Ambient Obscurance Baking on the GPU

Jason Tranchida
Bungie

Peter-Pike Sloan
NVIDIA/Activision

Hao Chen
Bungie

Ladislav Kavan
University of Pennsylvania

DEWTINY Y

Figure 1: Ambient Obscurance (left) and a final frame in a game (right). Our method supports instanced trees and shrubs and the gun
lighting changes as the character moves thanks to our new dynamic Ambient Obscurance model. (©Bungie

Abstract

Ambient Occlusion and Ambient Obscurance are coarse approxi-
mations to global illumination from ambient lighting, commonly
used in film and games. This paper describes a system that com-
putes Ambient Obscurance over the vertices of complex polygon
meshes. Novel contributions include pre-processing necessary for
“triangle soup” scene representations to minimize artifacts, a com-
pact model for different classes of instanced decorator objects such
as trees and shrubs, a compact model for pre-computed visibility
to be used on dynamically placed objects, and an approximation to
model the occlusion of small decorator objects when ray tracing.

CR Categories: 1.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

Keywords: Ambient Obscurance, global illumination, GPU

1 Introduction and Motivation

Generating realistic imagery in video games is a challenging prob-
lem. While real-time global illumination has received much at-
tention [Ritschel et al. 2012], most of the techniques are still too
costly, particularly on game consoles. One common alternative is
to pre-compute, or “bake”, some form of lighting or light trans-
port [Lehtinen 2007]. This work focuses on baking Ambient Ob-
scurance (AO) [Zhukov et al. 1998] to the vertices of large game
levels, including support for instanced decorator objects and spa-
tial sampling necessary for dynamic objects. While visibility has
been pre-computed for shots in film using GPUs [Pantaleoni et al.
2010], we are focused on baking for games with strict memory con-
straints. The game the system was developed for has the following
constraints/concerns that led to our solution:

This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in
SA '13, November 19 - 22 2013. <http://dx.doi.org/10.1145/2508363.2524699>.

e Ease of authoring levels is paramount, the geometry is very
unstructured, heavily instanced and often interpenetrating.
Prior experience with unique parameterizations led us away
from them due to more complicated workflows.

e Since outdoor lighting uses a dynamic time of day, we were
looking for a way to attenuate lighting particularly in regions
that transition from outside to interior spaces.

e Given the rich geometry of game levels, memory budget was
a primary concern. Storing an extra set of UV coordinates and
pre-computed textures was impractical. For instanced objects
such as trees even per-vertex values would be too expensive.

e The rendering system in the game uses deferred shading and
only a small amount of space in the G-buffer is available.

This paper describes a system that extends prior work [Kavan et al.
2011] on baking signals to mesh vertices. While real time solutions
for AO exist [Ritschel et al. 2012; Loos and Sloan 2010] it is well
known that even on high end platforms the screen space algorithms
do not adequately handle large distances due to the limited scene
model that they employ, causing temporal artifacts as geometry gets
added into the frame buffer. Our emphasis is particularly focused
on distant occlusion and is useful even on high end hardware. Our
proposed method handles complex triangle soup geometry includ-
ing inter-penetrations in a robust way and uses a compact operator
to model the variation in AO for large instanced objects like trees.
To handle dynamic objects freely moving through the environment,
we provide a model for pre-computing spatial visibility using com-
pact models, introducing a novel form of regularization. Finally,
we propose an approximation to efficiently model the occlusion of
small decorator objects such as bushes and shrubs.

2 Ambient Obscurance

Ambient Occlusion [Landis 2002] is a shadowing term for infinitely
distant constant lighting. A related concept of Ambient Obscurance
[Zhukov et al. 1998] is an approximation that uses the distance to
the first occluder to attenuate visibility. While we initially experi-
mented with computing Ambient Occlusion at multiple scales and
blending, Ambient Obscurance generated more satisfying results,

ppsloan
Text Box
This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in SA '13, November 19 - 22 2013. <http://dx.doi.org/10.1145/2508363.2524699>.

particularly for interior scenes. Mathematically, Ambient Obscu-
rance at a point p is expressed using the following integral:

A0(®) = 1 | pld(p.)) cos v 0

™

where d(p,w) computes the distance between the point p and the
closest blocker in the direction w and 6 is the angle between the ray
direction w and the surface normal at p. We use an exponential ker-
nel: p(z) = 1 — exp(az), where the parameter a is defined so that
at distance d (in meters) the visibility will be attenuated by one half.
This leads to a = log(0.5)/d. In our example we always compute
AO for two distinct distance targets, 2m and 300m, and allow the
artists to blend them per level. While screen space approximations
to obscurance exist [Loos and Sloan 2010], their performance and
quality deteriorates for large radii and distant geometry. If desired,
screen space techniques can be used to complement our method
since they handle small scale detail well.

2.1 Least Squares Vertex Baking

We build off the least squares vertex baking technique [Kavan et al.
2011], which is based on minimizing the error function:

E(x) = /S (f(P) — gx(p))%dp + o /S (Ruge(p))?dp ()

where f is the input Ambient Obscurance signal, gx is its piece-
wise linear approximation, x is the vector of coefficients, i.e., the
per-vertex values, and S is the surface of our scene. The first inte-
gral in Equation 2 models squared approximation error integrated
over the surface and the second integral is an edge based regularizer,
see Kavan et al. [2011] for details. We use a sparse direct solver
to solve the resulting linear system. We experimentally found that
o = 1 seems to work well for our scenes.

There are two modifications that we made to this technique to work
on our large game levels. First, there is large coarse distant geom-
etry that needs to compute AO and affect the AO of the playable
area. If we sampled per unit area the playable area would be under-
sampled and the distant geometry would be oversampled. Instead
we have a maximum number of samples per face; the finite ele-
ment framework [Kavan et al. 2011] takes care of their appropriate
weighting. This causes more samples to be focused in the playable
area. Second, when tracing rays, we compute the closest hit (which
is necessary for obscurance) and track the number of rays that were
back facing at each surface location. When the number of rays hit-
ting back facing geometry is above a threshold (25%) we invalidate
this sample. We found this to be more robust then using an AO
threshold as in [Kavan et al. 2011].

For ground cover like trees and shrubs, we initially tried to directly
instantiate (replicate) the geometry, but this significantly increased
the time and memory needed to represent the scene bounding vol-
ume hiearchy (BVH). On a medium sized scene this resulted in
adding about 30 seconds to the BVH build in OptiX [Parker et al.
2010]. It can also lead to aliasing with low sampling densities. In-
stead we implemented the following approach: shoot the opaque
ray first, then shoot a ray from the origin to the intersection loca-
tion where we intersect a second BVH of just the bounding boxes
of these objects. Each object has a density and exponential attenu-
ation is used to modify the obscurance multiplicatively, computing
the length of the intersection of a ray and a given bounding box. In
a pre-processing step we compute the amount of overlap between
a bounding box and the rest of the shrubbery bounding boxes, re-
ducing the density so that visibility does not darken too much where
bounding boxes overlap. This generates a smoother and more pleas-
ing AO result on the terrain. While related ideas have been used to

aggregate foliage [Lacewell et al. 2008], using OptiX we do not
have fine grained access to the BVH. Since we will be integrating
the results over surface meshes a highly accurate solution is not
necessary.

The trees are treated as semi-transparent objects, where each inter-
section attenuates visibility by 50%, and are in the same BVH as
the shrubs. Both simply attenuate the current AO value for a ray.
It is interesting to relate this form of attenuation to the similar ex-
ponential attenuation involved in Ambient Obscurance. While AO
increases the visibility the longer a ray moves through free space,
with shrubs we are modeling occlusion as a participating media,
decreasing visibility the longer the intersection interval.

2.2 Decorator Objects

The above described pipeline works well for buildings and terrain.
Unfortunately, storing per-vertex AO for all instances of the deco-
rator objects would require too much memory. Therefore, in this
section we propose a more compact representation especially de-
signed for instanced geometry.

There are two classes of decorator objects: large ones (trees, in-
stanced objects outside of the playable area, ...), and small ones
(grass clumps, bushes, ...). The geometry of the trees often have
poor normals, complex interpenetrations, and issues with back
faces since they are rendered using billboard textures. We sam-
pled the regions around all of the trees volumetrically with a fixed
target sampling density and used tri-linear interpolation to generate
AO at the vertices. A two level sparse volume texture was created
which guarantees that any sample inside any tree instance bound-
ing box would have all 8 samples used in tri-linear interpolation
present. Each valid voxel has a spherical visibility function that
reprents AO at two distances using quadratic spherical harmonics
(SH). Spherical samples are baked in a similar way as surface sam-
ples. This volume data is only used by the tool to reconstruct values
at vertices and very compact models (4 floats) that are used in the
game.

For every individual tree model, we compute a “local AO” signal
by simply baking the tree in isolation, i.e., the local AO only takes
into account the object itself. We then complement this per-model
signal with per-instance AO representation, the “global AO”, which
takes into account the AO contribution due to the placement of this
instance in the scene. The global AO component needs to be com-
pact; we use a 3D linear function (four scalar coefficients). These
per-instance coefficients are determined by a least squares fit of the
residual between the actual AO signal and local AO times the func-
tion. This composition works well, because local AO captures de-
tails due to the object’s geometry and global AO captures the gross
effect of the surrounding scene geometry, see Figure 2. Specifi-
cally, the parameters y of the global AO function Gy are computed
by solving the following optimization problem for each object in-

stance:
min 3 (£(s:) = Gy () L(T;5:))’ 3

where s; are the world-space surface samples on the specific ob-
ject instance, f(s;) is the gold standard AO signal, Gy is the linear
function of global AO we are solving for, L is the previously baked
per-object local AO, and T'; is a matrix which converts the coordi-
nates of sample s; from the world space to the object space. This is
a linear least squares problem with four unknowns.

2.2.1 Resampling

For very small decorators, like clumps of glass, a single scalar is
sufficient. In that case, we just want to match the terrain near the

Figure 2: An example of AO with instanced trees. Linear global AO provides a gross approximation (left); our model provides higher quality
by incorporating detailed per-object local AO signal (middle). Compare with gold standard AO (right). (©Bungie

decorator. This resampling is done by sampling the AO on the ge-
ometry within a small sphere around the point by shooting rays
from the boundary of the sphere toward its center. These values
are weighted by the distance to the boundary. The same machinery
is used to resample the AO onto lower LOD models of the scene
where resampling over the surfaces and doing a least squares fit
produces better results compared to just resampling at the vertices.

2.3 Dynamic Objects

Our game utilizes a visibility system [Umbra 2013] which provides
us with a set of coarse visibility regions, represented as axis-aligned
boxes and a graph representing their connectivity. The game engine
uses this visibility system for run-time culling e.g. during render-
ing, path planning, and Al processing. We take advantage of the
visibility regions and store extra information in them to model AO
for dynamic objects. These regions are conservative and often over-
lap; naive sampling inside of them causes artifacts due to visibility
bleeding. However the system is capable of determining if a point
inside the region is actually considered visible (i.e., not on the other
side of a diagonal wall, or buried inside a wall.) Before the bake
is launched we compute a one bit flag at 8 x 8 x 8 samples in the
region where the bit is set if the point is valid. We sample spherical
obscurance functions at each of the valid points, convolving with
a clamped cosine function so that we can generate AO for any in-
put normal. This would be an impractically large amount of data
to use at run-time and therefore, we fit a more compact model per
region. We start be eliminating any points that see too many back
faces (they are typically inside of an object and would bias the fit)
and then solve for a simple model per-region consisting of a center
point ¢ and 6 directional derivatives, two in each of the x/y/z axis
relative to the center point.

Mathematically, the model can be expressed as:

2

AOdynamic (P) = Vmean + Z(p - C)iv2i+si 4)
=0

Where p € Rlisa query point in world space, Viean i8S the con-
stant term, c is the center point of the model, v; are the 6 directional
derivatives (ordered +z, —x, +y, —y, +2, —z) and s; is 0 or 1 de-
pending on the sign of (p — ¢)s, i.e., the i-th component of the 3D
vector p — c¢. The model is non-linear because of the center point,
but for a fixed center the 7 remaining parameters can be solved for
using linear least squares. While we have experimented with opti-
mizing the whole model using a non-linear solver, in practice we
found it sufficient to try two candidate centers: the center of mass
of the valid samples in the region and the center of the region. The
system is solved once and applied for each of the 18 channels of

quadratic SH at two distances. We settled on this model because
we wanted a room with 6 walls to be well represented; here the
center would have high visibility and AO would darken as we move
towards any of the 6 walls. A model such as a single gradient does
not have enough degrees of freedom to resolve this common case.
The final coefficients are stored for each region. In the engine we
currently use just linear SH and a single function, which trades off
computation and storage in the vertex shader vs. accuracy. This
turns out to work surprisingly well. For a single occluding plane,
AO convolved with a cosine can be exactly represented in linear SH,
which is a common case (a ground plane). Evaluating the model is a
vector difference and 3 MAD instructions that are easily vectorized.

The models are sampled based on the current position of the charac-
ter or other dynamic object. Without further precautions this would
lead to popping artifacts when switching between models and we
implement two techniques to address this. First, the models in each
cluster are regularized based on how well they predict neighboring
clusters using the connectivity graph. Mathematically, we seek to
minimize this error function:

E= Y (Mi—Moig:)*+8 Y wi;(Mi(bij)—M;(by))?

i Cregions JEN(4)

where Mg is the model fit to the region alone and M is the re-
fined model, /3 is a weight for regularization, w;; is the area of the
boundary between regions ¢ and j and b is a point on the center
of this boundary. This is related to the regularized least squares fit
used in previous work [Kavan et al. 2011]. The first sum is over
all the regions and the second sum is over the neighbors of region
1, denoted as N (). Instead of solving a global linear system, we
simply use a variant of block coordinate descent to move towards
a more balanced model of each region independently. We apply
several iterations of this process. While smoothing the differences
between neighboring regions, this process cannot guarantee a con-
tinuous function at the end and therefore, the second technique we
use at run time is temporal blending. Specifically, the visibility
model is blended with the model used in the previous frame. This
smoothes any popping artifacts using exponential decay.

3 Pre-Processing and Runtime

The input vertex coefficients consists of blended long and short AO
values, currently 97% using the long radius and 3% using the short
radius. The values are also remapped to give the artist more con-
trol over the result, although investigating this in more detail is an
area of future work. At runtime the AO results are evaluated in
the vertex shader and interpolated and stored using 5 bits of the
G-buffer. Dithering has to be used to make banding not be a signif-
icant problem. AQO is used to modulate artistically placed ambient

Figure 3: Examples of Ambient Obscurance in a large game world. (©Bungie

illumination. For dynamic objects the visibility system tags every
object with the cluster it is in, and an index is stored that references
the world space model for each cluster. The AO is computed and
blended with the value used at previous frame. During the pre-
process very small regions are absorbed into the most compatible
neighbor, to minimize the required storage.

4 Results

The system has been deployed in a large game studio. Baking
jobs are scheduled on a farm with tens of servers that each have
a NVIDIA GTX680 graphics card. Backup servers with lower end
GPUs can also be used. The target is for a bake to take less than 5
minutes, which is reasonable for our current scenes. The results of
our technique are shown in Figure 3.

Table 1 summarizes timing breakdown for a sample level. The
computations are done using OptiX [Parker et al. 2010]; we found
that several optimizations to naive gathering at each sample point
can significantly increase performance. Re-grouping rays based on
compact cones of 32 rays and gathering across a warp followed
by a reduction pass instead of at each gather point significantly in-
creases the GPU tracing performance (taking 46-73% of the time
when not doing these optimizations depending on the stage). We
trace 256 directions, importance sampled over the hemisphere for
surface points, and 1024 for volume points. Just under 65% of the
time is spent ray tracing.

Description Time (s)
Process geometry, 1.5M V 1.8M F 2
Samples Mesh, 6.7 M samples <1
Flatten 46 trees, 7856 “fog” proxies for shrubs <1
OptiX BVH build 10.5
Ray trace samples 35.1
Build sparse volume for "trees”, ray trace 11829 pts 0.53
Ray trace region for dynamic AO 332741 pts 9.2
Least squares solve 8.6
Resample LOD geometry 5.7 M pts 5.7
Least squares solve LOD 0.65M V 0.8M F 4.2
Total 78

Table 1: Timings for scene geometry with 1.5 million vertices and
1.8 million faces, running in an NVIDIA K20 GPU.

5 Conclusion

We presented a system for baking Ambient Obscurance on large
game levels. A previous solution for static geometry has been ex-
tended to handle large scale scenes; a compact approximation has
been derived for heavily instanced objects such as trees, and an ap-
proximation of visibility in volumetric regions has been presented
in order to address dynamic objects and characters. The system

leverages GPUs for ray tracing and has been deployed at a large
game studio. Several variations of AO were initially tried, along
with alternative models for instanced objects and dynamic charac-
ters. The runtime performance is essentially free and the results
are complemented well with traditional SSAO to model finer scale
details if one can afford the runtime overhead of those techniques,
typically a couple of milliseconds. Using OptiX, a ray tracing do-
main specific language, allowed for rapid exploration of possible
solutions and proved to be extremely valuable.

For future work, the instancing model could be improved by opti-
mizing for the per-object local AO using alternating least squares
(instead of just computed local AO). It would also be possible to
explore a more refined representation of the volumetric model used
for dynamic AO, including optimization of the center point.

Acknowledgements

Keith Morely and Dave McAllister on the OptiX team at NVIDIA
helped considerably. We thank the anonymous reviewers for their
feedback.

References

KAVAN, L., BARGTEIL, A. W., AND SLOAN, P.-P. 2011. Least
squares vertex baking. Comput. Graph. Forum 30, 4.

LACEWELL, D., BURLEY, B., BOULOS, S., AND SHIRLEY, P.
2008. Raytracing prefiltered occlusion for aggregate geometry.
In IEEE Symposium on Interactive Raytracing 2008.

LANDIS, H., 2002. Global illumination in production. ACM SIG-
GRAPH 2002 Course #16 Notes, July.

LEHTINEN, J. 2007. A framework for precomputed and captured
light transport. ACM Trans. Graph. 26, 4.

Loos, B. J., AND SLOAN, P.-P. 2010. Volumetric obscurance. In
Symposium on Interactive 3D Graphics and Games.

PANTALEONI, J., FASCIONE, L., HILL, M., AND AILA, T. 2010.
Pantaray: fast ray-traced occlusion caching of massive scenes.
ACM Trans. Graph. 29, 4 (July), 37:1-37:10.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Optix:
A general purpose ray tracing engine. ACM Trans. Graph. 29, 4.

RITSCHEL, T., DACHSBACHER, C., GROSCH, T., AND KAUTZ,
J. 2012. The state of the art in interactive global illumination.
Comput. Graph. Forum 31, 1 (Feb.), 160-188.

UMBRA, 2013. http://www.umbrasoftware.com/.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An ambient
light illumination model. In Rendering Techniques.

