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Abstract

In many virtual reality applications it is necessary to sim-
ulate the interaction among solid objects. One of the basic
requirements is to ensure a non-penetration of rigid bodies.
We show algorithms for detecting a collision of moving
bodies along with the exact time of collision determina-
tion. Next we present a method for computation the post-
collision velocities and positions of colliding objects. In
our approach we exploit the laws of classical mechanics,
however the physical accuracy is not the goal. We sac-
rifice the accuracy in exchange for simple and real-time
algorithms.

Keywords: Collision Response, Dynamic Collision De-
tection, Rigid Body Simulation, Physically Based Simula-
tion

1 Introduction

Although the non-penetration of rigid bodies is quite com-
mon in the real world, in virtual environments the contrary
is true. The reason is that the dynamics simulation is not
an easy task; it involves several different problems. The
first is the collision detection, which is considered the bot-
tleneck of the simulation [15]. Moreover, classical colli-
sion detection, as we will refer to static collision detection,
does not count with the objects motion. We demonstrate
that considering the motion of the rigid bodies is neces-
sary for correct collision response. After detecting the
collision, the dynamic state of the colliding objects must
be changed in order to avoid the inter-penetration. The
change depends on the type of the collision and on the pa-
rameters of the colliding objects.

The very general goal of a rigid body dynamics simula-
tion is to generate a movement of rigid bodies when exter-
nal forces are given. This requires a numerical method for
solving differential equations as presented in [3]. However
we are interested only in the non-penetration constraints
which we will ensure in rather kinematic way. We do not
consider the forces that are responsible for the objects mo-
tion1.
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1In virtual reality the positions of the objects are usually controlled

directly by some kind of input device. It is more intuitive for the user
than controlling the forces acting on the objects.

In this paper, we do not discuss neither the static col-
lision detection, nor the simulation of the external forces.
We present a method for solving the collision response for
only two colliding objects. Although the physical correct-
ness is not our goal, we account for different rigid body’s
mass properties and the laws of mechanics to achieve more
plausible results. In section 2 we present a brief outfit of
rigid body mechanics, which we need in next sections; for
more detailed explanation see for example [3]. Section
3 describes the problems of static collision detection and
proposes a simple algorithm for dynamizing the collision
detection. The collision response itself is discussed in sec-
tion 4. Finally, in section 5 we present an application that
implements these methods.

1.1 Related Work and Our Contribution

The static collision detection is well developed, the meth-
ods differ mainly by the bounding volumes they use.
The Axis-Aligned Bounding Boxes [16] may seem ob-
solette, but they have certain properties useful for de-
formable models (quick tree re-computation after defor-
mation). Two modern competing bounding volumes are
Discrete Orientation Polytopes [10] and Oriented Bound-
ing Boxes [8]. Dynamic collision detection is studied in
[7]. They reduce the dynamic collision detection to a
root finding problem, which is solved by numeric meth-
ods (namely regula falsi).

Also concerning collision response a lot of work has
been done, but no uniform approach is the best in general.
See [1] for a survey. Physically based collision response
together with dynamics simulation (via numeric solution
of differential equations) is explained in excellent tutorial
[3, 4]. Besides the colliding contact, it involves also a rest-
ing contact treatment, which is one of the most difficult
problems. [3, 4] show a physically based solution using
static (contact) forces. These forces are computed with
quadratic programming. Another method for the contact
forces computation is based on the linear-complementarity
problem (LCP) [2, 5]. [15] proposes an alternative to static
forces by so called micro-collisions – many small impulses
that are used instead of static forces.

Well readable articles intended for game developers are
[11, 9]. They cover mainly the basic physics and colliding
contact. An interesting recent result is described by [13].



They formulate the dynamics simulation as an optimiza-
tion problem and solve it by quadratic programming.

Our contribution is mainly in simplifying complex ap-
proaches. This is the case of the dynamic collision detec-
tion (section 3) and resting contact (4.2). The application
(5) is of course also original. On the other hand the collid-
ing contact (4.1) as well as the rigid body mechanics (2)
have already been described by other authors [3, 4].

2 Rigid Body Mechanics

A rigid body is a solid object that can not be deformed in
any way – its shape does not change during the simula-
tion. If we denote the body’s volume V ⊆ R3 and density
function ρ : V → R we can define the body’s mass

m =
∫

V

ρ(r)dV (1)

and the center of mass ∫
V

rρ(r)dV

m
(2)

Vectors relative to the center of mass will be denoted by
subscript c. The moments of intertia are defined as follows

Jxx =
∫

V

(r2
c,y + r2

c,z)ρ(rc)dV

Jyy =
∫

V

(r2
c,x + r2

c,z)ρ(rc)dV

Jzz =
∫

V

(r2
c,x + r2

c,y)ρ(rc)dV

Jxy =
∫

V

rc,xrc,yρ(rc)dV

Jxz =
∫

V

rc,xrc,zρ(rc)dV

Jyz =
∫

V

rc,yrc,zρ(rc)dV

where rc = (rc,x, rc,y, rc,z) is a body space vector rela-
tive to the center of mass. The moments form together an
inertia tensor

J =


 Jxx −Jxy −Jxz

−Jxy Jyy −Jyz

−Jxz −Jyz Jzz


 (3)

All the integrals are computed in the body space relative
to the center of mass. In computer graphics we usually
work with solids represented by polygonal meshes. The
integration over such objects can be efficiently computed
using the divergence theorem; the procedure is described
in [14].

Position of a rigid body in space is characterized by a
translation vector and a rotation. The rotation can be rep-
resented by

• orthonormal (rotation) 3 × 3 matrix

• unitary axis of rotation and an angle of rotation

• unit quaternion

Each of this representations has its advantages and dis-
advantages. Conversions between them are described in
[6]. Any of these representations requires only 3 scalars to
store which sums together with the translation vector to 6
degrees of freedom (DOF).

The placement of a rigid body is advantageously de-
scribed relatively to its center of mass. In a world space
coordinate system in time t we define the position of the
center of mass rc(t) and orientation given by rotation ma-
trix R(t). Then the vector rb in body space maps to the
vector rw(t) in world space by formula

rw(t) = rc(t) + R(t)rb (4)

The actual inertia tensor I(t) for a rotated body is com-
puted from the body’s space inertia tensor by equation

I(t) = R(t)JR(t)T (5)

as derived in [3].
The movement of a rigid body can be decomposed to a

linear velocity vc(t) of the center of mass and an angular
velocity ω(t) relative to the center of mass. ω(t) is the
unitary axis of rotation multiplied by the angular velocity.
The velocity v(t) of a point that has world space position
r(t) is computed as

ṙ(t) = v(t) = vc(t) + ω(t) × (r(t) − rc(t)) (6)

The linear momentum p(t) is computed from the linear
velocity using the mass of the body:

p(t) = mvc(t) (7)

By analogy the angular momentum b(t) is computed from
the angular velocity using the inertia tensor:

b(t) = Iω(t) (8)

To describe the state of a moving body it is recommended
to use rather moments than velocities because they are
conserved in nature unlike the velocities2.

The rigid body’s linear momentum can be changed by
an application of force F acting in the center of mass. The
change in linear momentum is described as

∂p

∂t
= F (9)

To rotate the object it is necessary to apply a torque τ . The
torque is determined by the force F and the point of its
application r in the world space relative to the center of
mass:

τ = (r − rc) × F (10)

2In a gyroscope ω(t) can change even if b(t) is constant.



The change in angular momentum is similar to the linear
case3

∂b

∂t
= τ (11)

From the linear and angular moments it is straightforward
to derive the velocities by multiplying equations 7, resp.
8 by inverse mass m−1, resp. inverse inertia tensor I−1.
Note that the inertia tensor is a regular matrix if and only
if the rigid body’s mass is not zero.

2.1 Simulation of Rigid Body Collisions

In nature the rigid bodies do never penetrate each other.
When a collision occurs the velocities of the colliding ob-
jects are changed in a discontinuous way so that the bodies
do not penetrate. The physical explanation for this phe-
nomena is an impulse. The impulse of force JF is

JF =
∫ t1

t0

Fdt (12)

if 〈t0, t1〉 is the period of collision. The impulse of force
corresponds to the difference of linear moments

∆p = p(t1) − p(t0) = JF (13)

Consider that a rigid body A with linear momentum pA

collides with a rigid body B with linear momentum pB . If
the change of linear momentum ∆p is added to pA then
the opposite impulse −∆p must be added to pB to satisfy
the law of conservation.

The impulsive torque of a force F applied in point r in
world space is defined as

Jτ = (r − rc) × JF (14)

Like the impulse of force changes the linear momentum,
the impulsive torque changes the angular momentum

∆b = b(t1) − b(t0) = Jτ (15)

Since the angular momentum must be conserved too, the
opposite impulsive torques have to be applied to both rigid
bodies as in the linear case.

We are interested only on the impulsive forces and
torques that arise during the collision and prevent the rigid
bodies from penetration. The impulses are barely handled
by the differential equations solver because they introduce
discontinuity. However their advantage is that they are
instant events – the colliding state usually quickly disap-
pears.

We treat the simulation engine as a black box, no matter
if it is a differential equations solver or a VRML manip-
ulator. An input of this black box can by anything from
force field to mouse coordinates. Its output is a position

3More correctly we should say that τ means the total external torque
as well as F is the total external force because all the contributions of
individual forces and torques reflect in moments.

and orientation of a rigid body in given time. The impor-
tant thing we need is that the black box has a feedback
mechanism: it can be told the new velocities and positions
after collision and use them in consequent simulation. The
manipulator can, for example, move the objects itself until
they are far enough.

3 Dynamic Collision Detection

Suppose we have already implemented a classic collision
detection system based on the hierarchy of some type of
bounding volumes. If we give it two triangular meshes
it answers whether any two triangles intersect. This is
what we call a static collision detection, because it does
not take care about the movement of the objects. Nonethe-
less during the simulation of rigid bodies we must assume
the solids are moving. The real-time computer simulation
usually proceeds in a loop

1. set time counter t to current time tact

2. ∆t = tact − t; t = tact

3. simulate the evolution of the system during time ∆t4

4. output the final state of the system

5. go to step 2

If we check the collisions by a static algorithm during
this cycle we may miss a collision that has both arosen and
disappeared during ∆t. Although it does not lead to visi-
ble inter-penetration it may result in unrealistic behavior as
illustrated in Fig. 1. The solution of this problem is called
a dynamic collision detection: it answers whether any two
triangles have intersected during time interval 〈t0, t1〉 and
if yes then it gives the exact time tc ∈ 〈t0, t1〉 of contact.
More precisely, time interval 〈t0, tc〉 is collision-free but
the objects are colliding in time tc + εt, where εt is a given
precision. We see that the rest of the simulation in (tc, t1〉
must be discarded because the system is in incorrect state
– the non-penetration constraint has been violated.

We will divide the dynamic collision detection algo-
rithm into two parts:

1. test if the objects collided and if yes then return any
time te during the first collision. (There could have
been more collisions during ∆t, but the others are of
no concern to us.)

2. t0 and te are given such that there is no collision in
t0 but there is a collision in te. Find the exact time of
contact tc ∈ 〈t0, te〉.

4There is an interesting problem connected with this step: for very
precise simulation we would have to know how much time step 3 will
take during its execution and add this time to ∆t. Then it would be pos-
sible to draw the results in really real time. It is no problem if step 3 takes
constant time but if the time depends on the state of the system (which is
the case for collision response) it resembles solving a differential equa-
tion. . .



In time t0 In time t1

vc

An obstacle

Figure 1: Static collision detection lets the ball pass
through the obstacle.

The first point is complex in general. We will show a sim-
ple solution in section 3.2. Although it is only an approxi-
mation to exact dynamic collision detection, we believe it
is quite acceptable for virtual reality applications.

The second point is much easier; it can be quickly
solved with arbitrary precision as described in section 3.3.

3.1 Upper Bound of Velocity

Our idea is to avoid large inter-penetration. The inter-
penetration magnitude is connected to the velocity of the
colliding objects. Therefore we will need an upper bound
for the maximal velocity on the surface of a triangular
mesh.
Lemma: Let 0, 1, 2 be vertices of a triangle T and
r0
c , r1

c , r2
c their world space coordinates relative to the cen-

ter of mass. Assume T rotates around a fixed axis with
angular velocity ω and translates with linear velocity v. If
rp
c is any point of the triangle with velocity vp then

‖vp‖ ≤ ‖v‖ + max
i=0,1,2

‖ω × ri
c‖

Proof: From equation 6 and triangle inequality we have

‖vp‖ = ‖v + ω × rp
c‖ ≤ ‖v‖ + ‖ω × rp

c‖

It remains to show that

‖ω × rp
c‖ ≤ max

i=0,1,2
‖ω × ri

c‖

Since rp
c is a point of the triangle we can write it as a con-

vex combination of vertices

rp
c = r0

cs + r1
c t + r2

cu

where s, t, u ≥ 0 and s+t+u = 1. Then by the cross prod-
uct distributivity, triangle inequality and a trivial property

of convex combination

‖ω × rp
c‖ = ‖(ω × r0

c )s + (ω × r1
c )t + (ω × r2

c )u‖
≤ ‖ω × r0

c‖s + ‖ω × r1
c‖t + ‖ω × r2

c‖u
≤ max

i=0,1,2
‖ω × ri

c‖

�

Corollary: When looking for an upper bound of a max-
imal velocity of any point in the triangle mesh it is suffi-
cient to maximize velocities in the vertices.

We did not make any assumptions about the actual ob-
ject orientation and therefore the upper bound is correct
for arbitrary simulation time. Note that for minimal ve-
locity of a point of a triangle this lemma does not hold –
minimum may not be in a vertex.

3.2 Collision Search Algorithm

The input data are two objects A and B with shapes
defined by triangular meshes, each having a bounding
volumes hierarchy. The linear and angular velocities
vA, ωA, vB, ωB of both rigid bodies are assumed to be
constant during the simulation period 〈t0, t1〉. Using the
results of section 3.1 we determine the upper bound of
maximal velocities vA

max, vB
max of any point on object A,

resp. B.
As mentioned earlier we confine ourselves to only an

approximate solution. The idea of our algorithm is very
simple: we perform the simulation during 〈t0, t1〉 with
small enough steps ∆t and check for collisions statically5.
We stop as soon as we encounter a collision and return this
time as te. It means that we really may miss some instant
of collision, but we can ensure it will not be a big one –
just a touch. Since no point on the surface of A (resp. B)
moves faster than vA

max (resp. vB
max), the maximal possi-

ble inter-penetration will not be greater than

(vA
max + vB

max)∆t (16)

If we can admit the maximal inter-penetration depth ε then
it is sufficient to take

∆t ≤ ε

vA
max + vB

max

6 (17)

The ε should be less than the thickness of the thinnest sim-
ulated object. For example for an application presenting
a house interior, ε = 1mm will lead to quite precise dy-
namic collision detection. Nonetheless, the smaller the ε,
the slower the algorithm will be in the worst case, since
the number of steps is

t1 − t0
ε

(vA
max + vB

max) (18)

5This approach is sometimes called pseudo-dynamic collision detec-
tion [7].

6Obviously if the denominator vA
max + vB

max = 0 then there is no
need for dynamic collision detection, because both upper bounds are non-
negative, thus zero.



We can improve it by introducing dynamic bounding vol-
umes.

The dynamic bounding volumes differ from the static
ones. Not by its geometry, it is the same (Sphere, AABB,
OBB, k-DOP), but they bound all the rigid body positions
over a time interval 〈ti, tj〉. Let us denote the rigid body
by R (standing for either A or B) and its volume occupied
in time t as Rt ⊆ R3. Then the dynamic bounding volume
V of rigid body R for time period 〈t i, tj〉 must satisfy

V ⊇
⋃

t∈〈ti,tj〉
Rt (19)

Computation of such a bounding volume is simple for
purely linear movement. In this case

⋃
t∈〈ti,tj〉 Rt is sub-

set of a convex hull of Rti ∪Rtj , thus any ordinary convex
bounding volume of both Rti and Rtj can do it.

The situation for the angular motion is somewhat more
complicated as illustrated in Fig. 2. We define the ra-

Axis of rotation In time tjIn time ti

Figure 2: Bounding volume of a rotated box

dius Rr of object R as the distance to the most distant
vertex from the center of mass. Then any rotation of the
rigid body R around its center of mass will be bound by a
sphere S(R) with center in the center of mass and radius
Rr. Then we can use the previous result for purely linear
velocity and bound the volume S(R ti) ∪ S(Rtj ) by any
convex bounding volume.

The sphere boundary is effective only for spherical ob-
jects with the center of mass near the center of volume. For
objects like the box in Fig. 2, better dynamic bounding vol-
ume should be designed, especially when considering the
small angle of rotation during time interval 〈t i, tj〉. Such
dynamic bounding volumes are object of further research.

3.3 Time of Contact

As described in section 3.2 we have found the first time of
collision te and we have the time t0 without collisions as
well. Then it is easy to determine the time of contact tc ∈
〈t0, te〉 by the binary search. It will find tc up to a given

time precision εt
7. The algorithm proceeds in iteration

1. ts = t0; tk = te

2. if tk − ts < εt then return ts

3. tm = ts+tk

2

4. if there is a collision in time tm then tk = tm

5. else ts = tm

6. go to step 2

The correctness of the algorithm is obvious from the in-
variant: ts is always collision-free and in tk is always
present a collision. The time complexity is

O
(

log
te − t0

εt

)
(20)

Note that the algorithm always returns the time without a
collision, when the system is in a correct state.

4 Collision Response

Assume that the algorithms presented in section 3 reported
a collision between rigid bodies A and B and computed
the exact time of the first contact tc. Now we shall ex-
amine the collision event and methods for its handling as
described in [4]. Let rA(tc), resp. rB(tc) be the point of
contact of body A, resp. B in world space with respect to
the center of mass of A, resp. B. The points rA(tc) and
rB(tc) coincide in the absolute coordinate system (not rel-
ative to the center of mass), but their velocities ṙA(tc),
resp. ṙB(tc) can be quite different. If the rigid body A
is moving with linear velocity vA and angular velocity ωA

in time tc, and analogously for B, then by equation 6 we
have following relations

ṙA(tc) = vA(tc) + ωA(tc) × rA(tc) (21)

ṙB(tc) = vB(tc) + ωB(tc) × rB(tc) (22)

for the actual velocities of the contact points.
The direction of the collision is described by the unit

normal vector nB(tc) of the surface of rigid body B 8 in
point rB(tc). Important fact is that nB(tc) points out of
the object B’s volume. The normal direction depends on
the type of contact. There are only two non-singular con-
tact possibilities: vertex-face and edge-edge contact. For
vertex-face nB(tc) is simply the normal of the face and
for edge-edge contact it is the unitized cross-product of
the edge directions.

Now we can examine the relative velocity vrel of the
two bodies projected to nB(tc) direction

vrel = nB(tc) · (ṙA(tc) − ṙB(tc)) (23)

If vrel is positive (see Fig. 3), then the bodies are moving

7It has nothing in common with ε in section 3.2
8We could choose the body A as well, it is just a convention intro-

duced by [4].
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Figure 3: Possible relative velocities of two objects

apart. If we have correctly computed the contact point then
this option is theoretically impossible. If vrel is negative,
then the bodies are approaching and if we do not change
the object velocities immediately, then an inter-penetration
occurs. This option is known as colliding contact and a
method for computing new velocities is presented in sec-
tion 4.1. If vrel is zero, the bodies are neither receding,
nor approaching. This situation is called a resting contact
which will be discussed in section 4.2.

Consider that we always work up to a certain numeric
precision, thus we can not test if vrel = 0, since it will
practically never be true. This must be replaced with
something like |vrel| ≤ εr. It follows that what we clas-
sify as a resting contact, can be a small retreating or collid-
ing contact in reality, which introduces certain difficulties,
see 4.2. However the colliding contact event is quite clear
since the condition is vrel < −εr.

4.1 Colliding Contact

The physical model for a colliding contact response is an
impulse J , see section 2.1. The impulse direction is given
by nB(tc) and what remains to compute is the impulse
magnitude j (a scalar) so that

J = jnB(tc) (24)

Once we have computed J , it is easy to compute the
change of linear and angular moment (section 2.1). Re-
call that we use normal nB(tc) outgoing from the rigid
body B, pointing towards the rigid body A. Therefore the
impulse acts positively on the rigid body A and a negative
impulse −J must be applied to B due to the laws of con-
servation. Then from the new moments we obtain the new
linear and angular velocities by inverting equations 7 and
8 as explained in the end of section 2.

In order to compute the impulse magnitude j we de-
note the pre-impulse quantities by superscript − and the
post-impulse one’s by +. The empirical law for friction-
less collisions states

v+
rel = −Cv−rel (25)

where C is a restitution coefficient satisfying C ∈ 〈0, 1〉.
It is connected with the elasticity of the collision: C = 1

means perfectly bouncy collision, where no kinetic energy
is lost. On the other hand C = 0 means no bounce at all,
the maximum of the kinetic energy is used for example on
the deformation of the objects.

The post-impulse velocities are connected with the pre-
impulse one’s by equations

v+
A(tc) = v−A(tc) +

jnB(tc)
mA

(26)

ω+
A(tc) = ω−

A(tc) + I−1
A (tc)(rA(tc) × jnB(tc)) (27)

where mA is the mass of the object A and IA is its inertia
tensor. Recall that IA depends on the rotation of the object
(eq. 5) and therefore on the time tc. In the following we
omit the time variable since it is always tc.

Plugging equations 26 and 27 into 21 for post- and pre-
impulse velocities we obtain

ṙ+
A = v+

A + ω+
A × rA

= v−A +
jnB

mA
+ (ω−

A + I−1
A (rA × jnB)) × rA

= ṙ−A + j

(
nB

mA
+ (I−1

A (rA × nB)) × rA

)

The same can be derived for B considering that B is object
of opposite impulse, i.e. of magnitude −j

ṙ+
B = ṙ−B − j

(
nB

mB
+ (I−1

B (rB × nB)) × rB

)

Substituting these formulas into the v+
rel expression ac-

cording to equation 23 and using the unit length of vector
nB , nB · nB = 1 we have

v+
rel = nB · (ṙ+

A − ṙ+
B)

= nB · (ṙ−A − ṙ−B) + j(
1

mA
+

1
mB

+

nB · (I−1
A (rA × nB)) × rA) +

nB · (I−1
B (rB × nB)) × rB))

= v−rel + j(
1

mA
+

1
mB

+

nB · (I−1
A (rA × nB)) × rA) +

nB · (I−1
B (rB × nB)) × rB))

If we apply the restitution law (eq. 25), we obtain

(−1 − C)v−rel = j(
1

mA
+

1
mB

+ (28)

nB · (I−1
A (rA × nB)) × rA) +

nB · (I−1
B (rB × nB)) × rB))

from which we can already derive the impulse magnitude
j since all the other variables are known. The inertia tensor
inversion can be efficiently computed if we use eq. 5 and
realize that

I−1 = (RJRT )−1 = RJ−1RT (29)



and J−1 can be computed off-line. Moreover, the non-
inverted inertia tensor will not be needed anywhere in the
simulation as well as the non-inverted mass. It allows
tricky treatment of objects that should not be moved at all
(e.g. walls). If we pose m−1 = 0 and I−1 a zero matrix
then it corresponds to objects with an infinite mass. Due
to equations 26 and 27 the velocities of these objects will
not be changed.

4.2 Resting Contact

As mentioned above, resting contact is a situation where
the relative velocity of two bodies is negligible, i.e.
|vrel| ≤ εr. Physically based treatment of resting con-
tact is quite difficult: [4] shows a method for the inner
forces9 computation based on the quadratic programming.
Another solution is based on the linear complementarity
problem [2, 5]. We will considerably simplify this task by
not considering the friction and by assumption of only two
convex objects10. These presumptions enable an intuitive
geometric solution based on the idea of pushing the rigid
bodies apart.

Recall that in time tc the objects are very close, but still
not colliding. Because of the convexity assumption, we
can use a separation theorem from computational geom-
etry. It claims that if two convex sets are disjoint, then
there exists a separation plane [12]. The problem is how to
find the separation plane. To do this in a mathematically
correct way we would need the nearest points from both
bodies and construct the separation plane as in the proof
of the theorem (see for example [12]). But since the al-
gorithm of this section is rather heuristic, it is sufficient to
approximate the separating plane, exploiting the fact that
the objects are very close to each other.

We have already computed the normal nB(tc) of body B
in point rB(tc). Assume for a while that the point rA(tc)
is equal to rB(tc) in absolute coordinate system. Then,
since the (non-strict) separating plane exists, it must pass
through the point rB(tc). Because it must separate the
bodies, the only choice in general is the tangential plane
in point rB(tc), i.e. with normal nB(tc). This is a good
approximation since the points rA(tc) and rB(tc) can be
made arbitrarily close by the algorithm in section 3.3.
However, the purists can always compute the two nearest
points to obtain the accurate separating plane.

The idea of our resting contact solution is simple: we
let the bodies move as if they were not influenced by each
other (this is accomplished by the previously mentioned
black box) - using the zero friction assumption. A prob-
lem may occur when the actual vrel is small but nega-
tive. In this case the objects may even collide, which is
tested dynamically as described in section 3. Small inter-
penetration can be prevented by process we call separa-
tion: pushing the rigid bodies apart in the direction of the

9as a consequence of the Newton’s law of action and reaction
10The case with more convex objects is similar to non-convex objects,

since non-convex objects can be decomposed into more convex one’s.

normal of the separation plane. Remember that we need to
simulate the time period of length ∆t. It would be nice to
say that from |vrel| ≤ εr follows that the inter-penetration
is small, less or equal than εr∆t. Unfortunately, this is not
true, because the point of contact can move to a position
with higher relative velocity than vrel. This change may be
arbitrarily high, since the tangential relative velocity does
not need to be small. Therefore we propose an algorithm
of successive separation. Supposing we simulate time pe-
riod 〈t0, t1〉, it works as follows.

1. ts = t0

2. use the black box to simulate the system during
〈ts, t1〉 with dynamic collision detection

3. if collision reported in time tc ∈ 〈ts, t1〉 then stop
the simulation in time tc, separate the objects to dis-
tance D and tell the black-box the new positions after
separation.

4. else return

5. ts = tc + f(D)

6. if ts ≥ t1 then return

7. go to step 2

Two things remain to clarify. Firstly, the separa-
tion to the distance D means to translate the object
A by vector mB

mA+mB
DnB(tc) and the object B by

− mA

mA+mB
DnB(tc), see Fig. 4. The rigid bodies masses

object A

object B

nB

vrel < 0

object B

nB

object A

vrel < 0

D

a)

b)

Figure 4: a) The resting contact situation, b) After separa-
tion to the distance D



mA and mB are used to distribute the translation in an in-
tuitive way. How to choose the parameter D is a question
of tuning. Higher D leads to faster execution, but more
coarse steps. It is similar to the choice of ε in section 3.2.

Another subtle point is that we must account some time
for separation, otherwise the number of separations each
step would not be bounded, resulting in not plausible be-
havior. This is expressed by function f depending on the
separating distance D. A simple linear function can do
this job.

Despite the simplicity of this algorithm, the separating
plane idea is a basis for one of the most recent rigid body
simulators [13].

5 Application

We have tested the presented algorithms in the applica-
tion for virtual reality simulation of fencing. The typical
collision response event in this application is illustrated in
Fig. 6. In the picture the fencer on the right is holding
its weapon still. The left fencer’s weapon is moving with
velocities depicted by arrows. The state in the time of con-
tact, Fig. 6b, is not normally drawn in the simulation loop
– it is used only for the collision response computations.

Although the weapon is drawn as a textured triangular
mesh, the collision response module considers only its ap-
proximation by so called capsule. A capsule is a point set
given by a line segment AB and a radius r

{
x : dist(AB, x) ≤ r

}
(30)

The point to segment distance dist can be computed quite
efficiently. A capsule is similar to cylinder (both are con-
vex), but has certain advantages.

The surface of a capsule is smooth, thus there are no
problems with the definition of a normal direction nB(tc)
in any point of the capsule’s boundary. A test if a cap-
sule given by A0B0, r0 intersects another capsule given
by A1B1, r1 is simply

dist(A0B0, A1B1) ≤ r0 + r1 (31)

and the segment to segment distance can be computed also
very quickly. This allows very fast collision detection, en-
abling small ε for the dynamic collision detection algo-
rithm presented in section 3.2.

Quite different is handling weapon to body collisions.
Obviously the human body can not be considered rigid;
fortunately the response to weapon-body collisions re-
quires no dynamic simulation, since it simply means the
end of the duel. Because the body undergoes many defor-
mations resulting from motion, we use the bounding boxes
re-fitting algorithm [16] generalized for k-DOPs.

The weapon, as well as its approximation by a cap-
sule, is controlled by some common type of input device:
mouse or joystick. There is a problem that such input
devices have only 2 DOF, but rigid body’s position and

orientation needs 6 DOF. We solved it by defining sev-
eral keyframe placements of a weapon and interpolating
among them according to the current state of the input de-
vice. An example of such function mapping R 2 → R6 is
illustrated in Fig. 5. The input device controls the place-

keyframe
point

x

y

Figure 5: Grid of nine different key positions and orienta-
tions of the weapon in the space of an input device.

ment of the weapon directly and the velocities are esti-
mated using the elapsed time ∆t. This is our implementa-
tion of the black box. It remains to describe its feedback
mechanism. The translation resulting from separation is
straightforward. Somewhat more tricky is the reaction af-
ter colliding contact, because it is generally impossible to
feed-back the movement to the input device 11.

In fencing, the weapon is grasped by the fencer’s hand.
When the weapon is hit hardly by the opponents weapon 12,
the fencer looses control of his own weapon for a short
amount of time (which the opponent may use to attack),
because of impulse delivered by the opponents weapon.
If the time of the contact is ta and the time of re-gaining
the weapon control is tb (it depends on the impulse magni-
tude, strength of the grasp etc.), we simulate the process as
follows. In time tact we compute the position and orienta-
tion P (tact) as if the weapon was not held by the hand and
moving only with the post-impulse velocities computed by
formulas in section 4.1. Then we interpolate P (tact) with
the actual position and orientation of the hand with inter-
polation parameter

t =
tact − ta
tb − ta

(32)

which will give the resulting position and orientation. This
simulates the process of re-gaining the control (”catch-
ing”) the weapon realistically: the fencer influences its
weapon movement only partially and this influence (t) in-
creases with time.

11However certain recent joysticks already support some feed-back ef-
fects.

12action known as batuta aiming to deflect the opponent’s weapon



6 Conclusions

We have presented a set of algorithms that can be used
together to simulate the response after a collision of two
rigid bodies. They are best suited for simple objects, such
as the capsules in our application. Colliding contact is han-
dled in a physically correct way, but the resting contact is
simulated in rather intuitive way. However, the resulting
post-collision motion of the objects is quite plausible as
was verified in the application. We did not measure the
speed of the algorithms, because it is determined mainly
by the speed of the static collision test, which was not dis-
cussed. The number of iterations of the presented algo-
rithms is heavily influenced by the ε setting, as was shown
in the formulas. For a majority of applications the colli-
sion response routines are not the bottleneck.

A lot of work can be done in any of the mentioned areas,
mainly in the dynamic collision detection and the resting
contact handling. Nonetheless, we believe that the sim-
plicity of the referred algorithms has also its advantages,
not only for the implementation’s sake.
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Figure 6: Application: Fencing in Virtual Reality. a) weapons before collision, b) state in the time of contact, c) post-
collision movement


