting the source program until it is syntactically

equal to the source. This process—equality saturation—is
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similar to how many first-order theorem provers work (e-

matching). egg [46] is a library that implements equality

saturation. These tools are limited to proving equivalence.

Coeus [5] implements verification of relational program

properties with reinforcement learning. Klebanov et al. [18]

proposed a CEGAR-based approach for the verification of

program equivalence. Inter-procedural equivalence checking

with mutual summaries was proposed in [15, 47]. Composi-

tional Lifter [11] validates binary-to-LLVM IR lifting tools.

A different class of TV tools are ones that are specific

to a particular transformation. For example, there are TV

tools specific for lazy code motion [44], software pipelin-

ing [28, 45], and optimizations for scientific programs [41].

The advantage of being specific is that these tools are sim-

pler than generic ones. Moreover, some of these TV tools

are formally verified, which is harder to do for generic tools.

Sewell et al. [39] implemented TV for a specific program

(seL4 kernel) for its compilation from C to ARM assembly.

While the majority of work so far on TV has focused on

equivalence checking, there is one that introduced support

for some forms of UB [10]. This work shows that adding

support for UB (even if partially) reduces the number of false

alarms substantially.

Formal semantics of LLVM IR. There have been several

efforts to formalize the semantics of LLVM’s IR. Vellvm [51]

gives the semantics of parts of the IR with limited support

for undefined behavior (UB). The semantics of UB in LLVM

IR was further explored in [24]. This work uncovered fun-

damental issues in LLVM’s IR and proposed changes later

adopted by LLVM.

The twin memory model [21] is a proposal for a memory

model for LLVM that supports UB. A formalization of part of

LLVM IR’s concurrency instructions was proposed in [4]. K-

LLVM [29] is a formalization of LLVM’s IR in K with partial

support for memory and concurrency.

Compiler verification. An alternative to translation vali-

dation is compiler verification, where the compiler/optimizer

is verified once and for all. CompCert [27] is a compiler for C

that is formalized and verified in Coq. Further work has ex-

tended CompCert with verified peephole optimizations [33],

verified polyhedral model-based optimizations [8], and a

verified SSA-based middle-end optimizer [2].

Cobalt [25] and its successor Rhodium [26] are frame-

works to specify and automatically verify peephole opti-

mizations and dataflow analyses. PEC [19] extends this work

with support for loop-manipulating optimizations by reusing

some of the TVOC’s techniques [52].

Alive [30] is an automatic verification tool for LLVM’s

peephole optimizations. AliveInLean [22] is a reimplementa-

tion of Alive that was specified and verified in Lean. New-

comb et al. [36] present an automatic verification tool for

soundness and termination of Halide’s rewriting system.

CORK [31] is an automatic equivalence checker that sup-

ports loop optimizations over rational numbers.

Compiler Fuzzing. Fuzzing tools have been very suc-

cessful in finding bugs in optimizers. Tools like Csmith [48],

EMI [20], and SPE [50] have found hundreds of bugs in com-

mercial compilers, including GCC, LLVM, and MSVC. Mar-

cozzi et al. [32] studied the impact of bugs found by fuzzers

and verification tools.

10 Conclusion
Software development is a fundamentally human process,

and there are many opportunities for a large, decentralized

group of compiler developers, who primarily coordinate us-

ing a mailing list and an English-language specification, to

introduce subtle defects into their implementation. To as-

sist the LLVM community in creating a coherent semantics

for their IR, and making their toolchain respect it, we have

created and deployed Alive2, a tool for bounded translation

validation for LLVM IR. Running Alive2 over LLVM’s unit

test suite has revealed 47 bugs of which 28 have been fixed so

far. Moreover, there have been a number of cases where the

LLVM IR specification was either vague or defective, and we

have worked with the community to fix these. Our goals are

to create a formalization of the intended semantics of LLVM

IR, to bring the compiler implementation into conformance

with these semantics, and to give the LLVM community tools

that it can use to prevent deviations from its specification in

the future.
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