
Computer-Aided Design 78 (2016) 199–208
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

3D model classification via Principal Thickness Images
Zhenyu Shu a, Shiqing Xin b,∗, Huixia Xu c, Ladislav Kavan d, Pengfei Wang a, Ligang Liu e

a School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China
b School of Information Science and Engineering, Ningbo University, Ningbo, 315211, PR China
c Institute of Mathematics, Zhejiang Wanli University, Ningbo, 315100, PR China
d School of Computing, University of Utah, Salt Lake City, 84112, USA
e Graphics & Geometric Computing Laboratory, School of Mathematical Sciences, University of Science and Technology of China, Anhui, 230026, PR China

a r t i c l e i n f o

Keywords:
Non-rigid 3D model
3D model classification
Principal Thickness Images
Kernel sparse representation

a b s t r a c t

With the innovation in 3D modeling software, more and more 3D models are becoming available in
recent decades. To facilitate efficient retrieval and search of large 3D model databases, an effective shape
classification algorithm is badly in need. In this paper, we propose a new feature descriptor named
Principal Thickness Images (PTI) that encodes the boundary surface and the voxelized constituents of a 3D
shape into three gray-scale images. With the support of PTI, we extend the kernel sparse representation-
based classification from 2D case to non-rigid 3D models. Our classification algorithm inherits the
robustness of kernel sparse representation and is able to achieve a high success rate and strong reliability
on non-rigid models from the SHREC’11 non-rigid 3D models dataset. Numerous tests demonstrate
superior performance of the proposed method over previous 3D shape classification approaches.

© 2016 Published by Elsevier Ltd.
1. Introduction

With the fast development of 3D modeling software, the
number of 3Dmodels has greatly increased in recent decades.More
and more 3D model databases are created for different purposes.
Meanwhile, managing or classifying 3D models in the databases
becomes an important task. However, manually classifying the 3D
models according to their contents into meaningful groups is very
tedious and time-consuming. Effective algorithms for 3D model
classification are therefore necessary.

A common scenario of 3D model classification is that there are
several classes of 3Dmodels (trainingmodels) in the database, and
then a user provides another 3D model (testing model) and wants
to find which class it belongs to. Many 3D model classification
algorithms have been proposed in recent years. However, a robust
and widely applicable 3D model classification algorithm still
remains a challenge because it is difficult to measure the similarity
between different 3D models.

A general outline of many 3D model classification algorithms
can be described as follows. First, a feature descriptor is chosen

∗ Correspondence to: School of Information Science and Engineering, Ningbo
Institute of Technology, Zhejiang University, Ningbo, 315100, PR China.

E-mail addresses: shuzhenyu@nit.zju.edu.cn (Z. Shu), xinshiqing@nbu.edu.cn
(S. Xin).

http://dx.doi.org/10.1016/j.cad.2016.05.014
0010-4485/© 2016 Published by Elsevier Ltd.
to capture certain geometric features of the 3D models. Second,
feature vectors are extracted by applying the feature descriptor
to each of the 3D models. Finally, a classifier is applied to predict
the membership of the test model by comparing the test model’s
feature vector with the feature vectors of the training models. The
key challenge of such an algorithm pipeline is to find proper 3D
feature descriptors. A suitable classifier also plays an important
role in 3D model classification.

Traditional view-based 3D model classification or retrieval
methods [1,2] usually use projected views of 3Dmodel to measure
the similarities between different 3D models. However, they often
use only the contour information of the 3D shapes while ignoring
their volumetric aspects. In this paper, we extend kernel sparse
representation-based classification algorithm (KSRC) [3], originally
proposed for 2D face classification, to handle 3D non-rigid surface
models. To adapt KSRC for the 3D shape classification purpose, we
propose a new feature descriptor which we call Principal Thickness
Images (PTI); See Fig. 1. As the name suggests, a PTI is a 2D image
captured from a particular perspective and encodes not only the
contour information but also the volumetric information of a 3D
model. The intensity of each pixel in the PTI reflects the thickness
of a 3D model along the corresponding view direction. The most
significant feature of our PTI distinguishing itself from traditional
view-based 3D model classification or retrieval methods is that
PTIs are able to characterize the volumetric information for a 3D
model. Given a test 3D model whose category is unknown and

http://dx.doi.org/10.1016/j.cad.2016.05.014
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.05.014&domain=pdf
mailto:shuzhenyu@nit.zju.edu.cn
mailto:xinshiqing@nbu.edu.cn
http://dx.doi.org/10.1016/j.cad.2016.05.014


200 Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208
Fig. 1. The PTIs extracted from the Alien model. (a)–(c) show the thickness of the Alien model along the 3 principal axes. (d)–(f) are the corresponding PTIs.
Fig. 2. An overview of the proposed approach for 3D model classification. PCA: Principal Component Analysis; HOG: Histogram of Oriented Gradient; MDS: Multi-
Dimensional Scaling; KSRC: kernel sparse representation-based classification; PTI: Principal Thickness Images. The terminology will be clearly elaborated in the following
sections.
a 3D model database within which each model has been labeled
with a category, our algorithm predicts the class information
of the test model in a supervised way by combining the PTI
technique and the KSRC. By leveraging multi-dimensional scaling
(MDS), our classification algorithm is oblivious to quasi-isometric
deformations of 3D models and is thus applicable also to non-
rigid 3D models. Experimental results show that our method can
achieve a high success rate. An overview of our algorithm is shown
in Fig. 2.

The main contributions of this work are two-fold:

• Wepropose a new3Dmodel feature descriptor, named Principal
Thickness Images. It is not only invariant to the basic geometric
transformations such as translation, rotation, and scaling, but



Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208 201
also insensitive to different poses due to MDS. Therefore it is
suitable for non-rigid 3D model classification.

• By combining the PTI technique and our extended version
of the KSRC, we present a new classification algorithm for
non-rigid 3D models. Comparative experiments between our
algorithm and other existing methods show that our algorithm
can achieve a higher success rate and stronger reliability on
non-rigid models from the SHREC’11 non-rigid 3D models
dataset.

The remainder of the paper is organized as follows. Section 2
reviews the related work on 3D model classification. Section 3
describes the novel feature descriptor of PTI in detail. In
Section 4, we propose the complete framework of the classification
algorithm. Finally in Section 5, we show extensive experimental
results on the SHREC’11 non-rigid 3D models dataset, as well as
statistical comparisons with other approaches.

2. Related work

2.1. Shape descriptors

Feature descriptors are central to 3D model classification. In
recent years, numerous feature descriptors have been proposed,
such as shape distribution [4], spherical harmonics [5], light
field [6] or spectral methods [7], to name just a few.

Existing 3D model feature descriptors can be divided into
two main categories. The first one is geometry based feature
descriptors. This kind of feature descriptors focus on describing
3D models by using geometric measures. For example, Vranic [8]
constructed a rotation invariant feature vector by using functions
on concentric spheres. Kazhdan et al. [9] classified 3D models
by using a symmetry descriptor, which consist of a collection
of spherical functions that describes the measure of a 3D model
rotational and reflective symmetry with respect to every axis
passing through the center of mass. Ricard et al. [10] extended
the angular radial transform to handle 3D models and used it for
classification and retrieval. Knopp et al. [11] proposed a 3D model
classification method by using Hough-voting for local 3D features.
Bronstein and Kokkinos [12] proposed a local 3D model feature
descriptor by using heat kernel signature. Their feature descriptor
is defined on each vertex of a 3D model and can be integrated
into bag-of-features framework for classification. By detecting and
comparing salient points on the mesh, Smeets et al. [13] proposed
a local 3Dmodel feature descriptor for 3D face recognition, named
meshSIFT, which is robust to expression variations, missing data
and outliers. Lu et al. [14] proposed a 3D model retrieval and
recognition approach, which employs both a distance histogram
and 3D moment invariants as features. In their algorithm, they
measured the distance of 3Dmodels by disjoint information in the
feature space in order to obtain the difference between the sets of
3D models.

The second category is vision based feature descriptors. Unlike
the geometry based feature descriptors, the vision based feature
descriptors try to convert 3D models to 2D images first and then
apply some methods coming from computer vision to obtain the
feature vectors. For example, Loffler [15] used the corresponding
2D images to compare the similarity between any two 3D models.
Li et al. [16] proposed a 3D model classification method based on
nonparametric discriminant analysis with kernels and geometry
projection-based histogram model. Atmosukarto and Shapiro [17]
presented a method for selecting salient 2D views to describe
3D objects. Lu et al. [2] proposed a view based approach that
jointly learns the relevance among 3D objects using a hypergraph
structure. Gao et al. [18] presented ahypergraph analysis algorithm
by integrating multiple hypergraphs for 3D object retrieval and
recognition. Their method does not need any training 3D models,
which is very useful when appropriate databases are not available.
Lu et al. [19] proposed a distance metric learning algorithm
for bipartite graph match-based 3D model retrieval framework.
They estimated object relevance by employing a graph structure
with semi-supervised learning; the learned metric can further
enhance the 3D model retrieval performance. Gao et al. [20]
presented a 3D model retrieval algorithm by using a learned
view-level Mahalanobis metric, which estimates and improves the
effectiveness of Hausdorff distance measure for comparing the
similarity between any two 3D models. Su et al. [1] proposed
a 3D model classification algorithm, which uses multiple views
and convolutional neural network simultaneously to achieve good
performance.

2.2. Classification approaches

After extracting feature vectors from 3D models, a classifier
is always required for 3D model classification. Commonly used
classifiers include decision trees [21], naive Bayesian classifica-
tion [22], support vector machine [23], or probabilistic neural
networks [24]. It is worth pointing out that combining feature de-
scriptors and suitable classifiers is important for improving the
success rates of classification. Specifically for 3D model classi-
fication, Leng et al. [25] used deep belief networks to extract
feature and classify 3D models, while Liu et al. [26] used spec-
tral embedding and Adaboost. Nian et al. [27] achieved 3D model
classification by combining geometrical topology hypotheses and
extreme learning machine. Au et al. [28] found that establishing
the sparse correspondence between two given shapes can be effi-
ciently solved by considering the underlying skeletons augmented
with intrinsic surface information. The algorithm can be further
used for 3D model classification or retrieval based on the corre-
spondence matching between 3D models.

In [3], the authors proposed a new classification algorithm for
well-aligned 2D human face based on sparse representation with
great success. In this paper, we extend their approach to support
non-rigid 3D mesh models. However, this is not straightforward.
One possible idea would be to convert 3D models from the
boundary representation to voxel representation, where each
3D model is represented as L × L × L binary image and each
voxel is marked as inside (1) or outside (0). The vectorized 3D
image can be directly integrated with kernel sparse representation
classifier. However, this approach is not very practical, because
it is very hard to find a suitable L. If L is small, the voxel
representation is not sufficient to capture the volumetric details
of 3Dmodels. If L is large, the dimensionality will increase sharply,
unnecessarily leading to effective classification due to the curse of
dimensionality.

One possibility to tackle this issue is to project 3D models
to 2D images and use the resultant images for classification
purpose. The rationale behind this is that a 3D model can be
reconstructed from a sufficiently large number of 2D images. For
example, Brubaker et al. [29] presented an efficient framework
for 3D molecular reconstruction from electron cryomicroscopy
images. However, if we simply project 3D models to 2D images
and directly use the contour images for classification, the results
may be not desirable because (1) the images should be obtained
from the same perspectives and thus the input 3D models should
be aligned well and (2) the volumetric information is missing in
the transformation process. Therefore, in this paper we propose
a new 3D model feature descriptor named PTIs that consist of
three axis-aligned 2D images using PCA and encode contours
and volumetric information at the same time. After PTIs are
extracted, we transform them into feature vectors and then feed
them into kernel sparse representation-based classifier to perform
classification.



202 Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208
Fig. 3. The mapping process and the result of constructing the PTIs for the Eight model. (a) shows the mapping process, where the intensity of each pixel on the PTI is
determined by counting the voxels inside the model along the ray Ri,j . (b) shows the result PTIs extracted from the model.
3. Principal thickness images

3.1. Preprocessing

For non-rigid 3D model classification, a family of models
with different poses should be deemed to be in the same class.
Therefore, it is better to perform a step of pose removal to
guarantee the pose-oblivious property. For such a purpose, we
first apply multi-dimensional scaling [30] (MDS) to transform the
models from the same class into visually quite similar models;
the resultant models can be well aligned up to a certain rigid
transformation. LetM be the original 3Dmodel,M ′ the transformed
version by applying MDS, δi,j = g


vi, vj


the geodesic distance

between any two vertices vi and vj on M , and δ′

i,j = d

v′

i , v
′

j


the

Euclidean distance between vi
′ and vj

′ on the transformed model.
The function of MDS here is stretching the points outward while
keeping δi,j and δ′

i,j to be as close as possible, i.e.,

M ′
= argmin

v′ i,v′ j


i,j

δi,j − δ′
i,j
2
2 . (1)

In implementation, we use Xin and Wang’s approach [31] to
efficiently compute the geodesic distance between each pair of
vertices of the 3D models. In order to solve Eq. (1), we first
transform the distancematrix into a cross-productmatrix and then
find its eigen-decomposition.

Ideally, the geodesic distance between any two vertices on
the surface of a 3D shape remains unchanged with regard to
pose changes. It is worth pointing out that, however, in real
situations the geodesic distances may change slightly upon the
MDS transformation. Fortunately, we will use the PTI technique
that is able to extract the dominate thickness features and thus the
slight difference does not affect the classification performance.

Besides, MDS has a side effect—stretching the input model
outward as far as possible. This is helpful turning invisible parts to
be visible from some perspective. Thus nearly all the constituents
of the input model can be encoded into the final PTIs.

When the input model consists of hundreds of thousands
of triangles, solving the above MDS will be very inefficient.
The reasons are two-fold. First, MDS, in its own form, requires
solving a linear system. The coefficient matrix encoding all-pair
distances is dense and of a size n × n, where n is the number
of vertices. Second, querying the geodesic distances between all
pairs of vertices is of a high computational complexity. Therefore,
it is reasonable to simplify the input models while keeping the
geometric shapes almost unchanged. In this paper, we employ the
famous simplification algorithm, called QEM, proposed by Garland
and Heckbert [32] to simplify each 3D model to contain 1000
vertices before applying MDS. We shall discuss how the sampling
rate affects the classification in Section 5.2.

3.2. Principal axes computation

Our PTI feature descriptor measures the thicknesses of 3D
models along certain directions andmaps 3Dmodels to 2D images,
where the thickness information is encoded, along the directions.
The directions are computed by extracting the principal axes
of a 3D model. We first convert 3D models from the boundary
representation to the volumetric representation (described in
more detail below), then use the principal component analysis [33]
(PCA) to compute the principal directions. For a given point set, the
first principal direction describes the direction of largest variance
of the point set projected to this direction. The third principal
direction describes the direction of least variance. If we map a
3D model to a 2D image along the third principal direction, the
resulting 2D image should best preserve the contour information
of the 3D model.

For the input 3D models which are represented by 3D meshes,
we first convert them from the boundary representation to a
volumetric representation by dividing the bounding cube of the
3D models, which has equal edge lengths, into L × L × L parts
uniformly.(Different choices of L are discussed in Section 5.2.)
Then we apply PCA to get three principal axes for the volumetric
representation. Let ci (i = 1, 2, . . . , n) be the centers of the voxels
inside our 3D modelM ′. We apply the PCA to the point set {ci} and
denote the three principal directions as I1, I2, I3.

3.3. Principal thickness images extraction

We measure the thicknesses of 3D models along the three
principal axes separately and encode the thickness information to
2D images. Therefore, the 3D model M ′ is first re-voxelized along
the principal axes, and then the thickness is measured by counting
the number of voxels along the directions of the principal axes. To
encode the thickness information to 2D images, we map M ′ from
the voxel-based representation to three 2D images PTI1, PTI2, PTI3
along the principal axes I1, I2, I3 respectively. The intensity of each
pixel Pi,j in PTI1, PTI2, PTI3 is the count of the voxels inside M ′

along the ray Ri,j emitting from Pi,j, where Ri,j is in parallel with
the corresponding principal axis (see Fig. 3(a)). We say that PTI1,
PTI2, PTI3 are the Principal Thickness Images (PTIs) for the 3Dmodel
M . Fig. 3 describes the mapping process and the result PTIs for the
Eight model.

From the construction of our PTIs, we can see that each PTI
is a gray scale image and each pixel in PTI actually describes the



Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208 203
Fig. 4. Examples of PTI3 (captured along the least significant principal direction) extracted from 3 Alien models, 3 Dinosaur models, and 3 Glasses models. At the top are
the 3D models. At the bottom are the corresponding PTIs.
thickness of the 3D model along the corresponding ray. If we
project a 3D model directly to a 2D image without encoding the
thickness information of the 3Dmodel, the volumetric information
of the 3D model will be lost, although the contour information
will remain. Unsatisfactory results may be obtained if we use
the 2D image without thickness information for the 3D model
classification because too much information is lost in the mapping
process. By extracting the PTIs from a 3D model, not only the
contour information, but also the volumetric information are
encoded. Note that the PTIs extracted from 3D models are well
aligned because themapping directions are the principal axes of 3D
models. Therefore, high success ratesmay be obtained by using our
PTIs for 3D model classification. In the following, we summarize
the procedure of PTI extraction into Algorithm 1.

Algorithm 1 PTI extraction algorithm
Step 1: Apply the MDS to the given 3D modelM to get a new 3D
modelM ′.
Step 2: Voxelize M ′ and compute the principal axes I1, I2, I3 of
M ′ by applying PCA to the centers of the voxels insideM ′.
Step 3: Re-voxelize M ′ along I1, I2, I3 and compute the 3 PTIs by
measuring the thickness ofM ′ along I1, I2, I3 respectively.

Fig. 1 shows PTIs extracted from the Alien model along the 3
principal axes respectively. It can be seen that the PTIs are able
to describe the thickness information of the Alien model (see
Fig. 1(a), (b), (c)). Fig. 4 shows examples of the PTI3 extracted from
9 different 3D models from 3 different classes. We can see that the
PTIs extracted from the same non-rigid class are quite similar in
spite of their much different poses.

Our PTIs have several desirable geometric properties. First, PTIs
are invariant to translation and rotation because the input model
has to experience a PCA step before PTI generation. Second, PTIs are
also invariant to scaling. The main reason is that in our algorithm
a bounding box is built first and then always divided uniformly
into L × L × L parts for a 3D model and its any scaled version. The
resolution of PTIs is therefore fixed to L × L.

4. 3D model classification using PTI

4.1. Feature vector extraction from PTI

To facilitate 3D model classification using PTIs, feature vectors
need to be extracted in advance from these images. For this
purpose, we use the histogram of oriented gradients [34] (HOG)
to extract a feature vector for each PTI. The HOG is a type of
commonly used feature descriptors used in computer vision for
object detection. The spirit is to count occurrences of gradient
orientation in localized portions of an image. It is often performed
on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy.
In our experiments, the size of HOG cells is set to 32× 32. Fig. 5
shows an example of extracting feature vectors from the PTIs using
the HOG technique. In Fig. 5, it can be seen that the feature vectors
of the twoWomanmodels with different poses are quite similar to
each other although the two poses are visually much different.

4.2. Kernel sparse representation-based classification

Our 3D model classification algorithm combines the PTIs and
an extended version of the kernel sparse representation-based
classifier. Given a test model T and a set of 3D mesh models Mi
(training models), which are divided into k classes according to
their content in advance, the goal of our algorithm is to predict
which class the model T belongs to. First, the PTIs are computed
for the test model T and each model in the training model set
Mi. Second, three feature vectors are extracted from the PTIs for
each 3D model. Finally, our extended version of kernel sparse
representation-based classifier [3] (KSRC) is employed and the
classwhich the testmodel T belongs to is predicted. TheKSRC is the
kernel version of the sparse representation-based classifier [35]
(SRC). For brevity, we give a brief introduction to SRC and KSRC
in Appendix.

4.3. Extended KSRC

The original KSRC determines the category with only a single
feature vector as the input. However, for each 3D model, we
generate three PTIs and thus three feature vectors. Therefore, we
need to extend the original KSRC to support 3 feature vectors as
the input simultaneously. The technique is to optimize the mixed
residual:

m = argmin
i


a · ri,1 + b · ri,2 + c · ri,3


,

where ri,3, ri,3, ri,3 are the residues of the PTIs produced by the ith
3D model, and a, b, c are non-negative weights following a + b +

c = 1. Our extended KSRC is described in Algorithm 2.
In Algorithm 2, the parameters a, b in the optimization problem

(2) can be specified by the user or learned from the training
data automatically. The learning process is as follows. First, we
randomly divide the given training 3D models into 2 groups. The
numbers of the models from the same class are the same in each
group. Second, one group is regarded as the training model set and
the other group is regarded as the testing model set. Finally, we
iterate the possible discrete values of the parameters a, b by setting
the step to 0.1 and running our classification algorithm. The values
of the parameters to achieve the highest success rate are chosen
as optimal for subsequent classification. Experimental results are
shown in the following section.



204 Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208
Fig. 5. The feature vectors extracted from the PTIs of two Woman models with different poses. It can be seen that the feature vectors are very close to each other.
Fig. 6. Some example models of the SHREC’11 non-rigid 3D models dataset.

Algorithm 2 Extended kernel sparse representation-based classi-
fication algorithm
Given feature vectors Y1 , Y2 , Y3 for the test 3D model T
and feature vectors ai,1 , ai,2 , ai,3 for each training 3D model
Mi,

Step 1: Solve the optimization problem (A.4) for feature vectors
Yj and coefficients ai,j when j = 1, 2, 3 respectively.
Step 2: Predict the membership m of the test 3D model T by
minimizing the following mixed residuals:
m = argmin

i


a · ri,1 + b · ri,2 + (1 − a − b) · ri,3


, (2)

where ri,1, ri,2, ri,3 are the corresponding residuals getting from
Equation (A.7) for each feature vector and a, b, 1−a−b ∈ [0, 1]
are weights specified by users or learned from the training data.

5. Experimental results and discussion

5.1. Experimental results

We test our algorithm on the SHREC’11 non-rigid 3D models
dataset [36] (http://www.itl.nist.gov/iad/vug/sharp/contest/2011/
NonRigid/). To our knowledge, it is the largest non-rigid 3D model
dataset which is publicly available. The dataset contains 600
models, which are categorized into 30 classes, 20 models in each
class. Some example models are shown in Fig. 6.

To test the classification performance of our algorithm, we
randomly select ten 3D models from each class in the SHREC’11
non-rigid 3D models dataset and regard them as test models. The
rest of the models are regarded as training models. Totally there
are 300 testing models and 300 training models. For each test
model, we use 1 to denote ‘‘success’’ and 0 ‘‘failure’’. The overall
success rate of our algorithm is then computed by averaging the
prediction accuracy over all the test models. Fig. 7 shows the
Fig. 7. Success rate plot curve of our algorithm on the SHREC’11 non-rigid 3D
models dataset.

success rates of our algorithm on each class, and the average
success rate amounts to 96%. It can be seen that our algorithm
achieves a high classification performance for most classes.

5.2. Discussion

Robustness to different sampling rates. Fig. 8 shows the feature
vectors extracted from the simplified models of the Alien model
with various resolutions. The original Alien model contains
5000 vertices. We simplify it to 2500, 1000, 750, 500 vertices
respectively and then compute the corresponding feature vectors.
We can see that both the principal thickness images and the feature
vectors are quite similar. Due to the property that PTIs are robust
to different sampling rates, it is reasonable to simplify the models
into a small-scale one, typically consisting of 1k vertices, in order
to accelerate the computation while keeping the classification
performance nearly unchanged.
Setting of parameters a, b. Note that there are 2 parameters a, b in
Eq. (2), which need to be determined before the classification. The
parameters are automatically learned; See details in Section 4.3,
Fig. 9 shows the success rates for different settings of a and b. From
the figure, we can see that when a = 0.3 and b = 0.3, our algo-
rithm achieves the highest success rate of 96%, and thus we take
(0.3, 0.3, 0.4) as the best weighting choice on the three residues.
The rationale behind is that the PTI captured along the least sig-
nificant principal direction encodes the richest information of the
volumetric thickness.
Setting of the parameter L. When computing the PTIs for the given
3D model, we need to discretize the volume into L × L × L regular
grids. Fig. 10 shows the success rates of our experimental results

http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/


Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208 205
Fig. 8. The feature vectors extracted from PTIs for the Alien model with various sampling rates.
for different choices of L. Generally, a larger value of L usually leads
to a higher success rate. However, a larger L will lead to a higher
time cost; See Fig. 11 for the timing plot with regard to L. We
observe that L = 250 makes a good balance between classification
performance and efficiency and thus we discretize the 3D models
into 250 × 250 × 250 cells in our experiments.

5.3. Comparison with state-of-the-art methods

To demonstrate the advantages of our algorithm, we compare
our algorithm with eight existing methods. Totally we have 9
methods, including

• PTI + KNN [37];
• PTI + SVM;
• PTI + PNN [24];
• SIHKS + BOF [12];
• SDF [38] + KSRC;
• SDF + KNN;
• Pickup et al. [39];
• Su et al. [1];
• PTI + KSRC (our algorithm in this paper).

We explain the abbreviated terminology as follows:

• KNN denotes the k-nearest algorithm. An object is classified by
the majority votes of its neighbors, with the object being as-
signed to the classmost common among its knearest neighbors.

• SVM denotes the support vector machine. An SVMmodel maps
themodels to be classified into a high-dimensional space so that
they can be divided by a clear gap that is as wide as possible.
New examples are then mapped into that same space and pre-
dicted to belong to a category based on which side of the gap
they fall on.

• PNN denotes the probabilistic neural network. It is a feedfor-
ward neural network, typically consisting of 4 layers, and de-
rived from the Bayesian network and a statistical algorithm
called Kernel Fisher discriminant analysis.

• SIHKS denotes the scale-invariant heat kernel signature. It is a
feature descriptor for use in deformable shape analysis and be-
longs to the group of spectral shape analysis methods. For each
point in the shape, SIHKS defines its scale-invariant feature vec-
tor representing the point’s local and global geometric proper-
ties.

• BOF denotes a bag of features or words. It takes a collection of
high-dimensional vectors as the input and then outputs a his-
togram that is the occurrence counts with regard to a vocabu-
lary of representative features.
Fig. 9. The average success rates for the different values of the parameters a and b.

Fig. 10. The success rates for different values of the parameter L.

• SDF means the shape diameter function which is a scalar func-
tion defined on a closedmanifold surface, measuring the neigh-
borhood diameter of the object at each point. Due to its pose
oblivious property, SDF is widely used in shape analysis, seg-
mentation and retrieval.

• Pickup et al. represents the method proposed in [39];
• Su et al. represents the method proposed in [1];



206 Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208
Table 1
The average success rates of our algorithm, as well as those of the other algorithms on the SHREC’11 non-rigid 3D models dataset.

Algorithm Our algorithm PTI + KNN PTI + SVM PTI + PNN SDF + KNN SDF + KSRC SIHKS + BOF Pickup et al. [39] Su et al. [1]

Success rate 96.00% 92.67% 85.33% 91.67% 87.67% 92.33% 95.00% 94.33% 92.67%
Table 2
The performance of our algorithm on the SHREC’11 non-rigid 3D models dataset. The running time is measured for each model except the KSRC step, which is measured on
the whole dataset.

Step Model simplification Geodesic distances computation MDS Voxelization and PCA HOG KSRC on the whole dataset

Running time (s) 0.5 11.9 28.1 4.7 0.015 17.0
Fig. 11. The average running time of extracting PTI feature vectors for each 3D
model in the SHREC’11 non-rigid 3D models dataset with regard to the different
values of the parameter L.

Fig. 12. Comparison of success rates between our algorithm and other algorithms
for each class of the SHREC’11 non-rigid 3D models dataset.

We test these algorithms on the SHREC’11 non-rigid 3Dmodels
dataset. The success rates for each class are shown in Fig. 12. The
average success rates of each algorithmare listed in Table 1.We can
see that our algorithm is able to obtain a higher success rate than
not only SIHKS+ BOF, which is surface-based, but also SDF+ KSRC
and SDF + KNN, which are also volume-based.

We also show the robustness to noise of our algorithm. For
each 3D model in the SHREC’11 non-rigid 3D models dataset,
we add Gaussian noise, with the intensity varying from 0.1% to
Fig. 13. Comparison of robustness between our algorithm and other algorithms on
the SHREC’11 non-rigid 3D models dataset.

1%, to each vertex’s coordinates of 3D models in the dataset.
Then we run each classification algorithm on the noisy 3D
model dataset. The classification accuracy statistics are shown in
Fig. 13. Our method is robust due to the combination of partial
volumetric information and the kernel sparse representation-
based classification. Note that although the SDF is also a 3D model
feature descriptor describing volumetric information, PTIs exhibit
superior robustness when compared to SDF. We believe this is
because the normal estimation, which is a key step in calculating
the SDF, is easily affected by noise.

5.4. Performance

All experiments were conducted on a PC with Intel Dual-core
2.67 GHz CPU and 10 GB RAM. We implemented the algorithm
using C++ and Matlab. Table 2 shows the average running time of
each step for one single 3D model from the SHREC’11 non-rigid
3D models dataset, where each 3D model contains about 10000
vertices and 19000 faces.

5.5. Extension to 3D model retrieval

Although we claim that the PTI descriptor proposed in this pa-
per is suitable for non-rigid 3D model classification, it can also be
used in 3D model retrieval. The key idea is to mix the three fea-
ture vectors of each 3Dmodel into a new feature vector, where the
weight scheme is the same with a, b, c mentioned in Eq. (2). Using
the resultant feature vectors, we can get a similarity matrix to en-
code the L1 distance between the feature descriptors of any pair of
models in the dataset. Based on the similarity matrix, there are 5
commonly used measures to evaluate retrieval performance:



Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208 207
Table 3
Retrieval performance statistics on SHREC’11 non-rigid 3D models dataset using
various measures. Higher scores mean better performances.

Algorithm PTI GC SDF SIHKS WKS

NN 96.67% 90.83% 96.67% 100% 99.83%
Tier 1 71.03% 61.69% 68.40% 97.52% 97.35%
Tier 2 80.14% 74.37% 80.29% 99.51% 98.85%
E-measure 59.58% 54.38% 58.75% 75.94% 75.60%
DCG 91.07% 87.48% 91.33% 99.69% 99.49%

• Nearest neighbor (NN): the percentage of the closest matches
belonging to the same class as the query.

• First-tier and second-tier: the percentage of models in the
query’s class that appear within the top K − 1 and 2(K − 1)
matches respectively, where K is the size of the query’s class.

• E-measure: a composite measure of the precision and recall for
a fixed number (32) of retrieved results.

• Discounted Cumulative Gain (DCG): a statistic that weighs
correct results near the front of the ranked listmore than correct
results toward the end of the list.

The results are shown in Table 3. These statistics show the retrieval
performance of our algorithm.

6. Conclusion

We proposed a novel descriptor called PTI. By encoding
the thickness information of input 3D models, the PTI is not
only invariant to the basic geometric transformation, such as
translation, rotation, and scaling, but also insensitive to quasi-
isometric deformations, e.g., human body poses. Benefitting from
partial volumetric information, the PTI is robust to small geometric
noise added to the vertices of 3D models. To apply the PTI to
3D model classification, we combined the PTI with KSRC and
presented a new 3D model classification algorithm. Extensive
experimental results demonstrate the high accuracy, robustness,
and effectiveness of our algorithm.

However, we found that the MDS technique generally intro-
duces shape distortion especially at extremity points although it
basically eliminates pose differences. We will study if it is possible
to obtain a better MDS method without shape distortion.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work is supported by National Natu-
ral Science Foundation of China (11226328, 61222206, 11526212,
61300168, 61303144, 31302231), National Science Foundation CA-
REERAward (IIS-1350330), Natural Science Foundation of Zhejiang
Province (LY13F020018), Opening Foundation of Zhejiang Provin-
cial Top Key Discipline (XKXL1406), Natural Science Foundation of
NingboCityGrant (2015A610123), andOneHundred Talent Project
of the Chinese Academy of Sciences (Ligang-Liu).

Appendix. Sparse representation-based classification (SRC) and
kernel sparse representation-based classification (KSRC)

The basic idea of the SRC is that the membership of a testing
sample should be predicted by which class training samples can
best linearly represent the test sample. Given t class training
samples A =


A(1)A(2) · · · A(t)


, where A(i) =


a(i)
1 , a(i)

2 , . . . , a(i)
ni


∈

Rs×ni represents the training samples belong to the ith class and s
is the dimension of samples. Let Y ∈ Rs be a testing sample, the
following optimization problem is used by the SRC to calculate the
sparsest coefficients X̂ to represent the testing sample using the
training samples:
X̂ = argmin ∥X∥0
s.t. ∥AX − Y∥2 ≤ ε.

(A.1)

Here, ε is a small threshold and ∥·∥0 denotes the ℓ0-norm,
which counts the number of nonzero entries in a vector.
However, finding the solution of optimization problem (A.1) is NP-
hard [40]. Therefore, the SRC tries to seek the solution of another
optimization problem:
X̂ = argmin ∥X∥1
s.t. ∥AX − Y∥2 ≤ ε,

(A.2)

where ∥·∥1 denotes the ℓ1-norm, which is the sum of all entries’
absolute values in a vector. Some researches [41–43] show that the
solutions of the problem (A.1) and (A.2) are equal if the solution X̂
is sparse enough. Since the problem (A.2) can be solved efficiently
by standard linear programming methods, the SRC obtains the
sparsest representation Y = AX̂ for the test sample Y by solving
the problem (A.2).

After obtaining the sparsest representation Y = AX̂ , one
can determine the classification of the test sample Y easily by
inspecting the nonzero entries of the solution X̂ . Let the entries
of X̂ be denoted by [X̂1,1, X̂1,2, . . . , X̂1,n1 , X̂2,1, X̂2,2, . . . , X̂2,n2 , . . . ,

X̂n,1, X̂n,2, . . . , X̂n,nt ]
T , the SRC predicts the membership m of Y by

finding the minimal residual between Y and AX̂i (i = 1, 2, . . . , n),
where X̂i = [0, . . . , 0, X̂i,1, X̂i,2, . . . , X̂i,ni , 0, . . . , 0]. That is, the
SRC classifies the test sample Y by minimizing the following
residuals:

m = argmin
i

ri = argmin
i

Y − AX̂i


2
. (A.3)

The SRC regards the result of optimization problem (A.3) as the
membershipm of Y .

Although the SRC algorithm is very successful in human face
recognition, it is not always successful in our case. The SRC relies
on the assumption that the feature vectors belonging to the same
class belong, at least approximately, to the same linear subspace,
while feature vectors belonging to different classes correspond to
different linear subspaces. Therefore, the SRC will be confused if
the feature vectors belonging to different classes are co-linear. The
KSRC has been proposed to remedy this drawback of SRC. The key
idea of KSRC is to map the samples to a higher dimensional space
where the classification is performed instead. The KSRC adopts a
kernelized version of the optimization problem (A.2) used in SRC,
which can be formulated as follows:
X̂ = argmin ∥X∥1
s.t.

BTBX − BTφ(Y )

2 ≤ ε,

(A.4)

where B = φ (A) and φ (·) is a function mapping the samples to
a higher dimensional space. Denote k(x, z) = ⟨φ(x), φ(z)⟩ as the
inner product of φ(x) and φ(z), then

BTB =

φ


A(1) , φ


A(2) , . . . , φ


A(t)T

×

φ


A(1) , φ


A(2) , . . . , φ


A(t)

=


k(A(1), A(1)) · · · k(A(1), A(t))

k(A(2), A(1)) · · · k(A(2), A(t))
· · · · · · · · ·

k(A(t), A(1)) · · · k(A(t), A(t))

 (A.5)

and

BTφ(Y ) =

φ


A(1) , . . . , φ


A(t)T φ(Y )

=

k(A(1), Y ), . . . , k(A(t), Y )

T
. (A.6)



208 Z. Shu et al. / Computer-Aided Design 78 (2016) 199–208
The predicted membership mY of the testing sample Y can be
obtained by minimizing the residual:

mY = argmin
i

ri (Y )

= argmin
i

BTφ(Y ) − BTBX̂i


2


. (A.7)

Note that φ (·) is not necessary to be defined explicitly because
the two terms BTB and BTφ(Y ), required for computing the
residual, rely on the kernel function k(·, ·) only. That is, we need to
find a suitable k(·, ·) to support KSRC. Experimental results show
that the Gaussian kernel function k(x, z) = exp


−

∥x−z∥2

2σ 2


is a

good choice for our testing data. We experimentally set σ = 1
and ε = 0.01.

References

[1] Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convolutional neural
networks for 3D shape recognition. In: Proceedings of the IEEE international
conference on computer vision, 2015, pp. 945–53.

[2] Ke L, Ning H, Jian X, Jiyang D, Ling S. Learning view-model joint relevance for
3D object retrieval. IEEE Trans Image Process 2015;24(5):1449–59.

[3] Zhang L, Zhou W-D, Chang P-C, Liu J, Yan Z, Wang T, Li F-Z. Kernel
sparse representation-based classifier. IEEE Trans Signal Process 2012;60(4):
1684–95.

[4] Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions. ACM Trans
Graph 2002;21(4):807–32.

[5] Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical
harmonic representation of 3D shape descriptors. In: Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on geometry processing. Aachen,
(Germany): Eurographics Association; 2003. p. 156–64.

[6] Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M. On visual similarity based 3D
model retrieval. Comput Graph Forum 2003;22(3):223–32.

[7] Jain V, Zhang H. A spectral approach to shape-based retrieval of articulated 3D
models. Comput-Aided Des 2007;39(5):398–407.

[8] Vranic DV. An improvement of rotation invariant 3D-shape based on functions
on concentric spheres. In: IEEE international conference on image processing,
Vol. 3, 2003, pp. III–757.

[9] Kazhdan M, Funkhouser T, Rusinkiewicz S. Symmetry descriptors and 3D
shape matching. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on geometry processing. ACM; 2004. p. 115–23.

[10] Ricard J, Coeurjolly D, Baskurt A. Generalizations of angular radial transform
for 2D and 3D shape retrieval. Pattern Recognit Lett 2005;26(14):2174–86.

[11] Knopp J, Prasad M, Van Gool L. Orientation invariant 3D object classification
using hough transform based methods. In: Proceedings of the ACM workshop
on 3D object retrieval, 2010, pp. 15–20.

[12] Bronstein MM, Kokkinos I. Scale-invariant heat kernel signatures for non-
rigid shape recognition. In: IEEE conference on computer vision and pattern
recognition, 2010, pp. 1704–1711.

[13] Smeets D, Keustermans J, Vandermeulen D, Suetens P. meshsift: Local surface
features for 3D face recognition under expression variations and partial data.
Comput Vis Image Underst 2013;117(2):158–69.

[14] Lu K, Wang Q, Xue J, Pan W. 3D model retrieval and classification by semi-
supervised learning with content-based similarity. Inform Sci 2014;281:
703–13.

[15] Loffler J. Content-based retrieval of 3D models in distributed web databases
by visual shape information. In: IEEE international conference on information
visualization, 2000, pp. 82–87.
[16] Li J-B, Sun W-H, Wang Y-H, Tang L-L. 3D model classification based on
nonparametric discriminant analysis with kernels. Neural Comput Appl 2013;
22(3–4):771–81.

[17] Atmosukarto I, Shapiro LG. 3D object retrieval using salient views. Int J
Multimed Inf Retr 2013;2(2):103–15.

[18] Yue G, Meng W, Dacheng T, Rongrong J, Qionghai D. 3-D object retrieval and
recognition with hypergraph analysis. IEEE Trans Image Process 2012;21(9):
4290–303.

[19] Ke L, Ji R, Tang J, Yue G. Learning-based bipartite graph matching for view-
based 3D model retrieval. IEEE Trans Image Process 2014;23(10):4553–63.

[20] Gao Y, Wang M, Ji R, Wu X, Dai Q. 3-D object retrieval with hausdorff distance
learning. IEEE Trans Ind Electron 2014;61(4):2088–98.

[21] Quinlan JR. Induction of decision trees. Mach Learn 1986;1(1):81–106.
[22] Sebe N, Lew MS, Cohen I, Garg A, Huang TS. Emotion recognition using

a Cauchy naive Bayes classifier. In: IEEE 16th international conference on
pattern recognition, Vol. 1, 2002, pp. 17–20.

[23] Liu Y, You Z, Cao L. A novel and quick SVM-basedmulti-class classifier. Pattern
Recognit 2006;39(11):2258–64.

[24] Bishop CM. Neural networks for pattern recognition. Oxford university press;
1995.

[25] Leng B, Zhang X, Yao M, Xiong Z. 3D object classification using deep belief
networks. In: MultiMedia modeling. Springer; 2014. p. 128–39.

[26] Liu Z, Zhang F, Bu S. Spectral classification of 3D articulated shapes.
In: MultiMedia modeling. Springer; 2014. p. 315–22.

[27] Nian R, He B, Lendasse A. 3D object recognition based on a geometrical
topology model and extreme learning machine. Neural Comput Appl 2013;
22(3–4):427–33.

[28] Au OK-C, Tai C-L, Cohen-Or D, Zheng Y, Fu H. Electors voting for fast automatic
shape correspondence. Comput Graph Forum 2010;29:645–54.

[29] Brubaker MA, Punjani A, Fleet DJ. Building proteins in a day: Efficient 3D
molecular reconstruction. In: Proceedings of IEEE conference on computer
vision and pattern recognition, 2015.

[30] Cox TF, Cox MA. Multidimensional scaling. CRC Press; 2010.
[31] Xin S-Q, Wang G-J. Improving Chen and Han’s algorithm on the discrete

geodesic problem. ACM Trans Graph 2009;28(4):1–8.
[32] Garland M, Heckbert PS. Surface simplification using quadric error metrics.

In: Proceedings of the 24th annual conference on computer graphics and
interactive techniques. SIGGRAPH ’97, New York, (USA): ACM Press, Addison-
Wesley Publishing Co.; 1997. p. 209–16.

[33] Jolliffe I. Principal component analysis. Wiley Online Library; 2005.
[34] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:

IEEE computer society conference on computer vision and pattern recognition,
2005, Vol. 1, 2005, pp. 886–93.

[35] Wright J, YangAY, GaneshA, Sastry SS,MaY. Robust face recognition via sparse
representation. IEEE Trans Pattern Anal Mach Intell 2009;31(2):210–27.

[36] Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué
G, Nguyen H, Ohbuchi R. Shrec’11 track: shape retrieval on non-rigid 3D
watertight meshes. In: Eurographics workshop on 3D object retrieval, Vol. 11,
2011, pp. 79–88.

[37] Nene S, Nayar SK. A simple algorithm for nearest neighbor search in high
dimensions. IEEE Trans Pattern Anal Mach Intell 1997;19(9):989–1003.

[38] Shapira L, Shamir A, Cohen-Or D. Consistent mesh partitioning and skeletoni-
sation using the shape diameter function. Vis Comput 2008;24(4):249–59.

[39] Pickup D, Sun X, Rosin PL, Martin RR. Euclidean-distance-based canonical
forms for non-rigid 3D shape retrieval. Pattern Recognit 2015;48(8):2500–12.

[40] Amaldi E, Kann V. On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems. Theoret Comput Sci 1998;209(1):
237–60.

[41] Donoho DL. For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution. Comm Pure Appl Math
2006;59(6):797–829.

[42] Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and
inaccurate measurements. Comm Pure Appl Math 2006;59(8):1207–23.

[43] Candes EJ, Tao T. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Trans Inf Theory 2006;52(12):5406–25.

http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref2
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref3
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref4
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref5
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref6
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref7
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref9
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref10
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref13
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref14
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref16
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref17
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref18
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref19
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref20
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref21
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref23
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref24
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref25
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref26
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref27
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref28
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref30
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref31
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref32
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref33
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref35
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref37
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref38
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref39
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref40
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref41
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref42
http://refhub.elsevier.com/S0010-4485(16)30034-3/sbref43

	3D model classification via Principal Thickness Images
	Introduction
	Related work
	Shape descriptors
	Classification approaches

	Principal thickness images
	Preprocessing
	Principal axes computation
	Principal thickness images extraction

	3D model classification using PTI
	Feature vector extraction from PTI
	Kernel sparse representation-based classification
	Extended KSRC

	Experimental results and discussion
	Experimental results
	Discussion
	Comparison with state-of-the-art methods
	Performance
	Extension to 3D model retrieval

	Conclusion
	Acknowledgments
	Sparse representation-based classification (SRC) and kernel sparse representation-based classification (KSRC)
	References


