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1 Relation between semidefinite constraint and noninversion

In our paper we replace the noninversion constraint det(F;) > 0 with the semidefiniteness constraint S; > 0, where S; = sym{RiFi}.
(Note that sym{M} = 5 (M + M") denotes the symmetric part of matrix M.)

In this section we show that the semidefinite constraint subsumes the positivity of the determinant, i.e. S; > 0 = det(F;) > 0,
and show bounds for the determinant that can be expressed using S;.

Lemma 1. Ler Q € C"*" be a skew-hermitian matrix, i.e. ¥* = —§2 where Q2 denotes the conjugate transpose of 2.
Then all eigenvalues of S are imaginary (or zero).

Proof. Let (g, \) be an eigenvector-eigenvalue pair. Then
Qq=X\¢=q"Qq=Xq"q = \|q|]”
Taking the conjugate transpose of the equation above, we have
(@"Qq)" = (\ldl|*)" = a"Q"a = \"||ql|* = —a"Qa = A"||al]®
Adding the two equations \||q||* = q*Qq and \*||q||*> = —q*Qq, we have (A + A\*)||q]||*> = 0.

Since the eigenvector g cannot be zero, we have A + A* = 0, thus X is an imaginary number (or zero).
O

Lemma 2. If Q € R"X" is a skew-symmetric matrix, we can write Q@ = UAU* = UAU ! where U € C™*" is a unitary matrix and A
is a diagonal matrix containing entries that
(2) are all imaginary (or zero), and
(#t) come in conjugate pairs —ai, +oi, — i, + 01, —yi, +vi . .. (o, B,7v... €ER).
(If n is odd, it will also have an unpaired zero entry in A.)

Proof. Because (2 is skew-symmetric, Q7 Q = (—2)(—Q7) = QQ7T, i.e. Q is normal. By the spectral theorem 2 is diagonalizable by a
unitary matrix U (with U* = U™1), ie.
Q=UAU" =UAU '

€ and A are similar, thus the diagonal entries of A are the eigenvalues of €2. By Lemma 1, they are all imaginary (or zero).
Since 2 € R™*", all eigenvalues come in complex conjugate pairs.
O

Lemma 3. IfS € R™*" is a symmetric positive definite matrix, and A € R™*™ is a skew-symmetric matrix, then det(S + A) > det(S).

Proof. Since S is symmetric positive definite, it can be written in the form S = NIN” where N € R™*™ (e.g. from Cholesky factorization).
Subsequently, we can write:

det(S + A) = det(NN” + A)
= det [N(I + N_IAN_T)NT]
= det(N) det(I+N'AN"T) det(N7)

= det(NNT) det(I+ NTAN"T)
= det(S) det(I+ Q) (1)

where @ := N"'AN~T. Q is in fact skew symmetric :

QT _ (N—T)TAT(N—I)T _ _N—IAN—T _ —Q



Thus by Lemma 2 we can write

det(I+ Q) = det(UU ' + UAU )
= det(U) det(I + A) det(U™1)
=det(I+A)

I+ A is diagonal with paired imaginary entries —«i, +ai, — 3%, +8i, —vi, +7vi...(a, B,7... € R). Taking the product of those yields a
greater or equal than 1 result since (1 + ai)(1 — i) = 1 + o > 1, etc. Hence det(I + Q) > 1. This result, combined with equation 1
yields det(S + A) > det(S).

O

Theorem 4. Let R € R™*™ be a rotation matrix, i.e. R is orthonormal and det(R) = 1, and let F € R™*".
Define S = sym{R7F}. If S = 0, then det(F) > det(S) > 0.

Proof. The inequality det(S) > 0 is trivial if S is positive definite. Since R is a rotation matrix, we have det(F) = det(R) det(F) =
det(RTF). Thus if we define M = R”F, the theorem becomes equivalent to proving det(M) > det(S).

Write M = S + A, where S = (M + M7”)/2 the symmetric part of M as previously defined, while A = (M — M7)/2 is the skew-
symmetric part of the same matrix. If S > 0, then by Lemma 3 we have det(M) = det(S + A) > det(S) which completes our proof. [J

2 Proof of convexity for our penalty energy term
Finally, we provide a proof for the convexity of the penalty term Epenatey (x) = 3=, ; p(A;(S:)) used in our method.

Lemma 5. ForVp : R' — R! being a C* continuous and convex function, for ¥x1,xs € R*,

(' (x1) = p'(x2))(x1 — x2) >0

Proof. The follows directly from the fact that the derivative p’(x) is monotonically non-decreasing (due to the convexity of p). O

Lemma 6. For any square matrices A, B, and orthogonal matrix Q:

A:B=(Q"AQ):(Q"BQ)
where A : B = Zi’j aijbij
Proof. Because Q is orthogonal, QQ” = Q7' Q = I. Thus
A :B=ir(AB”)
=r(AQQ"B'QQ")
= tr(QTAQ . QTBTQ) (cyclic permuation invariance of trace)

=(Q"AQ): (Q"BQ)

Lemma 7. For any square matrices A, B, if A is a diagonal matrix,

A :B = A:diag{B}

Proof. A:B =37 aijbij + 3, ,; aijbi;. Because ai; = 0 for i # j, We have

A:B= Zaijbij =A: dzag{B}

i=j



Theorem 8. Epcnaity(x) = >, ; p(A;(S:i)) is a convex function when p is a C ! continuous and convex function, where:
(1)i=1,2,3...m,and j = 1,2...d.
(2) m is the number of elements in the mesh, d is the dimension (d = 2 for 2D or d = 3 for 3D) of the problem.

(3)S; = sym{RiTFi}, ﬂz and F; are the ex-rotation field and deformation gradient of the i-th element respectively.
(4) X;(S:) maps from matrix S; to its corresponding eigenvalues {1, A2...\q}.

Proof. An sufficient condition to prove Epenaity (X) being a convex function is that Epenatty,i(x) = >_; p(A;(S:)) being a convex function
A1(S)

for Vi. To make the notation simpler, we will discard the subscript 4, and write S = sym{ﬂTF}, A= 22(8)

Aa(S)
Notice that now we want to prove Epenatty,i = ¢(A(S(x))) = >, p(A;(S)) is a convex function over x. Because S is a linear mapping of
x, it is sufficient to just prove ¢ (A(S)) is convex over S, so problem turns to be :

. O?p(A(9))

: : >
6S 952 6S>0

or

Let’s take a look at % first :

Isp(A) = Vp(A) : ds(A) Vp(A) =

Since A comes from an eigen decomposition from S, QAQT = S, we have

5sQAQT + QisAQ” + QAssQT = 6S
Q" (3sQAQ" + QisAQ" + QAIsQT)Q = Q75SQ
(Q"0sQ)A +5sA + A(Q"3sQ)” = Q75SQ

Notice that QQ” =1,

(Q"5sQ)" +Q"6sQ =0

Thus, Q7' 65 Q is a skew-symmetric matrix, and (Q” 6s Q) A+A(QT 6sQ)” would be an off-diagonal matrix. Hence s A = diag{Q” 6SQ}.
Therefore,

s (p(A(S))) = Vp(A) : dsA
= Ve(A) : diag{Q"5SQ}
=Vp(A): Q76SQ (Lemma 7)
= QVep(A)QT : S (Lemma 6)

That’s to say : w = QVy(A)QT by definition. Now let’s prove és(%) :6S>0:



dp(A(S))

0s(=5g ): 68 = 0s(QVep(A)QT) : 68
=s(QVp(A)Q") : 5s(QAQT)
=(Q"5s(QVe(A)QM)Q) : (Q"4s(QAQT)Q) (Lemma 6)

= ((Q"6sQ)Vp(A) + ds(Ve(A)) + Vo(A)(QT5sQ))
((QT9sQ)A + 5sA + A(QT6sQ)T)

Notice that Q' 6sQ is a skew-symmetric matrix, we can group the diagonal terms and off-diagonal terms separately, thus

as(PPAD) 55— ((QTHsQ)V(A) + V(A)QTE5Q)T) : ((QT55QA + AQT55Q)") + 3 (Vir(A) : dsA

(%) (%)

If we write down the skew-symmetric matrix Q7 ds Q explicitly as

0 qu q1d
—qi2 O .
Q%5sQ = . . . ;
. 0 qd—1,d
—qid - - —Qd-14d 0
we can expand () to
0 (' (X2)) = P' (M) anz (' (M) =P (M))q1a
) = (P (A2)) = p'(M))qi2 0 .
3 ' 0 (M) — P (Ad1))a1.0
(' (Aa)) =P (M))qra : - ((0'(Aa) =P (Na-1))qa-1,a 0
0 (A2 = A1)qi2 (A — M)qua
()\2 - )\1)(]12 0 .
: 0 (Aa — /\d.—l)Qd—l,d
(Ad — M)qra . . (A —Ad=1)qd—1.4 0
=2> (M) = P () (N — Ar)di

k<l

Since function p is C* continuous and convex, we have (p' (A1) — p’(Ax))(Ar — M) > 0 by applying Lemma 5, thus (x) > 0.

Similarly, we can expand (xx) to

Once again because p is a convex function, p”’ (Ax) > 0. Thus (xx) > 0.

Therefore, we proved that 63(%) 08 > 0, and Epenaty(x) = >, ; P(A;(Si)) is a convex function.



