
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Average Vector Field Integration for
St. Venant-Kirchhoff Deformable Models

Junior Rojas, Tiantian Liu, and Ladislav Kavan

Abstract—We propose Average Vector Field (AVF) integration for simulation of deformable solids in physics-based animation. Our
method achieves exact energy conservation for the St. Venant-Kirchhoff material without any correction steps or extra parameters. Exact
energy conservation implies that our resulting animations 1) cannot explode and 2) do not suffer from numerical damping, which are two
common problems with previous numerical integration techniques. Our method produces lively motion even with large time steps as
typically used in physics-based animation. Our implicit update rules can be formulated as a minimization problem and solved in a similar
way as optimization-based backward Euler, with only a mild computing overhead. Our approach also supports damping and collision
response models, making it easy to deploy in practical computer animation pipelines.

Index Terms—Animation, Three-Dimensional Graphics and Realism

F

1 INTRODUCTION

Energy conservation is a fundamental principle in nature,
but it is rather elusive in numerical simulations. Some well
known artifacts in physics-based computer animation can be
attributed to lack of energy conservation: numerical “explo-
sions” commonly observed with schemes such as explicit or
symplectic Euler manifest themselves as non-physical energy
increases, eventually rendering the simulation unstable.
Other popular integrators, such as the backward Euler
methods, have the opposite problem: non-physical energy
decreases (numerical damping). Numerical errors can be
reduced by lowering the time step and the necessity of step
size control is a widely accepted fact in engineering and
applied mathematics. For animators, however, integration
time step is a “nuisance parameter”, i.e., a parameter needed
by the algorithm but not by the user. In physics-based
animation used in applications such as film and games,
the goal is to produce visually pleasing animations rather
than to compute sufficiently accurate solutions of differential
equations.

Animations also often take place in stylized virtual
worlds, which is very different from numerical simulations in
engineering, where we typically simulate real-world objects
with known or measurable mechanical properties.

Even though animations do not strictly have to be
physically realistic, violation of energy conservation often
leads to degraded visual quality of motion. This is manifestly
true with numerical explosions, which render the result
useless. Therefore, to avoid instabilities, animators typically
prefer dissipative integration schemes. Unfortunately, the
numerical dissipation present in these integration schemes is

• Junior Rojas is with the School of Computing, University of Utah.
E-mail: jrojasdavalos@gmail.com

• Tiantian Liu is with the Department of Computer and Information Science,
University of Pennsylvania.
E-mail: ltt1598@gmail.com

• Ladislav Kavan is with the School of Computing, University of Utah.
E-mail: ladislav.kavan@gmail.com

not user controllable and hinders production of lively, vivid
motion sequences.

Why is energy conservation difficult to achieve in numer-
ical simulations? Visually rich motions such as the humorous
jiggling of cartoon characters are characterized by large
deformations, necessitating non-linear strain measures and
often also non-linear material models [1]. The resulting elastic
potentials are highly non-linear, making exact conservation
of total mechanical energy (potential + kinetic) hard. In
fact, early attempts to conserve energy via projections [2]
or explicit energy-conservation constraints [3] resulted in
the observation that enforcing energy conservation can lead
to loss of accuracy [4]. Combined with negative theoretical
results [5] (indicating that energy conservation is de facto in-
compatible with symplecticity), attempts to conserve energy
fell out of favor. The late J. C. Simo was a pioneer of modern
energy-conserving methods [6], which continue to be an
active research topic in applied mathematics [7]. However,
outside of few notable exceptions [8], the application of
energy-conserving integrators in computer animation has
not been extensively explored yet.

The key idea of the Average Vector Field (AVF) integrator
[9] is best explained in comparison with classical integration
schemes. The hard part of numerical integration is integrating
the internal forces

∫ tn+1

tn
f(x(t))dt, where f is a force function

and x(t) is the time-dependent trajectory (see Figure 1 left).
The forward Euler method approximates this integral with
a one point quadrature hf(xn), where h = tn+1 − tn is
the time step. The backward Euler method uses instead
hf(xn+1), requiring an implicit solve process. The Newmark-
beta method uses the trapezoidal rule h

2 (f(xn)+ f(xn+1)). It
can be shown that the Newmark’s scheme conserves energy
if the force function f is linear but, unfortunately, energy
conservation is lost with non-linear f . The AVF integrator
uses a more general formula:

h

∫ 1

0

f((1− t)xn + txn+1)dt (1)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Our method

Implicit Midpoint Implicit Newmark

Our method Backward Euler

Fig. 1. The Average Vector Field (AVF) method approximates ground truth motion trajectories with straight lines (left). We propose an implicit
integration scheme based on AVF which exactly conserves energy for St. Venant-Kirchhoff materials. Compared to backward Euler, our method does
not introduce numerical damping and corresponding loss of details (middle). Compared to implicit midpoint and Newmark methods, our method
avoids explosions even with large time steps and long simulation runs (right).

Indeed, for linear f , the integral in Eq. 1 can be evaluated
exactly using the trapezoidal rule h

2 (f(xn) + f(xn+1)) and
thus the AVF method reduces itself to the Newmark scheme.
We remark that Eq. 1 is different from the ground truth
solution

∫ tn+1

tn
f(x(t))dt because the unknown trajectory x(t)

is usually not a straight line. However, Eq. 1 copies the
energy conservation property of the ground truth solution,
which is guaranteed for conservative f . This is true even
for non-linear forces f , as long as the integral in Eq. 1 is
evaluated exactly.

We observe that this is possible for elastic forces f
corresponding to St. Venant-Kirchhoff (StVK) materials. The
StVK forces are degree three polynomials, which means
that we can exactly evaluate Eq. 1 using Simpson’s rule
(three-point Newton-Cotes quadrature) using Eq. 2. This
observation was also made before in [10], as a particular
quadrature rule that can achieve energy preservation for
quartic Hamiltonians.

h

6

(
f(xn) + 4f

(
xn + xn+1

2

)
+ f(xn+1)

)
(2)

Contributions. Our main contribution consists in show-
ing that Eq. 2 lends itself to an implicit solve process which is
analogous to the commonly used backward Euler integration.
This is in stark contrast with other types of energy-conserving
integrators, such as midpoint discrete gradient [11], which
lead to much more difficult systems of non-linear equations
that can potentially make a root finding procedure converge
to invalid solutions (see Figure 2), especially with large
time steps commonly used in computer graphics. Although
previous work outside of the graphics literature, such as [10]
and [12] pointed out that energy conservation in Hamiltonian
systems can be achieved with AVF integration, we show that
we can recast these non-linear equations into an optimization
problem, which leads to a robust and practical simulator of
deformable solids which exactly conserves the total energy
of StVK materials for arbitrarily large time steps. Numerical
advantages of solving optimization problems over non-linear
root finding in the context of symplectic integration methods
for computer animation were discussed in [13]. With the
AVF integrator, the optimization-problem formulation is
even more important because it enables us to guarantee
exact energy conservation even if the solver converges to

a local minimum. The energy-preservation property of our
method implies that we avoid both “explosions” (unbounded
energy increases) as well as non-physical energy dissipa-
tion (artificial energy decreases). This is achieved without
introducing any additional parameters or correction steps,
making our method very easy to use and implement. Its
implementation is only slightly more complicated compared
to classical implicit methods such as backward Euler or
implicit Newmark.

2 RELATED WORK

Numerical integration of ordinary differential equations
dates back to the seminal work of Euler in the 18th century
and continues to be an active area of research in applied
mathematics and engineering. Differential equations appear
in many areas of science: physics and astronomy, chemistry,
biology, ecology, and economics. Each application domain
has different requirements on the numerical solution proce-
dures, which explains a rich variety of numerical integration
methods. We focus on methods related to computer anima-
tion and refer the reader interested in the broader picture to
books [14], [15], [16].

Physics-based animation requires fast computations but
not necessarily highly accurate solutions, which lead pio-
neers in this area to using larger time steps and implicit
time stepping methods [17], [18], [19]. The backward Euler
method (BDF1) became particularly popular [20] in computer
animation, despite its significant numerical damping. Its
second order variant (BDF2) [21] is more accurate, but still
contains numerical damping which cannot be controlled
by the user. More recent real-time physics methods, such
as Position Based Dynamics and related approaches [22],
[23], [24], [25], [26], [27] continue to rely on the backward
Euler formulas as the underlying integrator. A significant
amount of recent work in physics-based animation focuses
on speeding up the numerical solvers of implicit integrators,
capitalizing on their formulation as minimization problems
[28], [29], [30], [31], [32], [33]. Alternatively, it is possible to
get more accurate (and less damped) results by carefully
reducing the time step size of backward Euler [34] or by
employing more advanced integrators [35], [36]. While these
methods help, they do not completely eliminate numerical
damping.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Another approach to avoid numerical dissipation and
related deficiencies of numerical integration is by preserving
the symplectic structure of mechanical systems [13], [37],
[38], [39], [40], [41]. Even though symplectic schemes exhibit
energy that oscillates about its correct value [16] (Chapter 9.8),
these oscillations can be dramatic, rendering the resulting
animation visually implausible. This is true even with
implicit symplectic schemes such as implicit midpoint or
Newmark, unless the time step is sufficiently small.

Most closely related to our work are energy-conserving in-
tegrators. Early approaches [2], [3] did not enjoy widespread
use. A more recent proponent of energy (and momentum)
conserving methods was J. C. Simo [6]. After Simo’s prema-
ture death in 1994, his students and other experts further
developed these ideas, culminating in discrete gradient meth-
ods [9], [11]. Specifically, the “midpoint discrete gradient”
method had been applied to non-linear elastodynamics [42],
achieving conservation of both energy and angular momenta.
Unfortunately, with time steps typically used in computer
animation, implicit solvers using midpoint discrete gradient
are not robust, as we discuss in Section 3. Energy-conserving
methods are relatively rare in the physics-based animation
literature. One example is the energy-projection method
proposed by Su et al. [8] which helps to improve visual
quality, but does not always succeed in conserving energy,
thus the simulation can still explode. This has been improved
upon by Dinev et al. [43], who proposed to track the total
energy and correct for instabilities of implicit midpoint
by blending with backward Euler. Their method is fast
and stable, but does not guarantee energy conservation,
because in the worst case the integrator falls back to standard
backward Euler. Our method avoids any correction steps
or even monitoring of the total energy, because the AVF
integrator conserves energy automatically.

However, our method exactly conserves energy only for
polynomial material models, such as StVK. Even though
this is undoubtedly a limitation, the StVK material has
been shown to be effective in physics-based animation [44].
Specifically, the polynomial nature of the StVK material has
been exploited to achieve dramatic acceleration of subspace
simulations.

3 METHOD
According to Newton’s laws of motion, the ground truth
solution of advancing a mechanical system from time tn to
time tn+1 is given by:

x
∗
n+1 = xn +

∫ tn+1

tn

v(t)dt (3)

v
∗
n+1 = vn + M

−1
∫ tn+1

tn

f(x(t))dt (4)

where xn ∈ Rm,vn ∈ Rm are positions and velocities in
time tn (the known previous state), x∗n+1 ∈ Rm,v∗n+1 ∈ Rm
is the ground truth solution in time tn+1, x : R → Rm
and v : R → Rm are the exact trajectories of the positions
and velocities according to Newton’s laws of motion, f :
Rm → Rm are position-dependent forces, and M ∈ Rm×m
is the mass matrix. If we assume f to be conservative, there
exists potential energy E : Rm → R such that f = −∇E
and the total energy is conserved: E(xn+1) +

1
2‖vn+1‖2M =

E(xn)+
1
2‖vn‖

2
M, where ‖.‖M denotes the mass-matrix norm

(kinetic energy).
In practice, the integrals in formulas Eq. 3 and Eq. 4

must be approximated numerically, because the trajectories
x(t) and v(t) are not known and x∗n+1 and v∗n+1 can only
be approximated (except for simple cases such as linear f ).
The Average Vector Field (AVF) method uses the following
approximation:

xn+1 = xn + h

∫ 1

0

[(1− t)vn + tvn+1]dt (5)

vn+1 = vn + hM
−1
∫ 1

0

f((1− t)xn + txn+1)dt (6)

which corresponds to replacing the unknown trajectories
x(t) and v(t) with straight lines. It can be shown that
this approximation retains the exact energy conservation
property, as long as the integrals in Eq. 5 and Eq. 6 are
evaluated exactly [12]. The proof is very elegant and we
include it in Appendix A. The integral in Eq. 5 can be
exactly evaluated using the trapezoidal rule. To evaluate
the integral in Eq. 6, we use a quadrature rule. For arbitrary
polynomial potentials, we can use, for example, Newton-
Cotes formulas to evaluate the integral exactly. More complex
material models may also benefit from other quadrature rules
such as Gauss quadrature rules. We provide more general
formulas involving arbitrary quadrature rules in Appendix
B. In particular, for forces which are polynomials of degree at
most three (such as the StVK material model), the integral in
Eq. 6 can be exactly evaluated using Simpson’s rule (Eq. 2).
This leads to:

xn+1 = xn +
h

2
(vn + vn+1) (7)

vn+1 = vn +
h

6
M
−1

[
f(xn) + 4f

(
xn + xn+1

2

)
+ f(xn+1)

]
(8)

Note that these formulas are exactly equivalent to Eq. 5
and Eq. 6 (assuming the forces are degree three polynomials)
and thus the total energy is still exactly conserved. Eq. 7
and Eq. 8 represent a system of non-linear equations which
needs to be solved for the unknown next state xn+1,vn+1.
To accomplish this, we start by substituting Eq. 8 into Eq. 7,
eliminating vn+1:

xn+1 = xn +hvn +
h2

12
M
−1

[
f(xn) + 4f

(
xn + xn+1

2

)
+ f(xn+1)

]
(9)

To simplify the notation, we denote the only remaining
unknown as x := xn+1 and group the known terms into
yn := xn + hvn +

h2

12M
−1f(xn). With this new notation, we

can write Eq. 9 more concisely:

x = yn +
h2

3
M
−1

f

(
xn + x

2

)
+
h2

12
M
−1

f(x) (10)

Multiplying by M and re-arranging, we obtain:

F (x) = M(x− yn)−
h2

3
f

(
xn + x

2

)
−
h2

12
f(x) = 0 (11)

This expression can be anti-differentiated to:

g(x) =
1

2
‖x− yn‖2M +

2h2

3
E

(
xn + x

2

)
+
h2

12
E(x) (12)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

such that ∇g(x) = 0 is equivalent to Eq. 11. The
corresponding optimization problem argminx g(x) is similar
to the optimization form of backward Euler [45], [46]. Most
importantly, our optimization problem can be robustly solved
by Newton’s method using the same definiteness fixes and
line search strategies with the same initial guess: xn + hvn
as in the backward Euler case [45], [46], [47].

We also tried using yn = xn + hvn + h2

12M
−1f(xn) as

an alternative initial guess. However, we found that yn is
typically a worse initial guess, leading to more Newton
iterations than xn + hvn. We found this is because the forces
f(xn) can be large and lead to a poor estimate of the solution.

This initial guess of xn+1 gets updated each Newton
iteration until convergence. To compute a descent direction
∆x to update the current estimate of xn+1, we have to solve
the linear system H∆x = −∇g(xn+1). In an ideal case, H
would be the Hessian matrix ∇2g(xn+1), but since it is not
necessarily positive definite, we have to apply definiteness
fixes to get a valid descent direction.

In practice, to fix potential issues caused by indefiniteness,
we repeatedly apply Tikhonov regularization: We begin by
setting H to ∇2g(xn+1) and compute a (sparse) Cholesky
decomposition. If the decomposition is successful, we can
use it to solve the linear system and get a valid descent
direction that we then pass to a backtracking line search
procedure to compute the new estimate of xn+1. If the
decomposition is not successful, H is not positive definite,
so we update H by adding an identity matrix scaled by s
(initially 10−10) and try the Cholesky decomposition again.
We repeat this process until the decomposition is successful.
Each time the decomposition fails, s gets multiplied by 10.
Another possibility would be to implement the definiteness
fix explained in Section 8 of [48], which is also compatible
with our method.

When the solve is completed, we set xn+1 =
argminx g(x) and compute vn+1 in a straightforward way
from Eq. 7. The key advantage over other implicit integrators
such as backward Euler or Newmark is that our resulting
state xn+1,vn+1 exactly conserves the total energy.

Damping. Our method does not impose any specific
damping model and naturally supports damping models that
can be expressed as polynomials. To show that user-defined
damping can be added into the system, we implemented the
standard Rayleigh model with damping forces defined as:

fdamp(vn+1) = −Dvn+1 (13)

where D is a damping matrix defined as:

D = ηM + δK (14)

where M is the mass matrix, K is stiffness matrix, and
η and δ are damping coefficients controlled by the users. In
our experiments we set η := 0 and vary only the δ parameter.
Following Gast [46], we set K = ∇2E(xn) with the usual
definiteness fixes to ensure that K is positive definite.

To embed fdamp(vn+1) in our framework, we first replace
the velocity with positions using Eq. 7:

fdamp(xn+1) = −D
(

2(xn+1 − xn)

h
− vn

)
(15)

This force is now only dependent on the next state xn+1

and therefore can be converted into an “energy” term:

Edamp(xn+1) =
h

4

∥∥∥∥ 2(xn+1 − xn)

h
− vn

∥∥∥∥2
D

(16)

Even though this term changes at each time step, it can
be inserted into our objective Eq. 12 which corresponds
to correct inclusion of the damping forces fdamp. Energy
conservation of course no longer applies, because damping
forces are not conservative. A convenient feature of our
approach is the AVF integrator does not need to be aware
whether the forces are conservative or not.

Collisions. We use only a basic collision response method
in our prototype implementation; for collision-dominated
simulations, more advanced methods [49] are recommended.
We implemented the standard repulsion-springs model [50].
In the beginning of each time step, we find all colliding
vertices and for each colliding vertex, we find its projection
to the closest collision-free surface point xs. We denote the
surface normal at xs as ns. For the subsequent integration
step, we instantiate a temporary collision spring with po-
tential Ecollision(x) = kcollision((Sx − xs)

Tns)
2, where S is

a selector matrix that selects the inter-penetrated vertex.
This collision spring will be removed when the vertex is no
longer in collision and its velocity is pointing away from ns.
Similarly to the damping energy term, we append Ecollision
into our optimization problem Eq. 12.

4 DISCUSSION

The AVF method falls in a more general category of nu-
merical integrators known as discrete gradient methods
[9]. In particular, the use of “midpoint discrete gradient”
has been proposed for non-linear elastodynamics problems
in mechanical engineering [42]. Unlike our AVF method,
the midpoint discrete gradient exactly conserves angular
momenta if the simulated mechanical system exhibits cor-
responding rotational symmetries (i.e., if the ground truth
solution conserves angular momenta, according to Noether’s
theorem). This is an advantage over our AVF approach,
which does not conserve angular momenta. Unfortunately,
we found the midpoint discrete gradient has significant
drawbacks. Specifically, the system of non-linear equations
resulting from midpoint discrete gradient does not have the
same structure as Eq. 7 and Eq. 8; the implicit rules are much
more complicated and contain not only force terms f , but
also the potential E and additional non-linearities (see Eq.
3.5 in [9]). This presents two problems: 1) the non-linear
equations are “more non-linear”, e.g., for StVK materials E is
a degree four polynomial; 2) the non-linear equations cannot
be converted to an optimization form as in Eq. 12, because
the Jacobian of these non-linear equations is not symmetric
and thus cannot be written as a Hessian of some function
(the Hessian is always symmetric).

Instead of solving a minimization problem as in our
method, Gonzalez [42] uses an iterative root finding solver.
We implemented this approach but found that with larger
time steps, as typically used in computer animation, the
root finder can often get stuck in a local minimum, failing
to solve the midpoint discrete gradient update rule. We
ran a simple test to demonstrate this: consider a single



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(-1.10, 12.25)

Solution

Local minimum

-1.0 -0.5 0.0 0.5 1.0 1.5

10

15

20

25

Position

V
el
oc
it
y

Fig. 2. Contour plot of the merit function for midpoint discrete gradient
to update the state (x0, v0) = (−1.10, 12.25) using a time step of h =
0.003s. The root solver fails to find the solution and gets stuck in a local
minimum that does not conserve energy.

particle of unit mass in 1D, with a quartic elastic potential
E(x) = 128x4. The root finder is solving a system of two
non-linear equations a(x, v) = 0, where x is 1D position
and v is 1D velocity. As visualized in the contour plot of
the merit function ‖a‖2 in Figure 2, with a time step of
h = 0.033s, the solver gets stuck in a local minimum. This
problem can be avoided by using smaller time steps, e.g.,
for h = 0.0066s the local minimum problem disappears.
In the “Closing remarks”, Gonzalez [42] suggests more
efficient solve strategies as topic for future work but, to
our knowledge, this remains an open problem.

Similarly, the difficulties that arise when using a root
finder to solve the non-linear AVF equations can be seen in a
simple 1D didactic example. Consider a single particle whose
position is given by x, with mass = 1, affected by gravity
(gravity constant = 10) and an StVK spring potential with one
end attached to xfixed = 0 (stiffness = 1500 and rest length
= 1). The total potential energy is given by E(x) = 10x +
1500(x2 − 1)2. Consider an initial state given by x0 = 0.6,
v0 = −9 and h = 0.04. Plotting the function F (x) from
Equation 11, we can see that the root or energy-preserving
solution is close to x = 1.0 (Figure 3). If we try to solve
this non-linear equation using Newton’s method with a
merit function F 2(x), the solver will fail to converge for
some initial values of x due to the local minimum between
-1.5 and -0.5. Note that this problem is independent of line
search strategy – convergence to the wrong local minimum
can occur even with exact line search. In contrast, if we
minimize the function g(x) we introduced in Equation 12, the
solver will converge to the root regardless of the initialization
(Figure 3), since the local minimum between -1.5 and 0.5 is
not present anymore. Not all local minima of F 2(x) are
roots of F (x), but all local minima of g(x) are roots of F (x)
because ∇xg(x) = F (x).

Even though our method does not conserve angular
momenta, in our experiments with rotationally symmetric
potentials we observed that angular momenta oscillate
near their constant values. The lack of angular momentum
conservation in the AVF integrator does not introduce any

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
x

-2

-1

1

2

3

4

F(x)

F 2(x)

g(x)

Fig. 3. Plot of different functions associated with the non-linear AVF
equation of a single-particle simulation in 1D with potential energy
E(x) = 10x + 1500(x2 − 1)2. The corresponding AVF equation F (x)
has only one root, but F 2(x) has two local minima, which can make the
solver fail to converge to the energy-preserving solution for certain initial
values of x. In contrast, the only local minimum of g(x) matches with the
root of F (x) and the solver converges to the energy-preserving solution
regardless of the initialization.

0 70 145 310

Our method, h = 0.033s

0 70 145 310

Implicit Midpoint, h = 0.033s

0 70 145 310

Implicit Newmark, h = 0.033s

Fig. 4. Frames of the bunny simulation with different implicit integration
methods.

visually disturbing artifacts, see Section 5. In general, we
argue that energy conservation is a more critical quality of
an integrator. For example, the implicit midpoint method
conserves angular momenta, but energy can oscillate so dra-
matically the resulting animation is useless (it is interesting
to note that despite visually implausible results, angular
momenta are still exactly conserved).

5 RESULTS

We demonstrate the properties of our method on different
types of deformable objects. We simulate both volumetric
solids (3D) discretized using linear finite elements [51] as
well as thin shells (2D) discretized using StVK springs. While
the potential of regular Hookean springs is k

2 (‖p1−p2‖−r)2,
our StVK springs use potential k2 (‖p1−p2‖2−r2)2, avoiding
the square root in ‖p1 − p2‖. Therefore, the corresponding
forces are degree three polynomials and we can guarantee
exact energy conservation.

Bunny comparison. To demonstrate that our method
is immune to both explosions and artificial damping, we



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

En
er

gy

100 200 300 400

400

450

500

550

600 Our method

Implicit Midpoint

Implicit Newmark

Backward Euler

Frame

Fig. 5. Total energy vs. simulation frame of the bunny simulation.

simulate a bunny with an initial defomation corresponding
to pulling its ears. We compare our method with implicit
integrators commonly used in physics-based animation: back-
ward Euler, implicit midpoint, and implicit Newmark (with
the usual settings of β = 0.25 and γ = 0.5 corresponding to
the trapezoidal rule).

As shown in Figure 4, both implicit midpoint and implicit
Newmark explode. Our method conserves energy and thus
remains stable regardless of the length of the simulation run.
By “stability” we mean upper bound on the deformations
and velocities of the simulated object, i.e., stability follows
trivially from energy conservation.

Backward Euler does not cause explosions, but quickly
slows down the motion due to numerical damping (please
see the accompanying video). The corresponding energy
plots can be seen in Figure 5. Note that implicit Newmark
survives longer than implicit midpoint and even damps
slightly before the eventual explosion.

Damping. Animators often want to add damping to
achieve a desired visual effect. We demonstrate this on a
simple hanging cloth example. With our method, we can
add an arbitrary physics-based damping model which can
be fully controlled by the user (as opposed to being a
side-effect of the integration method). In Figure 6 we add
Rayleigh damping (with η = 0 and δ = 0.01) in order to
suppress overly lively motion of the wrinkles. Thus, our
method allows users to explore different amounts of physical
damping in a straightforward way that does not require
tweaking the time step. If we use other implicit methods
such as implicit Midpoint or implicit Newmark, reducing
the amount of damping might require using smaller time
steps to avoid numerical instability. If we use backward Euler
(even with zero Rayleigh damping), the motion is damped
too much and more subtle wrinkles disappear.

Angular momentum. Our method does not conserve
angular momentum, and to study the effect of this potential
issue we designed a simulation of a dragon spinning around
one single point in zero gravity. In this case, the potential is
rotationally symmetric, thus angular momenta are conserved
in the ground truth solution according to Noether’s theorem.
We verified this by running a simulation with symplectic
Euler using very small time steps (0.000033s), dubbed
“gold standard”. We also compare against implicit midpoint,
which conserves angular momentum. Unfortunately, implicit
midpoint does not conserve energy, which manifests itself
as explosions, see Figure 7. Even though our method does
not conserve angular momentum, the angular momenta

55 70 74

Our method with no damping, h = 0.033s

55 70 74

Our method with Rayleigh damping, h = 0.033s

55 70 74

Backward Euler, h = 0.033s

Fig. 6. We demonstrate adding Rayleigh damping to a cloth simulation.
This suppresses too vivid motion of the wrinkles without excessive
smoothing as produced by backward Euler (without damping).

0 45 90 115

Gold standard, h = 0.000033s

0 45 90 115

Our method, h = 0.033s

0 45 90 115

Implicit Midpoint, h = 0.033s

Fig. 7. Frames of the spinning dragon simulation with different integration
methods.

produced by our method oscillate with a small amplitude
close to their correct values, see Figure 8. The results
produced with our method start to visibly diverge from the
gold standard solution after about 100 frames of simulation.
This is an expected consequence of our relatively large
time step of h = 0.033s. Even though we do not make
any claims of accuracy, we argue the two animations are
qualitatively similar. We believe it is hard or even impossible
to tell which method is more accurate with the naked eye, as
both animations are perfectly visually plausible. This is an
encouraging result from the point of view of physics-based
animation where visual plausibility is a key consideration.

Accuracy. Even though we do not make any claims about
accuracy of solving the underlying differential equations of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

M
om

en
tu
m

50 100 150 200 250

176.0
176.5
177.0
177.5
178.0
178.5
179.0

Angular Momentum (X axis)

Our method

Implicit Midpoint

Frame

M
om

en
tu
m

50 100 150 200 250

-234

-233

-232

-231

Angular Momentum (Y axis)

Our method

Implicit Midpoint

Frame

M
om

en
tu
m

50 100 150 200 250

-19.5

-19.0

-18.5

Angular Momentum (Z axis)

Our method

Implicit Midpoint

Frame

Fig. 8. Angular momentum per frame of the spinning dragon simulation.

motion, we were curious about how the accuracy of our
method compares to backward Euler formulas (BDF1 and
BDF2). We tested this on a simulation of a wave propagating
through a thin sheet. All integrators were run with h =
0.033s except for the “gold standard” simulation which uses
h = 0.000033s. We were pleased to find out that our method
produces animation closest to the gold standard. The second
best is BDF2, which is - not surprisingly - more accurate
than BDF1. However, even BDF2 adds a significant amount
of damping and smoothes away the small emerging waves
apparent in the gold standard solution, see Figure 9.

Even in cases where damping is needed, our method
gives more freedom to the users to add physics-based
damping, because it does not introduce artificial damping as
in BDF1 and BDF2.

Bathe’s method. Another integrator which has been
very recently introduced to physics-based animation [36] is
“Bathe’s method” [35]. Bathe’s method composes trapezoidal
rule (implicit Newmark) with BDF2, which results in a
very good behavior in practice. However, energy is not
conserved and with extreme initial conditions the simulation
can still explode. While Bathe’s method introduces only mild
numerical damping, in some cases this can still visibly slow
the simulation down, as we demonstrate on an example of a
twisting elastic bar, see Figures 10 and 11.

Collisions. We designed an experiment to test our
collision response model based on repulsion springs, see
Figure 12. For this experiment, the stiffness of the repulsion
springs was set to 200 and the material parameters of the
model are summarized in Table 1 (Model: Ditto). Due to
the non-polynomial nature of the repulsion springs, our
approach can no longer guarantee energy conservation after
collision response. Figure 13 shows an energy plot of the
simulation of colliding Ditto (Figure 12) with and without
damping. Note that in the non-damped case, the energy
slowly drifts up, which is a limitation of our current collision

Gold standard, h = 0.000033s

Our method, h = 0.033s

BDF2, h = 0.033s

BDF1, h = 0.033s

Fig. 9. Wave propagation in a thin sheet with no damping. While BDF1
and BDF2 are stable, they achieve so by introducing non-physical
damping. Our method is stable and avoids numerical damping, which
leads to wrinkles similar to those that emerge in the gold standard
solution.

En
er

gy

20 40 60 80 100 120 140

5000

10 000

15 000

20 000

Our method

[Bathe 2007]

Frame

Fig. 10. Total energy vs. simulation frame of the twisting bar.

1

7

34

67

147

Our method, h = 0.033s, damping = 0

1

7

34

67

147

[Bathe 2007], h = 0.033s, damping = 0

Fig. 11. Example frames of the twisting bar simulation showing noticeable
artificial damping introduced by Bathe’s method.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

0 33 66 80 91

115 136 152 188 211

Our method, h = 0.033s

Fig. 12. Collisions example: a deformable character bouncing off the
ground.

En
er
gy

100 200 300 400 500 600

20

40

60

80

damping = 0

damping = 0.01

Frame

Fig. 13. Energy plot of the simulation setup shown in Figure 12, with
and without damping. Due to the non-polynomial nature of the repulsion
springs, our approach can no longer guarantee energy conservation after
collision response.

resolution method; exact energy preservation even during
contact events remains to be addressed in the future.

Runtime performance. In Table 1, we report the statistics
of our experiments. In terms of runtime performance, our
quadrature rule includes one more quadrature point than
standard implicit methods (implicit midpoint / Newmark /
backward Euler). This extra quadrature point translates itself
to slightly more expensive gradient and Hessian evaluations.
However, as seen in Table 1, the runtime overhead of these
extra computations is small. This is because we did not
construct all the required data structures (gradient and
Hessian) at two quadrature points explicitly as written
in Eq. 12. We instead computed the results using a single
vector and matrix inside the same function. With this saving
in memory allocation and access, we saw that the cost of
each Newton iteration of our method is only about 20% more
compared to other standard implicit methods.

How many iterations of Newton’s method are required
by each method? We compared the total number of iterations
required until convergence in Figure 14. The dramatic
increase in the number of iterations for implicit midpoint
and Newmark is due to the fact these integrators started to
explode. Prior to these explosions, the number of Newton
iterations used by our method is very similar to the numbers
required by implicit midpoint and Newmark. An opposite
extreme is the very low number of iterations required by
backward Euler. As can be seen in the accompanying video,
these low iteration counts are easy to explain by the fact that
backward Euler quickly stops the motion. The slow or even
no motion makes the initial guess an excellent predictor of the
solution and thus convergence is very rapid. Unfortunately,
the resulting animation is rather boring as all of the motion
quickly dies away.

N
ew

to
n

it
er

at
io

ns

50 100 150 200 250 300

20

40

60

80

100

120

140

Our Method

Implicit Midpoint

Implicit Newmark

Backward Euler

Frame

Fig. 14. Number of Newton iterations per frame for bunny simulation.

6 LIMITATIONS AND FUTURE WORK

The main limitation of our approach is the exact numerical
quadrature necessary to evaluate the average vector field
integrals in Eq. 5 and Eq. 6. For this reason, we currently
achieve exact energy conservation only for StVK materials
using Simpson’s rule. Higher order quadrature rules would
allow us, for example, to extend the basic StVK material
with a compression resistance term to mitigate element
inversions as explained in [52]. Our proposed AVF method
with Simpson’s rule for force integration could be of course
applied to arbitrary elastic models, however, the quadrature
in Eq. 5 and Eq. 6 will no longer be exact and the exact
energy conservation property is lost, as we showed in our
simulations involving collisions with repulsion springs with
non-polynomial potentials (Figure 13). Our preliminary tests
indicate that the AVF integrator still produces high quality
results, but more research is necessary. In the future, it may be
possible to devise quadrature rules for other material models
popular in physics-based animation, such as the corotated
model or even more general models based on principal
stretches [1]. Without switching to different material models,
subspace StVK integration [44] is another very interesting
area to explore using AVF integration. Our method also
exposed the need for accurate modeling of viscoelastic-
ity. Even though the energy conservation property of our
method guarantees unconditional stability even without any
damping, real-world mechanical systems always contain
some amount of dissipation, typically involving transfer of
mechanical energy into heat. Accurate modeling of damping
is somewhat moot when using integrators that already
contain large amounts of numerical damping. Our proposed
method is free of numerical damping and thus presents
motivation to investigate more realistic, physically-based or
artist-driven damping models as very recently discussed by
[36].

7 CONCLUSION

We have shown that Average Vector Field (AVF) integration
naturally lends itself to practical simulation problems in
physics-based animation. With St. Venant-Kirchhoff material
models, the AVF integrator exactly conserves energy without
any extra effort. This works robustly even with large time
steps and - perhaps most importantly - the resulting numer-
ical solver is only slightly more complicated than previous
implicit integrators such as backward Euler methods or
implicit midpoint / Newmark. Compared to these previous



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Model #Verts. #Elems. Discret. Total mass µ λ
Time per Newton iteration (ms)

Our method Impl. midpoint Impl. Newmark Backw. Euler
Bunny 1839 5891 Tets 10 500 10 193.08 172.36 188.47 145.20
Dragon 1000 3065 Tets 1 400 10 91.48 77.57 63.63 62.14
Thin Sheet 5061 24300 Springs 1 200 100 201.37 219.82 218.45 200.21
Cloth 6400 31363 Springs 1 20 10 949.16 951.72 905.02 829.65
Ditto 157 415 Tets 1 35 20 39.95 22.24 26.70 21.91
Twisting bar 1314 3440 Tets 1 1000 500 102.89 82.63 79.17 84.09

TABLE 1
Summary of parameters used in our simulation examples and average time per Newton iteration for different implicit integration methods. For

tetrahedral meshes, µ and λ refer to the Lamé parameters of the StVK material. For spring-based models, they refer to the stiffnesses of stretching
and bending springs.

integrators, the exact energy conservation property implies
that our simulations avoid both “explosions” as well as
numerical damping.

ACKNOWLEDGMENTS

We would like to thank Bernhard Thomaszewski and Efty-
chios Sifakis for the valuable discussions, Petr Kadlecek for
his help with rendering and Jing Li for her help generating
our simulation examples. This material is based upon work
supported by the National Science Foundation under Grant
Numbers IIS-1617172 and IIS-1622360. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. We also
gratefully acknowledge the support of Activision.

REFERENCES

[1] H. Xu, F. Sin, Y. Zhu, and J. Barbic, “Nonlinear material design
using principal stretches,” ACM Transactions on Graphics (TOG),
vol. 34, no. 4, p. 75, 2015.

[2] R. A. LaBudde and D. Greenspan, “Energy and momentum
conserving methods of arbitrary order for the numerical integration
of equations of motion,” Numerische Mathematik, vol. 25, no. 4, pp.
323–346, 1975.

[3] T. J. Hughes, T. K. Caughey, and W. K. Liu, “Finite-element methods
for nonlinear elastodynamics which conserve energy,” Journal of
Applied Mechanics, vol. 45, no. 2, pp. 366–370, 1978.

[4] E. Hairer, Long-time energy conservation of numerical integrators,
ser. Foundations of computational mathematics, Santander 2005.
Cambridge: Cambridge University Press, 2006, pp. 162–180, id:
unige:12115. [Online]. Available: https://archive-ouverte.unige.
ch/unige:12115

[5] Z. Ge and J. E. Marsden, “Lie-poisson hamilton-jacobi theory and
lie-poisson integrators,” Physics Letters A, vol. 133, no. 3, pp. 134–
139, 1988.

[6] J. C. Simo, N. Tarnow, and K. Wong, “Exact energy-momentum
conserving algorithms and symplectic schemes for nonlinear
dynamics,” Computer methods in applied mechanics and engineering,
vol. 100, no. 1, pp. 63–116, 1992.

[7] L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative
Problems, ser. Chapman & Hall/CRC Monographs and Research
Notes in Mathematics. CRC Press, 2016. [Online]. Available:
https://books.google.com/books?id=5R6vCgAAQBAJ

[8] J. Su, R. Sheth, and R. Fedkiw, “Energy conservation for the
simulation of deformable bodies,” TVCG, vol. 19, no. 2, pp. 189–200,
2013.

[9] R. I. McLachlan, R. Quispel, and N. Robidoux, “Geometric integra-
tion using discrete gradients,” Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 357, no. 1754, pp. 1021–1045, 1999.

[10] Celledoni, Elena, McLachlan, Robert I., McLaren, David
I., Owren, Brynjulf, Reinout W. Quispel, G., and Wright,
William M., “Energy-preserving runge-kutta methods,” ESAIM:
M2AN, vol. 43, no. 4, pp. 645–649, 2009. [Online]. Available:
https://doi.org/10.1051/m2an/2009020

[11] O. Gonzalez, “Time integration and discrete hamiltonian systems,”
Journal of Nonlinear Science, vol. 6, no. 5, pp. 449–467, 1996.

[12] R. Quispel and D. McLaren, “A new class of energy-preserving
numerical integration methods,” Journal of Physics A: Mathematical
and Theoretical, vol. 41, 2008.

[13] L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder,
and M. Desbrun, “Geometric, variational integrators for computer
animation,” 2006, pp. 43–51.

[14] A. Iserles, A first course in the numerical analysis of differential equations.
Cambridge University Press, 2009.

[15] U. M. Ascher and L. R. Petzold, Computer methods for ordinary
differential equations and differential-algebraic equations, 1998, vol. 61.

[16] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, 2006,
vol. 31.

[17] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically de-
formable models,” in Computer Graphics (Proceedings of SIGGRAPH),
vol. 21, no. 4, 1987, pp. 205–214.

[18] D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual
Computer, vol. 4, no. 6, pp. 306–331, 1988.

[19] D. Terzopoulos and K. Fleischer, “Modeling inelastic deformation:
viscolelasticity, plasticity, fracture,” in Computer Graphics (Proceed-
ings of SIGGRAPH), vol. 22, no. 4, 1988, pp. 269–278.

[20] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proc.
of ACM SIGGRAPH, 1998, pp. 43–54.

[21] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” ACM Trans.
Graph., vol. 21, no. 3, pp. 604–611, 2002.

[22] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position
based dynamics,” Journal of Visual Communication and Image Repre-
sentation, vol. 18, no. 2, pp. 109–118, 2007.

[23] M. Müller, “Hierarchical Position Based Dynamics,” in Workshop
in Virtual Reality Interactions and Physical Simulation ”VRIPHYS”
(2008), 2008, pp. 1–10.

[24] M. Müller, N. Chentanez, T.-Y. Kim, and M. Macklin, “Strain based
dynamics,” in Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’14. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2014, pp.
149–157. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2849517.2849542

[25] M. Macklin and M. Müller, “Position based fluids,” ACM Trans.
Graph., vol. 32, no. 4, p. 104, 2013.

[26] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified
particle physics for real-time applications,” ACM Trans. Graph.,
vol. 33, no. 4, p. 153, 2014.

[27] M. Macklin, M. Müller, and N. Chentanez, “Xpbd: position-based
simulation of compliant constrained dynamics,” in Proc. of Motion
in Games, 2016, pp. 49–54.

[28] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, “Fast simulation
of mass-spring systems,” ACM Trans. Graph., vol. 32, no. 6, pp.
209:1–7, 2013.

[29] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective
dynamics: fusing constraint projections for fast simulation,” ACM
Trans. Graph., vol. 33, no. 4, p. 154, 2014.

[30] H. Wang and Y. Yang, “Descent methods for elastic body simulation
on the gpu,” ACM Trans. Graph., vol. 35, no. 6, p. 212, 2016.

[31] R. Narain, M. Overby, and G. E. Brown, “ADMM ⊇ projective
dynamics: Fast simulation of general constitutive models,” in
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA ’16. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2016, pp. 21–28. [Online].
Available: http://dl.acm.org/citation.cfm?id=2982818.2982822

https://archive-ouverte.unige.ch/unige:12115
https://archive-ouverte.unige.ch/unige:12115
https://books.google.com/books?id=5R6vCgAAQBAJ
https://doi.org/10.1051/m2an/2009020
http://dl.acm.org/citation.cfm?id=2849517.2849542
http://dl.acm.org/citation.cfm?id=2849517.2849542
http://dl.acm.org/citation.cfm?id=2982818.2982822


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

[32] M. Fratarcangeli, V. Tibaldo, and F. Pellacini, “Vivace: a practical
gauss-seidel method for stable soft body dynamics,” ACM Trans.
Graph., vol. 35, no. 6, p. 214, 2016.

[33] T. Liu, S. Bouaziz, and L. Kavan, “Quasi-newton methods for
real-time simulation of hyperelastic materials,” ACM Trans. Graph.,
vol. 36, no. 3, p. 23, 2017.

[34] D. Zhao, Y. Li, and J. Barbic, “Asynchronous implicit backward
euler integration,” Proc. EG/ACM Symp. Computer Animation, 2016.

[35] K.-J. Bathe, “Conserving energy and momentum in nonlinear
dynamics: a simple implicit time integration scheme,” Computers &
structures, vol. 85, no. 7, pp. 437–445, 2007.

[36] H. Xu and J. Barbic, “Example-based damping design,” ACM
Trans. Graph., vol. 36, no. 4 (to appear), 2017. [Online]. Available:
http://run.usc.edu/exampleBasedDamping/

[37] A. Stern and M. Desbrun, “Discrete geometric mechanics for
variational time integrators,” in ACM SIGGRAPH Courses, 2006, pp.
75–80.

[38] A. Stern and E. Grinspun, “Implicit-explicit variational integration
of highly oscillatory problems,” Multiscale Modeling & Simulation,
vol. 7, no. 4, pp. 1779–1794, 2009.

[39] B. Fierz, J. Spillmann, and M. Harders, “Element-wise mixed
implicit-explicit integration for stable dynamic simulation of
deformable objects,” 2011, pp. 257–266.

[40] D. L. Michels, G. A. Sobottka, and A. G. Weber, “Exponential
integrators for stiff elastodynamic problems,” ACM Trans. Graph.,
vol. 33, no. 1, p. 7, 2014.

[41] D. L. Michels and J. P. T. Mueller, “Discrete computational me-
chanics for stiff phenomena,” in SIGGRAPH ASIA Courses, 2016,
p. 13.

[42] O. Gonzalez, “Exact energy and momentum conserving algorithms
for general models in nonlinear elasticity,” Computer Methods in
Applied Mechanics and Engineering, vol. 190, no. 13, pp. 1763–1783,
2000.

[43] D. Dinev, T. Liu, and L. Kavan, “Stabilizing integrators for real-time
physics,” ACM Trans. Graph., vol. (currently under review), 2016.
[Online]. Available: https://www.cs.utah.edu/∼ddinev/

[44] J. Barbic and D. L. James, “Real-time subspace integration for st.
venant-kirchhoff deformable models,” in ACM Trans. Graph., vol. 24,
no. 3, 2005, pp. 982–990.

[45] S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross, “Example-
based elastic materials,” in ACM Trans. Graph., vol. 30, no. 4, 2011,
p. 72.

[46] T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran,
“Optimization integrator for large time steps,” TVCG, vol. 21, no. 10,
pp. 1103–1115, 2015.

[47] J. Nocedal and S. Wright, Numerical optimization, 2006.
[48] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust Quasistatic

Finite Elements and Flesh Simulation,” in Symposium on Computer
Animation, D. Terzopoulos, V. Zordan, K. Anjyo, and P. Faloutsos,
Eds. The Eurographics Association, 2005.

[49] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun,
“Asynchronous contact mechanics,” in ACM Trans. Graph., vol. 28,
no. 3, 2009, p. 87.

[50] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and
E. Sifakis, “Efficient elasticity for character skinning with contact
and collisions,” in ACM Trans. Graph., vol. 30, no. 4, 2011, p. 37.

[51] E. Sifakis and J. Barbic, “Fem simulation of 3d deformable solids: a
practitioner’s guide to theory, discretization and model reduction,”
in ACM SIGGRAPH Courses, 2012, p. 20.

[52] R. Kikuuwe, H. Tabuchi, and M. Yamamoto, “An edge-
based computationally efficient formulation of saint venant-
kirchhoff tetrahedral finite elements,” ACM Trans. Graph.,
vol. 28, no. 1, pp. 8:1–8:13, Feb. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1477926.1477934

Junior Rojas is currently a Ph.D. student at the
University of Utah, working on physics-based
simulation with professor Ladislav Kavan. He was
previously a research programmer at Wolfram
Research and received his Bachelor of Science
from Pontifical Catholic University of Peru.

Tiantian Liu is currently a Ph.D. candidate at the
University of Pennsylvania, working with profes-
sor Ladislav Kavan. The research focus of his
work is mainly on physically based simulation
and fast numerical methods for optimization. He
previously received his Master of Engineering
degree from University of Pennsylvania, and
Bachelor of Engineering degree from Zhejiang
University.

Ladislav Kavan is an assistant professor of
computer science at the University of Utah. Prior
to joining Utah, he was an assistant professor
at the University of Pennsylvania and research
scientist at Disney Interactive Studios. Ladislav’s
research focuses on interactive computer graph-
ics, physics-based animation, and geometry pro-
cessing. His goal is to combine computer graph-
ics with biomechanics and medicine. Ladislav is
a member of the ACM SIGGRAPH community
and serves as an Associate Editor for ACM

Transactions on Graphics.

http://run.usc.edu/exampleBasedDamping/
https://www.cs.utah.edu/~ddinev/
http://doi.acm.org/10.1145/1477926.1477934


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

APPENDIX A
In this Appendix we include a proof (adapted from [12]) that
the Average Vector Field (AVF) method described in Eq. 5
and Eq. 6 exactly preserves the total energy of the system.

We first define a state vector q ∈ R2m that contains both
the positions and the velocities of a system:

q =

[
x
v

]
(17)

The total energy (Hamiltonian) H(q) is defined as:

H(q) = E(x) +
1

2
‖v‖2M (18)

Our goal is to prove the total energy does not change
after the time integration step according to Eq. 5 and Eq. 6,
i.e., H(qn) = H(qn+1). Differentiating Eq. 18, we can rewrite
the force and velocity terms as:

f((1− t)xn + txn+1) = −∇xH((1− t)qn + tqn+1) (19)

(1− t)vn + tvn+1 = M
−1∇vH((1− t)qn + tqn+1) (20)

Substituting Eq. 19 and Eq. 20 into Eq. 5 and Eq. 6 leads
to:

xn+1 = xn + hM
−1
∫ 1

0

∇vH((1− t)qn + tqn+1)dt (21)

vn+1 = vn − hM−1
∫ 1

0

∇xH((1− t)qn + tqn+1)dt (22)

which can be combined into one equation:

qn+1 − qn = S

∫ 1

0

∇qH((1− t)qn + tqn+1)dt (23)

where S is a skew-symmetric matrix defined as:

S =

[
0 M−1

−M−1 0

]
(24)

Now let us take the dot product of both sides of Eq. 23
with

∫ 1
0 ∇qH((1− t)qn + tqn+1)dt:

(qn+1 − qn)
T

(∫ 1

0

∇qH((1− t)qn + tqn+1)dt

)
= 0 (25)

where the right hand side vanishes because vTSv = 0

for any vector v due to the skew-symmetry of S. Because
qn+1 − qn is independent of t, we can move it inside the
integral: ∫ 1

0

(qn+1 − qn)
T
(∇qH((1− t)qn + tqn+1))dt = 0 (26)

We can then apply the chain rule to get:∫ 1

0

d

dt
H((1− t)qn + tqn+1)dt = 0 (27)

and using the first fundamental theorem of calculus, we
conclude that:

H(qn+1)−H(qn) = 0 (28)

which completes the proof.

APPENDIX B
Our results have focused on the StVK material and Simpson’s
rule for numerical integration. In this appendix, we derive a
general formula for the objective function g(x), considering
a more general quadrature rule for numerical integration.

Recall that the AVF integrator can be formulated with
update rules for velocity and position given by Eq. 29 and
Eq. 30 .

v1 = v0 −M−1
∫ 1

0

∇E((1− t)x0 + tx1)dt (29)

x1 = x0 +
h

2
(v0 + v1) (30)

We can replace v1 from Eq. 29 into Eq. 30 to get Eq. 31

x1 = x0 + hv0 −
hM−1

2

∫ 1

0

∇E((1− t)x0 + tx1)dt (31)

At this point, we will replace the integral in Eq. 31 with a
quadrature rule. A quadrature is defined by a set of weights
wi and abscissae ti. We will adopt a format similar to that
used in Gauss quadrature. That is, the weights wi must sum
to 2 and abscissae ti are numbers between -1 and 1, which
get mapped to some value in [x0, x1]. We define a general
formula for a quadrature term Qi in Eq. 32.

Qi = wi∇E
(

(x0 + x1)

2
+

(x1 − x0)

2
ti

)
(32)

The integral from Eq. 31 will be replaced with the formula
given in Eq. 33, according to a certain quadrature rule.∫ 1

0

∇E((1− t)x0 + tx1)dt =
h

2

∑
i

Qi (33)

After replacing the integral in Eq. 31 with the quadrature
formula introduced in Eq. 33, we get Eq. 34.

x1 = x0 + hv0 −
h2M−1

4

∑
i

Qi (34)

Certain quadratures might include x0 as a quadrature
point, which corresponds to t0 = −1. This is the case, for
example, in Simpson’s rule, and in other Newton-Cotes
quadrature rules. Since this quadrature term is constant with
respect to x1, it is convenient to take it out of the sum for
differentiation. Including this point explicitly in this manner,
we get Eq. 35.

x1 = x0 + hv0 −
h2M−1

4
Qi | ti=−1 −

h2M−1

4

∑
i | ti 6=−1

Qi (35)

Then, we introduce y to capture the part of the expression
that is constant with respect to x1 as shown in Eq. 36. Note
that if the chosen quadrature does not use the abscissa ti =
−1, the last term of this expression is zero.

y = x0 + hv0 −
h2M−1

4
Qi | ti=−1 (36)

Now the system equation can be written more concisely,
as shown in Eq. 37.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

2M(x1 − y) +
h2

2

∑
i | ti 6=−1

Qi = 0 (37)

To robustly solve Eq. 37, we will anti-differentiate it with
respect to x1 and recast the problem as an optimization
problem. The anti-derivative Ei of each quadrature term Qi
is given in Eq. 38.

Ei =
2wi

1 + ti
E

(
(x0 + x1)

2
+

(x1 − x0)

2
ti

)
(38)

Now we can anti-differentiate the system equation (Eq. 37)
to get the a general form for g(x) (originally introduced in
Eq. 12 for Simpson’s rule) using arbitrary quadrature rules
(Eq. 39).

g(x) = (x1 − y)TM(x1 − y) +
h2

2

∑
i | ti 6=−1

Ei (39)

Additionally, the formulas for the gradient and Hessian
of g(x) are shown in Eq. 40 and Eq. 41.

∇g(x) = 2M(x1 − y) +
h2

2

∑
i | ti 6=−1

Qi (40)

∇2
g(x) = 2M +

h2

2

∑
i | ti 6=−1

Hi (41)

Hi =
(1 + ti)wi

2
∇2

E

(
(x0 + x1)

2
+

(x1 − x0)

2
ti

)
(42)


	Introduction
	Related Work
	Method
	Discussion
	Results
	Limitations and Future Work
	Conclusion
	References
	Biographies
	Junior Rojas
	Tiantian Liu
	Ladislav Kavan


