Testing
https://www.sqglite.org/testing.html

As of version 3.33.0 (2020-08-14), the
SQLite library consists of
approximately 143.4 KSLOC of C
code. [...] By comparison, the project
has 640 times as much test code and
test scripts [...]

Testing
https://www.sqglite.org/testing.html

* Four independently developed test harnesses

* 100% branch test coverage in an as-deployed configuration
* Millions and millions of test cases

* Out-of-memory tests

* I/O error tests

Crash and power loss tests
Fuzz tests

Boundary value tests
Disabled optimization tests

* Regression tests

Malformed database tests

* Extensive use of assert() and run-time checks
* Valgrind analysis

* Undefined behavior checks
* Checklists

Testing
https://www.sqglite.org/testing.html

* Four independently developed test harnesses

* 100% branch test coverage in an as-deployed configuration
* Millions and millions of test cases

* Out-of-memory tests

* I/O error tests

* Crash and power loss tests

* Fuzz tests

* Boundary value tests

Disabled optimization tests

* Regression tests

Malformed database tests

* Extensive use of assert() and run-time checks
* Valgrind analysis

* Undefined behavior checks
* Checklists

Test Generation

Unit tests cover what you thought might go wrong

Generated tests can find what you didn’t think about

Test Generation

Test generation needs:
* a way to generate inputs
* a driver to send the inputs and receive outputs

* a way to decide whether the output was good

Test Generation

Test generation needs:
* a way to generate inputs
* a driver to send the inputs and receive outputs

* a way to decide whether the output was good

oracle

Test Generation

Test generation needs:
* a way to generate inputs
* a driver to send the inputs and receive outputs

* a way to decide whether the output was good

Using another implementation:
differential testing

Fuzzing

Fuzzing refers to

* sending randomly generated inputs

° typically text

* minimal result validation

° typically: did the program crash?

Fuzzing

static std::string random bytes() {
std: :string word = "";
for (int i = rand() % 32; i-- > 0;
word += rand() % 256;
return word;

Fuzzing refers to

* sending randomly gen¢

° typically text

* minimal result validation

° typically: did the program crash?

)

10

Fuzzing

static std::string random bytes() {
std: :string word = "";

for (int i = rand() % 32; i-- > 0;
word 4= »and/) 2 2RKA.

ret returns a‘“random” int

Fuzzing refers to

* sending randomly gen¢

° typically text

* minimal result validation

° typically: did the program crash?

)

11

Fuzzing

static std::string random bytes() {
std: :string word = "";

for (int i = rand() % 32; i-- > 0;
ward 4— yand/) 2 2BA.

use something like srand (clock ()) to

Fuzzing refers to

* sending randomly gt
generate varying values
° typically text

* minimal result validation

° typically: did the program crash?

)

12

Fuzzing

static std::string random bytes() {
std: :string word = "";

for (int i = rand() % 32; i-- > 0;
word += ranAl\ 2 2KRA.

return a number from 0 to 31

Fuzzing refers to

* sending randomly gen¢

° typically text

* minimal result validation

° typically: did the program crash?

)

13

Fuzzing

static std::string random bytes() {
std: :string word = "";
for (int i = rand() % 32; i-- > 0;
word += rand() % 256;
return ward.
} a number from 0 to 255

Fuzzing refers to

* sending randomly gen¢

° typically text

* minimal result validation

° typically: did the program crash?

)

14

Fuzzing

Fuzzing refers to
* sending randomly generated inputs
° typically text

* minimal result validation

° typically: did the program crash?

Fuzzing is a good idea for testing parsers, but just
generating random strings is unlikely to generate
many interesting MSDscript expressions

15

Generating Expressions

(expr) = (number)
| ({expr))
| (expr) * (expr)
| (expr) * (expr)
| (variable)

|

_let (variable) = (expr) _in (expr)

Possible strategy:

* randomly pick a case
* for (number), randomly pick one
* for (variable), randomly generate one

» for others, recur for nested (expr)

16-17

Generating Expressions

(expr) = (number)
| ({expr))
| (expr) # (expr)
| (expr) * (expr)
| (variable)

|

_let (variable) = (expr) _in (expr)

Possible strategy:

* randomly pick a case
* for (number), randomly pick one
* for (variable), randomly generate one

» for others, recur for nested (expr)

Likely to generate bound
variables?

18

Generating Expressions

(expr) = (number)
| ({expr))
| (expr) * (expr)
| (expr) * (expr)
| (variable)

|

_let (variable) = (expr) _in (expr)

Generate Expr values or strings!?

By generating strings, we can make
the test generator more separate
from the code it’s trying to test

19-20

Simple Generator

First try — just generate numbers

std: :string random expr string() {
return std::to_string(rand())

}

Could check:

—--interp mode prints the same number
——-print mode prints the same number
--pretty-print mode prints the same number

exit code is always 0

21-22

Simple Generator

std: :string random expr string() {
if ((rand() % 10) < 6)
return std::to_string(rand());
else
return random expr string() + "+" + random expr string():;

23

Simple Generator

std: :string random expr string() {
if ((rand() % 10) < 6)
return std::to_string(rand()) 60% of the time
else
return random expr string() + "+" + random expr string():;

24

Simple Generator

std: :string random expr string() {
if ((rand() % 10) < 6)

return std::to string(rand()); 60% of the time .
else - ’ 40% of the time

return random expr string() + "+" + random expr string():;

Even without tracking the expected sum, but could check:
* ——interp mode prints some number
* ——-print mode prints some expression that interps to the same number

« ——pretty-print mode prints some expression that interps to the
same number and pretty-prints exactly the same

* exit code is always 0

25-26

Trying Generated Expressions

Overall:
* generate an expression string
* send string as input to msdscript

* check msdscript output and exit code

Inside the msdscript implementation, we take control of input and
output using std: :istreamé& and std: : ostreamé& arguments

From the outside, we need a way to run a program, send it input to
std: :cin, and capture its output to std: :count

27-29

Test-Runner Helper

Provided by exec. cpp:

ExecResult exec program(int argc, char **argv, std::string in);

class ExecResult {
public:
int exit code;
std: :string out;
std: :string err;

};

30

Test-Runner Helper

Provided by exec. cpp: argv[0] is the program to run

ExecResult exec program(int argc, char **argv, std::string in);

class ExecResult {
public:
int exit code;
std: :string out;
std: :string err;

};

31

Test-Runner Helper

Provided by exec. cpp:

ExecResult exec program(int argc, char **argv, std::string in);

class ExecResult { one string as input
public:

int exit code;

std: :string out;

std: :string err;

};

32

Test-Runner Helper

Provided by exec. cpp:

ExecResult exec program(int argc, char **argv, std::string in);

class ExecResult ({ one string as input
public:

int exit code;

std: :string out; two strings as output

std::string err; but either might be empty
};

33

Test-Runner Helper

const char * const wc argv[] = { "/usr/bin/wc", "-w" };

ExecResult wc _result = exec program(2, wc_argv, "a b c");

if (wc_result.exit code != 0)
std: :cerr << "non-zero exit: " << wc_result.exit_code << "\n";
if (wc_result.out !'=" 3\n")

std: :cerr << "bad wc result\n";

34

Another Simple Test Driver

int main(int argc, char **argv) {
const char * const interp argv[] = { "msdscript", "--interp" };
const char * const print argv[] = { "msdscript", "--print" };

for (int 1 = 0; i < 100; i++) {
std::string in = random expr string();

std::cout << "Trying " << in << "\n";

ExecResult interp result = exec_program(2, interp argv, in);
ExecResult print result = exec program(2, print argv, in);

ExecResult interp again result = exec program(2, interp argv, print result.out);
if (interp_again result.out != interp result.out)
throw std::runtime_ error("different result for printed");

return O;

35

Simple Test Driver

int main(int argc, char **argv) ({
const char * const interpl argv[] { "msdscript", "--interp" };
const char * const interp2 argv[] = { "msdscript2", "--interp" };

for (int 1 = 0; 1 < 100; i++) {
std::string in = random expr string();
std: :cout << "Trying " << in << "\n";

ExecResult interpl result = exec program(2, interpl argv, in);
ExecResult interp2 result = exec program(2, interp2 argv, in);

if (interpl result.out != interp2 result.out)
throw std::runtime error("different results");

return O;

36

