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Detecting 3D Points of Interest Using Multiple
Features and Stacked Auto-encoder

Zhenyu Shu, Shiqing Xin*, Xin Xu, Ligang Liu, and Ladislav Kavan

Abstract—Considering the fact that points of interest on 3D shapes can be discriminated from a geometric perspective, it is
reasonable to map the geometric signature of a point p to a probability value encoding to what degree p is a point of interest, especially
for a specific class of 3D shapes. Based on the observation, we propose a three-phase algorithm for learning and predicting points of
interest on 3D shapes by using multiple feature descriptors. Our algorithm requires two separate deep neural networks (stacked
auto-encoders) to accomplish the task. During the first phase, we predict the membership of the given 3D shape according to a set of
geometric descriptors using a deep neural network. After that, we train the other deep neural network to predict a probability
distribution defined on the surface representing the possibility of a point being a point of interest. Finally, we use a manifold clustering
technique to extract a set of points of interest as the output. Experimental results show superior detection performance of the proposed
method over the previous state-of-the-art approaches.

Index Terms—3D shapes, Point of interest, Multiple features, Stacked auto-encoder
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1 INTRODUCTION

3D points of interest (POIs), also referred to as feature
points or salient points, are distinctive points in visual

perception. POIs are found to be very useful in geometry
processing tasks, such as mesh segmentation [1], mesh
registration [2], shape enhancement [3], shape retrieval [4],
viewpoint selection [5] and visual attention guidance [6].

There is a common understanding that POIs can be
discriminated from a geometric perspective but the real
relationship between POIs and geometric descriptors is
quite complicated [7], [8]. A number of research works [9],
[10] suggest extracting a feature vector to encode the lo-
cal geometry for any vertex of the input shape and then
selecting a subset of representative vertices as the POIs.
However, the resulting POIs are still conspicuously different
from manually marked salient points, which reveals that
automatically detecting POIs in coincidence with human
visual perception still remains a challenging problem.

In spite of the existing challenge, it is reasonable to map
the geometric signature of a point p to a probability value
encoding to what degree p is a POI. However, judging
whether a point is a POI or not is actually a subjective
task because different people may have different under-
standing about POIs. Inspired by recent advances in deep
learning [11], [12], we propose a novel algorithm for learn-
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Fig. 1. POIs detected by our approach.

ing and predicting POIs on 3D shapes by using multiple
feature descriptors. Our algorithm requires two separate
deep regression neural networks to accomplish the task.
One network is trained on the whole dataset to identify the
membership of a given 3D shape, and the other network
is trained on each category respectively to predict a saliency
map according to the extracted geometric signature once the
membership is known. Finally, we use a manifold clustering
technique to extract a set of POIs as the output. Our deep
learning-based method can automatically learn and detect
the results in coincidence with humans’ expectation as long
as the necessary training data is provided. Figure 1 shows
an example of POIs detected by our approach.

We evaluate our approach on SHREC 2011 non-rigid 3D
shape dataset [13], which contains 600 different 3D shapes.
The ground truth data on these models are obtained from
manually marked data by volunteers. Numerous experi-
mental results show that our approach outperforms the
state of the art in terms of various measures, such as False
Negative Error (FNE), Weighted Miss Error (WME), False
Positive Error (FPE), Area Under the ROC Curve (AUC),
Normalized Scanpath Saliency (NSS) and Linear Correlation
Coefficient (LCC).

Our contributions are three-fold.
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Fig. 2. The overall workflow of the proposed approach for detecting 3D POIs.

• We use deep neural networks to predict a saliency
map for a given 3D shape, which is rather different
from conventional classification problem.

• We integrate various geometric descriptors into our
algorithmic framework. It may achieve better detec-
tion results if some new descriptors are considered
in this framework.

• Our method is data-driven and users are able to
obtain reliable salient points as long as there are
sufficiently many labeled ground truth samples.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work on POI detection and deep
learning-based 3D shape analysis. Section 3 presents the
overall detection framework followed by detailed configu-
ration of the deep neural networks. The training/predicting
techniques are detailed in Section 4. After that, we give the
3D POI detection algorithm in Section 5. In Section 6, we
show extensive experimental results, as well as comparison
statistics. Finally, we point out limitations and future work
in Section 7 and conclude this paper in Section 8.

2 RELATED WORK

At least three topics are highly related to the theme of this
paper: detection of POIs, extraction of geometric feature
descriptors and deep learning based 3D shape analysis.

2.1 POI detection
POIs or salient points, originated from the area of com-
puter vision, are widely studied in the computer graphics
community. Detecting POI is useful on many occasions, for
example, performing a shape-based search across distinctive
regions [14] or selecting the most informative views of a
given 3D model [15].

In the early stages, researchers found 3D POIs from
multiple 2D projected views, such as [16], [17], [18], [19].
Since about 10 years ago, researchers turned to detect POIs
directly on the input polygonal surface, measuring saliency
according to the geometric property in a neighborhood. De-
pending on the neighborhood size, we can further classify
existing methods into two kinds.

The first kind of algorithms measures saliency in a local
scale. For example, Koch et al. [20] suggested that the salient
regions should be distinctive from their immediate sur-
roundings. Lee et al. [21] defined scale-dependent saliency

using a center-surround operator on Gaussian-weighted
mean curvatures. Gal et al. [4] constructed salient geometric
features to represent the geometry of local regions of the
surface by combining low-level features into a high-level
one. In fact, spectral analysis techniques can also be used
for this purpose. The key idea [22], [23] is to transform the
spectral residual in the spectral domain back to the spatial
domain.

The other kind of methods [24], [25] measures saliency in
a rather different manner. They often need to evaluate global
contrast differences and spatial coherence. The central idea
is to set up one kind of measurement that makes the eye-
catching regions stand out from a global scope. For example,
Perazzi et al. [26] conducted contrast-based saliency estima-
tion using high-dimensional Gaussian filters. In addition,
priors or more visual cues on foreground or background
have been shown to be helpful to saliency detection from
recent research results [27], [28].

Technically speaking, detecting POIs is to automatically
identify salient information that coincides with human per-
ception. In fact, POIs are related to geometric features but
it is hard to find an explicit formula to characterize the
relationship between them. Motivated by this observation,
in this paper, we propose a novel method based on deep
learning techniques. On one hand, this new framework is
able to learn from manually labeled data and predict salient
points like humans do. On the other hand, it enables us
to extract POIs by considering multiple geometric features,
rather than only a single feature. New geometric features
can be easily integrated into this framework. Finally, it is
worthwhile to point out that detecting POIs is a subjective
problem, i.e., different people may have different under-
standings. Our algorithm is data-driven and can guarantee
the prediction results to match the training data to the fullest
extent.

In [7], the authors also propose a data-driven method
to effectively detect Schelling points on 3D mesh models.
However, they employ random forests, which is a different
strategy from our method, to predict the distribution of
Schelling points. The comparison between their method and
ours can be found in Section 6.3.

Recently, another method of detecting tactile mesh
saliency, where a human is more likely to grasp, press, or
touch on a 3D mesh model is proposed in [29]. By mapping
a 3D model to multiple depth images, they propose a novel
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multi-view deep ranking method, which builds a regression
between depth images and tactile saliency, to predict the
regions where human tend to touch. It is worth to point
out that not only the goal of their method, but also the
regression constructed is very different from our method
where a regression between geometric feature vectors and
the probabilities of being POIs for all vertices is constructed.
We do not present the comparison of these two methods in
this paper due to the very different detection goals.

2.2 Feature descriptors
Feature descriptors are central to POI detection problem.
Usually, a feature descriptor is to encode local or global
geometric features for a given 3D shape. It can be typically
represented by a scalar or vector field on a polygonal mesh,
and then converted into a histogram before training the neu-
ral network. In recent years, numerous local feature descrip-
tors have been proposed, such as Gaussian curvature (GC),
shape diameter function (SDF) ([30]) and average geodesic
distance (AGD) ([31]). Bronstein et al. [32] developed a scale-
invariant heat kernel descriptor (SIHKS). The construction
is based on a logarithmically sampled scale-space in which
shape scaling corresponds to a translation. Aubry et al. [33]
proposed a shape signature (WKS) which represents the
average probability of measuring a quantum mechanical
particle at a specific location and very suitable for non-rigid
3D shapes. Knopp et al. [34] presented a local 3D shape de-
scriptor by using Hough-voting. Smeets et al. [35] proposed
a four-step algorithm to generate a local shape descriptor
for face recognition under expression variations and partial
data. In this paper, we use 3 descriptors including SIHKS,
WKS, and GC to detect POIs.

2.3 Deep learning-based 3D shape analysis
In recent years, a lot of deep learning-based research
work [36], [37], [38] has been proposed to solve various
problems in 3D shape analysis, such as shape retrieval,
shape segmentation and even shape modeling. The design
of the deep learning framework is closely related to geo-
metric representations. Depending on this, we can divide
the existing approaches into 3 categories. The first cate-
gory [39], [40], [41] transforms a given 3D shape into a set
of 2D views each of which has a structured representation.
However, this kind of methods may suffer from information
loss. Therefore, different from the first category of methods,
the second category of algorithms [42], [43], [44] directly
learns features from uniform or adaptive voxelized data
of 3D shapes by introducing a 3D convolution operator. In
practice, the voxelization resolution cannot be too high due
to the limitation of current computing power. To accelerate
the training process, the third category of methods [12], [45],
[46], [47], [48], [49], [50] aims at learning high-level features
on certain discretizations of surfaces (e.g. triangular meshes,
point clouds or range scans). Some of them [12], [45],
[46] learn high-level features based on conventional hand-
crafted geometric features and can usually achieve desirable
performance while tolerating a small amount of training
data especially when it is very hard to get sufficiently many
training samples. In this paper, we build our deep neural
network upon multiple conventional hand-crafted features

Fig. 3. The architecture of our deep neural network for detecting POIs.

to automatically detect POIs on 3D shapes, which falls into
the third category.

3 OVERVIEW

Our algorithm relies on two deep neural networks to ro-
bustly detect POIs in a supervised way, as illustrated in
Figure 2. One network is to predict the membership of the
given 3D model to a specific class, and the other network
is to predict the probability of being a POI for any vertex
according to its geometric properties. Finally, an extra step
is required to extract typical POIs from the resulting saliency
map. We achieve this by density peak-based clustering
algorithm [51].

It is worth noting that we use deep neural networks to
predict a model dependent probability field, rather than
a set of labels, which is different from previous shape
classification or segmentation problems. For this purpose,
we transform manually labeled data to probability fields by
constructing a biharmonic distance field. At the same time,
we need to extract POIs from probability fields by clustering
techniques. This is the key to adapting conventional deep
neural networks to the POI detection problem.

4 BACKGROUND

In this section, we detail the architecture of the two deep
neural networks, one used to detect the POIs and the other
to predict the class of the target 3D shape. Both of them have
four layers in total, concatenated stacked auto-encoders
(SAE) [52] and contain a softmax layer, as shown in Figure 3.
For the neural network of predicting POIs, the numbers of
neurons are experimentally set to 120-40-10-1. For the other
neural network, the corresponding setting is 320-160-80-30.

4.1 Auto-encoders
Just as its name implies, SAE is a neural network composed
of multiple layers of sparse auto-encoders. As shown in
Figure 4, the auto-encoder we used consists of an input
layer, a hidden layer, and an output layer. It is able to
automatically learn latent features of the input by mini-
mizing the discrepancy between the input features and the
reconstruction ones.

In Figure 4, the top mapping represents the stage of
the encoder, while the bottom mapping represents that of
the decoder. Let NL and NG be the numbers of units in
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Fig. 4. Illustration of an auto-encoder. Note that the bias parameters b1
and b2 are omitted for clarity.

the input layer and the hidden layer respectively. For each
training 3D model or each vertex on a training 3D model,
different kind of geometric feature descriptors, including
GC, SIHKS and wavelet kernel signature (WKS), are used to
extract multiple feature vectors (See section 5.2 for details),
where each feature vector describes the geometric feature
of a 3D model or a vertex from a different aspect. Those
multiple feature vectors are then concatenated into one
feature vector x ∈ RNL×1. The auto-encoder transforms x
to a latent representation g1 by a compound mapping of a
linear transformation and a non-linear activation function s
as follows:

g1 = s(W1
1x+ b1

1), (1)

where g1 ∈ RNG is the latent data, W1
1 ∈ RNG×NL is the

encoding weight matrix, b1
1 ∈ RNG is the bias vector, and

s (·) is the sigmoid function:

s (a) =
1

1 + e−a
. (2)

Then the latent representation g1 is mapped to a feature vec-
tor y1 ∈ RNL , which approximately reconstructs the input
feature vector x by employing a compound mapping of a
linear transformation and a non-linear activation function
as follows:

y1 = s(W 1
2 g

1 + b1
2), (3)

where g1 is the latent data, W 1
2 ∈ RNL×NG is the decoding

weight matrix, and b1
2 ∈ RNL is the bias vector.

Given m training feature vectors x(i) (Denoted as X),
where each one represents the geometric features of a
training 3D model or a vertex on a training 3D model,
we can learn the underlying features by minimizing the
reconstruction error of the cost function:

D
(
X,Y 1

)
=

1

2

m∑
i=1

∥∥∥x(i) − y1
(i)

∥∥∥2

2
, (4)

where Y 1 denotes all the reconstructed feature vectors, x(i)

and y1
(i) represent the ith training feature vector and the

ith reconstructed feature vector respectively. Under certain
circumstances, some weights may result in over-fitting [53].
Hence, we use a regularization term to avoid over-fitting.
And the Equation 4 can be redefined as follows:

D
(
X,Y 1,θ

)
=

1

2

m∑
i=1

∥∥∥x(i) − y1
(i)

∥∥∥2

2
+ λ‖θ‖22, (5)

where λ is the weight decay parameter, θ = {W , b},W and
b represent the weights and the biases of the auto-encoder
respectively.

To further prevent the auto-encoder from learning some
useless information from the training feature vectors, we
apply a sparsity constraint on the hidden layer based on the
Kullback-Leibler (KL) divergence [54] in this paper. To this
end, the optimization problem can be formulated as follows:

argmin
θ

D
(
X,Y 1,θ

)
+ τ

NG∑
i=1

KL
(
ρ|| ∧ρi

)
, (6)

where,

KL
(
ρ|| ∧ρi

)
= ρ log

ρ
∧
ρi

+ (1− ρ) log 1− ρ
1− ∧ρi

,

τ is the weight of sparsity penalty term, ρ is the sparsity

parameter,
∧
ρi =

1
m

m∑
j=1

(gi)j is the average activation of the

hidden unit gi (averaged over the all the input training
feature vectors), and (gi)j represents the corresponding
activation of the hidden unit gi of the jth input training
feature vector. From problem (6), we can see that the sparsity
penalty term will vanish if

∧
ρi = ρ. So the closer

∧
ρi and ρ are,

the sparser the hidden layer will be.
With this formulation, we use the back propagation al-

gorithm [55] and the gradient descent approach to train the
auto-encoder by optimizing the cost function with respect
to θ.

4.2 Stacked auto-encoders

To further learn high-level features, multiple layers of sparse
auto-encoders (SAE) are stacked up, where the latent feature
vectors learned in the previous auto-encoder are used as
the input of the next auto-encoder. The whole training
process is carried out in a greedy layer-wise way [56] and
better parameters are generated for deep neural networks
and desirable results are produced [57]. After training each
auto-encoder using the method described in Section 4.1, the
outputs W i

2 and yi of the auto-encoder are discarded and
the latent features gi of the auto-encoder are used to feed
the next auto-encoder.

To predict the membership of a 3D model, we add an
extra softmax layer to the end of SAE for the neural network
of 3D model classification. The predicted membership for
each 3D model is obtained by finding the index of the
maximal element of the output vector v. For the neural
network of predicting POIs, we add an extra layer with
sigmoid activation function to the end of SAE. Given the
output feature vector g4 of the SAE, the output value
v = 1

1+e−W5
1 ∗g4 is the predicted probability of each vertex

being a POI.

5 POI DETECTION USING DEEP NEURAL NETWORK

5.1 Training data preparation

Our training data is obtained from manual labeling. For
SHREC 2011 dataset, we developed a small and simple
application for visually labeling the POIs on training 3D
shapes. 5 volunteers were then asked to mark POIs on
these models. We adopt the strategies proposed in [7] to
avoid and filter possible bad data. The volunteers are asked
to select points on the surface of a 3D model likely to
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Fig. 5. An example which may confuse the detection neural network
and lower its’ performance. Three points Q1, Q2 and Q3 on the Hand
model and their corresponding feature vectors are shown in the figure.
Q1 is a POI, Q2 and Q3 are both normal points. Q1 and Q2 have very
similar feature vectors but different point type. Q2 and Q3 have the same
point type but very different feature vectors. Note that the feature vectors
shown here are constructed by only using SIHKS for simplicity.

be selected by other volunteers. For the entire interactive
session, the cumulative camera rotation is restricted to be
less than 36 degrees to maintain approximately the same
camera viewpoint. Besides, the average time per click is also
not allowed to be less than one second to avoid too hasty
clicks.

It is worth to point out, if we directly use the marked
data as training data, unsatisfactory results may be pro-
duced because the switch between POIs and normal points
is too drastic. The main reason is that the corresponding
geometry features may be similar for a POI and a normal
point while their labels are very different. For example, as
shown in Figure 5, Q1 is a POI, Q2 and Q3 are both normal
points. Because Q1 and Q2 are very close to each other, they
have very similar feature vectors (the red and blue curves
shown on the right side of the figure) but different types of
point. Meanwhile,Q3 has a very different feature vector (the
yellow curve) with Q2 but the same type. This may decrease
the performance of the neural network. To alleviate this
problem, we design a function P (v) to compute the label
for each vertex v of the training 3D shapes. The function P
should satisfy the following conditions.{

P (v) ∈ (0, 1] , ∀ v ∈ V
P (ci) = 1, for i = 1, 2, . . . ,K

where V represents all vertices on a training 3D shape, ci
is a POI and K is the total number of POIs on the training
3D shape. Therefore, we regard ci as the source vertices and
construct a multi-source biharmonic distance field [58] for
each training 3D shape. And then we define the function P
as

P (v) = exp

(
−NBHD(v, C)

2

2σ2

)
,

where C is the set of all ci, NBHD (v, C) = BHD(v,C)

max(BHD(v,C))
is the normalized value of the biharmonic distance field
BHD (v, C) for v, and σ is a factor to control the decreasing
speed of the P with regard to BHD, which can be deter-
mined by the users.

5.2 Deep neural network training
In the experimental setting, we select three widely known
feature descriptors: SIHKS, WKS, and GC, although other

feature descriptors can be integrated into our algorithmic
framework. These feature descriptors are deemed to have
a capability of characterizing the geometric properties well
from different perspectives and therefore are widely used
for vertex classification, such as in mesh segmentation and
other related problems [59], [60], [61], [62], [63].

For our POIs prediction neural network, we extract
feature vectors for each vertex on the 3D shapes and feed
them to the network for POI detection.

For our 3D shape classification neural network, we ex-
tract feature vectors for each 3D shape and feed the feature
vectors to the network for classification. For GC that is a
scalar field on each patch, it is easy to capture the feature
distribution using histograms. For SIHKS and WKS that
are vector fields on each patch, we extract the 1D feature
distribution by using the well-known bag-of-feature (BoF)
technique. The number of bins in the histograms and that
of the bags for the bag-of-feature representation are both
set to B = 100. This way, any feature descriptor can be
adapted into our algorithmic framework. After that, we
need to concatenate the feature vectors extracted by using
different feature descriptors and take them as the input of
our 3D shape classification neural network.

Once the deep neural networks are trained, the predicted
results can be easily obtained by applying forward propa-
gation to the corresponding vectors of a target 3D shape.

5.3 Point visualization via decision graph

Although it is hard for us to define strictly what a POI is
from a mathematical point of view, the following observa-
tion is helpful. First, a POI p should have high saliency.
Second, points with higher saliency than p are not available
in p’s neighborhood. The two aspects are crucial to deter-
mine a POI. In fact, the clustering technique proposed in [51]
inspires us to visualize the points via a decision graph.

For each data point vi, we use Pi
∆
= P (vi) to denote

vi’s saliency. Let {dij}n×n be the geodesic distance matrix
between data points. We use δi to denote the influence
distance of vi:

δi = min
j:Pj>Pi

(dij) ,

Generally speaking, the vertices that are mapped to the
upper right corner of the decision graph tend to be POIs.
That is to say, it turns out that we can use γi = Piδi to
measure to what extent a given point is a POI. In Figure 6,
we map each vertex of the Hand model (left) to the decision
graph (right). We can clearly see that the five tip points are
mapped to the upper right corner. However, this is not as
easy as it seems. Imagine that there is a large plate with a
flat hump in the middle. It’s possible that the hump is not
so conspicuous to be deemed as a POI by users but may be
incorrectly taken as a POI due to its large influence distance
δ. Therefore, a quantitative evaluation criterion of a POI is
required.

5.4 POI selection via statistical testing

From {vi}ni=1, it is easy to compute {δi}ni=1 and {γi}ni=1.
In order to select POIs via the statistical testing method,
we have to make prior assumptions on {δi}ni=1 and {γi}ni=1.
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Fig. 6. Detected POIs on Hand model (left) using the corresponding
decision graph (right).

Our assumption is based on the following two observations.
First, δi is non-negative. Second, δi of a POI is usually
relatively large and the number of POIs is usually relatively
smaller than the number of other points on the surface of 3D
shapes. Similar to [64], we can therefore assume that {δi}ni=1

follows the long-tailed distribution. Furthermore, {γi}ni=1

can also be assumed to follow the long-tailed distribution
because δi follows the long-tailed distribution and ρi is
positive.

With the assumption that {δi}ni=1 and {γi}ni=1 follow the
long-tailed distribution, there exists some λ > 0, such that
the cumulative density function has the following form:

F (x) = 1− L0(x) · x−λ,

where L0 is a slowly varying function (for sufficiently large
x, L0 behaves almost like a constant), and the parameter λ
denotes the tail index. The key to determining if v is a POI
is to make clear whether v is located on the long tail or not
according to the distribution of {γi}ni=1.

According to [64], [65], we can transform {γi}ni=1 into an
ordered list, {γ̂i}ni=1, such that γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂n, and
then select the POIs by checking γ̂m, γ̂m−1, · · · , γ̂1 one after
another, where m is set to d0.1ne empirically. Once the point
that gives γ̂k (k ≤ m) is identified as a POI by the following
inequality, all the points that give γ̂1, γ̂2, · · · , γ̂k−1 are also
identified as POIs:

γ̂k
γ̂k+1

≥ [1− (1− α)1/m]−1/(λ·k),

where α is the parameter to define the level of significance
(5% in the default setting). The tail index λ can be estimated
with the modified Hill-type estimator suggested in [65]. The
outward statistical testing method enables us to select POIs
in an effective and robust manner.

6 EVALUATION

In this section, we experimentally validate our algorithm
and compare it to previous methods.

6.1 Experimental configuration
Experimental dataset. We test our method on the SHREC
2011 non-rigid 3D model dataset, which is an open dataset
originally used for 3D shape classification and retrieval. The
SHREC 2011 dataset contains 30 categories of 3D shapes

Fig. 7. Some example models of the SHREC 2011 non-rigid 3D models
dataset.

and each category has 20 3D shapes, so that there are 600
3D shapes in SHREC 2011 dataset total. Each shape in the
dataset contains about 9500 vertices. We developed a small
visual tool and manually marked POIs for each 3D shape in
the dataset. For each category, we randomly select 10 shapes
as the training shapes, and the left shapes are regarded as
test shapes. Note that our regression networks are trained on
each category respectively, while our classification network
is trained on the whole dataset. Some example models in
SHREC 2011 dataset are shown in Figure 7. We show some
representatives of our human-marked POIs in Figure 8.

Evaluation metrics. To evaluate our method, we adopt
three metrics that are defined by [8], including False Neg-
ative Error (FNE), False Positive Error (FPE) and Weighted
Miss Error (WME). Let G represents the set of ground truth
points, and D be the set of points detected by an algorithm
for a 3D shape. A point gi ∈ G is considered to be correctly
detected if there exists a detected point d ∈ D such that
d is close to gi but not closer to any other points in G. To
measure the error of the detection results, FNE and FPE are
defined as FNE = 1 − NC/|G| and FPE = 1 − NC/|D|
respectively, where NC is the number of correctly detected
points, and | · | represents the size of a set. To take the
prominence of gi into account, WME is used to measure
how many subjects are marked by the algorithm within
a parameterized geodesic neighborhood of gi. Assuming
that ni subjects have marked a POI within a geodesic
neighborhood of radius r around the ground truth point

gi, WME is defined as WME = 1 −
|G|∑
i=1

niδi

/
|G|∑
i=1

ni, where

δi = 1 if gi is correctly detected; otherwise, δi = 0. For the
three metrics, a lower score represents better performance.

We have also adopted three more recent metrics pro-
posed in [66], which are Area Under the ROC Curve (AUC),
Normalized Scanpath Saliency (NSS) and Linear Correlation
Coefficient (LCC), to measure the performance of our algo-
rithm. A receiver operating characteristic (ROC) curve is a
plot illustrating the performance of a binary classifier for
different threshold values. The area under the ROC curve is
previously widely used to compare saliency models in the
2D case. NSS measures saliency values at points selected
by users (ground truth) and defined as a weighted sum
of the computational saliency at those points. LCC is the
correlation coefficient between two variables. We use it to
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Fig. 8. Some example models with our human-marked POIs on SHREC 2011 dataset.

(a) hand-marked points (b) model with label (c) prediction results (d) extraction results

Fig. 9. Hand model POIs prediction: When the inputs are training model’s POIs which are hand-marked by human subject (a), we can use the
function P to get label value for each vertex (b) and then it is used as a training set for prediction neural network. The POIs for other models are
finally predicted by our algorithm (c).

(a) (b) (c)

Fig. 10. Comparison of the hand-marked POIs and the result of POI detection for a Hand model: (a) Hand model with hand-marked POIs; (b) The
predicted result of POIs by prediction neural network; (c) The POIs extracted from the prediction model.
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measure the strength of the linear relationship of the two
saliency distributions, which are obtained from an algorithm
and the human-marked ground truth on a 3D shape respec-
tively. For all three metrics, a higher score represents better
performance.

Parameter settings. In this paper, the coefficient σ of con-
trolling the decreasing speed of the function P is set to 0.05.
The geodesic distance between vertices is relatively small, so
in order to make the label value of each vertex distributed
within the range of 0-1, we set σ to be 0.05, while larger
σ will make the label values be less distinguishable. In our
experiments, the dimension of the POIs prediction neural
network is set to 120, where 1 dimension from GC and 19
dimensions from SIHKS and 100 dimensions from WKS. For
our prediction neural network, the numbers of the neurons
in each layer are set to 120-40-10-1. The corresponding set-
ting is 300-160-80-30 for our 3D shape classification neural
network.

6.2 Results

For SHREC 2011, we train the 3D model classification net-
work and POIs prediction network respectively. To train
the POIs prediction network, the hand-marked POIs are
selected as ground truth and a probability field P is con-
structed as described in Section 5.1. As shown in Figure 9,
the function P is used to compute the label for each vertex.
These labels are then regarded as the ground truth that
acts on the whole model and used as the training set for
the prediction neural network. As a result, we can get the
probability of being a POI for each vertex on the testing
model. The detected POIs are finally extracted by employing
the clustering technique described in Section 5.3 and 5.4.

Figure 10 shows the results of using the model with each
vertex labeled by classification neural network and the pre-
diction neural network to extract the POIs for a Hand model.
We can see the results of extraction are fairly obvious and
our algorithm gives desirable POIs. Figure 10 also shows
the comparison between the human-marked ground truth
of POIs (Figure 10 (a)) and our prediction results (Figure 10
(b)) for the Hand model. The comparison also exhibits the
power of our algorithm because we can see that they are
very similar.

Figure 11 shows the predicted probabilities of the POIs
for some representative categories of 3D shapes in SHREC
2011. In some cases, although the distribution of the local
probability is not very stable with our algorithm, it is
enough for specifying the locations of POIs from the point
of view of the overall model. The vast majority of POI detec-
tion results from our algorithm are desirable and consistent
with our perception. Figure 12 shows more results of our
algorithm.

Judging whether a point is a POI or not is a subjective
problem. Our approach is data-driven and can naturally
adapt to different training data, which is an important ad-
vantage. As shown in Figure 13, different predicted results
can be obtained when different training data is provided.
Regardless of the ridge points between neighboring fingers
are considered as POIs or not, our approach can get desir-
able results as long as the corresponding training data is
provided.

Figure 14 shows the results of POI detection by using our
method for an Armadillo model with different resolutions.
The results are obtained by directly applying our trained
predicted neural network to 3D models with lower resolu-
tions. We can see that although the 3D models are greatly
simplified, the detected results are still in coincidence with
humans’ visual perception.

We must point out that the POI detection quality relies
on the accuracy of our classification neural network. Ac-
cording to the statistics shown in Table 1, the classification
neural network is able to accurately identify the category
of the input 3D object, which enables us to predict POIs
by referring to the geometrically similar objects in the same
category.

6.3 Comparison

We compare our method with three other POI detection
algorithms 3D-SIFT [70], 3D-Harris [71] and HKS-based
POIs [8], [72] on SHREC 2011 database. For 3D-SIFT, the
following strategy is used to identify the POIs on a 3D
model. First, a scale space is constructed by applying dif-
ferent layers of 3D Gaussian filters to the voxelized model.
Then, the Difference of Gaussian (DoG) for each level is
obtained by subtracting the original model from the scaled
model. The extrema points are selected by searching the
DoG space in both spatial and scale dimensions. Their
closest vertices on the original mesh are marked as final
POIs. For both 3D-Harris and HKS, the local maxima are
first selected by considering the neighborhood of a vertex.
For HKS, 2-ring neighborhood is considered and all local
maxima are then detected as POIs. However, only 1-ring
neighborhood is considered and a certain number of local
maxima with highest Harris response are then selected as
POIs for 3D-Harris. The results of 3D-Harris and HKS-based
POIs are obtained by using the implementation provided
by corresponding authors. The results of 3D-SIFT are got
from using our own implementation. All the algorithms
are compared against human-marked POIs by 16 subjects.
Figure 15 shows an example of the POI detection results
by our algorithm and three other algorithms. We can see
that the results from our algorithm and HKS-based POIs
are better than others. We use three metrics provided by [8]
for evaluation and the detailed statistics plots are shown in
Figure 16, where a quantitative comparison on all models is
provided. It can be seen that our POI detection algorithms
outperforms the other detection approaches for all three
metrics FPE, FNE and WME.

We also compare our method with the state-of-the-art
method proposed in [7] (Schelling Point method, SP) on
the SHREC 2007 dataset. The dataset contains 20 categories
of 3D models and each category has 20 models. Schelling
Point method is also data-driven but different from the
strategy adopted in this paper – they use a decision tree
based regression model (M5P regression trees as provided
by Weka) to detect POIs on 3D models. In their work,
the authors provide a human-labeled ground truth data
set on the SHREC 2007 dataset, which facilitates us to
directly train our neural network of predicting POIs. For
each category of 3D models, 10 randomly selected mod-
els are used for training while the remaining 10 models
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(a) hand (b) flamingo (c) shark (d) rabbit

Fig. 11. Examples of the predicted probabilities of the POIs on some representative classes of models:(a)hand models;(b)flamingo models;(c)shark
models;(d)rabbit models.

Fig. 12. Some results of our algorithm. POIs in coincidence with humans’ expectation are successfully detected by our method.

(a) hand-marked points (b) extraction results

Fig. 13. Results of our method trained with different input points. The top row shows the detected results where the ridge points between neighboring
fingers are considered and marked as POIs in the training data. As a comparison, the bottom row shows the detected results where the ridge points
between neighboring fingers are not regarded as POIs in the training data.

(a) 9.5K vertices. (b) 8.0K vertices. (c) 6.5K vertices. (d) 5.0K vertices.

Fig. 14. The results of POI detection by using our method for an Armadillo model with different resolutions.
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(a) predicted probabilities (b) our algorithm (c) 3D-SIFT (d) 3D-Harris (e) HKS

Fig. 15. Comparison between results from our algorithm and the other three feature point detection algorithms. (a) shows the predicted probabilities
of the POIs using our algorithm. The approaches used here include (b) Our algorithm; (c) 3D-SIFT; (d) 3D-Harris; (e) HKS.
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(a) FNE
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(b) FPE
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(c) WME

Fig. 16. Comparison between our algorithm with state-of-the-art feature points detection algorithms on all models using False Negative Error, False
Positive Error, and Weighted Miss Error. The data for each metric is obtained from averaging over all models on SHREC 2011 datasets.

Fig. 17. The comparison between our method and the method proposed in [7]. The top line shows some examples of detected POIs by using our
method. The bottom line shows the corresponding examples of detected POIs by using the method proposed in [7].

TABLE 1
The accuracy rates of our classification neural network for each category of models in the SHREC 2011 dataset.

Object categories Alien Ants Armadillo Bird1 Bird2 Camel Cat Centaur Dino ske Dinosaur

Accuracy rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Object categories Dog1 Dog2 Flamingo Glasses Gorilla Hand Horse Lamp Laptop Man

Accuracy rate 100% 100% 100% 90% 100% 100% 100% 100% 100% 100%

Object categories MyScissor Octopus Pliers Rabbit Santa Shark Snake Spiders Two balls Woman

Accuracy rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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TABLE 2
The comparison of AUC scores from our algorithm, applying model trained from SHREC 2011 (SH2011), Schelling Point (SP, [7]), Cluster-based

point set saliency (CS, [67]), Saliency of large point sets (LS, [68]), Mesh saliency via spectral processing (MS, [69]) and PCA-based saliency (PS,
[66]) on the SHREC 2007 non-rigid 3D models dataset. A higher score represents better performance.

Algorithms Our algorithm SH2011 SP CS LS MS PS

Human 0.6754 0.6383 0.6311 0.5745 0.5893 0.5695 0.5921
Cup 0.6459 – 0.5864 0.6122 0.6192 0.5934 0.6135
Glass 0.6351 0.6018 0.6097 0.5225 0.5727 0.5297 0.5530

Airplane 0.6625 0.6597 0.6609 0.6308 0.6705 0.6160 0.6409
Ant 0.6524 0.6468 0.6029 0.6056 0.6349 0.5696 0.5791

Chair 0.7562 – 0.6492 0.5871 0.6566 0.5505 0.5799
Octopus 0.6694 0.6592 0.5679 0.5480 0.6237 0.5342 0.5726

Table 0.6738 – 0.6162 0.6313 0.6651 0.5802 0.6168
Teddy 0.7584 – 0.6596 0.5671 0.5641 0.5530 0.5682
Hand 0.6341 – 0.5668 0.6060 0.6339 0.5763 0.6022
Plier 0.6537 0.6182 0.6128 0.5997 0.6236 0.5615 0.5754
Fish 0.6039 0.5902 0.6562 0.6651 0.6717 0.6309 0.6736
Bird 0.6637 0.6390 0.6169 0.6010 0.6217 0.5627 0.5984

Spring 0.6351 – 0.5751 0.5512 0.5545 0.5523 0.5339
Armadillo 0.6825 0.6859 0.6792 0.6560 0.6656 0.5996 0.6570

Buste 0.6814 – 0.5757 0.6236 0.6260 0.5620 0.6352
Mechanic 0.7359 – 0.6548 0.6964 0.6932 0.5325 0.7065
Bearing 0.6537 – 0.6063 0.6472 0.6387 0.4986 0.6322

Vase 0.6328 – 0.5540 0.6158 0.6217 0.6058 0.6251
Four-legged 0.6235 0.6140 0.6056 0.6024 0.6168 0.6005 0.6112

Average 0.6665 – 0.6144 0.6072 0.6282 0.5689 0.6083

TABLE 3
The comparison of LCC scores from our algorithm, applying model trained from SHREC 2011 (SH2011), Schelling Point (SP, [7]), Cluster-based

point set saliency (CS, [67]), Saliency of large point sets (LS, [68]), Mesh saliency via spectral processing (MS, [69]) and PCA-based saliency (PS,
[66]) on the SHREC 2007 non-rigid 3D models dataset. A higher score represents better performance.

Algorithms Our algorithm SH2011 SP CS LS MS PS

Human 0.4503 0.4382 0.4047 0.2544 0.1895 0.2580 0.3292
Cup 0.3769 – 0.2606 0.2924 0.3478 0.2444 0.3039
Glass 0.5020 0.4834 0.4689 0.1201 0.4837 0.4120 0.3353

Airplane 0.6328 0.6317 0.7107 0.6936 0.6357 0.4876 0.6601
Ant 0.6584 0.6487 0.5944 0.7356 0.7658 0.3509 0.3357

Chair 0.7326 – 0.5749 0.5152 0.6995 0.2723 0.3652
Octopus 0.6066 0.6019 0.3385 0.2228 0.4654 0.2467 0.3565

Table 0.5947 – 0.4505 0.5831 0.7111 0.2727 0.3076
Teddy 0.5861 – 0.4616 0.1184 0.1246 0.1224 0.1188
Hand 0.5542 – 0.1366 0.5439 0.5372 0.3077 0.3687
Plier 0.6447 0.6256 0.6602 0.5978 0.6591 0.2945 0.3214
Fish 0.6422 0.6381 0.6914 0.6967 0.6349 0.4638 0.5889
Bird 0.5633 0.5233 0.6248 0.5578 0.5690 0.4099 0.5067

Spring 0.5764 – 0.3178 0.4838 0.5227 0.3977 0.1859
Armadillo 0.5249 0.5195 0.6942 0.5495 0.4083 0.2627 0.5589

Buste 0.4138 – 0.1716 0.2540 0.2657 0.1240 0.2755
Mechanic 0.7561 – 0.7434 0.4064 0.4237 0.0548 0.5756
Bearing 0.4836 – 0.3275 0.2676 0.3701 0.0316 0.2933

Vase 0.4713 – 0.2815 0.3673 0.4228 0.3133 0.3285
Four-legged 0.5062 0.4983 0.4264 0.3819 0.3896 0.3682 0.2861

Average 0.5639 – 0.4670 0.4321 0.4813 0.2848 0.3701

for testing. The saliency of each vertex on the testing 3D
models is then predicted by applying the regression model.
Figure 17 shows a comparison between the results from
the two algorithms. We can see that our method is able
to achieve better detection results due to the use of deep
neural networks. A more detailed quantitative comparison
between our algorithm and Schelling Point method on the
SHREC 2007 dataset is presented in Table 2, Table 3 and
Table 4. The measures used for comparison include AUC,
LCC, and NSS – a higher score indicates better performance.
It can be seen that our method has a superior performance
for most of categories of 3D models. Besides, our method
obtains better scores when averaging all the categories.

Furthermore, we compare our method with four other
state-of-the-art methods including Cluster-based point set
saliency (CS) [67], Saliency of large point sets (LS) [68], Mesh
saliency via spectral processing (MS) [69] and PCA-based
saliency (PS) [66] on SHREC 2007 dataset. The resulting
AUC, LCC, and NSS metrics are respectively shown in Ta-
ble 2, Table 3 and Table 4. From the comparison tables, it can
be seen that our algorithm outperforms the other algorithms
for most of the categories. Although our algorithm is not
always the best, the average metric score of our algorithm is
stably higher than the other algorithms.

We further test the performance of applying our neural
network trained from SHREC 2011 dataset to SHREC 2007
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TABLE 4
The comparison of NSS scores from our algorithm, applying model trained from SHREC 2011 (SH2011), Schelling Point (SP, [7]), Cluster-based

point set saliency (CS, [67]), Saliency of large point sets (LS, [68]), Mesh saliency via spectral processing (MS, [69]) and PCA-based saliency (PS,
[66]) on the SHREC 2007 non-rigid 3D models dataset. A higher score represents better performance.

Algorithms Our algorithm SH2011 SP CS LS MS PS

Human 0.9034 0.8587 0.6743 0.6417 0.5829 0.4724 0.7152
Cup 0.9247 – 0.4852 0.6196 0.7968 0.4520 0.6268
Glass 0.7067 0.6813 0.6808 0.2157 0.5977 0.3762 0.4087

Airplane 1.2334 1.1824 1.2798 1.1604 1.1828 0.8449 1.2208
Ant 1.4279 1.4008 0.8294 1.1379 1.2840 0.5587 0.5216

Chair 1.7978 – 1.2605 0.9017 1.4085 0.4513 0.7007
Octopus 1.0351 1.0142 0.5490 0.4190 0.7800 0.3694 0.5070

Table 1.4562 – 1.0164 1.2281 1.5990 0.5905 0.8030
Teddy 1.8746 – 1.2297 0.4124 0.4369 0.3890 0.4154
Hand 1.0989 – 0.2433 0.9133 1.0030 0.5136 0.6396
Plier 1.1473 1.1205 0.9109 0.7901 0.9528 0.5398 0.4843
Fish 1.0056 0.9313 1.2753 1.2276 1.1726 0.8235 1.1782
Bird 1.1832 0.9719 0.9136 0.8240 0.8987 0.5259 0.8021

Spring 1.0531 – 0.5095 0.6492 0.7025 0.5274 0.3560
Armadillo 1.9101 1.8944 2.0643 1.7027 1.3418 0.7206 1.6718

Buste 1.1397 – 0.4797 0.8002 0.8041 0.3266 0.8587
Mechanic 2.3988 – 2.1069 1.4833 1.5650 0.2216 2.0954
Bearing 0.8752 – 0.5736 0.7923 0.8141 0.0201 0.7677

Vase 1.0906 – 0.4997 0.7767 0.8447 0.6087 0.7222
Four-legged 1.0717 0.9452 0.7934 0.8440 0.8887 0.7277 0.6792

Average 1.2667 – 0.9188 0.8770 0.9828 0.5030 0.8087

TABLE 5
The average running time of each step for our neural network of predicting POIs.

Steps Data preprocessing Training of neural network POIs extraction

Time (s) 66.446 518.537 46.301

dataset. The results are also shown in Table 2, Table 3 and
Table 4. It can be observed that comparable performances
are gained. It is worth pointing out that only 10 categories
of 3D shapes are selected and tested because the other
categories have no geometric similarities.

6.4 Performance

We implemented the proposed algorithm in Matlab and
C++. In average, our algorithm takes around 10 minutes
to process a single model on a PC with 2.60GHz CPU and
with 128GB RAM. As shown in Table 5, the bottleneck lies in
the training step that spends over 80% of the total compute
time.

7 LIMITATION AND FUTURE WORK

First, the detection performance of our method depends on
the quality of manually labeled data. A reliable training
dataset is necessary to guarantee good results.

Second, a classification step is pre-computed before we
predict POIs on the input 3D model. This is due to the lack of
training data. If we had a sufficiently large training data set,
our algorithm would not need to include the classification
step.

Finally, the current implementation of the training pro-
cess is very time-consuming. In the future, we plan to ex-
plore parallelized implementations to reduce the time com-
plexity and facilitate the application of our method in prac-
tice. Employing specialized hardware for deep networks
(such as Tensor Processing Units) may be very helpful.

8 CONCLUSION

In this paper, we propose a novel supervised method for
detecting POIs on 3D shapes based on deep learning tech-
niques. The key idea is to predict a saliency map to encode
the possibility of being a POI and then extract typical POIs
by clustering. Our method is data-driven and able to predict
POIs in a similar way as human observers. Extensive exper-
imental results show that our method outperforms state-of-
the-art approaches and reveals how the distribution of POIs
depends on geometric features.
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