
Efficient Collision Detection for Spherical Blend Skinning

Ladislav Kavan∗
CTU in Prague / Trinity College Dublin

Carol O’Sullivan
Trinity College Dublin

Jiřı́ Žára
CTU in Prague

(a) (b) (c) (d)

Figure 1: (a) shoulder twist deformed by linear blend skinning produces the candy-wrapper artifact, (b) bounding spheres for linear blend
skinning refitted by [Kavan and Zara 2005a], (c) the same posture deformed by spherical blend skinning [Kavan and Zara 2005b], (d)
bounding spheres for spherical blend skinning refitted using the algorithm introduced in this paper. Efficient refitting of bounding spheres is
a crucial component of our fast collision detection algorithm.

Abstract

Recently, two algorithms improving the real-time simulation of ar-
ticulated models in virtual environments have been published: 1)
fast collision detection for linear blend skinning and 2) spherical
blend skinning. Both linear and spherical blending solve the skin-
ning problem of a skeletally controlled 3D model (e.g., an avatar),
but only spherical blending avoids artifacts such as the candy-
wrapper. However, to date, fast collision detection has been limited
to linear blending. This paper describes how to perform collision
detection for models skinned with the more sophisticated spherical
method. As a result, both high-quality skinning and fast and exact
collision detection can be achieved – there is no longer any need
for a trade-off. The generalization from linear to spherical blending
involves the construction of rotation bounds, derived using a quater-
nion representation. The resulting algorithm is simple to implement
and fast enough for real-time virtual reality applications.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: collision detection, on-demand refitting, sphere refit-
ting, SBS, spherical blending

1 Introduction

Collision detection (CD) is a challenging problem, mainly because
of its high computational complexity for typical models. Collision
queries are necessary in order to resolve interactions between a vir-
tual character and its environment, as well as among several virtual
characters themselves. Since a fast response time is essential for
real-time virtual reality applications, most current systems perform

∗e-mail: kavanl1@fel.cvut.cz

CD only with a considerably simplified geometry (e.g., a charac-
ter replaced by an articulated structure of boxes). This, of course,
provides only a rough estimate of actual collisions, making some
artifacts visible (such as interpenetration or bouncing before con-
tact). In many situations a precise (mesh-exact) CD is much more
desirable, and in certain cases is unavoidable, e.g., in medical ap-
plications or virtual prototyping.

Recently, a CD algorithm has been developed, which offers exact
and fast CD for 3D models deformed by linear blend skinning [Ka-
van and Zara 2005a]. Unfortunately, linear blend skinning (also
known as skeleton subspace deformation, vertex blending or en-
veloping) is infamous for its failures, such as the candy-wrapper
(shoulder-twist) artifact, see Figure 1(a). This problem can be
solved by spherical blend skinning [Kavan and Zara 2005b]: an al-
gorithm not only useful for deforming virtual creatures and avatars,
but also for cloth and other objects. Spherical blending works by
blending rotations (represented by quaternions) instead of blending
vertex positions as in linear blend skinning. The result of spherical
blending applied to the same data can be seen in Figure 1(c).

In a practical application, however, we need both high-quality skin-
ning and fast CD simultaneously. Unfortunately, the previous CD
algorithm for skeletally deformable objects substantially exploits
the linearity of linear blending. Specifically, it relies on the fact that
linear blending interpolates always within the convex hull of the in-
put vertices. Since this condition is not true in spherical blending,
it is not possible to use the previous collision detection algorithm –
bounding spheres constructed by the previous algorithm no longer
enclose the skin. This is because spherical blending does not col-
lapse the skin during deformation, as does linear blending.

In this paper we show that, using bounds on the unit quaternion
sphere, it is possible to achieve fast CD also for spherical blend-
ing. Although it is of course a little more difficult than in the linear
case, the resulting algorithm is almost as easy to implement and the
computational complexity of the presented algorithm is almost the
same as that of the linear version.

The proposed CD algorithm is based on a bounding-volume hierar-
chy (BVH). This concept has been proven to be very efficient for
both rigid and deformable objects, even though it has its limitations,
e.g., efficient self-collision detection requires additional treatment
[Volino and Magnenat Thalmann 1995]. Concerning deformable
objects, it is essential to find a way to refit the bounding volumes

when the object deforms. It has been shown recently [Larsson and
Akenine-Moller 2003; James and Pai 2004; Kavan and Zara 2005a]
that one of the most efficient approaches is on-demand (lazy) re-
fitting, which refits the spheres only when they are required by the
CD algorithm. Actually, the main difference between the above-
mentioned methods is in the refitting operation. The reason is that
the refitting operation must exploit the properties of the specific de-
formation model, so that it can work efficiently.

The main contribution of this paper is a procedure for refitting of
bounding spheres for spherical blend skinning with sublinear time
complexity (with respect to the number of vertices). This refitting
operation is actually an extension of the previous refitting for linear
blending, because spherical blending decomposes to a linear and
rotational component. However, the resulting algorithm is almost
as fast as in the case of linear blending, and thus provides a way of
exact and efficient CD for 3D models deformed by spherical blend-
ing.

2 Related Work

For a survey of CD methods, see [Ericson 2004; Jiménez et al.
2001]. Teschner et al. present a survey specialized on deformable
CD [2004]. In this paper, we focus on CD algorithms based
on a BVH. Common bounding volumes are: spheres [Quinlan
1994; Guibas et al. 2002], AABBs [van den Bergen 1997], k-
DOPs [Klosowski et al. 1998], and OBBs [Gottschalk et al. 1996].
Other interesting BVH are QuOSPO-trees [He 1999], BoxTrees
[Zachmann 2002] and sphere-swept BVHs [Larsen et al. 1999].

A restriction of most CD algorithms (including ours) is that they
consider collisions only at discrete time intervals. It means that
some collisions may be missed, especially for small, fast moving
objects. This shortcoming has been addressed by proposing so-
called continuous CD algorithms. Based on a simplified motion
model, they find a first time of contact for a given period of time
[Redon et al. 2002]. Continuous CD algorithms have been proposed
also for articulated models [Redon et al. 2004], but only articulated
objects composed of rigid parts were considered (such as robots).

In this paper, we focus on spherical blend skinning and exact CD
algorithms based on a BVH, specifically hierarchies of bounding
spheres. Spheres were first used for rigid body CD in [Quinlan
1994]. The extension of BVH-based CD for deformable objects
was presented first for AABBs by van den Bergen [1997] and later
improved by Larsson and Akenine-Moller [2001]. The basic idea
of those algorithms is to refit all the bounding volumes during a
bottom-up traversal of the tree. A similar algorithm for spheres is
presented in [Brown et al. 2001]. Bottom-up refitting is consid-
erably faster than rebuilding the complete BVH, but it obviously
wastes time, because not all bounding volumes are necessary for
subsequent CD query.

Much more efficient is an on-demand refitting, which recom-
putes bounding volumes only when required by the CD algorithm.
This was first applied for k-DOPs and linear morphing by Lars-
son and Akenine-Moller [2003] and improved later by Klug and
Alexa [2004]. The on-demand refitting procedure must be very fast
to evaluate – it cannot work by considering the actual vertex dis-
placements (which would be slower than the bottom-up refitting).
The refitting should work in time sublinear with respect to the num-
ber of vertices, which can only be done by exploiting the properties
of the actual deformation model. This is also the main drawback
of this approach: it does not work for general deformations – each
deformation model needs a special refitting procedure. Such refit-
ting of spheres is presented in [James and Pai 2004] for reduced

deformation model and in [Kavan and Zara 2005a] for linear blend
skinning. Another collision detection method specialized for skele-
tally deformable 3D models can be found in [Heim et al. 2004], but
their refitting procedure is limited only to a single layer of bounding
volumes (no hierarchy), which is restrictive especially for detailed
3D models.

Even though specialized refitting operations ensure very efficient
CD, alternative CD algorithms have also been proposed for de-
formable models, which are not based on a BVH. Instead, they
make use of spatial hashing [Teschner et al. 2003], image-space
techniques [Heidelberger et al. 2004; Govindaraju et al. 2003], or
chromatic decomposition [Govindaraju et al. 2005]. The big advan-
tage of these methods is their generality, i.e., they do not depend on
any specific deformation model. Sometimes this is necessary, for
example when the deformations are computed during a complex
run-time simulation. On the other hand, making no assumptions
about the deformation model restricts the time complexity to be at
least linear, i.e., disables sublinear time complexity. The reason is
obvious: if we allow arbitrary deformations, we must check the dis-
placements of all vertices at runtime. This is especially painful if
the deformations are computed on another processor. Therefore, we
find it advantageous to apply on-demand refitting whenever possi-
ble, not only because of the sublinear execution time, but also be-
cause it allows CD to be executed in parallel with the computation
of vertex displacements (typically done on a GPU).

As an alternative to spherical blending, it would be possible to con-
sider a different skinning method which does not produce artifacts.
For example, [Mohr and Gleicher 2003] reduce the artifacts of lin-
ear blending by adding auxiliary joints and recomputing the vertex
weights using examples. Even though in this case we could ap-
ply the CD solution for linear blending [Kavan and Zara 2005a],
there would be associated drawbacks. First, the runtime complex-
ity of Kavan and Zara’s algorithm depends on the number of joints,
thus addition of auxiliary joints increases the time complexity. In
fact, the more joints we add, the better approximation of spherical
blending we obtain. Second, Mohr and Gleicher’s approach [2003]
requires example skins, whose production can be costly. Spherical
blend skinning, on the other hand, uses the same input data as linear
blending – no extra work is necessary.

A skinning similar to spherical blending is described by [Hejl
2004]. This is actually a simpler algorithm which works correctly
only if vertices are influenced solely by neighbouring bones, i.e.,
bones that share a common joint, an assumption that is only valid
for some 3D models. The collision detection method described in
this paper can be directly applied for Hejl’s skinning (no modifica-
tions are necessary as spherical blending is more general).

Other advanced skinning techniques have been proposed recently,
allowing realistic simulation of muscle bulges and other effects.
Even though delivering high-quality skin deformations, they are
usually much more complicated (and slower) than linear or spheri-
cal blend skinning. The existence of efficient sphere refitting oper-
ation for such deformation models is therefore questionable.

Our Contribution: In this paper, we present a novel CD algorithm
especially designed for spherical blend skinning. At its core is an
efficient sphere refitting operation, similar in spirit to Kavan and
Zara’s [2005a]. However, since spherical blending works with ro-
tations, the generalization from this previous linear algorithm is not
trivial. This is achieved by the construction of bounds on the unit
quaternion sphere. Despite the fact that the derivation and justi-
fication of the sphere refitting is not straightforward, the resulting
algorithm is simple to implement and fast to execute. We demon-
strate this on several practical examples of character animation.

Conventions: We denote the d-dimensional Euclidean space as Rd

and we write its elements (vectors) in bold. The zero vector is de-
noted as 0. The vector v ∈ Rd consists of components (v1, ...,vd)T .
In order to simplify notation, we introduce the set of all possible
convex weights:

Wd = {x ∈ Rd : x1 ≥ 0, . . . ,xd ≥ 0,
d

∑
i=1

xi = 1}

The convex hull of set A ⊆ Rd , i.e., the smallest convex set con-
taining A, is denoted as CH(A). We denote the dot product of two
vectors v1 ∈ Rd ,v2 ∈ Rd as (v1,v2) and the norm ‖v1‖ as a shortcut
for
√

(v1,v1). The 3-dimensional sphere surface of unit quater-
nions is denoted as S3 = {x ∈ R4 : ‖x‖ = 1} (note that we identify
quaternions with R4 vectors).

3 Skinning and Collision Detection

This section recapitulates the spherical blend skinning algorithm
and the basics of collision detection based on a BVH, as described
in [Kavan and Zara 2005b; Kavan and Zara 2005a]. The input of
both linear and spherical blend skinning consists of a skin, a skele-
ton, and vertex weights for each vertex-joint pair. The skin is just a
3D triangular mesh and the skeleton is a rooted tree. The nodes of
this tree represent joints and the edges can be interpreted as bones.
The vertex weights describe the amount of influence of individual
joints on the position of the vertex in the deformed skin. Note that
the input for linear blend skinning is the same, i.e., identical input
files are used for both linear and spherical skinning.

Let us assume that the joints are stored in an array, with every joint
referenced by an integer number, starting from zero. In the refer-
ence posture, each joint has an associated local coordinate system.
During animation, the joints rotate – we do not consider translation
or scale. The transformation from the reference coordinate system
of joint j to its coordinate system in the animated posture can be
expressed as a rigid transformation matrix. We can compute this
matrix as a multiplication of successive joint transformations. We
denote this matrix as Cj (like the “complete” transformation ma-
trix).

We assume that vertex v is attached to joints j1, . . . , jn with weights
w = (w1, . . . ,wn) (The indices j1, . . . , jn are integers referring to
joints that influence a given vertex – they can be interpreted as in-
dices into the array of joints.) In order to have properly defined
blending, the weights must be convex: w ∈ Wn. The set of joints
{ j1, . . . , jn} is called the joint-set influencing the vertex v and is de-
noted as J(v). The i-th component of vector w, wi, represents the
amount of influence of joint ji.

Let us denote the unit quaternions corresponding to the rotation
parts of matrices Cj1 , . . . ,Cjn as q1, . . . ,qn (the conversion proce-
dure can be found in [Eberly 2001]). During skin deformation,
quaternions are blended using the QLERP method (Quaternion Lin-
ear Interpolation), computing w1q1+...+wnqn

‖w1q1+...+wnqn‖ and converting the re-
sult to a rotation matrix Qw. The vertex position in the deformed
mesh is then computed as:

v′ = Qw(v−rc)+
n

∑
i=1

wiCji rc (1)

where rc is the rotation center, defined as the point whose trans-
formations by matrices Cj1 , . . . ,Cjn are as close as possible. For the
purpose of on-demand refitting, it is sufficient to take the rc as com-
puted by spherical blending; for details please see [Kavan and Zara
2005b].

The interpretation of the spherical blending Equation (1) is as fol-
lows: we call the first term Qw(v− rc) the spherical part and the
second one ∑n

i=1 wiCji rc the linear part. The linear part is actu-
ally nothing but a linear blending applied to the rotation center rc.
This part becomes important if the set of influencing bones is not
simple, i.e., if it contains more than two non-neighbouring joints.
In this case the translation between the joints must be interpolated,
which is exactly the role of the linear part of Equation (1). The
spherical part, on the other hand, interpolates rotation of the in-
fluencing joints. The linear quaternion blending (QLERP) used to
produce Qw is the reason why spherical blend skinning does not ex-
hibit artifacts (which would appear if we blended matrices instead
of quaternions, just like in linear blend skinning). More details can
be found in [Kavan and Zara 2005b].

For on-demand refitting, it is important that the final vertex
position v′ will no longer lie in CH(Cj1 v, . . . ,Cjn v), which
was true for linear blending (and subsequently exploited in the
sphere refitting for linear blend skinning). In spherical blend-
ing, v′ lies instead on a helical surface A, given as A ={

Qw(v−rc)+∑n
i=1 wiCji rc : w ∈Wn

}
. In simple situations, the set

A becomes a spherical arc or surface. The main problem of the on-
demand refitting for spherical blending is to find an efficient bound
for a subset of set A. This is obviously not as simple as in the case
of linear blending, and none of the previous refitting methods can
be applied for this task.

For our collision detection algorithm we need a tree of bounding
spheres. We build this tree for the reference position of the 3D
model, using the same algorithm as in [Kavan and Zara 2005a], thus
enabling a fair comparison of the results. The sphere tree is built
by a top-bottom algorithm, which starts by first bounding the whole
3D model within one sphere. In the next steps, we split the geom-
etry into two parts and proceed recursively, computing the minimal
enclosing sphere with Gaertner’s algorithm [1999]. When the com-
plete binary tree is constructed, some nodes are pruned using the
same heuristics as in [Kavan and Zara 2005a]. Generally, we prune
a node if its bounding sphere has a similar size to the bounding
sphere of the parent node, thus discarding less useful nodes and
obtaining a general order tree instead of a binary one.

For the actual collision detection, we apply the standard algorithm
based on a BVH. As input we have two 3D models, each equipped
with a BVH. The task is to either find all colliding triangles, or find
at least one (if any). The algorithm proceeds as follows: first, we
test the root spheres for intersection. If disjoint, we end up with no
collisions. If intersecting, we move to the next level in one of the
hierarchies and continue recursively. In the final level we perform
intersection tests on individual triangles. The only modification we
make to this standard algorithm is the sphere refitting, which is in-
serted just before the intersection test. In this way we ensure that
we work with correct bounding spheres, even though the 3D model
has been deformed.

4 Efficient Refitting of Spheres

The crucial part of a BVH-based CD algorithm for deformable ob-
jects is the refitting operation. As mentioned in the introduction,
the refitting procedure must work in an on-demand way, so that it
can be executed on spheres in any order. Moreover, the refitting
algorithm must be sublinear with respect to the number of vertices.
To achieve this, we exploit the fact that the animation is only con-
trolled by the joint transformation matrices Cj (all other data are
constant). It is therefore possible to base the refitting procedure
solely on some precomputed information and on the actual joint
transformations. This is of course much more efficient than driving

the refitting by vertex displacements, because the number of joints
is usually orders of magnitude smaller than the number of vertices.

4.1 Problem Decomposition

We assume that the skin of the input 3D model consists of triangles.
Since triangles and bounding spheres are always convex, it is suffi-
cient to enclose only the vertices of a triangle in order to bound the
whole triangle. During sphere tree construction, we ensure that the
bounding spheres in the children nodes enclose the same geometry
as the bounding sphere in the parent node. Moreover, we require
that each triangle is bounded by a single sphere (it is not sufficient
that a triangle is covered only by a union of spheres). Let us assume
that we are refitting a sphere S with center p and radius r, which en-
closes some set of triangles. We denote all vertices of those trian-
gles as v1, . . . ,vt . For simplicity of notation, we first assume that all
these vertices are influenced by the same joint-set J = { j1, . . . , jn},
that is J = J(v1) = . . .J(vt). The task is to compute a new sphere
which will enclose vertices v′1, . . . ,v

′
t , computed by Equation (1).

The trick to obtaining an algorithm sublinear in t is to replace the
set of vertices {v1, . . .vt} by the bounding sphere S, which is correct
because {v1, . . . ,vt} ⊆ S. That is, instead of bounding v′1, . . . ,v

′
t we

could bound the set

⋃
w∈Wn

(
Qw(S−rc)+

n

∑
i=1

wiCji rc

)
(2)

Considering the whole sphere S of points instead of only one point
is not a big problem, as shown in Section 4.3. A more serious
problem is that the set (2) is very conservative, because it disre-
gards the actual vertex weights of v1, . . .vt . This means that (2)
actually bounds all skin deformations that could be ever produced
by spherical blending for the given posture. Obviously, this would
produce a very loose bounding sphere, useless for collision detec-
tion. It is therefore necessary to take the actual vertex weights into
account. This is done by computing low and high bounds of the
vertex weights for all joints in our joint-set J. For every joint j ∈ J
we denote the weight bound as 〈l j,h j〉, making sure that the weight
of each vertex v1, . . .vt with respect to joint j is within this interval.
Using the weight bounds li and hi, we define the set W ′

n of limited
convex combinations:

W ′
n = {w ∈ Rn : li ≤ wi ≤ hi, i = 1, . . .n,

n

∑
i=1

wi = 1}

and apply this set in (2) instead of Wn. The final set to be bounded
by the refitted sphere is therefore

⋃
w∈W ′

n

(
Qw(S−rc)+

n

∑
i=1

wiCji rc

)
(3)

The set W ′
n has a nice geometric interpretation: it is the intersection

of an n-dimensional box {w ∈ Rn : li ≤ wi ≤ hi, i = 1, . . .n} with a
hyperplane {w ∈ Rn : ∑n

i=1 wi = 1}. It means that W ′
n is a bounded

convex set in Rn and can therefore be expressed as a convex hull
of m points (because of the equivalency of bounded H-polytopes
and V-polytopes [Matousek 2002]). We denote these m points as
c1, . . . ,cm and call them corners (where m is the number of vertices
of the corresponding V-polytope). The corners depend only on ver-
tex weights, which means that they can be precomputed during the
sphere tree construction. The expression of set W ′

n exploiting cor-
ners is as follows:

W ′
n = CH(c1, . . . ,cm) =

{
m

∑
k=1

ukck : u ∈Wm

}
(4)

We derive the bound of set (3) in three steps. In the first step,
we bound the linear component ∑n

i=1 wiCji rc (Section 4.2) and in
the second step, we bound the spherical part Qw(S − rc) (Sec-
tion 4.3). Finally, both of these bounds are simply added together
(Section 4.4) to create the resulting refitted sphere. The resulting
algorithm is presented in Section 4.5. If the reader is not inter-
ested in the derivation and justification of our approach, he or she
is encouraged to skip the following sections and proceed directly to
Section 4.5. Even though the material in Sections 4.2, 4.3, and 4.4
is essential to show the validity of our algorithm, it is not necessary
for a practical implementation.

4.2 Bounding the Linear Part

Unlike the bound of the spherical part, the bound of the linear part
of set (3) can be done in a way similar to [Kavan and Zara 2005a]
(the situation is actually more simple here, because we are bounding
points instead of spheres as in the previous article). This is because
the linear part is actually nothing but a linear blending applied to the
rotation center rc, which is a point computed by the spherical blend
skinning algorithm for a given skeleton posture: it is independent
of the vertex weights.

Thanks to the expression of W ′
n using corners (Equation (4)), we

can rewrite the linear part of set (3) as{
n

∑
i=1

wiCji rc : w ∈W ′
n

}
=

{
n

∑
i=1

(
m

∑
k=1

ukcki

)
Cji rc : u ∈Wm

}

where cki denotes i-th component of vector ck. In the latter term,
we can swap the sums, because

n

∑
i=1

(
m

∑
k=1

ukcki

)
Cji rc =

m

∑
k=1

uk

(
n

∑
i=1

ckiCji rc

)

We denote the transformations of the rotation center as:

r′k =
n

∑
i=1

ckiCji rc, k = 1, . . . ,m (5)

which is correct because ck ∈ W ′
n and thus ∑n

i=1 cki = 1. Equa-
tion (5) is actually nothing but linear blending applied to rc with
weight vector ck. If we put the equations together, we can write the
resulting bound of the linear part as{

n

∑
i=1

wiCji rc : w ∈W ′
n

}
=

{
m

∑
k=1

ukr′k : u ∈Wm

}
= CH(r′1, . . . ,r

′
m)

To conclude: the bound of the linear part is just a convex hull of sev-
eral 3D points. These points are given by the precomputed corners
and Equation (5). Please note that, although we use the concept of
the convex hull in our derivation, the convex hull is actually never
computed in our algorithm (bounding spheres are used instead, see
Section 4.5).

4.3 Bounding the Spherical Part

Bounding the spherical part of set (3) is a little bit more tricky,
because we must deal with the linear quaternion interpolation
(QLERP) hidden in Qw. Recall that we are refitting sphere S with
center p and radius r, expressed in the reference position. First, we
replace the sphere S by its center p:⋃
w∈W ′

n

Qw(S−rc) =
{

Qw(p−rc) : w ∈W ′
n
}⊕{x ∈ R3 : ‖x‖ ≤ r

}

where r is the radius of sphere S and ⊕ denotes the Minkowski sum.
However, the Minkowski sum in the previous equation is actually
nothing but a convolution of set {Qw(p−rc) : w ∈W ′

n} with a zero
center sphere of radius r. In the following, we derive the bounding
sphere of {Qw(p−rc) : w ∈W ′

n}. At the end, we account for the
Minkowski sum (convolution) by simply increasing the radius of
the resulting sphere by r (line 16 of Algorithm 1). The rest of this
section is organized as follows: first, we compute bound on the set
of rotations Qw and express it as a subset of unit quaternion sphere
S3. Second, we apply all rotations from this set to rotate the vector
p− rc. The result is some subset of R3, which is enclosed by a
final bounding sphere of the spherical part. The reader should not
get confused by the fact that the bounds in both steps will have the
same shape (a spherical cap, defined below). The difference is that
the bounding of rotations occurs in R4, whereas the bounding of
rotated vectors takes place in R3.

Recall that we denoted the quaternions corresponding to the rota-
tional parts of matrices Cj1 , . . . ,Cjn by q1, . . . ,qn. Then Qw is a
rotation matrix given by the quaternion w1q1 + . . . + wnqn. This
is correct, because every non-zero quaternion determines a unique
3D rotation (even though not vice-versa). We proceed by con-
structing a bound of all rotations given by the set of quaternions
{w1q1 + . . .+wnqn : w ∈W ′

n}. We exploit the fact that QLERP ap-
plies linear combinations of quaternions, and that quaternions can
be interpreted as R4 vectors. The first step will be therefore similar
to that described in Section 4.2, just in R4 instead of R3. Using the
same corners c1, . . . ,cm as in Section 4.2, we compute another set
of quaternions q′

1, . . . ,q
′
m given by

q′
k =

n

∑
i=1

ckiqi, k = 1, . . . ,m

which satisfy the property{
w1q1 + . . .+wnqn : w ∈W ′

n
}

=
{

u1q′
1 + . . .+umq′

m : u ∈Wm
}

This can also be proven by swapping sums as in Section 4.2. It is
therefore sufficient to construct a bound for rotations corresponding
to quaternions from CH(q′

1, . . . ,q
′
m).

Unfortunately, this cannot be done simply by a convex bounding
volume, as in Section 4.2, because in this case, we are working
in a non-linear space (spherical surface). Linear bounds, such as
convex hull, obviously cannot work in curved spaces. For example,
it is not correct to just rotate vector p−rc by quaternions q′

1, . . . ,q
′
m

and bound the results by a 3D enclosing sphere. In order to obtain
a valid bounding volume, we have to appropriately bound the set of
rotations given by CH(q′

1, . . . ,q
′
m).

We have chosen only a simple bound of rotation sets: a spherical
cap on S3 (the sphere of all unit quaternions). Generally, we define
a cap in any dimension as a non-empty intersection of a sphere
surface with a halfspace. In the following, we will also need another
definition of cap, given by the center cs of the sphere, point as on
the sphere’s surface (the cap’s apex) and an angle αs ∈ 〈0,π〉. If
we denote the radius of the sphere as rs = ‖as − cs‖, then the cap
according to the second definition is expressed as{

x ∈ Rd : ‖x−cs‖ = rs, (x−cs,as −cs) ≥ r2
s cos(αs)

}
It is not difficult to prove that both definitions are equivalent, see
Lemma 1 in the Appendix. An example of a cap is shown in Fig-
ure 2.

The bound of a set of rotations expressed by a cap C on S3 has a
nice geometric interpretation. Let us denote the apex of cap C as
aC and the angle as αC (in this case, the center cC = 0 and radius

�s
cs

as

halfspace

sphere

cap

Figure 2: Example of a cap in R2 with center cs, apex as and angle
αs. In this case the cap is just a spherical arc.

rC = 1, because S3 is a zero centered sphere with unit radius). Since
we are considering S3, the apex aC is a unit quaternion representing
some rotation RC. Then all rotations represented by cap C can be
obtained by composing RC with a rotation about an arbitrary axis
and angle within 〈0,2αC〉 (2αC because quaternions work with half
of the angle of rotation, see for example [Eberly 2001]). If we have
the set of rotations bound by cap C ⊆ S3, we can bound our original
set {Qw(p−rc) : w ∈W ′

n} by ρ = {R(p−rc) : R ∈C}, where C is
interpreted as a set of rotations. But the set ρ is nothing but the set
of all possible rotations of vector RC(p−rc) along an arbitrary axis
and angle within 〈0,2αC〉. It means that ρ is nothing but another
spherical cap (but now in R3)! The apex of cap ρ is RC(p− rc),
center is 0 and angle 2αC .

Since we are constructing a cap on S3, we normalize our quater-
nions q′

1, . . . ,q
′
m to unit quaternions: q′′

k = q′
k/‖q′

k‖, k = 1, . . . ,m.
We can work with q′′

k instead of q′
k, because Lemma 2 from

the Appendix shows that the sets of rotations corresponding to
CH(q′

1, . . . ,q
′
m) and CH(q′′

1, . . . ,q′′
m) are the same. What remains

is to construct a cap on S3 containing our quaternions q′′
1 , . . . ,q′′

m.

In order to construct this cap, we bound q′′
1 , . . . ,q′′

m by an enclosing
sphere E ⊆ R4 with center cE and radius rE . It would be possible
to use again the randomized algorithm [Gaertner 1999] which finds
the smallest enclosing sphere, but we found that just an approxi-
mate enclosing sphere performs better. The approximate enclosing
sphere is computed in the same way as in [James and Pai 2004] (but
in R4 in our case), i.e., by taking the average of q′′

1 , . . . ,q′′
m as the

center and then determining the smallest possible radius which still
gives a correct enclosing sphere.

After computing the enclosing sphere E we are almost done, be-
cause E ∩ S3 is the desired cap. This is illustrated in Figure 3 and
verified in Lemma 3 and Lemma 4 in the Appendix. We can assume
that the radius of sphere E satisfies rE < 1: if not, we can simply
consider the whole S3 (of radius 1) which bounds all rotations, as
the bounding cap (although it should be noted that this situation
never occurred during practical experiments).

Now it is straightforward to derive the resulting cap C′ ⊆ R3 such
that {Qw(p−rc) : w ∈W ′

n} ⊆ C′. We denote by Qc the rotation
corresponding to cE . The apex of the cap C′ is then Qc(p−rc), the
center is 0 and the angle is

α = 2arccos(dH), dH =
1+‖cE‖2 − r2

E

2‖cE‖ (6)

where dH denotes the distance from H to 0, as computed in
Lemma 3 and illustrated in Figure 3. Note that, since the sphere
E intersects S3, it cannot happen that E is strictly inside S3, i.e.,
‖cE‖ + rE < 1 cannot be true. Therefore, ‖cE‖ + rE ≥ 1, thus

S3

E

q''
1

q''
m

H

���

0

cE

dH

Figure 3: To construct the bounding cap (in this picture just the
spherical arc) for quaternions q′′

1 , . . . ,q′′
m, we first create an enclos-

ing sphere E (not necessarily the smallest one). The cap is then
given as E ∩ S3, which can be equally expressed as H ∩ S3, where
H is a halfspace from Lemma 3. A formula for distance dH from H
to 0 is also derived in Lemma 3. The distance dH is used to compute
the angle α .

−r2
E ≤−(1−‖cE‖)2 = −1+2‖cE‖−‖cE‖2 from which follows:

dH ≤ 1+‖cE‖2 −1+2‖cE‖−‖cE‖2

2‖cE‖ =
2‖cE‖
2‖cE‖ = 1

Since obviously 0 ≤ dH , the arccos in Equation 6 is well defined
and α ∈ 〈0,π〉.
The resulting sphere returned for the bound of the spherical part
is nothing but a minimal enclosing sphere of cap C′. We denote
this minimal enclosing sphere as F ⊆ R3 and we compute it easily:
its center is cos(α)Qc(p− rc) and radius is sin(α)‖Qc(p− rc)‖ =
sin(α)‖p− rc‖, where α is given by Equation 6. This is proven in
Lemma 5 and illustrated in Figure 4.

�

Q (-)c cp r
cap C'

bounding sphere

0

Figure 4: If the cap C′ centered in the origin has apex Qc(p −
rc) and angle α , then its minimal enclosing sphere has center
cos(α)Qc(p−rc) and radius sin(α)‖p−rc‖.

4.4 Putting the Bounds Together

To construct the final bounding sphere of set (3), it remains just to
combine the bound of the linear part and the bound of the spherical
part. Recall that, in Section 4.2, the bound of the linear part was
expressed as CH(r′1, . . . ,r

′
m) and, in Section 4.3, the spherical part

was bound by sphere F . The bound of both parts can therefore be
expressed as CH(r′1⊕F, . . . ,r′m ⊕F), i.e., the final bounding sphere
encloses r′1 ⊕F, . . . ,r′m ⊕F . This enclosing sphere is again com-
puted only by a simple approximation (the same as before): the
center of the enclosing sphere is set to the average of the centers
of r′1 ⊕F, . . . ,r′m ⊕F , and the smallest possible radius is computed
in a straightforward way. Note that this enclosing sphere is not the
smallest possible enclosing sphere. However, as suggested already
by [James and Pai 2004; Kavan and Zara 2005a], it is more efficient

for collision detection than computation of the minimal enclosing
sphere. The correctness of collision detection is of course not af-
fected by employing bigger-than-necessary spheres.

In the beginning of Section 4, we assumed that all vertices v1, . . . ,vt
of the reference sphere S are assigned to only one joint-set J. If this
is not the case, i.e., the vertices v1, . . . ,vt are influenced by more
joint-sets J1, . . . ,Jz, we simply repeat the same algorithm for each of
these joint-sets. This way, we obtain spheres r′1,1 ⊕F1, . . . ,r′m1,1

⊕
F1,r′1,2 ⊕F2, . . . ,r′m2,2

⊕F2, . . . ,r′1,z ⊕Fz, . . . ,r′mz,z ⊕Fz and enclose
them by one bounding sphere as before.

4.5 Final Algorithm

This section presents the final sphere refitting algorithm. For sim-
plicity, we write [c,r] to denote a data structure describing a sphere
with center c and radius r. The symbol cki on lines (7) and (8) de-
notes the i-th component of an n-dimensional vector ck. In list L2
are actually stored points q′′

k , but for convenience, we treat them as
spheres with zero radius: [q′′

l ,0].

Algorithm 1: Sphere Refitting for Spherical Blending
Input: S = [p,r] – sphere to be refitted

C1, . . . ,CN – joint transformation matrices
J – list of joint-sets influencing sphere S
c1, . . . ,cm – corners describing the bound of weights
rc – rotation center

Output: sphere S refitted for current skin deformation
SPHEREREFIT(S)
(1) L1 = empty list
(2) for k = 1 to m
(3) qi = MATRIX2QUAT(Ci)
(4) foreach joint-set { j1, . . . , jn} ∈ J
(5) L2 = empty list
(6) for k = 1 to m
(7) r′k = ∑n

i=1 ckiCji rc

(8) q′
k = ∑n

i=1 ckiqi

(9) q′′
k = q′

k/‖q′
k‖

(10) insert sphere [q′′
l ,0] into list L2

(11) [cE ,rE] = BOUNDINGSPHERE(L2)
(12) Qc = QUAT2MATRIX(cE/‖cE‖)

(13) α = 2arccos(1+‖cE‖2−r2
E

2‖cE‖)
(14) for k = 1 to m
(15) insert sphere [r′k + cos(α)Qc(p− rc),sin(α)‖p−

rc‖] into list L1
(16) return BOUNDINGSPHERE(L1) + [0,r]

The addition of [0,r] on line (16) simply inflates the radius of
the resulting sphere by r. The sphere refitting algorithm uses
three subroutines: MATRIX2QUAT, QUAT2MATRIX, and BOUND-
INGSPHERE. The first two convert between quaternion and ma-
trix representation (note that this would not be necessary if our ap-
plication worked internally with quaternions instead of matrices).
These routines are usually a standard part of mathematical libraries
[Eberly 2001]. Concerning BOUNDINGSPHERE, we use only the
simple approximate algorithm for the bounding sphere of spheres
mentioned before: setting center as the average of centers of in-
put spheres and computing the minimal possible radius straigtfor-
wardly.

Level Reference Linear Blending Spherical Blending Optimal
1 34.55 34.55 34.55 72.17 72.17 72.17 79.55 79.55 79.55 34.41 34.41 34.41
2 18.11 18.86 19.74 26.17 31.58 34.48 26.23 33.95 37.84 17.97 22.05 26.57
3 3.11 7.38 10.47 3.11 8.40 14.89 3.11 8.89 17.33 3.11 7.39 10.13
4 0.98 3.68 6.23 0.98 4.03 7.96 0.98 4.12 9.23 0.98 3.69 6.47
5 0.24 1.69 3.69 0.24 1.80 5.05 0.24 1.83 5.28 0.24 1.70 4.33
6 0.20 0.91 2.84 0.20 0.97 3.50 0.20 0.98 4.01 0.20 0.92 2.89
7 0.15 0.61 2.09 0.15 0.65 2.68 0.15 0.66 3.58 0.15 0.61 2.09
8 0.15 0.42 1.16 0.15 0.43 1.59 0.15 0.43 1.71 0.15 0.42 1.29
9 0.12 0.30 0.54 0.12 0.30 0.59 0.12 0.30 0.78 0.12 0.30 0.54

Table 1: This table lists minimal, average and maximal radii of a spheres in the creature model’s sphere tree. Reference: spheres for the
reference posture (Figure 5 top). Linear Blending: animated posture in Figure 5 middle, skin deformed by linear blending, spheres refitted
by Kavan and Zara’s algorithm [2005a]. Spherical Blending: animated posture in Figure 5 bottom, skin deformed by spherical blending,
spheres refitted by Algorithm 1. Best: animated posture in Figure 5 bottom, skin deformed by spherical blending, spheres refitted by an exact
minimal enclosing sphere algorithm [Gaertner 1999].

5 Results

In order to provide comparative measurements, we execute the tests
on models from [Kavan and Zara 2005a]: the man model with 4435
vertices, 8270 triangles and 27 joints, and the creature model with
6682 vertices, 13590 triangles and 56 joints. The sphere tree is also
constructed in the same way. First, we investigate the tightness of
the refitted spheres, see Figure 5 and Table 1.

Figure 5: Bounding spheres on levels 4 and 6 of the tree: Top: ref-
erence posture, minimal enclosing spheres. Middle: animated pos-
ture deformed with linear blend skinning (note the candy-wrapper
artifact in the neck), spheres refitted by [Kavan and Zara 2005a].
Bottom: the same posture as in the middle row deformed by spher-
ical blend skinning, spheres refitted by Algorithm 1.

We observe that the size of the refitted spheres is almost the same as
the size of the spheres in the reference posture, which are optimal
because they are computed by an exact minimal enclosing sphere
algorithm [Gaertner 1999]. Also, the size of the spheres refitted for
linear and spherical blending is similar – even though the geome-

tries of the deformed skins are different (observe the candy-wrapper
artifact in the middle row of Figure 5). The average radii of spheres
are reported in Table 1.

We measured the speed of the collision detection and sphere refit-
ting on a 2.5GHz Athlon PC under normal working conditions. The
animations are adapted from [Kavan and Zara 2005a], except that
spherical blending is used instead of linear. Please note that the
comparison of timings of sphere refitting for linear and spherical
blending cannot be exact, because both skinning methods produce
slightly different geometry (and thus possibly also a different num-
ber of intersections). However, since the test animations involve
only moderate joint rotations, the difference between linear and
spherical skinning is not very big (the difference is obvious only
for large joint rotations, e.g., the neck twist in Figure 5). The first
scenario is an animation of two walking men, shown in Figure 6.

Figure 6: One frame from the first test animation. On the right we
see spheres on levels 5 and 6 of the tree refitted by Algorithm 1.
Thanks to the on-demand refitting, only 19% of spheres on the fifth
level are refitted (9% on the sixth level).

Results for this animation are reported in the first row of Table 2.
We use a new version of mathematical libraries, thus the results
for linear blending differ slightly from those reported in [Kavan
and Zara 2005a]. We see that the slowdown caused by an ad-
vanced skinning algorithm is really negligible. The refitting of all
15339 spheres requires a total time of 20.15ms, which is 1.31μs
per sphere. This is almost as good as sphere refitting for linear
blending, which requires in average 1.21μs per sphere. In practical
situations, of course, only a small fraction of all those spheres is re-
fitted, therefore times for collision detection are much smaller, see
Table 2.

The next testing scenario is called a “worst-case scenario”, be-
cause of the many colliding triangles (much more than in practical
situations, where the collision response routines prevent such ex-
treme interpenetration). In this animation, we measured besides the
standard full CD query also the average time for yes/no CD task,

Scenario LBS SBS Bottom-up
Men (Full) 0.27 0.31 16.70
Creatures (Full) 6.14 7.47 35.17
Creatures (Yes/no) 0.72 1.44 28.67

Table 2: Average times in milliseconds for one collision detection
query in various settings. Full: CD returns set of all colliding tri-
angles, Yes/no: CD returns only one pair of colliding triangles, if
any. LBS: on-demand refitting for linear blend skinning [Kavan
and Zara 2005a]. SBS: on-demand refitting for spherical blending
skinning presented in this paper. Bottom-up: general bottom-up
refitting [Brown et al. 2001], applied for model deformed by spher-
ical blend skinning.

which reports only whether the objects are colliding or not, without
searching for all colliding triangles (collision detection algorithm
in this case stops when the first intersecting triangle pair is found).
Measurements are reported in the second and third row of Table 2.
We see that, even in difficult situations, the overhead for spherical
skinning is fortunately very low, and thus its performance is com-
parable to refitting for linear blend skinning.

Figure 7: A ”walk-through” animation, involving a lot of collisions.
In the second and third column we see spheres on level 4 and 6 re-
fitted by our method. This scenario demonstrates that our algorithm
is suitable even in difficult situations.

6 Conclusions

In this paper, we propose an efficient collision detection algorithm
for 3D models deformed by spherical blend skinning. As a result,
it is no longer necessary to consider a trade-off between an arti-
fact free skinning and fast and exact collision detection. The ex-
periments demonstrate that the performance overhead required by
spherical blending is very low. The proposed approach is robust
and fully compatible with other on-demand methods, e.g., it is pos-
sible to detect collisions between models deformed by both spheri-
cal skinning and reduced deformations [James and Pai 2004]. The
key technique developed in this paper is bounding of rotations on
the unit quaternion sphere. On-demand sphere refitting is only one
possible application of this technique: we believe that other appli-
cations will be discovered in the future.

One of the limitations of the proposed method is that it has at least
linear complexity with respect to the number of joints (it is sub-
linear only with respect to the number of vertices). An algorithm
sublinear also in the number of joints would be advantageous for
certain kinds of 3D models [Redon et al. 2005]. Other promis-
ing future work is to consider more advanced bounding volumes,
such as OBBs [Gottschalk et al. 1996] or k-DOPs [Klosowski et al.
1998].

7 Acknowledgements

This work has been partly supported by the Ministry of Educa-
tion of the Czech Republic under the research programs LC-06008
(Center for Computer Graphics) and MSM 6840770014. We also
thank the anonymous reviewers for their valuable suggestions and
Štěpán Prokop for donating his 3D models.

Appendix

Lemma 1. The two following definitions of a cap of sphere with
center cs and radius rs are equivalent:

(i) A non-empty intersection of a half-space with a surface of
sphere with center cs ∈ Rd and radius rs ∈ R

(ii)
{

x ∈ Rd : ‖x−cs‖ = rs, (x−cs,as −cs) ≥ r2
s cos(αs)

}
, where

as is the apex, and αs the angle.

Proof. The half-space from (i) can be written as{
x ∈ Rd : (x,d) ≥ D

}
for some d ∈ Rd ,D ∈ R, and the surface of

the sphere from (i) can be expressed as
{

x ∈ Rd : ‖x−cs‖ = rs
}

.
It is therefore sufficient to show that the set (ii) can be written as

C =
{

x ∈ Rd : ‖x−cs‖ = rs, (x,d) ≥ D
}

The first part is straightforward: if we have a set (ii), we can rewrite
(x−cs,as −cs) ≥ r2

s cos(αs) as (x,as −cs)≥ r2
s cos(αs)+(cs,as −

cs). Then it is sufficient to let d = as − cs and D = r2
s cos(αs) +

(cs,as −cs).

The second part requires showing that (x,d) ≥ D can be written as
(x,as − cs) ≥ r2

s cos(αs) + (cs,as − cs) for some as ∈ Rd ,αs ∈ R.
Without loss of generality, we can assume that ‖d‖ = rs (because
(x,d) ≥ D can be multiplied by any non-zero scalar and still rep-
resents the same half-space). The apex is then given simply as
as = d + cs. It remains to find an angle αs satisfying equation
D = r2

s cos(αs)+(cs,d). To complete the proof, it is thus sufficient
to verify that |D− (cs,d)| ≤ r2

s (so that cos(αs) is properly defined
by the equation D = r2

s cos(αs)+ (cs,d)). To show this, we use the
fact that the half-space (x,d) ≥ D intersects the spherical surface
(here we use the non-emptiness of the intersection in definition (i)).
This means that the distance from plane (x,d) = D to center cs is
less than or equal to rs. The distance from (x,d) = D to cs is given

by the formula |D−(cs,d)|
rs

, so the previous condition can be written
as

|D− (cs,d)|
rs

≤ rs ⇒ |D− (cs,d)| ≤ r2
s

as we wanted to prove.

Lemma 2. Let q1, . . . ,qm be non-zero quaternions and n1 =
q1
‖q1‖ , . . . ,nm = qm

‖qm‖ the corresponding unit quaternions. Then the

set M = CH(q1, . . . ,qm) represents the same rotations as the set
N = CH(n1, . . . ,nm).

Proof. We know that two non-zero quaternions p,q represent the
same rotation iff there exists k ∈ R, k �= 0 such that p = kq. First,
we show that any rotation from M is also present in N. Let us
choose an arbitrary a ∈ M, i.e. a = ∑wiqi for some w ∈ Wm. We

define K = ∑wi‖qi‖ and ui = wi‖qi‖
K . Obviously K > 0, ui ≥ 0 and

∑ui = 1, that is u ∈ Wm. Hence ∑uini ∈ N and to finish the first
part of the proof it is sufficient to show that K ·∑uini = a (i.e. that
∑uini represents the same rotation as a). So, we show that:

K ·∑uini = K ·∑ wi‖qi‖qi

K‖qi‖ = ∑wiqi = a

Second, we show that any rotation from N is also present in M.
Let us choose an arbitrary b ∈ N, i.e. b = ∑tini for some t ∈ Wm.
We define L = ∑ ti

‖qi‖ and si = ti
‖qi‖L . Again, L > 0 and s ∈ Wm,

therefore ∑ siqi ∈ M. In a similar way as before we see that

L ·∑siqi = L ·∑ tiqi

‖qi‖L
= ∑ tini = b

which completes the proof.

Lemma 3. Let Sa be a spherical surface in Rd with center a and
radius ra. Let Sb be a sphere in Rd with center b and radius rb.
Then the intersection Sa ∩Sb is a cap, i.e. Sa ∩Sb = Sa ∩H, where
H is a halfspace in Rd. Moreover, if a = 0,ra = 1 and rb < 1, then

0 /∈ H and the distance from 0 to H is 1+‖b‖2−r2
b

2‖b‖ .

Proof. The set Sa can be written as
{

x ∈ Rd : ∑(xi −ai)2 = r2
a
}

and
Sb =

{
x ∈ Rd : ∑(xi −bi)2 ≤ r2

b

}
. Therefore the intersection Sa ∩

Sb =
{

x ∈ Rd : ∑(xi −ai)2 = r2
a, ∑(xi −bi)2 ≤ r2

b

}
. The system of

these two formulae can be written as

∑(x2
i −2xiai +a2

i) = r2
a (7)

∑(x2
i −2xibi +b2

i) ≤ r2
b (8)

which is equivalent to the system

∑(xi −ai)2 = r2
a (9)

∑(2(ai −bi)xi +b2
i −a2

i) ≤ r2
b − r2

a (10)

because (10) is simply (8) minus (7). However, (10) is an equation
describing a halfspace, which we can denote as H. This proves the
first part of the statement. To show the second part, we substitute
x = 0, a = 0, ra = 1 into (10) and we obtain ∑b2

i ≤ r2
b−1. Since we

supposed rb < 1, this equation obviously cannot be satisfied, which
means that x = 0 cannot be in H. Therefore, the distance from H to
0 is the same as the distance from the hyperplane determining H to
0. Generally, the distance of hyperplane (x,d) = D, d ∈ Rd ,D ∈ R
from 0 is |D|/‖d‖. In our case, we have |D| = |r2

b − 1−‖b‖2| =
1 + ‖b‖2 − r2

b and ‖d‖ = 2‖b‖, which proves the last part of the
statement.

Lemma 4. Let n1, . . . ,nm be unit quaternions enclosed by sphere
E ⊆ R4 with radius < 1. Then the set C = E ∩S3 is a cap such that

∀w ∈Wm :
w1n1 + . . .+wmnm

‖w1n1 + . . .+wmnm‖ ∈C

Proof. From Lemma 3 we know that C is really a cap and can
be written as C = H ∩ S3, where H is some halfspace not con-
taining the zero vector. Obviously ni ∈ C (because ni ∈ S3 and
ni ∈ E), therefore it must be also true that ni ∈ H. Since a halfs-
pace is always convex, we have w1n1 + . . .+wmnm ∈H. We denote
n′ = w1n1 + . . .+wmnm. Since obviously n′/‖n′‖ ∈ S3, it remains
to show only that n′/‖n′‖ ∈ H. First, we apply the triangle inequal-
ity to obtain

‖n′‖ = ‖∑wini‖ ≤∑‖wini‖ = ∑wi‖ni‖ = ∑wi = 1

that is 1/‖n′‖ ≥ 1. Second, we show that γn′ ∈ H for any γ ≥ 1,
especially for γ = 1/‖n′‖. Since 0 /∈ H, the halfspace H can be
expressed as H =

{
x ∈ R4 : (x,d) ≥ 1

}
for some vector d∈ R4. We

know that n′ ∈ H, which means that (n′,d) ≥ 1 and therefore also
(γn′,d) ≥ 1, i.e. γn′ ∈ H, which is what we wanted to prove.

Corollary 1. If n1, . . . ,nm and C are as above, then all rotations
represented by CH(n1, . . . ,nm) are also present in C.

Lemma 5. Let C ⊆ Rd be a cap with center 0, radius r, apex a and
angle α ∈ 〈0,π〉. Then the smallest enclosing sphere S of cap C has
center acos α and radius ‖a‖sin α .

Proof. First, we show that cap C cannot be enclosed by a sphere
with smaller radius than ‖a‖sin α . This is because there exist
two vectors v1,v2 ∈ C whose distance is 2‖a‖sin α . To construct
those vectors, pick an arbitrary vector v such that (v,a) = 0 and
‖v‖ = ‖a‖ = r. Now we can define v1 = acos α + vsinα and
v2 = acos α − vsinα . Their distance is obviously 2‖v‖sin α =
2‖a‖sin α , so it remains to verify that really v1,v2 ∈ C. We com-
pute that

‖v1‖ =
√

‖a‖2 cos2 α +‖v‖2 sin2 α =
√

r2(cos2 α + sin2 α) = r

and

(v1,a) = (acosα +vsin α,a) = (a,a)cos α +(v,a)sinα = r2 cosα

which shows that v1 ∈ C. The same reasoning can be repeated for
v2, showing that also v2 ∈C.

In the rest of the proof, we have to verify that C ⊆ S. Therefore, let
us pick an arbitrary x ∈ C. According to the definition of the cap,
it means that ‖x‖ = r and (x,a) ≥ r2 cosα . To show that x ∈ S, we
compute

‖x−acos α‖2 = (x−acos α,x−acos α)

= ‖x‖2 −2(x,acos α)+cos2 α‖a‖2

Now we use the fact that ‖a‖ = ‖x‖ = r and −2(x,acos α) ≤
−2r2 cos2 α to obtain

‖x‖2 −2(x,acos α)+cos2 α‖a‖2 ≤ r2 −2r2 cos2 α + r2 cos2 α

which can be simplified to r2(1− cos2 α) = r2 sin2 α . Taking the
square root on both sides yields ‖x−acos α‖ ≤ r sinα , that is x ∈
S.

References

BROWN, J., SORKIN, S., BRUYNS, C., LATOMBE, J.-C., MONT-
GOMERY, K., AND STEPHANIDES, M. 2001. Real-time simula-
tion of deformable objects: Tools and application. In Computer
Animation 2001, 228–236.

EBERLY, D. 2001. 3D game engine design: a practical approach
to real-time computer graphics. Morgan Kaufmann Publishers
Inc.

ERICSON, C. 2004. Real-Time Collision Detection. Morgan Kauf-
mann Publishers Inc.

GAERTNER, B. 1999. Fast and robust smallest enclosing balls. In
ESA ’99: Proceedings of the 7th Annual European Symposium
on Algorithms, Springer-Verlag, 325–338.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. OBB-
Tree: A hierarchical structure for rapid interference detection.
Computer Graphics 30, Annual Conference Series, 171–180.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND
MANOCHA, D. 2003. Cullide: interactive collision detection
between complex models in large environments using graph-
ics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, Aire-la-Ville, Switzerland, 25–32.

GOVINDARAJU, N. K., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M. C., AND MANOCHA, D. 2005.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Trans. Graph. 24, 3, 991–999.

GUIBAS, L., NGUYEN, A., RUSSEL, D., AND ZHANG, L. 2002.
Collision detection for deforming necklaces. In SCG ’02: Pro-
ceedings of the eighteenth annual symposium on Computational
geometry, ACM Press, New York, NY, USA, 33–42.

HE, T. 1999. Fast collision detection using QuOSPO trees. In
SI3D ’99: Proceedings of the 1999 symposium on Interactive
3D graphics, ACM Press, 55–62.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2004. De-
tection of collisions and self-collisions using image-space tech-
niques. In Proceedings of Computer Graphics, Visualization and
Computer Vision WSCG’04, 145–152.

HEIM, O., MARSHALL, C. S., AND LAKE, A., 2004. Fast colli-
sion detection for 3D bones-based articulated characters. Game
Programming Gems 4, Charles River Media, 503–514.

HEJL, J., 2004. Hardware skinning with quaternions. Game Pro-
gramming Gems 4, Charles River Media, 487–495.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: output-sensitive
collision detection for reduced deformable models. ACM Trans.
Graph. 23, 3, 393–398.

JIMÉNEZ, P., THOMAS, F., AND TORRAS, C. 2001. 3D collision
detection: a survey. Computers & Graphics 25, 2, 269–285.

KAVAN, L., AND ZARA, J. 2005. Fast collision detection for
skeletally deformable models. Computer Graphics Forum 24, 3,
363–372.

KAVAN, L., AND ZARA, J. 2005. Spherical blend skinning: A
real-time deformation of articulated models. In 2005 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
ACM Press, 9–16.

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S. B., SOWIZRAL,
H., AND ZIKAN, K. 1998. Efficient collision detection using
bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics 4, 1, 21–36.

KLUG, T., AND ALEXA, M. 2004. Bounding volumes for linearly
interpolated shapes. In Computer Graphics International, 134–
139.

LARSEN, E., GOTTSCHALK, S., LIN, M. C., AND MANOCHA,
D., 1999. Fast proximity queries with swept sphere volumes.
Technical report TR99-018, University of N. Carolina, Chapel
Hill.

LARSSON, T., AND AKENINE-MOLLER, T. 2001. Collision detec-
tion for continuously deforming bodies. In Eurographics 2001,
Short Presentations, Eurographics Association, 325–333.

LARSSON, T., AND AKENINE-MOLLER, T. 2003. Efficient col-
lision detection for models deformed by morphing. The Visual
Computer 19, 2–3, 164–174.

MATOUSEK, J. 2002. Lectures on Discrete Geometry. Springer,
April.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3, 562–
568.

QUINLAN, S. 1994. Efficient distance computation between non-
convex objects. In ICRA, 3324–3329.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast
continuous collision detection between rigid bodies. Comput.
Graph. Forum 21, 3.

REDON, S., KIM, Y. J., LIN, M. C., MANOCHA, D., AND TEM-
PLEMAN, J. 2004. Interactive and continuous collision detection
for avatars in virtual environments. In VR ’04: Proceedings of
the IEEE Virtual Reality 2004 (VR’04), IEEE Computer Society,
117–124.

REDON, S., GALOPPO, N., AND LIN, M. C. 2005. Adaptive
dynamics of articulated bodies. ACM Transactions on Graphics
(SIGGRAPH 2005) 24, 3, 936–945.

TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMER-
ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In Proc. Vision,
Modeling, Visualization VMV’03, 47–54.

TESCHNER, M., KIMMERLE, S., ZACHMANN, G., HEIDEL-
BERGER, B., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNETAT-THALMANN, N., AND STRASSER,
W. 2004. Collision detection for deformable objects. In Proc.
Eurographics, State-of-the-Art Report, Eurographics Associa-
tion, Grenoble, France, 119–135.

VAN DEN BERGEN, G. 1997. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of Graphics
Tools: JGT 2, 4, 1–14.

VOLINO, P., AND MAGNENAT THALMANN, N. 1995. Collision
and self-collision detection: Efficient and robust solutions for
highly deformable surfaces. In Computer Animation and Sim-
ulation ’95, Springer-Verlag, D. Terzopoulos and D. Thalmann,
Eds., 55–65.

ZACHMANN, G. 2002. Minimal hierarchical collision detection. In
VRST ’02: Proceedings of the ACM symposium on Virtual real-
ity software and technology, ACM Press, New York, NY, USA,
121–128.

