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Abstract
Recentworkon anatomical facemodeling focusesmainly on facialmuscles and their activation. This paper considers a different
aspect of anatomical face modeling: kinematic modeling of the jaw, i.e., the temporomandibular joint (TMJ). Previous work
often relies on simple models of jaw kinematics, even though the actual physiological behavior of the TMJ is quite complex,
allowing not only for mouth opening, but also for some amount of sideways (lateral) and front-to-back (protrusion) motions.
Fortuitously, the TMJ is the only joint whose kinematics can be accurately measured with optical methods, because the bones
of the lower and upper jaw are rigidly connected to the lower and upper teeth. We construct a person-specific jaw kinematic
model by asking an actor to exercise the entire range of motion of the jaw while keeping the lips open so that the teeth are at
least partially visible. This performance is recorded with three calibrated cameras. We obtain highly accurate 3D models of
the teeth with a standard dental scanner and use these models to reconstruct the rigid body trajectories of the teeth from the
videos (markerless tracking). The relative rigid transformations samples between the lower and upper teeth are mapped to
the Lie algebra of rigid body motions in order to linearize the rotational motion. Our main contribution is to fit these samples
with a three-dimensional nonlinear model parameterizing the entire range of motion of the TMJ. We show that standard
principal component analysis (PCA) fails to capture the nonlinear trajectories of the moving mandible. However, we found
these nonlinearities can be captured with a special modification of autoencoder neural networks known as nonlinear PCA. By
mapping back to the Lie group of rigid transformations, we obtain a parametrization of the jaw kinematics which provides
an intuitive interface allowing the animators to explore realistic jaw motions in a user-friendly way.
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1 Introduction

Anatomical modeling of the face has been explored in the
pioneering work of [32,35], but recent years witnessed a
resurgence of interest in anatomically based facial animation
[5,15,19,21]. Naturally, the primary focus is accurate mod-
eling of facial muscles and their ability to generate facial
expressions. However, the shape and expressions of the face
are significantly affected by two major bones: the skull and
the mandible (lower jaw). This is evidenced by people who
underwent jaw surgery, which is a relatively frequent surgery
to correct congenital malformations such as the overbite.
We argue that realistic anatomically based facial animation
needs to start with an accurate jaw kinematics model. With
physics-based simulation of facial soft tissues, the relative
rigid transformation between the skull and the mandible has
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a significant effect on the result, because the bones are used as
Dirichlet boundary conditions. Even though, strictly speak-
ing, the bones’ attachment to the teeth is elastic, in normal
physiological motions these deformations are negligible and
we can safely assume that hard tissues behave as rigid bod-
ies. However, the rigid motion of the mandible relative to
the skull is not arbitrary, but is constrained by the anatomy
of the temporomandibular joint (TMJ). The TMJ is a very
complicated joint and enables functions such as chewing of
food or talking. Due to its complicated anatomy, the TMJ is
also prone to pathologies which are a common concern in
medicine [40].

In this paper, we focus on accurate modeling of the kine-
matics of the TMJ for the purposes of computer animation.
An ideal interface for animation (known as a “rig”) should be
user-friendly. The most prominent mode of motion is open-
ing of the mouth. Even this common, everyday motion is,
kinematically, a non-trivial composition of rotation and trans-
lation (sliding). This sliding occurs on a curve which reflects
the geometry of the mandibular condyle and the zygomatic
process which are held in close proximity by connective tis-
sues (Fig. 1). Additionally, the jaw also allows for some
amount of sideways and front–back translation, even without
opening the mouth. Normally, when the mouth is closed, the
upper teeth rest naturally in front of the lower teeth.We invite
the reader to try translating their lower teeth forward—they
can be moved in front of the upper teeth. Similarly, it is also
possible to move the lower teeth from left to right. All of
these motions are combined together to endow the jaw with
its basic functions, such as chewing or talking. Our goal is to
provide an intuitive animation interface allowing the users to
explore realistic jawmotions. In particular, the users can syn-
thesize realistic jawmotions by just varying three parameters
that correspond to anatomically prominent modes of motion:
opening, sideways sliding (known as “lateral excursion” in
medical terminology), and front–back translation (known as
“protrusion” and “retrusion”). In addition to synthesizing
anatomically accurate jaw motions using an intuitive inter-
face, our modeling will also allow us to validate if a given
jaw motion is anatomically accurate or not.

Previous kinematic models for the jaw were gener-
ally qualitative, designed by researchers who observed the
relevant anatomy and proposed models for its geometric
behavior. We propose a different, data-driven approach, tak-
ing advantage of the fortuitous fact that the kinematics of
the jaw can be measured with high accuracy using optical
methods. This is because the skull and the mandible bones
are connected with the upper and lower teeth, and the motion
of the teeth is directly visible if the lips are open. To obtain
data to train our model, we have asked an actor to exercise
the entire range of motion of the jawwhile keeping the lips at
least partially open. This performance is recorded by multi-
ple (we use three) calibrated cameras.We also create a highly

Fig. 1 The temporomandibular joint is the joint between the mandible
and the temporal bone of the skull

Fig. 2 3D models (meshes) of the lower and upper teeth

accurate 3D models of the teeth of the actor using a standard
dental 3D scanner, see Fig. 2. We use the 3D models of the
upper and lower teeth for tracking the video, reconstruct-
ing the 3D position and orientation of the upper and lower
teeth in each frame. Computing the relative rigid motion
between the upper and lower teeth poses in each frame gives
us point samples of physiologically possible jaw motions.
These point samples are rigid transformations, i.e., points on
the Lie group of rigid motions, often denoted as SE(3). To
simplify our task of creating an intuitive parameterization
of jaw kinematics, we map our point samples from SE(3) to
the corresponding Lie algebra se(3) via the logarithmicmap-
ping. The Lie algebra se(3) is a standard linear (vector) space
and therefore permits standard principal component analysis
(PCA). However, performing the PCA on our point samples
fails to capture the nonlinearity of trajectories of motions
such as mouth opening, where the mandibular condyle slides
along the zygomatic process along a curved path.

In order to extract anatomically meaningful modes of
motion from our input data (se(3) samples), we turned to
autoencoder neural networks. In particular, we applied a spe-
cial type of autoencoder termed nonlinear PCA (NLPCA)
[30]. A modified version of NLPCA allowed us to explain
all of our input data with a generative model with only three
parameters, corresponding to the main modes of jawmotion:
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(1) mouth opening, (2) lateral excursion, (3) protrusion and
retrusion. Furthermore, we use our data to obtain explicit
boundaries on each of these three modes of motion, with the
bounds on lateral excursion and pro/retrusion depending on
the amount of mouth opening. The result is an intuitive and
anatomically realistic 3-parameterization for jaw kinemat-
ics. There are two potential applications of our resulting jaw
kinematics model: (1) a control interface allowing anima-
tors to intuitively synthesize meaningful jaw motions, e.g.,
for special effects animation [15]; (2) allow computer vision
researchers to automatically discard invalid jaw poses while
tracking recorded facial performances [39].

2 Related work

The need for jaw kinematic modeling was identified in pre-
vious work in computer graphics. Sifakis et al. [32] created a
jawkinematics rig by designing sliding tracks of the condyles
identified from magnetic resonance images. Because MRI is
not always available and may be even medically contraindi-
cated, Wu et al. [39] proposed a geometric rig offering two
rotational degrees of freedom along a common pivot point
and one translational degree of freedom along a fixed axis.
This model was slightly generalized by Ichim et al. [15] who
proposed using three translational degrees of freedom instead
of just one, in addition to the two original rotational degrees
of freedom. Li et al. [23] use an articulated model including
the neck and eyeballs, with three rotational degrees of free-
dom for each of the joints, including the jaw. Our approach
does not require MRI but still produces highly accurate jaw
kinematics model for a given actor.

The mechanical function of the jaw has been studied in
biomechanics, often using full six degrees of freedom for the
rigid body motion of the jaw relative to the skull [18,36],
even though reduced models were also considered, e.g., De
Zee et al. [7] who proposed a planar constraint along which
the condyles can slide, resulting in four degrees of freedom.
A simulation platform can be used to create computational
models using variables for modeling gravity, external forces,
and jawmuscle activity [11]. Thesemodels were shown to be
capable of predicting jaw movements for mundane actions,
but inappropriate for complex actions like chewing [10] or
post-reconstruction surgery [11].

An established tool to study bone kinematics is fluo-
roscopy (X-ray videos). Fluoroscopic studies of the temporo-
mandibular joint kinematics have been carried out on rabbits
[13], but the use of ionizing radiation (X-ray) for research
purposes on humans is not acceptable. Fortunately, the
motion of the mandible relative to the skull can be captured
using optical methods if the lips are at least partially open.
Tracking in videos is awell-studied computer vision problem
[22], and popular methods include template-based tracking

such as Lucas-Kanade [25], active appearance models [6],
feature-based tracking [24], and edge or boundary-based
tracking [17,27,37]. A key challenge in teeth tracking and
pose estimation problem is that it violates many common
assumptions that are commonly satisfied in a tracking frame-
work. Tracking methods such as Lucas–Kanade [25] and
active appearance models [6] require the object to remain
free from occlusion during the tracking process and undergo
only relatively small appearance changes with respect to the
original template. Unfortunately, in practice teeth are usually
highly occluded and their appearance changes considerably
due to glossy nature of enamel. More robust keypoint-based
methods such as SIFT [24] are also hardly applicable since
teeth are usually smooth and self-similar; therefore, it is dif-
ficult to find sufficient number of distinct feature points that
can be tracked consistently.

There are a few tracking algorithms that are customized
for teeth [2,37,38], and these tracking methods are primar-
ily developed for augmented reality applications, where the
goal is to overlay an AR image on the patient for provid-
ing additional assistance during dental surgery. In [37], a
stereo camera is used to capture and reconstruct the 3D con-
tour of a patients teeth. This 3D contour is registered with
the 3D model obtained using CT scans using iterative clos-
est point (ICP) algorithm. Using this registration, we can
have augmented reality (AR) overlay of 3D image on the
patient during dental surgery. Nevertheless, these techniques
still assume avoidance of teeth occlusion. To alleviate the
occlusion problem, Zoss et al. [42] used specifically designed
markers for the teeth tracking. These markers are mounted
on steel pins, which are glued to the teeth using UV-hardened
dental composite.Our teeth tracking approach is noninvasive,
which does not attach marker tags to the teeth but employs a
model-based registration process to obtain high-quality teeth
poses.

In this work, we are primarily interested in principal com-
ponent analysis (PCA) on 6-dimensional jaw motions in
se(3). Since linear PCA fails to capture the nonlinear tra-
jectories of motions, we resort to nonlinear PCA (NLPCA)
methods [20]. Popular nonlinear methods include princi-
pal curves [12], locally linear embedding (LLE) [29], and
Isomap [34]. In particular, we show that the input data can
be explained using only three parameters corresponding to
three main modes of jaw motions using a special type of
autoencoder termed nonlinear PCA (NLPCA) [30].

3 Method

3.1 Data acquisition and preparation

We start by obtaining the models of the upper and lower teeth
of our actor by a standard dental scanning procedure, produc-
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Fig. 3 Our recording setup, featuring three tripod-mountedGoPro cam-
eras and diffuse light sources

ing detailed tooth geometrywith distances inmillimeters, see
Fig. 2.

We capture the dynamic teeth performances using three
tripod-mounted GoPro Hero 5 Black cameras, see Fig. 3. To
reconstruct the teeth poses from the three camera videos, we
exploit the teeth’s position and shape information that are
implicitly encoded in the video frames. We extract this infor-
mation by segmenting out the teeth from the video frames,
as shown in Fig. 4. The segmentation of the video frames is
performed by employing the Roto brush tool in Adobe Effect
[4]. The tool required minimal user interaction (i.e., only a
few strokes) to achieve the teeth segmentation. Please note
that gums between the teeth are allowed to be part of the
teeth segmentation, since the color variation between them
may be very small, as shown in Fig. 4. For additional techni-
cal details regarding our data capture and processing please
see Sect. 5.

Only the relative motion between the skull and the
mandible is relevant for further processing. The actual pose
or orientation of the head is not important. To remove the
global pose of the head from our study, we proceed as fol-
lows. For a given image, let (RL , t L) and (RU , tU ) be the
rigid motion (rotation, translation) of the lower and upper
teeth, respectively. Let us denote (R, t) to represent the rel-
ative motion between the skull and mandible bones, and it
can be derived as follows:

[
RU tU

0 1

] [
R t
0 1

]
=

[
RL t L

0 1

]
. (1)

From Eq. (1), we can compute

R = (RU )T RL (2)

t = (RU )T (t L − tU ) (3)

Fig. 4 Sample teeth segmentation results from synchronized images in
three video cameras

3.2 Learning jaw kinematics from data

Let (Ri , ti ) be the relative jaw transformation of the frame
indexed by i from the input video. Our goal is to con-
struct an anatomically realistic jaw kinematics model which
can explain all of the measured relative jaw transformations
{(Ri , ti )}ni=1 (we used n = 833 frames from our input train-
ing video) while providing the user with intuitive parameters
for controlling the jaw’s poses.

Each of our input data points (Ri , ti ) lies on a SE(3)man-
ifold (the manifold of rigid body transformations), which is
nonlinear and thus not ideal for further analysis. Therefore,
we map each of our data points from SE(3) to the corre-
sponding Lie algebra se(3) using the logarithmic mapping,
which has a closed-form expression in the case of SE(3)
[26]. Geometrically, this corresponds to unfolding the rele-
vant part of the nonlinear manifold SE(3) to a linear space
(the Lie algebra). All of our subsequent analysis will be per-
formed on the data points in se(3). We denote the resulting
vectors as {vi }mi=1, where vi ∈ R

6.

3.2.1 PCA learning

Our first attempt to analyze the input training data v1, . . . , vm
is to apply principal component analysis (PCA), producing
six principal components pi ∈ R

6 with i = {1, 2 . . . , 6},
where their corresponding six singular values are given by
the set {10.38, 0.73, 0.44, 0.34, 0.25, 0.07}. With this PCA
basis, each jaw pose can be written as

p =
6∑
j=1

w jp j , (4)

where w j ∈ R is weight (PCA loading) of each of the prin-
cipal components. The resulting p ∈ se(3) can be mapped to
SE(3) by computing the exponential mapping (closed-form
expression [26]). The resulting rigid body transformation
can be then used to transform the mandible mesh, produc-
ing visualization of the jaw motion represented by the linear
combination of the principal components.
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Fig. 5 Motions of mouth opening that are generated using PCA
(a) and NLPCA autoencoder (b). The jaw poses in a are gen-
erated by scaling the first principal component: w1p1, for w1 =
{− 1.6157,− 0.5717, 0.4723, 1.5165} (left to right), while the jaw
poses in b are generated as Φgen(c1, 0, 0, 0, 0) where c1 is
{− 0.1943,− 0.0195, 0.1552, 0.3300} (left to right).Note that the zoom
out in the bottom row of a illustrates that the PCA does not learn the
correct nonlinear trajectory and the mandibular condyle intersects the
zygomatic process, while in b the condyle slides along the zygomatic
process, which is the desired anatomically realistic behavior

In Fig. 5a, we visualize the effect of the first principal
component p1 which, not surprisingly, captures the dominant
motion—opening of the mouth. However, the visualization
in Fig. 5a also reveals the limitations of PCA (please see
also the animation in the accompanying video). Specifi-
cally, even though the jaw motion generated by scaling the
first principal component roughly corresponds to opening
of the mouth and includes both rotation and translation, it
fails to accurately capture the trajectory of the mandibular
condyle. When opening the mouth, the mandibular condyle
slides over the surface of the zygomatic process (see Fig. 1).
Because the zygomatic process is curved (as opposed to
flat), this results in a nonlinear trajectory. The nonlinearity
of this trajectory can be observed by real-time magnetic res-
onance imaging of a human subject performing voluntary
mouth opening and closing [41] (please see the accompa-
nying video). Unfortunately, the first principal component
produces only a crude approximation of this nonlinear tra-
jectory (specifically, this approximation corresponds to a
straight line in se(3)). There are other limitations with PCA.

The second and the remaining principal components do not
correspond to anatomically meaningful motions such as lat-
eral excursions and pro/retrusion. It is also challenging to
generate anatomically realistic motions by considering the 5
or 6 principal components within their boundary values.

3.2.2 NonLinear PCA learning

To be able to capture the correct anatomical behavior of the
temporomandibular joint duringmouth openingwith a single
parameter, we turn to a more powerful, nonlinear data analy-
sis tool: autoencoder neural networks [9]. We trained various
autoencoder architectures using TensorFlow [1] and found
that substantial dimensionality reduction can be achieved,
e.g., using only three dimensions can reproduce the train-
ing data {v1, . . . , vm} very accurately (unlike PCA, which
produces relatively large error with only three principal com-
ponents). However, the reduced parameters produced by the
encoder part of an autoencoder do not have any hierarchi-
cal meaning as is the case in PCA. In PCA, the first principal
component explains the largest variance in the data, but this is
not the case for the first component produced by the encoder.
Fortunately, we found that a solution to this problem has
already been described by Scholz and colleagues [30,31],
who proposed a modified autoencoder network which mim-
ics the hierarchical property of the principal components.
Their approach is called NLPCA (for nonlinear PCA).

Let S be a data space given by our 6-dimensional data
points in se(3) and P ⊆ R

n a component space with
n ≤ 6. NLPCA learns two nonlinear functions Φextr and
Φgen , where Φextr : S �→ P is called component (or fea-
ture) extraction function (corresponding to the encoder part
of an autoencoder) and Φgen : P �→ S is called data
generation function (corresponding to the decoder part).
The extraction function Φextr transforms a 6-dimensional
data point into the corresponding component representation
c = (c1, c2, . . . , cn), while the generation functionΦgen per-
forms the reverse, i.e., reconstructs the original data points
from its lower-dimensional component representation.

With our training data v1, . . . , vm , we found that only
five dimensions are needed with NLPCA; the sixth dimen-
sion introduces only minimal modifications which can be
attributed to noise in the input data. Furthermore, visualizing
the effect of the individual components, we observe that the
nonlinear characteristics of the mouth opening motion are
effectively captured by the first component (c1). Visualiz-
ing the results ofΦgen(c1, 0, 0, 0, 0) for varying c1 produces
anatomically realistic nonlinear trajectory of the mandibu-
lar condyles, see Fig. 5b. Most importantly, the mandibular
condyle now slides along the zygomatic process, as opposed
the unrealistic intersection produced by PCA (Fig. 5a). Even
though this five-dimensional model can accurately represent
all possible motions of the jaw, we found it is possible to
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Fig. 6 Top row: lateral excursions learned by nonlinearly reducing D23
to a single dimension; bottom row: the same approach applied to D45
produces one-dimensional parameterization of protrusion and retrusion

reduce the number of parameters further, providing a more
compact and intuitive interface to the user while increasing
the error only negligibly.

By visualizing the effect of the components c2 and c3,
we found that both of them correspond to lateral excursions
(moving the jaw sideways, left and right). Similarly, the last
two components c4 and c5 correspond to forward and back-
ward motion of the jaw, known as protrusion and retrusion.
This observationmotivates the final refinement of our model,
whichwe describe next. First, we generate a set of data points
(denoted as D23)which correspond to zeroing all components
except for c2 and c3, i.e.,Φgen(0, c2, c3, 0, 0), where the val-
ues of c2 and c3 are given by encoding of our training data.
Similarly, we construct another set of data points (denoted as
D45) in terms of the components of (0, 0, 0, c4, c5). Next,
we run NLPCA [30] on the D23 dataset to nonlinearly
reduce its dimensionality to one.Wedenote the resulting one-
dimensional generation function (decoder) asΦ2(d2), where
d2 is a scalar input parameter. We observe that by varying
d2, the function Φ2 can explain the entire range of lateral
excursions (sideways motions of the jaw from left to right),
during which the trajectory of the condyles again succeeds
to avoid inter-penetrations with the zygomatic process (sim-
ilarly as before for jaw opening). Again, we execute NLPCA
on the D45 dataset and obtain a one-dimensional genera-
tion function Φ3(d3), such that varying the scalar parameter
d3 produces an entire range of anatomically realistic protru-
sion and retrusion. These motions are visualized in Fig. 6.
To make our notation succinct, let us introduce a shorthand
Φ1(d1) := Φgen(d1, 0, 0, 0, 0) where d1 is a parameter cor-
responding to mouth opening.

Our final model parameterizing the jaw kinematics with
only three dimensions is a linear combination of the individ-
ual parts:

Φ(d1, d2, d3) = Φ1(d1) + Φ2(d2) + Φ3(d3) (5)

Linear combination is justified by the fact that the Lie algebra
SE(3) is a linear space and the maximal relative rotations
are bounded (far below 180◦) [3]. As we discuss in more

Fig. 7 The range of the parameter d2 is determined with respect to a
given d1 (mouth opening).The parameters (d1, d2) of our original data
points are projected onto the x-y plane, and the valid range of d2 is
determined by y-coordinates of the intersection points between the line
(x = d1) and a polygonal boundary of the 2D projection points

details in Sect. 5, this final Φ(d1, d2, d3) introduces only
marginally higher error compared to the five-dimensional
NLPCA model, while using fewer parameters and being
much more intuitive to the user.

Valid component representation It is evident that for a
valid parameter representation d = (d1, d2, d3), each of its
parameters should be in a specified range. Since each of our
original data points has a corresponding parameter repre-
sentation, a simple way to determine the parameter ranges
would be to bound each parameter using the parameter rep-
resentations of the given data points. However, in real jaw
motion, the ranges of parameters d2 and d3 are dependent
on the current value of d1. To demonstrate this, we invite
the reader to try sliding their lower teeth to the right and
then opening the mouth—the lower teeth are automatically
moved back to the center. Therefore, we need to dynami-
cally determine the valid ranges for the parameters d2 and
d3, with respect to current d1. As shown in Fig. 7, we use
d2 as an example to describe our solution. First, we project
the parameters (d1, d2) of our original data points onto a x-y
plane. Then, a polygonal boundary is formed using the alpha
shape (alpha = 0.12 in our experiments) of these planar
points. For a given d1, the current range of d2 is determined
by the intersection points between the polygonal boundary
and the line x = d1.

4 Model-based teethmotion tracking

Essentially, our teeth motion tracking problem is a 3D–2D
matching problem [8,28] where the task is to find the best
pose of a 3Dmodel so that its 2D projections are well aligned
with the 2D images. In our scenario, the 3D model is a teeth
model, corresponding to either the upper or lower teeth of the
performer, and the model pose corresponds to a rigid motion.
More formally,wedenote the teethmodel asM and represent
the rigidmotion as a 6-tuple T = {θx , θy, θz, tx , ty, tz},where
θx , θy , θz are the rotation angles around the x-, y-, and z-axes,
respectively, and tx , ty , tz are the translation offsets along the
x , y, and z directions, respectively. To make the projections
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Fig. 8 The teeth model is roughly and manually marked out from the
3D scans of the performer’s teeth rows. The geometry of the teethmodel
consists of the triangles in the red and green regions, where the green
parts correspond to the boundary of interest of the teeth model

of M most consistent with the (three in our case) images
that corresponds to a common video frame, we can solve the
following optimization problem:

argmin
T

3∑
i=1

E(Pi (RM + t), Ii ), (6)

where R = Rz(θz)Ry(θy)Rx(θx )with Rx(·), Ry(·), and Rz(·)
being the rotation matrices about the x-, y-, and z-axes,
respectively, with a specified angle, t = (tx , ty, tz) is a trans-
lation vector, Pi (·) is an operation that projects a 3D model
to the image plane of the i th camera, Ii corresponds to a
video frame image that is captured by the i th camera, and
E(·, ·) defines an energy function which measures the incon-
sistency or discrepancy between the 2D projection of the 3D
model and the real 2D image. In our implementation, we
use hardware pipeline via OpenGL to conduct the projection
operation Pi (·), with respect to the cameras’ intrinsic and
extrinsic parameters.

To define E , our idea is to fully exploit the geometry infor-
mation of the teethmodel (see Fig. 8) as well as the shape and
position information of the performer’s teeth that are encoded
in the teeth segment of the captured images. We define E as
follows:

E = ESP + λEBND. (7)

where ESP measures the overlap of the teeth model with the
actual visible teeth segment, while EBND ensures alignment
of the roof region of frontal teeth which we call boundary of
interest (BOI). We use fixed weight λ = 0.4 for all of the
results in this paper.

To compute ESP for every captured image, we render its
teeth segmentation with white color into clean (black) screen

buffer (see Fig. 9a). Then, the teeth model at current pose is
rendered in red color (with alpha blending α = 0.5), i.e., pro-
jectedwith respect to the intrinsic and extrinsic parameters of
the corresponding camera. Thanks to this second rendering
pass the pixels of the teeth segmentation that are overlapped
with the projection of the teeth model will change to pink
color (see Fig. 9b). The closer the poses of the teeth model
are to the actual performer’s teeth, the fewer pixelswithwhite
color remain. Therefore, we define the energy term ESP as
follows:

ESP = #Pixel_White, (8)

where #Pixel_White refers to the number of white pixels
in the screen buffer.

Due to the occlusion by lip or tongue, the teeth segmenta-
tion of the performer is usually smaller than the 2Dprojection
of its teeth model, such that the energy term ESP may lead
to sub-optimal result, as shown in Fig. 9c. We use the energy
term EBND to tackle this problem. To compute the boundary
term EBND , during the rendering of teeth model we change
the color of corresponding BOI to green (see Fig. 9d, e). This
ensures that when the 2D projection of the roof region is per-
fectly aligned with the teeth segmentation, the number of
pixels with light green color is increased, while the number
of pixels with dark green color is minimal. Thus, we compute
the energy term EBND as:

EBND = #Pixel_DGreen, (9)

where #Pixel_DGreen refers to the number of dark green
pixels in the screen buffer. Please note that the energy term
ESP will prevent the 2D projection of the roof region being
pulled into the segmentation too much, since it will increase
the number of white pixels.

To minimize E , we combine a gradient descent-like
approach with dense sampling which, in practice, ensures
good local optima while being computationally efficient.
During the descent, we estimate the direction of the energy
gradient relative to T using finite differences. Along this
search direction, we then use golden section search [16] to
find the new optimal value for T . To reduce the number of
degrees of freedom, we first fix translation (tx , ty , tz) and
update rotation (θx , θy , θz); then, rotation is fixed and trans-
lation updated. We repeat this process until convergence. To
avoid getting stuck in poor local minima, we subsequently
refine the pose T by sampling the space of possible config-
urations more densely in a small neighborhood around the
current pose T .

To further improve the optimization process, we use the
pose from previous frame as the initial pose T . For the first
frame, we bootstrap the process by manually selecting four
vertices on the teeth model and find their corresponding
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Fig. 9 Optimization energy of the (lower or upper) teeth pose.Given the
captured images and the teeth segmentation (a) in Fig. 4 and the initial
pose of the teeth model, we render for each camera the 2D projection of
the model’s geometry and the teeth segmentation into the same screen

buffer (b). The overlapping pixels are used to define energy terms (c, d)
which measure how consistent is between the poses of the teeth model
and the real teeth at the current video frame. In d, e, the projections of
the optimal teeth pose in all of the three cameras are shown

positions in two captured images. Through triangulation in
stereo analysis, we obtain the corresponding 3D positions for
selected vertices; then, an initial guess T for the first frame
can be obtained by fitting the initial positions of the selected
vertices to their new positions [33].

5 Experimental results

The algorithms were implemented in MATLAB/C++ and
were run on a 2.9 GHz Intel Core(TM)i7 processor (32 GB
RAM) with a single CPU thread.

The teeth performance capture is achieved using three
GoPro Hero 5 cameras at 1920 × 1080 resolution, and 24p
linear video mode settings. The performer places his mouth
approximately 20cm from each of the three cameras to allow
for optimum coverage and larger overlap between the cam-
eras. Using planar checkerboard patterns, the cameras are
calibrated for both intrinsic and extrinsic parameters. The
three cameras are synchronized by turning on and off lights.
We locate the frames with sudden intensity changes to match
the frames from different cameras. An accurate hardware
synchronization could also be employed to eliminate this
step.

Teethmotion trackingOn average, the total optimization time
is about 15 s per frame and the main bottleneck is the compu-
tational time for computing the energy function E in Eq. (7)
which involves counting the number of pixels of specific
color in the screen buffer. In our current implementation, we
use 940×480 screen buffer with 24 bits per pixel, where the
pixels are transferred from the GPU into CPU and counted.
The computational efficiency can be improved by consid-
ering parallel counting on the GPU, e.g., using histogram
operation available in CUDA SDK.

We recorded 833 teeth poses of the actor and performed
teeth tracking on all these frames for jawkinematicmodeling.
We show the results in the supplementary video; a sample of
teeth tracking results is shown in Fig. 10. Error in teeth track-
ing can come from several sources: calibration, errors in 3D
scans of the teeth, and segmentation errors. Unfortunately,
it is difficult to get the ground truth for this experiment, and
therefore, the validation is mainly done qualitatively. Since
we have images from three camera views, we are able to visu-
alize the tracked poses without depth ambiguity, as shown
in Fig. 10. Furthermore, we apply the tracked poses of the
upper and lower teeth to the skull and mandible models of
the performer, respectively. As shown in Fig. 11, we can cre-
ate augmented reality sequence by overlaying the skull and
mandible models on the captured images. From the recon-
structed motions of the skull and mandible models, we can
also stabilize skull motions and visualize only the relative
motion of the mandible as shown, e.g., in Fig. 14. Note that
the skull and mandible models are segmented and recon-
structed from the performer’s MRI data. While these models
are helpful for the visual evaluation of the tracking results,
they are not necessary for our tracking approach. It can be
seen from the present examples and the supplementary video
that the tracked poses of the teeth model are visually well
aligned with the real teeth of the performer.

In addition to visual comparison, we provide an approxi-
mate metric for measuring the accuracy. Since feature points
and their correspondences are difficult to obtain in the case
of teeth images, we insteadmeasure the difference in the area
from the projection of the teeth model and the teeth in the
images. The difference in area can be approximately com-
puted as the ratio between energy term ESP in Eq. (8) and
the total pixel number of the teeth segmentation. The average
error on the captured images is about 0.754%.
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Fig. 10 Tracking results from
several teeth poses. Each row
corresponds to a specific teeth
pose and its 2D projections in
the three cameras are shown.
Note that the 2D projection
(pink overlaid region) from the
3D model covers both the
visible and the occluded teeth

Fig. 11 The tracked poses of the upper and lower teeth can also be
illustratively shownusing the projection of the skull (blue) andmandible
models (red) on the captured images

Jaw kinematics model With the tracked poses of the per-
former’s lower and upper teeth, the jaw motion extraction,
including the datamapping from SE(3) to se(3), can be com-
puted efficiently at the rate of 4.6s for all the 833 teeth poses.
In MATLAB, the nonlinear PCA takes 108 s for learning the
jaw kinematics model.

In Fig. 12, we use the learned jaw kinematics model to
reconstruct the originally captured jaw poses. Then, we mea-
sure the reconstruction error by computing the difference
between each captured pose and its reconstruction. To mea-
sure the difference between a pair of given poses, we apply
them to the mandible mesh, respectively, and then compute
the maximum vertex distance between the two transformed

mandible meshes. As shown in Fig. 12, our jaw kinematics
model can reconstruct the jaw kinematics of a real person up
to an error of 1.73millimeters on average. To further validate
that our jaw kinematics model generates the anatomically
realistic poses, we randomly synthesized 1000 jaw poses
using our model. For each synthesized pose, we measure
how realistic it is by computing the difference between the
pose and its closest one in the real jaw poses that are captured
from the performer. The result is shown in Fig. 13.

Finally, using the jaw kinematics model, we can then
synthesize anatomically realistic and visually pleasing jaw
poses, i.e., by adjusting the parameters {di }3i=1 of the model
in their respective valid ranges. To facilitate this step, we
designed a simple user interface where the user can easily
explore the constrained nonlinear space of the jaw kinemat-
ics through three sliders, each of which is used to tune a
parameter and thus corresponds to a semantically meaning-
ful mode of the jaw motion (see Fig. 14).

Discussion In [42], a jaw kinematics model was also con-
structed, by parameterizing the jaw poses over a so-called
Posselt’s envelope of motion which is formed by the trajec-
tories of a reference point at the anterior of the jaw. However,
while the surface of envelope can be successfully traced from
the jaw poses which are densely and uniformly sampled in
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Fig. 12 For each of captured poses, we use NLPCA with different
number of component dimensions to reconstruct its original pose in
a, b. In c, the original pose is reconstructed using our final kinematic
model according to Eq. (5). The histogram of the reconstruction errors
of the 833 captured poses is shown (horizontal axis: error in millimeter;

vertical axis: frequency). For the pose with maximum reconstruction
error (i.e., 7.2216) using our final kinematics model, its original and
reconstructed poses are shown in an overlapping way (d), where the
transparent part corresponds to the difference between the two poses

Fig. 13 One thousand jaw poses
are randomly synthesized using
our kinematics model with and
without the dynamic adjustment
of the valid ranges for the
parameters d2 and d3. The
histogram of the accuracy of the
1000 synthesized poses is given
(left is with the dynamic
adjustment, while right is
without the dynamic
adjustment), whose layout is
similar to that of Fig. 12

the range of motion of the jaw, it may fail for the case where
the distribution of the sampled jaw poses is not so dense and
uniform, e.g., the tracked jaw poses in our case, as shown in
Fig. 15.
Inverse kinematics (IK) In addition, we allow the user to gen-
erate the jaw poses via direct manipulation. To edit the jaw
pose, the user can pick a vertex on the mandible mesh and
mouse-drag it to a new position. The system then automati-

cally updates the parameters of our jaw kinematics model to
find the optimal pose that is consistentwith this user-specified
positional constraint. Given the new position of the selected
vertex (p′), our goal is to find parameters d = (d1, d2, d3)
so that the transformed position of the selected mesh vertex
(pd) is as close as possible to p′:

argmin
d

‖p′ − pd)‖2 subject to valid d. (10)
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Fig. 14 Our user interface includes three circle points which corre-
spond to the modes of mouth opening/closing, lateral excursions, and
pro/retrusion, respectively. When a circle point is selected, a slider
appears and the user can move the slider to adjust the corresponding
parameter for the desired jaw pose

Fig. 15 While the envelope surface can be traced from the 9000 densely
and uniformly sampled poses (left which is depicted from [42]), it is
difficult to trace the surface from the 833 sparsely tracked poses in our
case (right)

We can efficiently solve Eq. (10)with a brute-force approach.
We sample the space of possible configurations densely in a
small neighborhood around the current pose and evaluate the
best candidate. This takes only fewmilliseconds.An example
of an interactive IK session is presented in the accompanying
video.
Animation To generate continuous jaw motions, the user can
design several key poses of the jaw through our user inter-
face, and then the intermediate poses can be computed using
simple linear interpolation between the parameters of the
key poses. As shown in Fig. 16, such a simple interpolation
scheme already generates high-quality jaw motions which
are comparable to real jaw motions.

LimitationsRapidmotion of the performer can lead to blurred
images, which in turn can lead to segmentation errors and
incorrect teeth tracking as shown in Fig. 17a. The use of
cameras with higher frame rate can eliminate this problem.

Another limitation stems from the valid ranges of the
parameters in our jaw kinematics model. While current

Fig. 16 Using our interface, the user can create two jaw poses (left and
right) and the system then automatically generates a jaw animation by
keyframe interpolation

Fig. 17 Limitations and failure cases: a we show poor teeth tracking
results in the case of images with blur. b Invalid jaw poses can be pro-
duced when the parameters {d1, d2, d3} are chosen near their respective
boundary values. In particular, the boundary conditions for parameters
d2 and d3 vary and they depend on the current value of d1; however,
such boundary conditions are just linear approximations and may not
be accurate

scheme for determining the valid ranges is simple and prac-
tical, invalid jaw poses may still happen when extreme poses
are synthesized using the parameters that locate near the
boundary of their valid ranges. An example of such scenario
is shown in Fig. 17b, where the jaw is in the rightmost of
the lateral excursion and in the maximum of protrusion. A
possible solution might be a smooth and tighter bounding
volume, e.g., the isosurface representation [14].

6 Conclusion

In this paper, we build an anatomically realistic jaw kinemat-
ics model from data. We use three tripod-mounted GoPro
Hero 5 Black cameras to capture the dynamic teeth per-
formances of an actor. Then, the jaw kinematics is learned
from these jaw poses using the nonlinear PCA, which effec-
tively captures the nonlinear characteristics of the jaw’s
motion. The resulting jaw kinematicsmodel has three param-
eters, each of which corresponds to an intuitive mode of the
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jaw’s motion, i.e., mouth opening, lateral excursions, and
pro/retrusion. Finally, our jaw kinematics model provides an
intuitive interface allowing the animators to explore realistic
jawmotions in a user-friendly way. Suchmodel is potentially
useful for various application scenarios to guarantee anatom-
ically correct results, such as synthesization of meaningful
jaw motions, e.g., for special effects animation [15], or auto-
matic discarding of invalid jaw poses for tracking recorded
facial performances [39].

In future, we plan to create a library of user-tailored jaw
kinematics models since each person has her personalized
capacity of jaw motion. We plan to obtain completely auto-
matic segmentation algorithm using graph cuts algorithm,
where the parameters of the energy function will be learned
from the training data withmanually annotated segmentation
labels. An interesting line of research would be to actually
use the learned jaw kinematics model in the teeth tracking
problem and vice versa.
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