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Figure 1: A comparison of different rigid transformation blending algorithms applied in skinning shows that blending based on dual quater-
nions not only eliminates artifacts, but is also much easier to implement and more than twice as fast as previous methods.

Abstract

Quaternions have been a popular tool in 3D computer graphics for
more than 20 years. However, classical quaternions are restricted
to the representation of rotations, whereas in graphical applications
we typically work with rotation composed with translation (i.e., a
rigid transformation). Dual quaternions represent rigid transforma-
tions in the same way as classical quaternions represent rotations.
In this paper we show how to generalize established techniques for
blending of rotations to include all rigid transformations. Algo-
rithms based on dual quaternions are computationally more effi-
cient than previous solutions and have better properties (constant
speed, shortest path and coordinate invariance). For the specific ex-
ample of skinning, we demonstrate that problems which required
considerable research effort recently are trivial to solve using our
dual quaternion formulation. However, skinning is only one ap-
plication of dual quaternions, so several further promising research
directions are suggested in the paper.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Geometric Transformations—
[I.3.7]: Computer Graphics—Three-Dimensional Graphics and Re-
alism – Animation

Keywords: rigid transformation, dual quaternion, transformation
blending, rigid body motion

1 Introduction

It is well known that classical quaternions are an advantageous rep-
resentation of 3D rotations, in many aspects better than 3× 3 ro-
tation matrices [Shoemake 1985]. However, rigid objects do not
only rotate, but also translate; a rotation composed with translation
is called a rigid transformation. Any displacement of a rigid ob-
ject in 3D space can be described by a rigid transformation (known
therefore also as a rigid body motion). In this paper, we advocate
that dual quaternions [Clifford 1882] are in many aspects a better
representation of rigid transformations than those treating rotation
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and translation components independently, such as 4× 4 homoge-
neous matrices, or pairs consisting of a classical quaternion and a
translation vector.

We consider the problem of weighted averages, or blending, of
3D rigid transformations. The input consists of n rigid transfor-
mations and n weights w1, . . . ,wn which are convex (i.e., wi ≥ 0,
and w1 + . . . + wn = 1). The task is to compute a weighted av-
erage of these transformations. A similar problem is transforma-
tion interpolation: the input is also n rigid transformations and n
key times, but the task is to construct an interpolation curve. Both
problems are equivalent for n = 2, but for n > 2, blending is more
general. This is because any interpolation (e.g., linear, spline) can
be expressed as a blending with weights considered as functions of
time: w1(t), . . . ,wn(t) (see [Buss and Fillmore 2001]). Even though
transformation interpolation is very important in computer graph-
ics, there are many applications where the more general blending is
required instead: e.g., character skinning, motion blending, spatial
keyframing and animation compression [Alexa 2002].

Transformation blending is well studied for 3D rotations. In the
case of only two rotations, the established solution is Spherical Lin-
ear Interpolation (SLERP), introduced by Shoemake [1985]. For
cases involving more than two 3D rotations, there are several so-
lutions possible, e.g., an iterative solution based on spherical av-
erages [Buss and Fillmore 2001], or fast approximate Quaternion
Linear Blending (QLB) [Kavan and Zara 2005] (called Quaternion
Linear Interpolation (QLERP) in their paper).

For blending of general 3D rigid transformations, there are no
proven algorithms described in the literature. In the past, this prob-
lem has typically been solved by ad-hoc algorithms, which work
correctly only in the context of a specific application. In this pa-
per, we show how dual quaternions can be used to generalize the
well-established rotation blending algorithms to deal with all rigid
transformations. We present three algorithms:

ScLERP (Screw Linear Interpolation), a generalization of
SLERP [Shoemake 1985]

DLB (Dual quaternion Linear Blending), a generalization of
QLB [Kavan and Zara 2005]

DIB (Dual quaternion Iterative Blending), a generalization of
spherical averages [Buss and Fillmore 2001]



We prove that all presented algorithms have the same desirable fea-
tures as their rotation-only counterparts. If we employ dual quater-
nions in applications, we obtain more accurate results and in many
cases also faster execution time. Some tasks that have challenged
researchers in recent years are trivial to solve using a dual quater-
nion approach. We demonstrate this for the problem of geometric
skinning, which is an algorithm in common use for real-time ani-
mation of virtual characters. The implementation of a dual quater-
nion class is very simple, especially when based on existing code
for classical quaternions. We believe that dual quaternions will be-
come a standard part of every 3D graphics library, in the same way
as the original quaternions are today.

Our Contribution. Previous texts present dual quaternions typ-
ically in a theoretical, algebraic fashion e.g., [Bottema and Roth
1979]. In Section 3, we introduce the theory of dual quaternions
from a practical point of view, emphasizing its application in com-
puter graphics. Rigid transformation blending based on dual quater-
nions is, to our knowledge, novel. So too is our verification of the
properties of associated algorithms (Section 4 and Appendix A). A
rigorous comparison with different blending algorithms has been
undertaken (Section 5) and a case study, where our new methods
are applied to skinning, is also presented (Section 6).

2 Background and Related Work

Dual quaternions were developed by Clifford in the nineteenth
century [Clifford 1882]. They are a special case of the struc-
tures known today as Clifford algebras, which embrace complex
numbers, quaternions, dual quaternions, and others [McCarthy
1990]. Clifford algebras are sometimes called geometric algebras,
whose importance for computer graphics has been discussed re-
cently [Hildenbrand et al. 2004]. Very few applications of dual
quaternions in computer graphics have been described to date: con-
struction of interpolation curves [Juttler 1994; Ge and Ravani 1994]
and inverse kinematics [Luciano and Banerjee 2000]. This suggests
that dual quaternions are virtually unknown in the computer graph-
ics community. This is surprising, because they are quite popular in
other fields, such as robotics [Daniilidis 1999; Perez and McCarthy
2004].

2.1 Two transformations

Before we address the more complex problem of rigid transfor-
mation blending, let us examine first the simple case of n = 2,
where blending is equivalent to interpolation. Let M0 and M1
be two rigid transformations (represented by 4× 4 homogeneous
matrices), and t ∈ [0,1] the interpolation parameter. Any inter-
polation of two rigid transformations, denoted as Φ(t,M0,M1), is
considered valid if it satisfies the following basic requirements:
Φ(0,M0,M1) = M0, Φ(1,M0,M1) = M1 and Φ(t,M0,M1) is a
rigid transformation for all t ∈ [0,1]. Moreover, the interpolation
should be independent of the order of input transformations, i.e.,
Φ(t,M0,M1) = Φ(1− t,M1,M0). However, even when taking all
these requirements into account, there are still an infinite number
of ways to define a valid interpolation. It is thus desirable to pick
an interpolation method which satisfies the most advantageous ad-
ditional properties.

For the case of two 3D rotations R0,R1, the popular Spherical Lin-
ear Interpolation (SLERP) algorithm [Shoemake 1985] has the fol-
lowing properties:

• Constant speed means that the angle of interpolated rotation
varies linearly with respect to parameter t.

• Shortest path means that the motion between R0 and R1 is a ro-
tation about a fixed axis with the smallest angle.

• Coordinate system invariance requires that it does not matter
whether a conversion to any other arbitrary coordinate system oc-
curs before or after interpolation.

A formal definition of those properties (for general rigid trans-
formations) is provided below. The constant speed, shortest path
and coordinate invariance properties are the reason why SLERP
is superior to other methods. Let us therefore examine those
properties in detail. The importance of coordinate invariance is
very well-known in geometry and robotics [Murray et al. 1994].
In computer graphics papers concerning transformation blending,
coordinate-invariance is usually not discussed. This is surprising,
because almost all transformation blending algorithms actually are
coordinate-invariant, see Section 5. We presume this is because the
concept of coordinates is ingrained in computer graphics, e.g., ev-
ery application works in some “world-coordinate system”, all mod-
eling software displays coordinate axes, etc. The importance of
coordinate-invariance in computer animation has been emphasized
by Lee and Shin [2002].

The matrix representation of a geometric transformation depends
inherently on the chosen coordinate system. We obtain a different
matrix representation for a different choice of coordinate system,
even though the transformation is still the same. Ideally, we do not
want the blending method to depend on the representation of the
transformation, as we prefer only dependence on the transforma-
tion itself. This is the meaning of coordinate-invariance. A practical
argument is that certain algorithms do not work with coordinate-
dependent blending [Ge et al. 1998; Kavan and Zara 2005]. How-
ever, we do not claim that a coordinate-invariant algorithm is the
best solution in all situations: for example, if we are just interpolat-
ing the position of a teapot (e.g., as in Figure 2) it would be more
natural to rotate the teapot around its center of mass, rather than
around the screw axis. However, this reasoning assumes that we
know beforehand that 1) we are transforming a teapot, and 2) we
know its mass distribution (or at least a user-defined approximation
of its center of mass). Such a priori information may not be avail-
able in all situations, or it may be too time consuming to compute
(e.g., center of mass of a deformable object). A coordinate invariant
algorithm is an elegant solution in this case: it works equally for
all coordinate systems, thus it does not matter which one we use.
It is interesting to note that coordinate-invariance is also the reason
why the weights w1, . . . ,wn of a linear combination of points are re-
quired to satisfy the equation w1 + . . .+wn = 1. It would of course
be possible to compute a linear combination of points with weights
not summing to one, but the result would be dependent on the co-
ordinate system with respect to which the points are expressed.

Constant speed and shortest path properties are more intuitive: they
correspond to the motion with the smallest amount of work (any ac-
celeration or motion of the rotation axis implies additional energy).
This is why the blending looks natural: if we were to perform the
motion ourselves, we would also tend to avoid unnecessary work.

Formal definition of interpolation properties. Let Φ(t,M0,M1)
denote a valid interpolation between rigid transformations M0
and M1 with parameter t ∈ [0,1]. The rigid transformation
M−1

0 Φ(t,M0,M1) can be decomposed to angle of rotation α(t), unit
axis of rotation a(t), amount of translation δ (t) and unit translation
direction d(t). The interpolation is called

• Constant speed if the derivative of both α(t) and δ (t) is constant.



• Shortest path if a(t) and d(t) are constant, and α(1) ∈ [−π,π].

• Coordinate system invariant if, for an arbitrary rigid transforma-
tion T , is true that T Φ(t,M0,M1)T−1 = Φ(t,T M0T−1,T M1T−1).

2.2 Multiple transformations

A limitation of SLERP is that it cannot be directly generalized for
the blending of more than two rotations. For example, the obvi-
ous generalization to three rotations R0,R1,R2 is to first compute
SLERP of R0 with R1 and then interpolate the result with R2. This
solution has a serious drawback, which is the dependence on the
order of rotations: if we reorder the rotations e.g., to R2,R1,R0
(and change the blending weights accordingly), we obtain a dif-
ferent result. A better generalization of SLERP, independent of the
order of rotations, has been described in [Buss and Fillmore 2001].
A similar algorithm has been also discussed by Johnson [2003].
However, both of the above algorithms are iterative and slower than
the closed-form SLERP. For applications in real-time graphics, a
fast closed-form approximation has been advocated [Kavan and
Zara 2005]. It works by using a simple linear combination of unit
quaternions followed by projection onto a unit hypersphere. These
methods are however limited only to rotations. For the case of gen-
eral rigid transformations, the following algorithms have been used
in the past:

• Linear blending of matrices. The component-wise linear
blending of rigid transformation matrices is the most straightfor-
ward solution. The problem with this method is that its result is
often not a rigid transformation matrix. The blended matrix can
even be singular (projecting 3D objects to 2D).

• Decomposition to rotation and translation. An obvious solu-
tion to the problems of linear blending of matrices is to decompose
the rigid transformation matrix into a rotation and translation com-
ponent. The translation part can be blended linearly without any
difficulties, and the rotation part can be converted to a quaternion
and blended properly using [Buss and Fillmore 2001]. However,
there is an associated hidden drawback: the decomposition to ro-
tation and translation inevitably depends on the coordinate system,
thus we lose the convenient property of coordinate independence.
If this is to work reasonably, we must provide a suitable coordinate
system in which the decomposition will be performed.

The construction of a such a coordinate system has been presented
in [Kavan and Zara 2005]. Unfortunately, the proposed compu-
tation of a coordinate system is based on a least squares optimiza-
tion, solved by the Singular Value Decomposition (SVD) algorithm.
This is restrictive, because SVD is a complex and slow algorithm,
unsuitable for real-time applications. Moreover, the computation
of the auxiliary coordinate system does not depend on the blend-
ing weights – it is thus doubtful whether this can really be consid-
ered as a correct blending. Note that no such problems occur with
coordinate-invariant blending.

• Blending of matrix logarithms. The advantage of the trans-
formation blending algorithm based on matrix logarithms [Alexa
2002] is that it works with more general transformations (not just
rigid). However, the manner in which it blends rotations has
opened an interesting discussion. An on-line critique of Alexa’s
article [Bloom et al. 2004] was presented, which points out that
Alexa’s blending applied for rotations is not shortest path, i.e., it
can produce a longer trajectory than necessary. However, Bloom
et al. do not propose any alternative solution for the case of gen-
eral transformations. In this paper, we show how Alexa’s original
algorithm for general transformations can be upgraded to be both

shortest path and constant speed. However, for the case of rigid
transformations, we find our proposed algorithms based on dual
quaternions to be much more practical (in terms of both robust-
ness and computational speed). A compact representation of a rigid
transformation matrix logarithm is a twist [Bregler and Malik 1998]
or hexanion [Angelidis 2004]. Blending of those entities is equiva-
lent to Alexa’s method.

Conventions. We denote scalars by lower-case letters, vectors and
quaternions by bold and matrices by capital letters. Dual quantities
are distinguished from non-dual by a caret, for example, â denotes a
dual number and q̂ a dual quaternion. The i-th component of vector
v is written as vi, thus also v = (v1, . . . ,vn). The dot product of vec-
tors v and w is denoted as 〈v,w〉 and the norm ‖v‖ is a shortcut for√〈v,v〉. Cross product is denoted as v×w. For better readability,
we denote the exponential mapping as exp(x), instead of ex.

3 Dual Quaternions

This section provides a brief introduction to dual numbers and dual
quaternions. We focus only on the main ideas, omitting some
lengthy mathematical proofs, which can typically be done by direct
computation. For a more detailed introduction, see [Bottema and
Roth 1979; McCarthy 1990]. We assume the reader is already fa-
miliar with ordinary quaternions, otherwise see for example [Dam
et al. 1998; Eberly 2001]. Dual quaternions can be considered as
quaternions whose elements are dual numbers. The algebra of dual
numbers is similar to complex numbers: any dual number â can
be written as â = a0 + εaε , where a0 is the non-dual part, aε the
dual part and ε is a dual unit satisfying ε2 = 0. The dual conju-
gate is analogous to the complex conjugate: â = a0 − εaε . Multi-
plication of two dual numbers is given as (a0 + εaε )(b0 + εbε ) =
a0b0 + ε(a0bε +aε b0). The inverse of a dual number â−1 is given
by 1

a0+εaε
= 1

a0
−ε aε

a2
0
, as can be immediately verified. The previous

expression is defined only when a0 �= 0. Purely dual numbers, that
is dual numbers with a0 = 0, do not have an inverse. This is a funda-
mental difference from complex numbers, because every non-zero
complex number has an inverse. The square root is defined only for
dual numbers with a positive non-dual part, and it is computed as√

a0 + εaε =
√

a0 + ε aε
2
√

a0
.

A dual quaternion q̂ can be written as q̂ = ŵ + ix̂ + jŷ + kẑ, where
ŵ is the scalar part (dual number), (x̂, ŷ, ẑ) is the vector part (dual
vector), and i, j,k are the usual quaternion units. The dual unit
ε commutes with quaternion units, for example iε = εi. A dual
quaternion can be also considered as an 8-tuple of real numbers, or
as the sum of two ordinary quaternions, q̂ = q0 +εqε . Conjugation
of a dual quaternion is defined using classical quaternion conjuga-
tion: q̂∗ = q∗

0 + εq∗
ε The norm of a dual quaternion can be written

as ‖q̂‖ =
√

q̂∗q̂ =
√

q̂q̂∗, which expands to

‖q̂‖ =
√

q̂∗q̂ = ‖q0‖+ ε
〈q0,qε〉
‖q0‖

The norm satisfies the usual property ‖p̂q̂‖ = ‖p̂‖‖q̂‖. The inverse
of a dual quaternion is defined only when q0 �= 0. In this case,
we have q̂−1 = q̂∗

‖q̂‖2 . Unit dual quaternions are those satisfying

‖q̂‖ = 1. According to the previous formula, a dual quaternion q̂
is unit if and only if ‖q0‖ = 1 and 〈q0,qε〉 = 0. Note that unit
dual quaternions are always invertible (their inverse is just conjuga-
tion). We denote the set of unit dual quaternions as Q̂1. Geometri-
cally, Q̂1 is a manifold in 8-dimensional Euclidean space (called an



image-space of dual quaternions [McCarthy 1990]). Just like ordi-
nary quaternions, dual quaternions are also associative, distributive,
but not commutative.

As expected, unit dual quaternions naturally represent 3D rotation,
when the dual part qε = 0. If we have a 3D vector (v0,v1,v2), we
define the associated unit dual quaternion as v̂ = 1+ ε(v0i + v1 j +
v2k). The rotation of vector (v0,v1,v2) by a dual quaternion q̂ then
can be written as q̂v̂q̂∗ (where q̂∗ denotes both quaternion and dual
conjugation). This is obvious, because if qε = 0 then q̂ = q0 and
q̂v̂q̂∗ simplifies to

q0(1+ ε(v0i+v1 j +v2k))q∗
0 = 1+ εq0(v0i+v1 j +v2k)q∗

0

where q0(v0i + v1 j + v2k)q∗
0 is the familiar formula for rotation by

an ordinary quaternion.
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Figure 2: Example of a screw motion, side and top view. Each rigid
transformation can be described as a screw: rotation about an axis
by angle θ0/2 and translation with magnitude θε/2 along the same
axis. The axis, with direction determined by unit vector s0, needs
not pass through the origin 0. Its position in space is given by vector
p pointing from the origin to some point on the axis. The choice of
vector p is not unique, thus dual quaternions work with the unique
moment: p× s0.

What is interesting is that dual quaternions can also represent 3D
translation. A unit dual quaternion t̂, defined as t̂ = 1 + ε

2 (t0i +
t1 j + t2k) corresponds to translation by vector (t0,t1,t2) (note that
dual quaternions work with half of the translation vector, in analogy
to classical quaternions, which work with half of the angle of rota-
tion). If we simplify t̂v̂t̂∗, we obtain 1+ ε((v0 + t0)i +(v1 + t1) j +
(v2 + t2)k), which shows that the unit dual quaternion t̂ really per-
forms translation by (t0,t1,t2). Rigid transformation is a composi-
tion of rotation and translation, and composition of transformations
corresponds to multiplication of dual quaternions. If the rotation
is described by unit quaternion q0 and the translation by unit dual
quaternion 1 + ε

2 (t0i + t1 j + t2k) as before, then their composition
is

(1+
ε
2
(t0i+ t1 j + t2k))q0 = q0 +

ε
2
(t0i+ t1 j + t2k)q0 (1)

We can verify by direct computation that the result is always a unit
dual quaternion. Let us assume that we already have a routine for
conversion between a 3× 3 rotation matrix and a unit quaternion,
as well as a routine for quaternion multiplication. Formula (1) then
shows how to convert a 4×4 rigid transformation matrix to a unit
dual quaternion. The opposite conversion, from a unit dual quater-
nion q0 + εqε to a matrix is also straightforward. The rotation is
just a matrix representation of q0 and the translation is given as
2qε q∗

0.

Every unit dual quaternion q̂ can be written as

q̂ = cos
θ̂
2

+ ŝ sin
θ̂
2

(2)

where ŝ is a unit dual vector with zero scalar part, see [McCarthy
1990] or [Daniilidis 1999]. Note that this looks like the formula for
ordinary quaternions, just employing the dual angle θ̂ = θ0 + εθε
and unit dual vector ŝ = s0 + εsε . The geometric interpretation of
those quantities is related to screw motion, that is a rotation and
translation about the same axis. Chasle’s theorem [Daniilidis 1999]
states that any rigid transformation can be described by a screw
motion, see Figure 2. Angle θ0/2 is the angle of rotation, and unit
vector s0 represents the direction of the axis of rotation. θε/2 is
the amount of translation along vector s0, and sε is the moment of
the axis. Moment is an unambiguous description of the position of
an axis in space. It is given by equation sε = p× s0, where p is
a vector pointing from the origin to an arbitrary point on the axis.
Which point we choose is not important, because for any other point
of the axis, say p + cs0 (where c is an arbitrary scalar), we obtain
the same moment: (p + cs0)× s0 = p× s0. This gives us another
insight: whereas classical quaternions can represent only rotations
whose axes pass through the origin, dual quaternions can represent
rotations with arbitrary axes.

Using Taylor series, we can derive Euler’s identity for dual quater-

nions: exp(ŝ θ̂
2 ) = cos θ̂

2 + ŝsin θ̂
2 . If q̂ is as in Formula (2), then its

logarithm is given as log(q̂) = ŝ θ̂
2 . A power of dual quaternion q̂

is then defined naturally: q̂û = exp(û log q̂) = cos(û θ̂
2 )+ ŝ sin(û θ̂

2 ).
We see that the dual quaternion formulas are very similar to corre-
sponding formulas for ordinary quaternions [Dam et al. 1998].

Dual quaternions exhibit the so called antipodal property of classi-
cal quaternions, i.e., the fact that both q̂ and −q̂ represent the same
rigid transformation. The mapping between rigid transformations
and unit dual quaternions is thus one to two. Even though both q0
and −q0 represent the same rotation, the powers qt

0 and (−q0)t are
different: one corresponds to clockwise and the second to coun-
terclockwise rotation, see Figure 3. During matrix to quaternion
conversion, we can choose between q0 and −q0. In the following,
we assume that the signs corresponding to the shortest trajectory
were chosen. In general, this can be done as described in [Park
et al. 2002]. In practice, a trivial method is usually possible [Kavan
and Zara 2005].

q0 (-q0)

q0 (identity)= 1

q0 , 0 < t < 1t

(-q0) ,
t

0 < t < 1

0

1 1~~

Figure 3: Dual quaternions inherit the antipodality of classical
quaternions. In this example, transformation of the teapot by qt

0 for
t ∈ [0,1] produces a counterclockwise rotation (longer trajectory),
while transformation by (−q0)t leads to a clockwise one (shorter
trajectory).



4 Blending of Rigid Transformations

We start by generalizing the famous Spherical Linear Interpolation
(SLERP) from rotations to rigid transformations. The interpolation
of two unit quaternions p,q with parameter t ∈ [0,1] is computed
as SLERP(t;p,q) = p(p∗q)t . In the previous section, we have de-
fined the power of dual quaternions, which enables us to straightfor-
wardly generalize SLERP to Screw Linear Interpolation (ScLERP).
ScLERP interpolates between two unit dual quaternions p̂, q̂ with
parameter t ∈ [0,1], and is given as ScLERP(t; p̂, q̂) = p̂(p̂∗q̂)t .
What is its geometric interpretation? Obviously, p̂∗q̂ is a unit dual
quaternion, which represents a rigid transformation from p̂ to q̂.
According to the previous section, the power can be written as
(p̂∗q̂)t = cos(t α̂

2 )+ n̂sin(t α̂
2 ) for some dual angle α̂ and dual vec-

tor n̂. The dual vector n̂ represents the axis of the screw motion
(an axis that needs not pass through the origin, as in Figure 2). The
dual angle t α̂

2 = t α0
2 +εt αε

2 contains both the angle of rotation (t α0
2 )

and the amount of translation (t αε
2 ). We can immediately observe

two important properties: the axis n̂ of the screw motion is con-
stant (independent of t), and the angle of rotation t α0

2 , as well as
the amount of translation t αε

2 , vary linearly with respect to the in-
terpolation parameter t. This means that ScLERP guarantees both
shortest path and constant speed interpolation. Lemma 2 in the Ap-
pendix A shows that ScLERP is also independent of the choice of
a coordinate system. In short, ScLERP is an interpolation for rigid
transformations with the same behavior as SLERP for rotations.

In spite of its importance, there are alternatives to SLERP, such
as Quaternion Linear Blending (QLB). In the case of two trans-
formations, the inputs of QLB are identical to those of SLERP:
quaternions p,q and parameter t ∈ [0,1]. The formula for QLB is
very simple, it is only linear interpolation followed by a normal-

ization, QLB(t;p,q) = (1−t)p+tq
‖(1−t)p+tq‖ . The disadvantage of QLB is

that it is not a constant speed interpolation, although it is shortest
path [Kavan and Zara 2005], and coordinate-invariant. However,
as computed by Kavan and Zara, the difference between the angle
of rotation in QLB and SLERP is fairly small, i.e., always strictly
less than 8.15 degrees. This means that QLB is actually “almost”
constant speed interpolation, but faster and easier to compute than
SLERP. Therefore, QLB is usually the method of choice for real-
time applications, especially those running on a GPU.

The dual counterpart of QLB is Dual quaternion Linear Blend-
ing (DLB). As could be expected, this interpolation is again a

direct generalization, DLB(t; p̂, q̂) = (1−t)p̂+tq̂
‖(1−t)p̂+tq̂‖ . The natural

question now is whether DLB is also a good approximation of
ScLERP, as QLB was of SLERP. We show first the coordinate
invariance of DLB. Actually, we show a stronger property, the
so called bi-invariance [Moakher 2002]. This states that, for
any unit dual quaternion r̂, both DLB(t; r̂p̂, r̂q̂) = r̂DLB(t; p̂, q̂)
and DLB(t; p̂r̂, q̂r̂) = DLB(t; p̂, q̂)r̂ (that is, left and right invari-
ance). Bi-invariance implies coordinate-invariance, which re-
quires that DLB(t; r̂p̂r̂∗, r̂q̂r̂∗) = r̂DLB(t; p̂, q̂)r̂∗. We will see later
that coordinate-invariance does not imply bi-invariance, thus bi-
invariance is a stronger property. For proof of the left invariance
it is sufficient to use distributivity of dual quaternions and the fact
that ‖(1− t)r̂p̂ + t r̂q̂‖ = ‖r̂‖‖(1− t)p̂ + tq̂‖ = ‖(1− t)p̂ + tq̂‖ (re-
call that r̂ is a unit dual quaternion). DLB(t; r̂p̂, r̂q̂) can thus be
written as

(1− t)r̂p̂+ t r̂q̂
‖(1− t)r̂p̂+ t r̂q̂‖ = r̂

(1− t)p̂ + tq̂
‖(1− t)p̂ + tq̂‖ = r̂DLB(t; p̂, q̂)

Proof of the right invariance is a direct analogy of the proof
above. The left invariance of both DLB and ScLERP simplifies
their comparison (left invariance of ScLERP is proven in Lemma 2

in the Appendix A). Instead of comparing DLB(t; p̂, q̂) directly
with ScLERP(t; p̂, q̂), we rewrite them as p̂DLB(t;1, p̂∗q̂) and
p̂ScLERP(t;1, p̂∗q̂), which is correct because of left invariance (1
is simply a real unit – when viewed as a dual quaternion, it cor-
responds to a rigid transformation with zero angle and zero trans-
lation). Since p̂ is the same in both expressions, it is sufficient to
compare just DLB(t;1, p̂∗q̂) with ScLERP(t;1, p̂∗q̂), which is an
easier problem. As p̂∗q̂ is a unit dual quaternion, it can be written
as p̂∗q̂ = cos α̂

2 + n̂sin α̂
2 . This enables us to derive

DLB(t;1, p̂∗q̂) =
1− t + tp̂∗q̂
‖1− t + tp̂∗q̂‖ =

1− t + t cos( α̂
2 )+ n̂t sin( α̂

2 )
‖1− t + tp̂∗q̂‖

ScLERP(t;1, p̂∗q̂) = 1(1∗p̂∗q̂)t = (p̂∗q̂)t = cos(t
α̂
2

)+ n̂ sin(t
α̂
2

)

from which we see that both DLB and ScLERP use the same, con-
stant screw axis n̂. This means that DLB is a shortest path interpola-
tion. Thus, the only difference between DLB and ScLERP is in the
angle of rotation and amount of translation. We can compute an up-
per bound of this difference by computing the extremes of function

f (t) = 1−t+t cos( α̂
2 )

‖1−t+tp̂∗q̂‖ − cos(t α̂
2 ) (the difference between the scalar

parts of DLB and ScLERP). Function f (t) is actually independent
of p̂∗q̂, as can be shown by simplification of ‖1− t + tp̂∗q̂‖. Com-
putation of the maxima of f (t) is not difficult but is a lengthy mathe-
matical analysis. We present only results derived using Maple [Char
et al. 1983]. The angles of rotation in DLB and ScLERP always
differ by less than 8.15 degrees (note that this is in accordance with
the results of [Kavan and Zara 2005]). The amount of translation
always differs by less than 15% of the translation present in p̂∗q̂.
Note that those results are upper bounds. In practice the difference
is much smaller. To conclude, DLB is coordinate invariant, short-
est path and “almost” constant speed. DLB works also for multi-
ple rigid body transformations represented by unit dual quaternions
q̂1, . . . , q̂n with convex weights w1, . . . ,wn. For brevity, we write
the convex blending weights as a vector w = (w1, . . . ,wn).

DLB(w; q̂1, . . . , q̂n) =
w1q̂1 + . . .+wnq̂n

‖w1q̂1 + . . .+wnq̂n‖
(Formally, according to this convention, we should have written
DLB((1− t,t); p̂, q̂) instead of just DLB(t; p̂, q̂) earlier. However,
for conciseness we prefer the latter notation.) DLB is an approxi-
mate but fast solution to the problem of rigid transformation blend-
ing.

Our next goal is to derive an algorithm that converges to an
exact solution. This problem has been solved for 3D rotations by
spherical averages [Buss and Fillmore 2001]. It is not possible to
simply apply spherical averages for unit dual quaternions, because
the set of unit dual quaternions Q̂1 is not a hypersphere (instead,
it is a set of tangent planes of a hypersphere [McCarthy 1990]).
Fortunately, it has been shown that the Buss and Fillmore’s idea
can be generalized to other manifolds [Govindu 2004]. The latter
paper is based on the theory of matrix groups and Lie algebras.
We propose a similar algorithm based on dual quaternions, which
is more efficient – due to the simple logarithm and exponential for
dual quaternions. The result is an algorithm which we call Dual
quaternion Iterative Blending (DIB):

Input: Unit dual quaternions q̂1, . . . , q̂n, convex weights w =
(w1, . . . ,wn), desired precision p
Output: Blended unit dual quaternion b̂

b̂ = DLB(w; q̂1, . . . , q̂n)
repeat

x̂ = ∑n
i=1 wi log(b̂∗q̂i)



b̂ = b̂exp(x̂)
until ‖x̂‖ < p
return b̂

A detailed mathematical discussion of this algorithm is beyond the
scope of this paper (c.f. the complexity of discussion of a simpler
algorithm [Buss and Fillmore 2001]). In practice, the DIB algo-
rithm converges very quickly, typically in 1 to 4 steps. An intuitive
explanation of this algorithm is shown in Figure 4.

q1

q2

b

b*q1

b*q2

1=b*b

log

x1
x2

Q1

exp( )x

1x1
x2x

expq1

q2

b xexp( )

improved estimate

initial estimate

1

2

3

^
^ ^

^

^ ^ ^ ^

^ ^

^^

^ ^ ^

^

^
^ ^

^

Figure 4: Illustration of one iteration of the DIB algorithm for n = 2
in a 2D slice of an 8-dimensional manifold Q̂1 (which is not a hy-
persphere). First, the input dual quaternions are left-multiplied by
b̂∗, which maps the initial estimate b̂ onto the identity. The loga-
rithm mapping then transforms b̂∗q̂1, b̂∗q̂2 into the tangent space
of Q1 at the identity, giving x̂1 = log(b̂∗q̂1), x̂2 = log(b̂∗q̂2). The
blended value x̂ = w1x̂1 +w2x̂2 is computed and projected back by
the exponential mapping. Finally, multiplication b̂exp(x̂) yields the
unit dual quaternion closer to the exact solution.

The bi-invariance of DIB (and thus also the coordinate-invariance),
follows from the bi-invariance of DLB and Lemma 1 in the Ap-
pendix A. The comparison of ScLERP with DIB is quite surpris-
ing. Not only is the result of DIB exactly equivalent to the result
of ScLERP, but DIB finds this solution in just a single iteration (the
second pass through the loop finds that ‖x̂‖ is zero and performs
no update of b̂). We prove this interesting property in Lemma 3 in
the Appendix A. An immediate consequence is that DIB is also con-
stant speed and shortest path. The DIB algorithm therefore presents
an exact rigid transformation blending, but it can be slower to com-
pute than the closed-form DLB.

5 Comparison with Other Methods

Besides the DLB and DIB algorithms described in the previous sec-
tion, several alternative methods for blending of rigid transforma-
tions have been described. This section compares the properties
of these blending algorithms in terms of coordinate-invariance (bi-
invariance), constant speed, shortest path, and computation time in
terms of FLOPS. Those properties for dual quaternion based algo-
rithms were discussed in Section 4. Properties of previous rigid
transformation blending algorithms are discussed below and sum-
marized in Table 1.

Linear combination of matrices (Lin). Because of the distribu-
tivity of matrix products, this method is naturally bi-invariant (and
thus also coordinate invariant). Constant speed and shortest path
properties do not hold, because their definition assumes that the

blended transformation will be rigid – which is not the case in lin-
ear combination of matrices.

Decomposition to rotation and translation (Dec). As discussed
already in Section 2, this solution is coordinate dependent. The re-
maining properties follow directly from properties of linear blend-
ing of translations and spherical averages of rotations [Buss and
Fillmore 2001].

Blending of matrix logarithms (Log). Log-matrix blending
followed by exponentiation [Alexa 2002] is coordinate invari-
ant, because an analogy of Lemma 1 is true also for matri-
ces: exp(T MT−1) = T exp(M)T−1, log(T MT−1) = T log(M)T−1

[Moakher 2002]. However, it is not bi-invariant, because
exp(T M) �= T exp(M). Even though this method has a nice geo-
metric interpretation, it is neither shortest path [Bloom et al. 2004]
nor constant speed [Alexa 2002] (note that Bloom et al. [2004] in-
correctly state that it is constant speed). We prove that the speed of
log-matrix blending is really not constant in Appendix B.

The DIB algorithm from the previous section suggests how Alexa’s
blending can be upgraded to be both constant speed and shortest
path: if we replace dual quaternions by matrices, and the initial
value of b̂ by the identity (instead of DLB), we obtain an iterative
version of Alexa’s method. In the first iteration, the modified DIB
algorithm computes the same result as Alexa’s original algorithm.
In subsequent iterations, the modified DIB algorithm converges to
a constant speed and shortest path solution. This way, we obtain
an arbitrary-precision solution to the blending problem for a more
general class of transformations. However, this comes at a cost: the
matrix exponential and logarithm routines in this case require an
iterative numerical solution. As several iterations are required, the
numerical errors of log and exp routines accumulate. Therefore, if
we deal only with rigid transformations, it is both more robust and
efficient to apply the original DIB algorithm, which uses simple and
efficient dual quaternion exp and log (see end of Section 3).

Lin. Dec. Log. ScLERP DLB DIB
Rigidity - + + + + +
Bi-inv. + - - + + +

Coord-inv. + - + + + +
n > 2 + + + - + +

Const-spd. - + - + - +
Shortest - + - + + +
FLOPS 23n N/A 160+ 240 65+ N/A

104n 49n

Table 1: Properties of different rigid transformation blending al-
gorithms (top to bottom): preserving of rigid transformations, bi-
invariance, coordinate-invariance, support of more than two rigid
transformations, constant speed, shortest path, and number of
FLOPS for blending n rigid transformations. FLOPS for Dec. and
DIB depend on the actual input and on desired precision, because
the algorithms are iterative.

We conclude that, for two rigid transformations, the optimal choice
is ScLERP. If we need a precise solution for more than two trans-
formations, we have to employ the iterative DIB. The FLOPS of
log-matrix blending reported in Table 1 refer to an optimization,
which is restricted to rigid transformations and employs a closed-
form Rodrigues formula for rigid transformations [Murray et al.
1994; Angelidis 2004]. However, even though it is closed-form, the
Rodrigues formula is still more difficult to compute than the simple
dual quaternion exp and log. We see that there is no reason to ap-
ply log-matrix blending for rigid transformations, because DLB has
better properties and faster runtime. In the calculation of FLOPS,
we assume that both input and output are 4× 4 homogeneous ma-



trices (specifically, the FLOPS for matrix↔dual quaternion con-
versions are included in Table 1; if an application works internally
with quaternions instead of matrices, then the performance of our
proposed algorithms is even better).

6 Case Study: Skinning

Blending of rigid transformations has many applications in com-
puter graphics, as shown already by Alexa [2002]. One particular
application, geometric skinning, has received a lot of research at-
tention recently, so we have chosen this problem to demonstrate
the behavior of dual quaternion algorithms in practice. In geomet-
ric skinning, a rigged virtual model (such as a character, animal or
piece of cloth) is composed of a triangular mesh, a list L of rigid
transformations, and weights for every vertex in the mesh. Tradi-
tionally, the list L is interpreted as a list of joint displacements from
the reference to the animated skeleton. However, geometric skin-
ning can be applied also for general deformable models without any
skeleton, as has been shown recently [James and Twigg 2005]. The
animation of the whole model is driven by the animation of indi-
vidual transformations in L. The task of the skinning algorithm is
to plausibly deform the skin for a given set of transformations. An
arbitrary vertex v in the mesh is displaced as follows: let us suppose
there are m transformations, C1, . . . ,Cm from L, influencing vertex
v, and the convex weights of vertex v are w1, . . . ,wm. A geomet-
ric skinning algorithm then computes B, the blended rigid trans-
formation of C1, . . . ,Cm with weights w1, . . . ,wm. The final vertex
position in the deformed skin is computed simply as Bv. This de-
formation method is very popular for its simplicity and speed. Note
however, that if additional information is available, such as mea-
surements of real subjects, better methods exist [Allen et al. 2002;
Sand et al. 2003].

A number of approaches to geometric skinning have been recently
presented, each one employing a different method of rigid trans-
formation blending. Mohr and Gleicher [2003] apply Linear Blend
Skinning (LBS), which uses an efficient linear combination of ma-
trices, but exhibits anomalies such as the candy wrapper artifact
(see Figure 6(a)). Better visual results can be achieved, but at the
cost of using auxiliary joints and example skins. Hejl [2004] ig-
nores blending of translation and performs linear quaternion blend-
ing for rotations. This works correctly only if the influencing trans-
formations C1, . . . ,Cm of every vertex have a common fixed point,
which is true only in simplified skeletal models, but not in general.
Magnenat-Thalmann et al. [2004] apply Alexa’s [2002] log-matrix
blending to character skinning and cloth simulation. The problems
of Alexa’s algorithm discussed above manifest in non-natural skin
deformations for certain skeletal postures (see Figure 1(a) and Fig-
ure 6(c)). Kavan and Zara’s Spherical Blend Skinning (SBS) [2005]
blends (quaternion,translation) pairs and copes with the depen-
dence on the coordinate system by computing the optimal origin
of the coordinate system (called rotation center). Unfortunately,
the optimization involves a complex and slow SVD (Singular Value
Decomposition) algorithm. To make real-time execution possible,
SVD is computed only for clusters of vertices. However, this in-
troduces discontinuities in the deformed skin between individual
clusters (see Figure 1(c)). As we see, no single previous methods is
clearly superior – each presents trade-offs that must be considered.

We have applied our DLB algorithm to the problem of geometric
skinning and have developed both CPU and GPU implementations.
For our experiments, we used a skeletal model of a woman with
5002 vertices, 9253 triangles, and 54 joints. The average runtime
performance is reported in Figure 5. We compared the speed with
log-matrix blending (Log) and spherical blend skinning (SBS) only

on a CPU, because no GPU implementation was available for these
methods. The piece of cloth shown in Figure 1 has 6000 vertices,
12000 triangles and 49 joints (observe the discontinuity of spheri-
cal blending in Figure 1(c)). The measurements, together with the
visual results in Figures 1 and 6, clearly show that dual quaternion
blending is not only more accurate, but also more than twice as
fast as both log-matrix and spherical blending. Dual quaternion
skinning is slightly slower than linear blend skinning, but has the
advantage of artifact elimination (Figure 6(a-b)) and usage of fewer
registers – dual quaternions only need 8 floats instead of the 12
required by matrices, which is of particular benefit for the GPU im-
plementation.

0

4

8

12

3.67

11.78
10.83

5.07

LogLBS SBS DLB

Pentium 4 / 3.4 GHz GeForce 6600 GT
0.0

0.2

LBS DLB

0.52

0.65

0.4

0.6

0.8

Figure 5: Average CPU/GPU runtimes for skin deformation of a
woman model in milliseconds.
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Figure 6: (a) Typical “candy wrapper” of linear blending, (b) solved
by dual quaternion blending. (c) Non-shortest path of log-matrix
blending implies non-natural deformations, (d) shortest-path dual
quaternion blending.

7 Conclusions and Future Work

Rigid transformation blending algorithms based on dual quater-
nions exhibit more advantageous properties, and faster execution
times than previous methods. We verified this both theoretically
and on a practical case study of skinning. We believe that dual
quaternion skinning is the algorithm that will finally replace linear
blend skinning in computer games. In the future, the dual quater-
nion blending algorithms presented in this paper could be applied
for example in:



• motion blending – extension of [Park et al. 2002]

• motion analysis & compression – as suggested by [Alexa 2002]

• spatial keyframing – extension of [Igarashi et al. 2005]

• computer vision – averaging of measured position and orienta-
tion of a rigid object

• graphics hardware – dual quaternions take 8 scalars to represent
a rigid transformation instead of the 12 required for a matrix.

To conclude, one of the biggest advantages of dual quaternions is
that they are based on classical quaternions, which are well-known
in the computer graphics community. We believe that dual quater-
nions will soon become part of every 3D graphics library.
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Appendix A

Lemma 1. Let q̂ = cos θ̂
2 + ŝ sin θ̂

2 , where q̂, ŝ are unit dual quater-
nions, and ŝ has zero scalar part. Then for any unit dual quaternion
m̂, both of the following equations are true:

1) exp(m̂ŝ
θ̂
2

m̂∗) = m̂exp(ŝ
θ̂
2

)m̂∗, 2) log(m̂q̂m̂∗) = m̂ log(q̂)m̂∗

Proof. Since the scalar part of ŝ is zero, the same is true for the

scalar part of m̂ŝ θ̂
2 m̂∗, as can be shown by direct computation (we

employed Maple [Char et al. 1983]). This means that the exp on the
left hand side of 1) is well defined and, according to its definition,

exp(m̂ŝ
θ̂
2

m̂∗) = cos
θ̂
2

+ m̂ŝsin
θ̂
2

m̂∗ = m̂(cos
θ̂
2

+ ŝ sin
θ̂
2

)m̂∗

because a dual number always commutes with a dual quaternion
and m̂m̂∗ = 1. This shows the first equation. The proves of the
second one is similar:

m̂q̂m̂∗ = m̂(cos
θ̂
2

+ ŝsin
θ̂
2

)m̂∗ = cos
θ̂
2

+ m̂ŝm̂∗ sin
θ̂
2

Therefore log(m̂q̂m̂∗) = m̂ŝ θ̂
2 m̂∗ = m̂ log(q̂)m̂∗, as we wanted to

prove.

Lemma 2. ScLERP is bi-invariant, that is for any unit dual quater-
nions r̂, p̂, q̂ and any interpolation parameter t ∈ [0,1], both of the
following equations are true:

ScLERP(t; r̂p̂, r̂q̂) = r̂ScLERP(t; p̂, q̂)
ScLERP(t; p̂r̂, q̂r̂) = ScLERP(t; p̂, q̂)r̂

Proof. The left invariance is easy, because ScLERP(t; r̂p̂, r̂q̂) =
r̂p̂(p̂∗r̂∗r̂q̂)t = r̂p̂(p̂∗q̂)t = r̂ScLERP(t; p̂, q̂). Proving the right in-
variance is a little more tricky: ScLERP(t; p̂r̂, q̂r̂) = p̂r̂(r̂∗p̂∗q̂r̂)t .
It is now sufficient to show that (r̂∗p̂∗q̂r̂)t = r̂∗(p̂∗q̂)t r̂, because this
gives us p̂r̂(r̂∗p̂∗q̂r̂)t = p̂r̂r̂∗(p̂∗q̂)t r̂ = ScLERP(t; p̂, q̂)r̂. How-
ever, the power can be written as (r̂∗p̂∗q̂r̂)t = exp(t log(r̂∗p̂∗q̂r̂)).
Thanks to Lemma 1, we can derive that exp(t log(r̂∗p̂∗q̂r̂)) =
exp(t r̂∗ log(p̂∗q̂)r̂) = r̂∗ exp(t log(p̂∗q̂))r̂ = r̂∗(p̂∗q̂)t r̂.

Lemma 3. For the case of two rotations, the DIB(t; p̂, q̂) algorithm
converges in a single iteration with result ScLERP(t; p̂, q̂).

Proof. Thanks to the bi-invariance of DIB, we can perform the
same simplification as when comparing DLB with ScLERP, that is
instead of DIB(t; p̂, q̂) and ScLERP(t; p̂, q̂), compare DIB(t;1, p̂∗q̂)
and ScLERP(t;1, p̂∗q̂). Let us denote the initial value of b̂ as
b̂0 = DLB(t;1, p̂∗q̂). With weight vector w = (1 − t,t) as the
input, the DIB computes in the first iteration b̂1 = b̂0 exp((1 −
t) log(b̂∗

0) + t log(b̂∗
0p̂∗q̂)). As shown in Section 4, the only dif-

ference between DLB and ScLERP is in the angle of rotation and
amount of translation. It means that b̂0 = (p̂∗q̂)û for some dual
number û. Since for unit dual quaternions conjugation is the same
as inverse, we can write b̂1 = (p̂∗q̂)û exp((1− t) log((p̂∗q̂)−û) +

t log((p̂∗q̂)1−û)) = (p̂∗q̂)û exp((t − û) log(p̂∗q̂)) = (p̂∗q̂)û+t−û =
(p̂∗q̂)t = ScLERP(t;1, p̂∗q̂). In the following iteration, the
DIB algorithm computes x̂ = (1− t) log b̂∗

1 + t log(b̂∗
1p̂∗q̂) = (1−

t) log((p̂∗q̂)−t) + t log((p̂∗q̂)1−t) = (t2 − t + t − t2) log(p̂∗q̂) = 0
and thus the algorithm DIB(t;1, p̂∗q̂) terminates with zero error
and returns b̂1 exp(0) = b̂1 = ScLERP(t;1, p̂∗q̂). Multiplication
from left by p̂ and using the left-invariance yields DIB(t; p̂, q̂) =
ScLERP(t; p̂, q̂).

Appendix B

In this appendix, we prove the non-constant speed of log-matrix
blending [Alexa 2002]. This problem has an interesting history.
The author of log-matrix blending claims, without proof, that his
method is not constant speed [Alexa 2002]. Subsequently, a critique
of log-matrix blending is posted on-line [Bloom et al. 2004], which
points out mistakes in Alexa’s paper [Alexa 2002]. Among many
good insights, it unfortunately mentions also the fact that log-matrix
blending actually is constant speed. This is not true, as we prove
below.

Background on Log-matrix Blending

Before we start with the actual proof, we review log-matrix blend-
ing with a special focus on rotation blending. This gives us a deeper
insight into the problem.

Let us consider a simple situation of two 3×3 rotation matrices R0
and R1. Let Rt be a blending (interpolation) between those two ma-
trices, i.e., a matrix which for t = 0 becomes R0, for t = 1 becomes
R1 and for t ∈ (0,1) is a valid rotation matrix. What we informally
referred as speed in the above, is actually an angular velocity of
Rt . The formula expressing angular velocity in the body (moving)
coordinate system is

M(ωt ) = R−1
t

∂Rt

∂ t
(3)

see [Murray et al. 1994]. Alternatively, we could also use a simi-
lar formula for angular velocity expressed in the spatial coordinate
system. This angular velocity differs only by the reference coor-
dinate system, and thus its magnitude (which we aim to compute)
is the same. In our analysis, we will work with the body angular
velocity, although we could equally well work with the spatial an-
gular velocity. In Formula (3), M(a) is a function mapping vector
a = (a1,a2,a3) to an anti-symmetric matrix

M(a) =

⎛
⎝ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎞
⎠ (4)

The multiplication of any vector x = (x1,x2,x3) by this matrix cor-
responds to the cross product, i.e., M(a)x = a× x. Therefore, the
vector ωt in Formula (3) is the common vector representation of an-
gular velocity. The anti-symmetric matrix M(a) is connected with
matrix logarithms. If R is a rotation about axis a/‖a‖ with angle
‖a‖, then its logarithm logR = M(a). This gives us an intuitive
explanation of the rotation matrix logarithm. To verify this fact,
consider a differential equation describing rotation of a point p at
time t with angular velocity a:

∂p(t)
∂ t

= a×p(t) = M(a)p(t)



The solution of this differential equation can be expressed using the
matrix exponential

p(t) = exp(M(a)t)p(0) (5)

where p(0) is the initial condition, i.e., the position of the point at
time 0. We can observe that the term exp(M(a)t) in Formula (5)
is nothing but the matrix of rotation about axis a/‖a‖ with angle
t‖a‖. Therefore, the matrix R describing rotation about axis a/‖a‖
with angle ‖a‖ can be written as R = exp(M(a)). From this, it
immediately follows that logR = M(a), as we wanted to show.

In the following, Rt will denote the result of log-matrix blending,
given according to [Alexa 2002] as

Rt = exp((1− t) log R0 + t logR1) (6)

where exp and log denote the matrix exponential and logarithm.
The geometrical interpretation of matrix logarithm gives us an in-
sight into what the log-matrix blending (limited to rotations) actu-
ally does: linear blending of the axis-angle representation of rota-
tions.

Log-Matrix Blending in Maple

To show that log-matrix blending is not constant speed, it is suffi-
cient to find two rotation matrices R0, R1, and show that the mag-
nitude of angular velocity of their blend Rt , i.e., ‖ωt‖ according
to Formula (3), is not a constant function. Let us define R0 as a
rotation about axis (1,0,0) with angle 1 radian, and matrix R1 as
a rotation about axis (1/

√
2,1/

√
2,0) with angle

√
2 radians. This

choice simplifies the following computations. The logarithms of R0
and R1 are

logR0 =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , logR1 =

⎛
⎝ 0 0 1

0 0 −1
−1 1 0

⎞
⎠

and therefore

(1− t) log R0 + t logR1 =

⎛
⎝

0 0 t
0 0 −1
−t 1 0

⎞
⎠

We denote this matrix as Lt := (1− t) logR0 + t logR1. The next
step is to compute the exponential of matrix Lt . In order to avoid
numerical inaccuracies, we proceed with symbolic computations in
Maple [Char et al. 1983] (it would also be possible to use the Ro-
drigues formula [Murray et al. 1994], but the equations quickly be-
come awkward for manual derivations). Computing the exponential
of Lt yields

expLt =

⎛
⎜⎜⎜⎜⎜⎝

1+t2 cos(
√

1+t2)
1+t2 − t(cos(

√
1+t2)−1)

1+t2
t sin(

√
1+t2)√

1+t2

− t(cos(
√

1+t2)−1)
1+t2

t2+cos(
√

1+t2)
1+t2 − sin(

√
1+t2)√

1+t2

− t sin(
√

1+t2)√
1+t2

sin(
√

1+t2)√
1+t2 cos(

√
1+ t2)

⎞
⎟⎟⎟⎟⎟⎠

which is the result of log-matrix blending, denoted as Rt := expLt .
Now we compute the inverse and derivative of Rt , whose multipli-
cation gives the angular velocity matrix M(ωt), according to For-
mula (3). The resulting matrix is indeed anti-symmetric, as ex-
pected, and therefore has the structure from Formula (4). If we

extract the angular velocity vector according to Formula (4), we
obtain vector ωt = (ωt,0,ωt,1,ωt,2), where

ωt,0 = −
(
−t2 −1+

√
1+ t2 sin(

√
1+ t2)

)
t

(
1+ t2

)2

ωt,1 =
t4 + t2 +

√
1+ t2 sin(

√
1+ t2)(

1+ t2
)2

ωt,2 =
cos(

√
1+ t2)−1

1+ t2

After computing the magnitude of vector ωt we get

‖ωt‖ =

√√√√ t4 + t2 −2 cos(
√

1+ t2)+2(
1+ t2

)2

Obviously, this function is not constant for t ∈ [0,1], see also its
graph in Figure 7.
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Figure 7: Graph of ‖ωt‖ for t ∈ [0,1]
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