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1 Relation between semidefinite constraint and noninversion

In our paper we replace the noninversion constraint det(Fi) > 0 with the semidefiniteness constraint Si � 0, where Si = sym{R̂iFi}.
(Note that sym{M} = 1

2
(M + MT ) denotes the symmetric part of matrix M.)

In this section we show that the semidefinite constraint subsumes the positivity of the determinant, i.e. Si � 0⇒ det(Fi) > 0,
and show bounds for the determinant that can be expressed using Si.

Lemma 1. Let Ω ∈ Cn×n be a skew-hermitian matrix, i.e. Ω∗ = −Ω where Ω∗ denotes the conjugate transpose of Ω.
Then all eigenvalues of Ω are imaginary (or zero).

Proof. Let (q, λ) be an eigenvector-eigenvalue pair. Then

Ωq = λq ⇒ q∗Ωq = λq∗q = λ||q||2

Taking the conjugate transpose of the equation above, we have

(q∗Ωq)∗ = (λ||q||2)∗ ⇒ q∗Ω∗q = λ∗||q||2 ⇒ −q∗Ωq = λ∗||q||2

Adding the two equations λ||q||2 = q∗Ωq and λ∗||q||2 = −q∗Ωq, we have (λ+ λ∗)||q||2 = 0.

Since the eigenvector q cannot be zero, we have λ+ λ∗ = 0, thus λ is an imaginary number (or zero).

Lemma 2. If Ω ∈ Rn×n is a skew-symmetric matrix, we can write Ω = UΛU∗ = UΛU−1 where U ∈ Cn×n is a unitary matrix and Λ
is a diagonal matrix containing entries that

(i) are all imaginary (or zero), and
(ii) come in conjugate pairs −αi,+αi,−βi,+βi,−γi,+γi . . . (α, β, γ . . . ∈ R).

(If n is odd, it will also have an unpaired zero entry in Λ.)

Proof. Because Ω is skew-symmetric, ΩTΩ = (−Ω)(−ΩT ) = ΩΩT , i.e. Ω is normal. By the spectral theorem Ω is diagonalizable by a
unitary matrix U (with U∗ = U−1), i.e.

Ω = UΛU∗ = UΛU−1

Ω and Λ are similar, thus the diagonal entries of Λ are the eigenvalues of Ω. By Lemma 1, they are all imaginary (or zero).
Since Ω ∈ Rn×n, all eigenvalues come in complex conjugate pairs.

Lemma 3. If S ∈ Rn×n is a symmetric positive definite matrix, and A ∈ Rn×n is a skew-symmetric matrix, then det(S + A) ≥ det(S).

Proof. Since S is symmetric positive definite, it can be written in the form S = NNT where N ∈ Rn×n (e.g. from Cholesky factorization).
Subsequently, we can write:

det(S + A) = det(NNT + A)

= det
[
N(I + N−1AN−T )NT

]
= det(N) det(I + N−1AN−T ) det(NT )

= det(NNT ) det(I + N−1AN−T )

= det(S) det(I + Ω) (1)

where Ω := N−1AN−T . Ω is in fact skew symmetric :

ΩT = (N−T )TAT (N−1)T = −N−1AN−T = −Ω



Thus by Lemma 2 we can write

det(I + Ω) = det(UU−1 + UΛU−1)

= det(U) det(I + Λ) det(U−1)

= det(I + Λ)

I + Λ is diagonal with paired imaginary entries −αi,+αi,−βi,+βi,−γi,+γi...(α, β, γ... ∈ R). Taking the product of those yields a
greater or equal than 1 result since (1 + αi)(1 − αi) = 1 + α2 ≥ 1, etc. Hence det(I + Ω) ≥ 1. This result, combined with equation 1
yields det(S + A) ≥ det(S).

Theorem 4. Let R̂ ∈ Rn×n be a rotation matrix, i.e. R̂ is orthonormal and det(R̂) = 1, and let F ∈ Rn×n.
Define S = sym{R̂TF}. If S � 0, then det(F) ≥ det(S) > 0.

Proof. The inequality det(S) > 0 is trivial if S is positive definite. Since R̂ is a rotation matrix, we have det(F) = det(R̂) det(F) =

det(R̂TF). Thus if we define M = R̂TF, the theorem becomes equivalent to proving det(M) ≥ det(S).

Write M = S + A, where S = (M + MT )/2 the symmetric part of M as previously defined, while A = (M −MT )/2 is the skew-
symmetric part of the same matrix. If S � 0, then by Lemma 3 we have det(M) = det(S + A) ≥ det(S) which completes our proof.

2 Proof of convexity for our penalty energy term

Finally, we provide a proof for the convexity of the penalty term Epenalty(x) =
∑

i,j p(λj(Si)) used in our method.

Lemma 5. For ∀p : R1 → R1 being a C1 continuous and convex function, for ∀x1,x2 ∈ R1,

(p′(x1)− p′(x2))(x1 − x2) ≥ 0

.

Proof. The follows directly from the fact that the derivative p′(x) is monotonically non-decreasing (due to the convexity of p).

Lemma 6. For any square matrices A,B, and orthogonal matrix Q:

A : B = (QTAQ) : (QTBQ)

where A : B =
∑

i,j aijbij

Proof. Because Q is orthogonal, QQT = QTQ = I. Thus

A : B = tr(ABT )

= tr(AQQTBTQQT )

= tr(QTAQ ·QTBTQ) (cyclic permuation invariance of trace)

= (QTAQ) : (QTBQ)

Lemma 7. For any square matrices A,B, if A is a diagonal matrix,

A : B = A : diag{B}

.

Proof. A : B =
∑

i=j aijbij +
∑

i 6=j aijbij . Because aij = 0 for i 6= j, We have

A : B =
∑
i=j

aijbij = A : diag{B}



Theorem 8. Epenalty(x) =
∑

i,j p(λj(Si)) is a convex function when p is a C1 continuous and convex function, where:
(1) i = 1, 2, 3...m, and j = 1, 2...d.
(2) m is the number of elements in the mesh, d is the dimension (d = 2 for 2D or d = 3 for 3D) of the problem.
(3) Si = sym{R̂i

T
Fi}, R̂i and Fi are the ex-rotation field and deformation gradient of the i-th element respectively.

(4) λj(Si) maps from matrix Si to its corresponding eigenvalues {λ1, λ2...λd}.

Proof. An sufficient condition to prove Epenalty(x) being a convex function is that Epenalty,i(x) =
∑

j p(λj(Si)) being a convex function

for ∀i. To make the notation simpler, we will discard the subscript i, and write S = sym{R̂TF}, Λ =

 λ1(S)
λ2(S)

...
λd(S)

.

Notice that now we want to prove Epenalty,i = ϕ(Λ(S(x))) =
∑

j p(λj(S)) is a convex function over x. Because S is a linear mapping of
x, it is sufficient to just prove ϕ(Λ(S)) is convex over S, so problem turns to be :

δS :
∂2ϕ(Λ(S))

∂S2
: δS ≥ 0

or

δS(
∂ϕ(Λ(S))

∂S
) : δS ≥ 0

Let’s take a look at ∂ϕ(Λ(S))
∂S

first :

δSϕ(Λ) = ∇ϕ(Λ) : δS(Λ) ∇ϕ(Λ) =

 p′(λ1)
...

p′(λd)


Since Λ comes from an eigen decomposition from S, QΛQT = S, we have

δSQΛQT + QδSΛQT + QΛδSQT = δS

QT (δSQΛQT + QδSΛQT + QΛδSQT )Q = QT δSQ

(QT δSQ)Λ + δSΛ + Λ(QT δSQ)T = QT δSQ

Notice that QQT = I,

(QT δSQ)T + QT δSQ = 0

Thus, QT δSQ is a skew-symmetric matrix, and (QT δSQ)Λ+Λ(QT δSQ)T would be an off-diagonal matrix. Hence δSΛ = diag{QT δSQ}.
Therefore,

δS(ϕ(Λ(S))) = ∇ϕ(Λ) : δSΛ

= ∇ϕ(Λ) : diag{QT δSQ}

= ∇ϕ(Λ) : QT δSQ (Lemma 7)

= Q∇ϕ(Λ)QT : δS (Lemma 6)

That’s to say : ∂ϕ(Λ(S))
∂S

= Q∇ϕ(Λ)QT by definition. Now let’s prove δS( ∂ϕ(Λ(S))
∂S

) : δS ≥ 0 :



δS(
∂ϕ(Λ(S))

∂S
) : δS = δS(Q∇ϕ(Λ)QT ) : δS

= δS(Q∇ϕ(Λ)QT ) : δS(QΛQT )

= (QT δS(Q∇ϕ(Λ)QT )Q) : (QT δS(QΛQT )Q) (Lemma 6)

= ((QT δSQ)∇ϕ(Λ) + δS(∇ϕ(Λ)) +∇ϕ(Λ)(QT δSQ)T )

: ((QT δSQ)Λ + δSΛ + Λ(QT δSQ)T )

Notice that QT δSQ is a skew-symmetric matrix, we can group the diagonal terms and off-diagonal terms separately, thus

δS(
∂ϕ(Λ(S))

∂S
) : δS =((QT δSQ)∇ϕ(Λ) +∇ϕ(Λ)(QT δSQ)T ) : ((QT δSQ)Λ + Λ(QT δSQ)T )︸ ︷︷ ︸

(∗)

+ δS(∇ϕ(Λ)) : δSΛ︸ ︷︷ ︸
(∗∗)

If we write down the skew-symmetric matrix QT δSQ explicitly as

QT δSQ =


0 q12 q1d
−q12 0 .
. . .
. 0 qd−1,d

−q1d . . −qd−1,d 0

 ,

we can expand (∗) to

(∗) =


0 ((p′(λ2))− p′(λ1))q12 ((p′(λd))− p′(λ1))q1d

((p′(λ2))− p′(λ1))q12 0 .
. . .
. 0 ((p′(λd))− p′(λd−1))qd−1,d

((p′(λd))− p′(λ1))q1d . . ((p′(λd))− p′(λd−1))qd−1,d 0



:


0 (λ2 − λ1)q12 (λd − λ1)q1d

(λ2 − λ1)q12 0 .
. . .
. 0 (λd − λd−1)qd−1,d

(λd − λ1)q1d . . (λd − λd−1)qd−1,d 0


= 2

∑
k<l

(p′(λl)− p′(λk))(λl − λk)q
2
kl

Since function p is C1 continuous and convex, we have (p′(λl)− p′(λk))(λl − λk) ≥ 0 by applying Lemma 5, thus (∗) ≥ 0.

Similarly, we can expand (∗∗) to

(∗∗) =
d∑

k=1

p′′(λk)(δS(λk))
2

Once again because p is a convex function, p′′(λk) ≥ 0. Thus (∗∗) ≥ 0.

Therefore, we proved that δS( ∂ϕ(Λ(S))
∂S

) : δS ≥ 0, and Epenalty(x) =
∑

i,j p(λj(Si)) is a convex function.


