
Part 1: Test Coverage
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Test Coverage

How do you know whether a program is tested well?

• Data coverage (HtDP)

◦ try every variant

◦ try to get all results

• Code coverage
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Test Coverage

function — every function called

✓ int max(int n, int m) {
  if (n > m)
     return n;
  else
     return m;
}

✓ int maxabs(int n, int m) {
  int absn = ((n < 0) ? -n : n);
  int absm = ((m < 0) ? -m : m);
  if (absn == absm)
    return absn;
  else
    return max(absn, absm);
}

6-7



Test Coverage

line — every line reached

int max(int n, int m) {
✓   if (n > m)
✓      return n;
✓   else
✓      return m;

}

int maxabs(int n, int m) {
✓   int absn = ((n < 0) ? -n : n);
✓   int absm = ((m < 0) ? -m : m);
✓   if (absn == absm)
✓     return absn;
✓   else
✓     return max(absn, absm);

}
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Test Coverage

statement/expression — each statement/expression reached

int max(int n, int m) {
  if (n > m)
     return n;
  else
     return m;
}

int maxabs(int n, int m) {
  int absn = ((n < 0) ? -n : n);
  int absm = ((m < 0) ? -m : m);
  if (absn == absm)
    return absn;
  else
    return max(absn, absm);
}
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Test Coverage

branch — each branch of every conditional taken

int fact(int n) {
  int x = 1;

  do {
    x = x * n;
    n = n - 1;
  } while (n > 0);

  return x;
}
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Test Coverage

branch — each branch of every conditional taken

int fact(int n) {
  int x = 1;

  do {
    x = x * n;
    n = n - 1;
  } while (n > 0);

  return x;
}

should try both true and false
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Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
  int r = n;

if (m > r)
    r = m;
  if (p > r)
    r = p;
  return r;
}
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Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
  int r = n;

if (m > r)
    r = m;
  if (p > r)
    r = p;
  return r;
}
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Test Coverage

path — each control combination taken
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Test Coverage

Even more:

• condition — each boolean true and false

• value — each [common] value at every possibility

• edge — each control transfer taken

• modifed condition/decision — each boolean matters

• ...

Line or expression coverage is practical and useful
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Testing in Xcode

Start by clicking here:

Then click “+” in the bottom left

Select “New Unit Test Target...”

Pick “Objective-C” for the language

All of the project changes are part of the project that you
probably have checked in to your Git repo
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Testing in Xcode

Connect a test target to your main target:

1. Pick ``Edit Scheme...''

2. Click ``+'' and select test target

3. Should show up here
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Testing in Xcode

Enable code coverage:
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Testing in Xcode

For each non-main fle, add to your new test target:
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Testing in Xcode

Adjust created .m fle:

#import <XCTest/XCTest.h>
#include "run.h"

@interface test : XCTestCase
@end

@implementation test
- (void)testAll {
  if (!run_tests())
    XCTFail(@"failed");
}
@end
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Testing in Xcode

Add glue code in new fle run.h:

extern bool run_tests(void);
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Testing in Xcode

Add glue code in new fle run.cpp:

extern "C" {
#include "run.h"
};

#define CATCH_CONFIG_RUNNER
#include "../catch.h"

bool run_tests() {
 const char *argv[] = { "arith" };
 return (Catch::Session().run(1, argv) == 0);

}
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Testing in Xcode

• Use Test ⌘U instead of Run ⌘R from the Project menu

• Turn on Code Coverage in the Editor menu

• Look for pink bars along the right edge of your code ⇒ uncovered
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Testing in CLion

To run with coverage:

First run:

Click Fix and rerun

https://www.jetbrains.com/help/clion/code-coverage-clion.html

Beware: some changes will affect only your project workspace,
which you probably exclude from your Git repo
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Testing in CLion

When you run with coverage (again), probably the interesting fle has 0%
coverage:

That’s because no tests were run
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Testing in CLion

Add --test when running with coverage:

• Go to Run → Edit Confgurations...

• Click + and add a new CMake Application

• Name it something like test

• Set the Program arguments: feld to --test
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Testing in CLion

• Pick the test confguration while keeping Debug-Coverage still
checked

• Run with coverage again, and since your program runs the test suite when
--test is the argument, now you get usefule coverage

• Look for pink bars along the editor left edge to fnd uncovered lines
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Makefle and Testing

Makefle idea: create a test “phony” target:

....

msdscript: $(OBJS)
        c++ -o msdscript $(OBJS)

.PHONY: test
test: msdscript
        ./msdscript --test

....

Then, make test builds and runs tests
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GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

Use this text:

name: CI

on: [push]

jobs:
  build:

    runs-on: macos-latest
    steps:
    - uses: actions/checkout@v1
    - name: Build and run tests
      run: make test
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GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

Use this text:

name: CI

on: [push]

jobs:
  build:

    runs-on: macos-latest
    steps:
    - uses: actions/checkout@v1
    - name: Build and run tests
      run: make test

or add to repo as
.github/workflows/main.yml
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GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

If your Makefile is in path/to/dir within the repo:

name: CI

on: [push]

jobs:
  build:

    runs-on: macos-latest
    steps:
    - uses: actions/checkout@v1
    - name: Build and run tests
      run: make test
      working-directory: path/to/dir
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GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

If your Makefile is in path/to/dir within the repo:

name: CI

on: [push]

jobs:
  build:

    runs-on: macos-latest
    steps:
    - uses: actions/checkout@v1
    - name: Build and run tests
      run: make test
      working-directory: path/to/dir

Don’t include starting slash or the
name of your repo directory
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Part 2: Local Binding
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Variable Binding

In homework, you added variables to MSDscript

But we don’t yet have a way to give a variable a value

Next: add a declaration form called _let

In general, MSDscript keywords will start with an underscore
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Let Binding

_let x = 5
_in  x + 1    
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Let Binding

_let x = 5
_in  x + 1    

Result is 6
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Let Binding

_let x = 5
_in  x + 1    

Similar to

{
  int x = 5;
  x + 1;
}

because x is visible only in the _in part...
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Let Binding

_let x = 5
_in  x + 1    

... but just one expression must be after _in...
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Let Binding

_let x = 5
_in  x + 1    

... and the whole thing is still an expression
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Let Binding

_let x = 5
_in  x + 1    

(_let x = 5
 _in  x + 1) * 2
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Let Binding

_let x = 5
_in  x + 1    

(_let x = 5
 _in  x + 1) * 2

result is 12
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Let Binding

_let x = 5
_in  x + 1    

(_let x = 5
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Let Binding

_let x = 5
_in  x + 1    

(_let x = 5
 _in  x + 1) * 2

_let x = 5
_in  x + 1 * 2

result is 7
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Let Grammar

〈expr〉 = 〈number〉
| 〈expr〉 + 〈expr〉
| 〈expr〉 * 〈expr〉
| 〈variable〉
| _let 〈variable〉 = 〈expr〉 _in 〈expr〉

right-hand side (RHS) body
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Interpreting Let

_let x = 5
_in  x + 1

⇒

5 + 1

⇒

6

Interpreting _let can use subst

(new Add(new Var("x"), new Num(1)))
->subst("x", new Num(5))
->interp()
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Interpreting Let

_let x = 5 + 2
_in  x + 1

⇒ 7

⇒

7 + 1

⇒

8

Interpret binding RHS before subst

int n = (new Add(new Num(5), new Num(2)))
        ->interp();
new Num(n);
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

means 6, not 5
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

Analogous to

{
  int x = 5;
  {
    int x = 6;
    x + 1;
  }
}
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

Substitute x with 5 in 
_let x = 6
_in  x + 1  should not change 

_let x = 6
_in  x + 1
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

Substitute x with 5 in 
_let y = 6
_in  x + 1  should change to 

_let y = 6
_in  5 + 1

Substitution of 〈variable〉 with 〈expr〉 at _let:

• bind same 〈variable〉: don’t substitute in the body

• bind different 〈variable〉: substitute in the body
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is bound in

_let x = 5
_in x + 1
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is free in

x + 1
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Nested Let Binding: Body

_let x = 5
_in  _let x = 6

_in  x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is free in

_let z = 5
_in x + 1
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Nested Let Binding: RHS

_let x = 5
_in  _let x = x + 2

_in  x + 1

Substitution of 〈variable〉 with 〈expr〉 at _let:

• Always substitute in the right-hand side
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