Automatic Linearization of Nonlinear Skinning

Ladislav Kavan*

Steven Collins

Carol O’Sullivan

Trinity College Dublin

(b)

(©) (@)

Figure 1: Linear blending is one of the fastest skinning methods, but suffers from volume-collapsing artifacts (a). These artifacts can be
removed by a nonlinear blending method (such as dual quaternions), but at the cost of more complex vertex processing (b). Our method
automatically places virtual bones in critical parts of the model (c), so that linear blending using these virtual bones efficiently approximates

the nonlinear skinning technique (d).

Abstract

Linear blending is a very popular skinning technique for virtual
characters, even though it does not always generate realistic de-
formations. Recently, nonlinear blending techniques (such as dual
quaternions) have been proposed in order to improve upon the de-
formation quality of linear skinning. The trade-off consists of the
increased vertex deformation time and the necessity to redesign
parts of the 3D engine. In this paper, we demonstrate that any
nonlinear skinning technique can be approximated to an arbitrary
degree of accuracy by linear skinning, using just a few samples of
the nonlinear blending function (virtual bones). We propose an al-
gorithm to compute this linear approximation in an automatic fash-
ion, requiring little or no interaction with the user. This enables
us to retain linear skinning at the core of our 3D engine without
compromising the visual quality or character setup costs.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: skinning, approximation, linearization

1 Introduction

Linear blending is the most popular skin deformation technique
for virtual characters, being used in numerous 3D game engines
and digital content creation software. Unfortunately, larger joint
rotations result in joint collapsing artifacts (also known as candy-
wrapper effects). One approach to eliminate these artifacts is dual

*e-mail: kavanl@cs.tcd.ie

quaternion skinning [Kavan et al. 2008], which employs a nonlin-
ear transformation blending method. Even though dual quaternion
blending is still a relatively simple procedure, it is slower than lin-
ear blending (especially when scaling bones have to be supported)
and requires modifications of time-critical components of the 3D
engine, which can be painstaking (especially if the routines and/or
shaders are optimized at the lowest level). Moreover, nonlinear
skinning is typically only necessary in certain parts of the model
(such as shoulders and wrists), while linear blending can be safely
applied elsewhere.

A technique that eliminates the artifacts of linear skinning without
introducing the overheads of nonlinear blending has been described
previously [Weber 2000]. The main idea is to use virtual bones to
split large joint rotations into smaller ones which can be blended
linearly without introducing any noticeable artifacts. The drawback
is the extra manual effort needed to setup the auxiliary bones and
reweight skin vertices accordingly. This needs to be repeated for
every character model.

In this paper, we propose a method to create virtual bones and up-
date vertex weights in an automatic fashion, using only the origi-
nal character model and a training skeletal animation (to estimate
which parts of the body are more flexible). During pre-processing,
our algorithm computes optimal placement of the virtual bones and
their vertex weights so that the artifacts of linear blending are com-
pensated for. At run-time, the nonlinear blending is executed only
once per virtual bone and vertices are deformed by simple linear
blending. At a higher level, our approach can be viewed as con-
structing piecewise linear approximations of nonlinear skinning op-
erators, with virtual bones corresponding to samples of the nonlin-
ear operator (see Figure 2 for an illustrative example).

While skinning methods that employ virtual bones have been pro-
posed previously [James and Twigg 2005; Wang et al. 2007], our
approach is different in that it produces explicit closed-form formu-
las for computing virtual bone transformations as a function of the
skeletal posture. In our case, the input animation is used only to
determine the critical regions of our 3D model (and not to learn any
particular deformation style, as in previous work). Therefore, our

ladislav
Note
Copyright ACM, (2009). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version will be published in Proceedings of 2009 symposium on Interactive 3D Graphics and Games, http://doi.acm.org

a;

Figure 2: Spherical arc a;,b; can be approximated linearly with
sufficient accuracy. The same level of accuracy can be obtained
even for arc a,by by using piecewise linear approximation with
two samples (Sy,S7) of the original curve.

virtual bones can be applied easily on top of an arbitrary skeletal
animation (e.g., a mo-cap clip) and produce plausible deformations
even for animations far different from the training one.

From a practical point of view, the main contribution of our work
is that the linear skin deformation routines and/or shaders can be
retained at the core of a 3D engine, without compromising visual
quality. This also enables us to directly apply algorithms that as-
sume linear vertex blending [Lewis et al. 2000; Kavan and Zara
2005; Merry et al. 2006b]. Moreover, our method makes it possible
to employ more advanced (and more complex) nonlinear skinning
operators, including those that were previously considered too slow
for practical purposes.

2 Related Work

A number of algorithms improve upon linear blend skinning
in terms of deformation quality. Linear blending [Magnenat-
Thalmann et al. 1988] is considered to be the simplest and fastest
method to produce smooth skinning. The advanced methods can
therefore be classified in terms of time and memory overheads over
linear blending, see Table 1.

Method Extra time | Extra memory
Linear blending 0 0
Nonlinear blending O(N) o(1)
Multilinear blending 0 O(N)
Virtual bones with stitching 0(B?) 0(B?)
Direct virtual bones

(our method) 0(B) O(B)

Table 1: Real-time skinning techniques classified by their over-
heads when compared to linear blending, with N denoting the num-
ber of mesh vertices and § the number of virtual bones (note that
typically B << N).

Nonlinear blending. The idea of nonlinear skinning methods is
that curved vertex trajectories generate more natural deformations
than straight lines. In particular, quaternion-based methods [Hejl
2004; Kavan et al. 2008] operate along spherical (or helical) arcs.
Another possibility is to apply customizable curves [Yang et al.
2006; Forstmann et al. 2007], useful especially when users require
detailed control over the deformation style. Although these meth-
ods require zero or constant memory overhead, the nonlinear de-
formation function is executed once per vertex. Optimization tech-
niques are therefore often employed in order to improve run-time
performance. Note that while [Hejl 2004] reports a faster algorithm
than linear blending, it only works correctly for a restricted class of
models (in particular, vertices influenced by non-neighboring bones
are not supported).

Multilinear blending. = Methods employing blending in a
higher-dimensional linear space were pioneered by Wang and
Philips [2002] and further developed by Merry et al. [2006a] into
a concept called Animation space. While Animation space offers
the same performance as linear blending, the overhead consists of
extra per-vertex attributes, thereby increasing the memory footprint
of a skinned model. These additional attributes are learned from
an input mesh animation, where care must be taken in order to
avoid overfitting. Even though Animation space can reduce candy
wrapper artifacts, it cannot remove them completely, as the number
of vertex attributes is fixed. Our proposed technique converges to
artifact-free skinning as the number of virtual bones increases and
does not suffer from overfitting.

Virtual bones with stitching. An interesting alternative to direct
control of vertex positions is to manipulate the triangle deforma-
tion gradients [Sumner and Popovi¢ 2004; Anguelov et al. 2005;
Wang et al. 2007; Weber et al. 2007]. Given the deformation gradi-
ents, vertex positions can be reconstructed by solving a linear least
squares problem (process sometimes called Poisson stitching). This
can be time consuming, but Wang et al. [2007] showed that the time
and memory complexity can be reduced by up to O(B2) (where
is the number of virtual bones) by precomputing the inverse of the
normal matrix. Skin deformation is then computed using a three-
pass GPU technique consisting of stitching (with the precomputed
matrix stored in a texture), linear skinning and normal computa-
tion steps. The advantage is that advanced effects such as muscle
bulging can be captured efficiently. On the other hand, our method
is simpler to implement and has a much smaller memory overhead.

Direct virtual bones. This class of methods employs virtual bones
to directly influence skin vertices [Weber 2000; Mohr and Gleicher
2003]. The deformation algorithm consists of computing the vir-
tual bone transformations followed by linear skinning. The first
pass has linear time and memory complexity with respect to the
number of virtual bones . In practice this overhead is negligi-
ble compared to linear skinning (as the number of virtual bones
is normally orders of magnitude smaller than the number of ver-
tices). Weber [2000] proposes to compute virtual bone transforma-
tions using user-defined B-splines. Mohr and Gleicher [2003] apply
one rotation-interpolating virtual bone per joint, computed using
Spherical Linear Interpolation [Shoemake 1985] and therefore lim-
ited to blending between two bones. Our proposed algorithm can
be seen as a generalization of Mohr and Gleicher’s approach, allow-
ing us to add an arbitrary number of virtual bones and blend them
using a general transformation blending technique. Moreover, our
algorithm automatically determines the optimal placement of vir-
tual bones for a training animation.

Skinning mesh animations. Several techniques to approximate
general mesh animations by skinning were discussed recently, such
as [James and Twigg 2005; Kavan et al. 2007], producing a (non-
hierarchical) sequence of virtual bone transformations. While these
methods are useful, e.g., for animation compression and local edit-
ing, they do not allow a new skeletal motion (such as a mo-cap clip)
to be applied easily because of the lack of a bone hierarchy. Subse-
quent work therefore proposed methods for automatic extraction of
hierarchical skeletons [Schaefer and Yuksel 2007; de Aguiar et al.
2008]. In this paper, however, we assume that a hierarchical skele-
ton is already given (either automatically extracted or authored by
an artist) and the goal is to improve on skin deformation. Our vir-
tual bones are not physically present in the skeletal hierarchy and
their transformations are computed by blending the original bone
transformations for a given posture (therefore, in the following we
will use the term blend bones). Note that embedding virtual bones
in the skeletal hierarchy would be undesirable as this would pro-
duce non-physiological skeletons, thereby complicating character
animation.

3 Problem Statement

As input, we assume we have a skeletally animated model, con-
sisting of a mesh with N vertices vy,...,vy (with fixed connec-
tivity) and a skeletal animation containing F frames. For ev-
ery frame f = 1,...,F we are given bone transformation matri-

(",

ces C) ,7Cl<3f), where B is the total number of original bones
in the input skeleton (which we will call master bones). For ev-
ery vertex v; we are given scalar weights w; 1,...,w; g describing
the amount of influence exerted on v; by every bone. We require
that the weights are convex, i.e., wi; >0, w1 +... +wip = 1.
Note that most applications assume that a maximum of 4 of the
vertex weights w; 1,...,w; g are non-zero (due to hardware consid-
erations and the observation that more than 4 influences are seldom
required). Our algorithm is also designed to meet this constraint,
which has important implications for the optimization routines (see
Section 4).

An arbitrary (both linear or nonlinear) blending technique can

be specified by matrix operator (I)(wi;Cgﬁ, . 7Cfgf)), where w; =
(Wi1,...,wip) is a vector containing the vertex weights. The de-

formed vertex positions for frame f are then computed as follows:
v = d)(wi;Cgﬁ,. .. ,Cl(;f))vi

A similar formula applies for vertex normals, just using the inverse
transpose of ®. The simplest blending operator is linear:

B
(I)LBS(WﬁCEf):Hw Z uc

corresponding to linear blend skinning. We are mostly interested
in nonlinear operators @ (such as ®pgpg defined in Formula (7)),
and we want to approximate them by a piece-wise linear operator
using f3 blend bones. In particular, the k-th blend bone is given by
weights ug = (i 1,. .., g), Which are assumed to be convex (just
like vertex weights).

In the output model, every vertex v; can be influenced both by
master and blend bones. The new weights of vertex v; will be
denoted as W§,1v~~~7W§,37W§,B+17W§,3+ﬁ- In order to avoid con-
fusion, we introduce the term u-weights for blend bone weights
(e.g., ug1,-..,urp) and w'-weights for vertex weights in the out-
put model (e.g., W§,17 s 7W§,BvW§,B+17W;,3+ﬁ)- The vertices of our
output model will therefore deform as follows:

Ny, + ZWLBHCCI)(uk Dy
k=

B
:ZZ

which is a linear blending model, because ® does not depend on w'-
weights. Linear skinning with blend bones will therefore firstly pre-
compute d>(uk;C£f) yenn ,Clgf)) for k=1,...,B and secondly evalu-
ate Formula (1) fori=1,...,N. This results in faster execution as 3
is typically orders of magnitude smaller than N (note that our algo-
rithm ensures that a maximum of 4 of the weights wj ;,...,w} o B
are non-zero). However, skinning according to Formula (1) intro-
duces a certain error, which can be quantified as:

F N
U= ¥ I v @)

f=li=1

where W is the set of vectors {w},...,wy} and U = {uy,...,ug}.

Our optimization procedure to find the values for W' and U that
minimize £(W’,U) is presented in Section 4.

Figure 3 shows an example featuring a very simple skinned model
consisting of two master bones (B = 2) and only one animation
frame (F = 1). Influences of master bones are visualized in gray,
while influences of blend bones are colored. In this frame, transfor-

mation Cil) is the identity, while Cél) is an 180 degrees twist along
the main axis. The original vertex weights of three chosen vertices
v1,V2,v3 are summarized in Table 2 (left). Linear blend skinning
leads to skin collapsing artifacts, which can be removed by apply-
ing dual quaternion skinning. Let us approximate this nonlinear
skinning using one blend bone (i.e., § = 1). Its optimal u-weights

are uj, 1 =0.5,u12 = 0.5, i.e., interpolating half-way between C(l)

and C (note that this is also the case considered by Mohr and
Glelcher [2003]). The optimal w’-weights are summarized in Ta-
ble 2 (right), with the influences of the blend bone in the rightmost
column (j = 3).

Rest Pose

;r
7
l///

W

LBS (1 blend bone) Dual Quaternion Skinning

Figure 3: Simple skinned model in the rest pose (top left) and after
twisting Bone 2 by 180 degrees (using several different methods).

Wi j j:1 j:2 W;,j j:l j:2 j:3
i=11 0.75 0.25 i=1 0.5 0 0.5
i=2 0.5 0.5 i=2 0 0 1
i=3 1] 025 0.75 i=3 0 0.5 0.5

Table 2: Original bone influence weights (left) and resulting ones
(after adding one blend bone, right).

Adding one blend bone improves the deformation quality to some
extent. When adding further blend bones, our linear approximation
converges to nonlinear skinning — see the results for § =2 and § =
4 in Figure 3.

4 Blend Bones Optimization
In this section we discuss how to solve the optimization problem
min E(W',U) 3)
subject to
B+f

le>0 uk1>0 Z’IWU—I ZMkl—l
J

where the error term E(W’,U) is defined as in Formula (2). This
is a constrained least squares problem with N - F' nonlinear equa-
tions (as the unknowns uj,...,ug are arguments of the nonlin-
ear ®). An additional constraint is that only 4 weights out of
W;,l s 7W2,37W§,3+17W§,3+ﬁ can be non-zero. We assume that the

original vertex weights w; 1,...,w; g already satisfy this constraint
(if not, it is possible to simply discard the smallest influences and
re-normalize so that w; | +...+w; g = 1).

Our optimization algorithm will add blend bones one by one, ter-
minating either when E(W’,U) drops below a given threshold or
when we exhaust our blend bones budget. For a new blend bone,
we first compute an initial estimate of its u-weights (Section 4.1)
and secondly, iteratively optimize over all w'- and u-weights (Sec-
tions 4.2 and 4.3). We apply coordinate descent, i.e., we first fix
the u-weights and compute the optimal w'-weights, then, we fix the
w -weights and optimize over the u-weights. Our optimization pro-
cedure is summarized in Algorithm 1, with details provided in the
subsequent sections.

Algorithm 1

Input: Rest pose vertices vy,...,Vy
Vertex weights w; ; (i=1,...,N, j=1,...,B)
Skeletal animation C\/ (b =1,....B, f=1,...,F)
Maximum number of blend bones B4y, threshold 7
Output: Blend bone positions u, (k=1,...,8, g=1,...,B)
New vertex weights wg’j (i=1,...,N, j=1,...,B+pB)

B=0;W =W;U=0;
while 8 < B4 and E(W',U) > 7 do
B=B+1;
ug = initialize new blend bone (Section 4.1)
repeat
W'’ = optimize w’-weights (Section 4.2)
U = optimize u-weights (Section 4.3)
until convergence
end while

4.1 Initialization of New Blend Bone

Initialization of the u-weights of a new blend bone consists of two
sub-problems: first, it is necessary to decide which components out
of ug 1, ..., ux g will be non-zero (i.e., which master bones will drive
the new blend bone) and next, initial values of these non-zero com-
ponents must be chosen.

Intuitively, it is not necessary to consider all possible combinations
of master bones (for example, the forearm bone does not need to
blend with the thigh bone). Therefore, we first create a list of po-
tential candidates, i.e., list L of bone sets overlapping in the original
model (a set of bones Z is overlapping if there exists vertex v; such
that w; ;, > 0 for every b € %). Every element in this list consists
of at most 4 bones. In a typical character model, this list will con-
sist of bone sets such as {upper arm, clavicle, spine}, {upper arm,
forearm}.

For every bone set 2 = {by,...,by,} from list L, we choose several
samples of the vector (ugp,,...,uyp,), for each of which, we exe-
cute w'-weights optimization over all vertices (Section 4.2). Subse-
quently, we compute the error term E(W’,U), which tells us how
much this u-weights sample decreases the overall error (obviously,
this is a conservative estimate, as the error would decrease further
by iterative optimization). We repeat this process for every % € L
and select the u-weights that lead to the maximal reduction of the er-
ror term. We experimented with several strategies for sampling the
values of (ugp, ,...,Uxp,), namely random, uniform and stratified,

concluding that uniform sampling with just 3 samples per degree of
freedom is sufficient.

This strategy results in placing blend bones in those parts of the
model that exhibit the most severe volume collapsing artifacts. Ac-
cording to our experience, while the choice of initial values of
(Ukp,,- .-, ugp,) is not critical, a suitable starting point can speed
up convergence of the subsequent optimization.

4.2 Optimization of w'-weights

During the w/-weights optimization process we assume that the
u-weights are fixed. Therefore, the minimization problem (3) be-
comes a linear least squares problem. The weights W;,l yee 7w§’ BB
can be determined independently for every vertex v;. Therefore, for
every i =1,...,N, we have one optimization problem of the form:

min ||A;w} —bj||? @)

subject to
B+
/ /
Wi,j ZO, 2 Wi,j =1
Jj=1

This optimization problem can be solved by off the shelf quadratic
programming routines. However, a simpler method is to employ
a Non-Negative Least Squares solver (NNLS) [Lawson and Han-
son 1974], which is easier to implement than full quadratic pro-
gramming (featuring arbitrary linear constraints). This approach,
advocated by James and Twigg [2005], has the additional benefit
of generating sparse solution vectors (i.e., where most of the com-
ponents are exactly zero), which helps us to satisfy the additional

constraint of at most 4 non-zero weights per vertex. A drawback is

that the equality constraint Zfilﬁ w i= 1 has to be treated as a soft

constraint, i.e., by optimizing the extended system

(1C./.4.i1)Wg:(C?i) ®)

where ¢ = 1/]|b;|| is a scaling coefficient.

In the case where NNLS returns more than 4 non-zero weights,
we discard the smallest ones and re-optimize with respect to the
4 remaining bones only. Finally, we re-normalize the remaining
weights so that their sum is exactly (and not only approximately)
one.

The solver can be improved by considering only those of the B+ 3
master and blend bones that can be expected to influence v;. In par-
ticular, we take into account only the master bones that influenced

vertex v; in the original model, i.e., bones by,...,b, € {1,...,B}
such that w; . > 0. Regarding blend bones, we consider only those
driven by at least one of the master bones by,...,b, (i.e., Up; > 0

for at least one j € {1,...,n}).

4.3 Optimization of u-weights

The optimization of u-weights is a bit more involved, because the
minimization problem (3) is nonlinear in u (and the w’-weights
are assumed to be fixed). A common approach to tackle this kind
of problem is to employ local linearization and iterate towards a
local minimum [Pighin and Lewis 2007]. It is advantageous to
have a reasonable starting point; in our case, we use the vectors
uy,...,ug_; (computed in the previous iteration of the while loop
in Algorithm 1) and ug (given by the initialization step, see Sec-
tion 4.1). Our goal is to compute U = {iiy, ... ,lig} so that E(W' 0)
is as small as possible.

Bone 2 Bone 1

(@ (b)

(©) (@

Figure 4: Tllustration of one iteration of the w'-weights solver followed by an iteration of the u-weights solver.

Note that we will be optimizing over multiple u-weights simulta-
neously, thereby allowing the solver to reposition also previously
placed blend bones (and not just the current one). However, to sim-
plify the process, we will only be modifying the non-zero compo-
nents of every ug, k=1,..., 8 (henceforth we will drop index k in
order to simplify notation). In particular, if the master bones have
indices % = {by,...,b,} then ii; = O for all j ¢ %8. This means
that we do not allow our optimization routines to reassign the mas-
ter bones, i.e., we trust the initial choice of the driving bones (see
Section 4.1).

The components of i1 are subject to convexity constraints, i.e., ﬁb, >
O and iy, + ...+, = 1. We can use the latter constraint to express
iip, and substitute this into ®. Thereby, we obtain an expression of
@ in terms of independent variables alone:

@ (xz,,l,...,zz,,H,ﬁh,x);céf‘),...,clgnf)) _
D (ﬁbm"wﬁbn,lul_ﬂb]_~~~_ﬂbn,l);clgr)wuvcéﬁ)

n

Let us consider the first order Taylor expansion of this function at
u= (up,,...,up, ,). Assuming that il is in a small neighborhood of
u, we can write:

n—1

o(i;¢V)) ~ d(w; e + > (i, — Mb,)(;%q’(“§(5<f)) (6)
= i

where €\) is a shorthand for the list of transformations
[C,g{), o ,Chf . Note that the partial derivatives of ® correspond-

ing to dual quaternion skinning (and its variants) can be expressed
in a closed form (see Appendix A).

By substituting Formula (6) into Formula (2) for every blend bone,
we obtain a linear least squares problem whose solution yields U =
{ﬁ17...7ﬁﬁ} closer to a local minimum. To find the solution, we
apply the same procedure as in Section 4.2. However, we actually
keep the redundant variables 7, among the unknowns, along with
the constraints i, + ...+, = 1. This ensures that lip; = 0 for all
j=1,...,n. The linear system will be augmented by B equality
constraints (one for each blend bone) and not just one as in the case
of Formula (5).

The whole process would normally iterate until convergence. How-
ever, we found that it is sufficient to execute only one iteration and
then hand over to the w’-weights solver (see the repeat-until loop in
Algorithm 1). This intuitively makes sense, as there is no point in
perfecting u-weights while fixing imperfect w’-weights.

A similar speed-up mechanism to that described in Section 4.2 is
possible even in the case of u-weights optimization. In particular,
not all of the previous blend bones uy,...,u B-1 have to be updated,
but only those sharing a common region with ug. Therefore, in the
optimization, we will only consider such u; for which j exists so

that both u; j > 0 and ug ; > 0, i.e., u; shares at least one master
bone with the most recently added blend bone ug.

Figure 4(a) presents an example with our simple model from Fig-
ure 3, with u-weights of the (only) blend bone u; set to sub-optimal
values uj 1 = 0.66 and u; = 0.34. Our w’-weights solver finds

such w'-weights so that the vertices v;(l) (given by our linear ap-

proximation) are as close as possible to Vl(-l> (given by the nonlinear
@), see Figure 4(b). Next, the u-weights solver establishes the local
linear approximation of @ at u; and uses it to reduce the residu-
als further, see Figure 4(c). The new u-weights @; are closer to
the optimal solution (0.5,0.5), see Figure 4(d). After several iter-
ations, both the w’- and u-weights converge to the values stated in
Section 3.

4.4 Local Refitting

In Sections 4.2 and 4.3 we discussed how to speed up our solver by
considering only a subset of all bones. Similarly, it is possible to
also restrict the set of active vertices, based on the observation that
every blend bone typically influences only a small part of the mesh.
Intuitively, only the vertices in proximity to the most recently added
blend bone need to be taken into account (e.g., when correcting ar-
tifacts in the shoulder joint it is not necessary to consider vertices
in the legs). To formalize this principle, we define the set of poten-
tially influenced vertices for every bone set %:

V(#)={vi:ie{l,...,N} and 3b € Z such that w;, >0}

i.e., all the vertices influenced by at least one of the master bones
in . This results in a conservative but still reasonably small set
of influenced vertices. Note that V(%) can be precomputed for all
active bone sets .4 in our input model. All steps of our solver (as
described in Sections 4.1, 4.2 and 4.3) will then work only with the
potentially influenced vertices, thereby avoiding optimization over
unrelated regions.

5 Results

To compare fitting accuracy among different models, we employ
the Enveloping Error (EE) metric introduced in [Wang et al. 2007].
This normalizes the total error £(W’,U) from Formula (2) using
the optimal articulated rigid body prediction:

SE s v v

EE =100
SE 3N v v

where r; is the master bone that most accurately predicts vgf) over

all frames (typically, r; is the bone with the highest weight, i.e.,
ri = argmax ; wj j). The enveloping error therefore measures only
local deformations (and not the global rigid motion of individual
body parts).

Input data Pre-processing Run-time performance

Model Vertices Bones Infl. Frames Blend bones EE Time Infl’ LBS DQS DQS’ SDQS SDQS’ DIB DIB’

Melissa 3036 66 1.32 12 10 3.34 10.5s 1.42 0.38ms 1ms 0.41ms 1.28ms 0.42ms 5.7ms 0.45ms
Soldier 8245 27 1.2 12 10 2.98 15.9s 1.33 0.97ms 2.46ms 1.03ms 3ms 1.03ms 14.9ms 1.08ms
Masha 7992 56 1.84 12 13 3.7 20.5s 1.89 1.23ms 3.14ms 1.3ms 4.1ms 1.3ms 18.8ms 1.36ms
Kevin 1938 65 1.95 12 10 3.31 6.1s 2.03 0.32ms 0.76ms 0.34ms 0.99ms 0.34ms 4.82ms 0.39ms
Eric 7927 75 1.56 12 15 4.66 40s 1.84 1.1ms 2.9ms 1.26ms 3.8ms 1.27ms 16.9ms 1.31ms
Box 5166 2 1.3 4 4 3.6 4.1s 1.3 0.64ms 1.85ms 0.65ms 2.39ms 0.65ms 9.34ms 0.66ms
Tube 1380 4 3.86 6 12 4.6 21.9s 3.34 0.37ms 0.64ms 0.35ms 0.93ms 0.35ms 3.77ms 0.37ms

Table 3: Experimental results for various 3D models. Infl. denotes the average number of influencing bones per vertex in the input model,
Infl. is the same in the output model (computed by Algorithm 1). LBS stands for Linear Blend Skinning, DQS is Dual Quaternion Skinning,
SDQS is Scale supporting Dual Quaternion Skinning and DIB is Dual quaternion Iterative Blending. DQS’, SDQS’ and DIB’ stand for our

linear approximations of the said nonlinear methods.

We tested our blend bones optimization (Algorithm 1) on several
human characters (see Figure 5) and two synthetic examples (the
box from Section 3 and the tube shown in Figure 6). The tube
model has vertices that are almost all influenced by all four master
bones and was so designed to test the robustness of our method.
Table 3 summarizes our results. The run-time performance is that
of a CPU implementation running on a 2.4GHz Intel Core 2 (single
thread). We only measured the time for actual skin deformation,
and not the rendering time (which is the same for every skinning
method). Note that the running time of our linear approximation is
only a few percent slower than that of linear blending, where the
overhead consists of evaluating the blend bone transformations and
the usual slightly increased average number of vertex influences. In
the case of the tube model, we obtained even slightly faster runtime
performance than original linear blending (in this case our blend
bones reduced the average number of vertex influences).

0
Y. ¥
ThE

Figure 5: Some of our test models (Melissa, Soldier, Masha, Box).
The jeans worn by the female models constitute a separate mesh

(not considered by our algorithm).

Figure 6: Model of a highly elastic tube controlled by four master
bones (left). Note that blend bones control almost the entire mesh
(right).

Figure 7 presents a comparison of our technique with that of Mohr
and Gleicher [2003] (without scaling bones). Their method im-
proves considerably upon linear blending, but it does not support

blending between non-neighboring bones. Our blend bones do
not have this restriction and can therefore achieve higher accuracy.
Note that the system presented by Wang et al. [2007] also solves
this problem, but using a more complex algorithm with a higher
memory footprint.

| ' | l C‘d)‘
EE=61.5% EE=245% EE=4.6% EE = 0%
Figure 7: Simultaneous bending and twisting of an elastic tube,
deformed by linear blending (a), Mohr and Gleicher [2003] (b), our

technique (c) and dual quaternion blending (d). Note that the latter
two are practically indistinguishable.

The training animation for all characters was identical and consisted
of a motion captured exercise sequence, downsampled to F = 12
frames (designed to exercise critical regions such as shoulders). To
test the generalizability of the linear approximation computed by
Algorithm 1, we measured the enveloping error also on 1) all 385
frames of the input sequence and 2) an unseen mo-cap clip (jumping
jacks, 61 frames). The results are reported in Table 4 (all charac-
ters use the same animation that is automatically retargeted to their
skeletons). The measured enveloping errors confirm that overfitting
is not an issue with our method.

Model EE input | EE input full | EE unseen
Melissa 3.34 3.6 5.04
Soldier 2.98 3 4.78
Masha 3.7 3.95 8.42
Kevin 331 3.58 5.4
Eric 4.66 5.12 6.14

Table 4: Generalizability test of our linear approximation — en-
veloping error measured on three animations (original input, full-
frames input and an unseen one).

To obtain an insight into how quickly the error decreases with in-
creasing numbers of blend bones, we plot its graph for three of our
models, see Figure 8. We can see that the tube model is indeed
the most challenging one (because of its large overlapping influ-
ences), and the box is the simplest one (i.e., its error decreases most
quickly). The character model (Melissa) is in between the two,
featuring a large drop after adding the first two blend bones (corre-
sponding to left and right shoulder regions).

Our linear approximation makes it feasible to consider more com-

70

601 ¢ — <+ — Tube
{ —e— Melissa
50 \‘ --m-- Box
)

Figure 8: Enveloping error (vertical axis) vs. number of blend
bones (horizontal axis).

plex nonlinear operators, such as Dual quaternion Iterative Blend-
ing (DIB) [Kavan et al. 2008], for use in real-time applications. The
DIB operator produces correct intrinsic averages and is therefore
more accurate than standard dual quaternion skinning (DQS) (com-
puting only approximate averages). While the difference between
DIB and DQS is normally quite small, for rotation angles approach-
ing 360 degrees DQS produces serious artifacts, see Figure 9 (and
note that automatic antipodality resolution has to be switched off
in order to allow angles higher than 180 degrees). DIB guarantees
a correct solution, but at a substantial run-time cost (with the box
model, DIB is more than 5 times slower than DQS). Using our lin-
ear approximation, we can achieve comparable skin deformation
quality in a time almost equivalent to that of linear blending, see
Figure 9.

0.64ms 1.84ms 9.34ms

LBS DQS DIB

Figure 9: Bending box rotated by nearly 360 degrees. Our method
provides an efficient linear approximation of the correct solution
(DIB).

0.66ms

Our method

6 Conclusions and Future Work

This paper proposes a method to automatically generate piece-wise
linear approximations of nonlinear skinning operators. Based on
an input 3D model and its training animation, our technique auto-
matically identifies the most critical regions of the mesh and places
virtual bones (samples of the nonlinear skinning operator) accord-
ingly. The resulting skinned model can be deformed by off the shelf
linear blending routines, with results almost indistinguishable from
nonlinear skinning. This approach also enables us to directly apply
algorithms that assume linear vertex blending, such as corrective
enveloping [Lewis et al. 2000; Sloan et al. 2001; Kry et al. 2002],

collision detection [Kavan and Zéra 2005] or accurate normal trans-
formation [Merry et al. 2006b].

We believe our algorithm fits naturally into existing character pro-
duction pipelines, such as those employed in the games industry.
Artists design character rigs in their favourite digital content cre-
ation software, taking advantage of nonlinear transformation blend-
ing operators. Part of this process is testing the rig on a training
animation, which can be advantageously used as an input to our
algorithm. We envisage that our algorithm could be implemented
as part of an export tool, converting the model to linear skinning
before it is loaded by the 3D engine.

Our method also makes it possible to employ more sophisticated
nonlinear operators, such as Dual quaternion Iterative Blending,
which would otherwise be too slow for real-time applications. An
interesting line of future work is to explore other nonlinear skin
deformation operators, such as those based on user-defined curves
[Forstmann et al. 2007; Gregory and Weston 2008]. Taking this
one step further, it should be possible to explore a whole family of
nonlinear skinning operators (generalizing both dual quaternions as
well as curve-based deformations), exploiting the fact that complex
operators can be approximated efficiently using our method.

7 Acknowledgements

We wish to thank Martin Prazdk and Rachel McDonnell for as-
sistance with motion capture and Daniel Sykora, Simon Dobbyn,
Cormac O’Brien and the anonymous reviewers for their valuable
comments. This work has been supported by the Higher Education
Authority of Ireland and Science Foundation Ireland.

A Derivatives of Dual Quaternion Blending

In this appendix we describe how to compute the partial deriva-
tives required by Formula (6) in the case where operator @ is dual
quaternion blending (or its variants). Recall that the arguments of
@ are blending weights (with the last weight removed as discussed
in Section 4.3) and the result is a 3 x 4 matrix. We will assume that
the input transformations are rigid and were already converted to
dual quaternions 2 = [qy, ... ,{y|. Therefore, the ® corresponding
to dual quaternion blending can be expressed as follows:

Y(xy,...,x0-1;2) >
7
e, 2y 7

where M is the operator that converts a dual quaternion to a matrix
[Kavan et al. 2008] and ¥ denotes linear blending of dual quater-
nions, i.e.,

n—1 n—1
W(xn,..x-1:2) = Y xifi+ (1 - 2%’) Gn
i=1

Dpos(X1,.. - Xq—1:2) =M <

i=1
Because of the properties of dual quaternion to matrix conversion,
we can simplify Formula (7) to:
M(¥(xy,.. x0-132))
[Wo(x1,- - xn-1:2)[1?

where W denotes the non-dual part of . This form simplifies
computation of the partial derivatives:
IM(P)

I®pgs _ I(|[¥olI~?) 2
= M(¥Y Yol ——+
. S M) o2 T
where we omitted function arguments for better readability. The
first term can be written as:

A (O,m) 2

T TR \" 3y) T g o)

Dpos (X1, Xn—1:2) =

where - denotes the standard dot product in 4-dimensional Eu-
clidean space. Using the chain rule, the second term expands to:

oM(Y) & om 9y,
ax,- _j:l a"PSj 8x,~

where \PS;' denotes dual quaternion elements (i.e., ¥ =¥, + ¥y, i+
Wy, j+ W, k+ Wy e+ Wy i+ Wy, €+ Wy, €k). Note that 0¥ /dx; =
q; — q, and the partial derivatives of operator M can also be com-
puted easily.

In situations where non-rigid bone transformations are required, we
need to employ two-phase skinning, i.e., linear blending followed
by dual quaternion blending [Kavan et al. 2008]. The ® correspond-
ing to two-phase skinning has the form:

DPspos = PposPras
and therefore its partial derivatives are given as:

0P ps
ox;

9®spos _ IPpos

() (O]
ox; ox; s + Ppos

Dual quaternion Iterative Blending [Kavan et al. 2008] has no
closed-form formula and therefore its partial derivatives would be
hard to compute explicitly. It is possible to either employ ap-
proximation using finite difference, or (as we did) to simply use
the training with ®p;p, relying on the extrapolation capability of
blend bones and the fact that, for rotations below 180 degrees,
®prp =~ Ppyp.

References

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,
RODGERS, J., AND DAVIS, J. 2005. SCAPE: shape completion
and animation of people. ACM Trans. Graph. 24, 3, 408-416.

DE AGUIAR, E., THEOBALT, C., THRUN, S., AND SEIDEL, H.-P.
2008. Automatic conversion of mesh animations into skeleton-

based animations. Computer Graphics Forum (Proc. Eurograph-
ics EG’08) 27,2 (4), 389-397.

FORSTMANN, S., OHYA, J., KROHN-GRIMBERGHE, A., AND
McDoUGALL, R. 2007. Deformation styles for spline-based
skeletal animation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, Aire-la-Ville, Switzerland, 141-150.

GREGORY, A., AND WESTON, D. 2008. Offset curve deformation
from skeletal animation. In SIGGRAPH ’08: ACM SIGGRAPH
2008 talks, ACM, New York, NY, USA.

HEJL, J., 2004. Hardware skinning with quaternions. Game Pro-
gramming Gems 4, Charles River Media, 487—495.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3, 399-407.

KAVAN, L., AND ZARA, J. 2005. Fast collision detection for
skeletally deformable models. Computer Graphics Forum 24, 3,
363-372.

KAVAN, L., MCDONNELL, R., DOBBYN, S., ZARA, J., AND
O’SULLIVAN, C. 2007. Skinning arbitrary deformations. In
Proceedings of the 2007 symposium on Interactive 3D graphics
and games, ACM Press, 53-60.

KAVAN, L., COLLINS, S., ZARA, J., AND O’ SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27, 4, 105.

KRy, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin:
real time large deformation character skinning in hardware. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM Press, 153-159.

LAWSON, C. L., AND HANSON, R. J. 1974. Solving Least Squares
Problems. Prentice Hall, Englewood Cliffs, NJ.

LEwis, J. P.,, CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 165-172.

MAGNENAT-THALMANN, N., LAPERRIERE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proceedings on Graphics in-
terface '88, Canadian Information Processing Society, 26-33.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400-1423.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Normal trans-
formations for articulated models. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 sketches, ACM, New York, NY, USA, 134.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3, 562—
568.

PIGHIN, F., AND LEWIS, J. P. 2007. Practical least-squares for
computer graphics. In SIGGRAPH '07: ACM SIGGRAPH 2007
courses, ACM, New York, NY, USA, 1-57.

SCHAEFER, S., AND YUKSEL, C. 2007. Example-based skeleton
extraction. In SGP ’07: Proceedings of the fifth Eurographics
symposium on Geometry processing, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 153—-162.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, ACM Press, 245-254.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM Press, 135-143.

SUMNER, R. W., AND PoPoVIC¢, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3, 399—405.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM Press, 129-138.

WANG, R. Y., PULLI, K., AND PoPoOVIC, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3,
73.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. Computer
Graphics Forum (Proceedings of Eurographics) 26, 3.

WEBER, J. 2000. Run-time skin deformation. In Proceedings of
Game Developers Conference.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve
skeleton skinning for human and creature characters: Research
articles. Comput. Animat. Virtual Worlds 17, 3-4, 281-292.

