
Part 1: Test Coverage

1

Test Coverage

How do you know whether a program is tested well?

• Data coverage (HtDP)

◦ try every variant

◦ try to get all results

• Code coverage

2-4

Test Coverage

How do you know whether a program is tested well?

• Data coverage (HtDP)

◦ try every variant

◦ try to get all results

• Code coverage

5

Test Coverage

function — every function called

✓ int max(int n, int m) {
 if (n > m)
 return n;
 else
 return m;
}

✓ int maxabs(int n, int m) {
 int absn = ((n < 0) ? -n : n);
 int absm = ((m < 0) ? -m : m);
 if (absn == absm)
 return absn;
 else
 return max(absn, absm);
}

6-7

Test Coverage

line — every line reached

int max(int n, int m) {
✓ if (n > m)
✓ return n;
✓ else
✓ return m;

}

int maxabs(int n, int m) {
✓ int absn = ((n < 0) ? -n : n);
✓ int absm = ((m < 0) ? -m : m);
✓ if (absn == absm)
✓ return absn;
✓ else
✓ return max(absn, absm);

}

8-9

Test Coverage

statement/expression — each statement/expression reached

int max(int n, int m) {
 if (n > m)
 return n;
 else
 return m;
}

int maxabs(int n, int m) {
 int absn = ((n < 0) ? -n : n);
 int absm = ((m < 0) ? -m : m);
 if (absn == absm)
 return absn;
 else
 return max(absn, absm);
}

10-11

Test Coverage

branch — each branch of every conditional taken

int fact(int n) {
 int x = 1;

 do {
 x = x * n;
 n = n - 1;
 } while (n > 0);

 return x;
}

12-13

Test Coverage

branch — each branch of every conditional taken

int fact(int n) {
 int x = 1;

 do {
 x = x * n;
 n = n - 1;
 } while (n > 0);

 return x;
}

should try both true and false

14

Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
 int r = n;

if (m > r)
 r = m;
 if (p > r)
 r = p;
 return r;
}

15-16

Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
 int r = n;

if (m > r)
 r = m;
 if (p > r)
 r = p;
 return r;
}

17

Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
 int r = n;

if (m > r)
 r = m;
 if (p > r)
 r = p;
 return r;
}

18

Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
 int r = n;

if (m > r)
 r = m;
 if (p > r)
 r = p;
 return r;
}

19

Test Coverage

path — each control combination taken

int max_of_three(int n, int m, int p) {
 int r = n;

if (m > r)
 r = m;
 if (p > r)
 r = p;
 return r;
}

20

Test Coverage

Even more:

• condition — each boolean true and false

• value — each [common] value at every possibility

• edge — each control transfer taken

• modifed condition/decision — each boolean matters

• ...

Line or expression coverage is practical and useful

21-22

Testing in Xcode

Start by clicking here:

Then click “+” in the bottom left

Select “New Unit Test Target...”

Pick “Objective-C” for the language

All of the project changes are part of the project that you
probably have checked in to your Git repo

23

Testing in Xcode

Connect a test target to your main target:

1. Pick ``Edit Scheme...''

2. Click ``+'' and select test target

3. Should show up here

24

Testing in Xcode

Enable code coverage:

25

Testing in Xcode

For each non-main fle, add to your new test target:

26

Testing in Xcode

Adjust created .m fle:

#import <XCTest/XCTest.h>
#include "run.h"

@interface test : XCTestCase
@end

@implementation test
- (void)testAll {
 if (!run_tests())
 XCTFail(@"failed");
}
@end

27

Testing in Xcode

Add glue code in new fle run.h:

extern bool run_tests(void);

28

Testing in Xcode

Add glue code in new fle run.cpp:

extern "C" {
#include "run.h"
};

#define CATCH_CONFIG_RUNNER
#include "../catch.h"

bool run_tests() {
 const char *argv[] = { "arith" };
 return (Catch::Session().run(1, argv) == 0);

}

29

Testing in Xcode

• Use Test ⌘U instead of Run ⌘R from the Project menu

• Turn on Code Coverage in the Editor menu

• Look for pink bars along the right edge of your code ⇒ uncovered

30

Testing in CLion

To run with coverage:

First run:

Click Fix and rerun

https://www.jetbrains.com/help/clion/code-coverage-clion.html

Beware: some changes will affect only your project workspace,
which you probably exclude from your Git repo

31

Testing in CLion

When you run with coverage (again), probably the interesting fle has 0%
coverage:

That’s because no tests were run

32

Testing in CLion

Add --test when running with coverage:

• Go to Run → Edit Confgurations...

• Click + and add a new CMake Application

• Name it something like test

• Set the Program arguments: feld to --test

33

Testing in CLion

• Pick the test confguration while keeping Debug-Coverage still
checked

• Run with coverage again, and since your program runs the test suite when
--test is the argument, now you get usefule coverage

• Look for pink bars along the editor left edge to fnd uncovered lines

34

Makefle and Testing

Makefle idea: create a test “phony” target:

....

msdscript: $(OBJS)
 c++ -o msdscript $(OBJS)

.PHONY: test
test: msdscript
 ./msdscript --test

....

Then, make test builds and runs tests

35

GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

Use this text:

name: CI

on: [push]

jobs:
 build:

 runs-on: macos-latest
 steps:
 - uses: actions/checkout@v1
 - name: Build and run tests
 run: make test

36

GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

Use this text:

name: CI

on: [push]

jobs:
 build:

 runs-on: macos-latest
 steps:
 - uses: actions/checkout@v1
 - name: Build and run tests
 run: make test

or add to repo as
.github/workflows/main.yml

37

GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

If your Makefile is in path/to/dir within the repo:

name: CI

on: [push]

jobs:
 build:

 runs-on: macos-latest
 steps:
 - uses: actions/checkout@v1
 - name: Build and run tests
 run: make test
 working-directory: path/to/dir

38

GitHub Actions

You should always runs your tests, but computers are good at remembering
things that people forget

On Github: Actions → set up a workfow yourself

If your Makefile is in path/to/dir within the repo:

name: CI

on: [push]

jobs:
 build:

 runs-on: macos-latest
 steps:
 - uses: actions/checkout@v1
 - name: Build and run tests
 run: make test
 working-directory: path/to/dir

Don’t include starting slash or the
name of your repo directory

39

Part 2: Local Binding

40

Variable Binding

In homework, you added variables to MSDscript

But we don’t yet have a way to give a variable a value

Next: add a declaration form called _let

In general, MSDscript keywords will start with an underscore

41-42

Let Binding

_let x = 5
_in x + 1

43

Let Binding

_let x = 5
_in x + 1

Result is 6

44

Let Binding

_let x = 5
_in x + 1

Similar to

{
 int x = 5;
 x + 1;
}

because x is visible only in the _in part...

45

Let Binding

_let x = 5
_in x + 1

... but just one expression must be after _in...

46

Let Binding

_let x = 5
_in x + 1

... and the whole thing is still an expression

47

Let Binding

_let x = 5
_in x + 1

(_let x = 5
 _in x + 1) * 2

48

Let Binding

_let x = 5
_in x + 1

(_let x = 5
 _in x + 1) * 2

result is 12

49

Let Binding

_let x = 5
_in x + 1

(_let x = 5
 _in x + 1) * 2

_let x = 5
_in x + 1 * 2

50

Let Binding

_let x = 5
_in x + 1

(_let x = 5
 _in x + 1) * 2

_let x = 5
_in x + 1 * 2

result is 7

51

Let Grammar

〈expr〉 = 〈number〉
| 〈expr〉 + 〈expr〉
| 〈expr〉 * 〈expr〉
| 〈variable〉
| _let 〈variable〉 = 〈expr〉 _in 〈expr〉

right-hand side (RHS) body

52-54

Interpreting Let

_let x = 5
_in x + 1

⇒

5 + 1

⇒

6

Interpreting _let can use subst

(new Add(new Var("x"), new Num(1)))
->subst("x", new Num(5))
->interp()

55-60

Interpreting Let

_let x = 5 + 2
_in x + 1

⇒ 7

⇒

7 + 1

⇒

8

Interpret binding RHS before subst

int n = (new Add(new Num(5), new Num(2)))
 ->interp();
new Num(n);

61-67

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

68

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

means 6, not 5

69

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

Analogous to

{
 int x = 5;
 {
 int x = 6;
 x + 1;
 }
}

70

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

Substitute x with 5 in
_let x = 6
_in x + 1 should not change

_let x = 6
_in x + 1

71-72

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

Substitute x with 5 in
_let y = 6
_in x + 1 should change to

_let y = 6
_in 5 + 1

Substitution of 〈variable〉 with 〈expr〉 at _let:

• bind same 〈variable〉: don’t substitute in the body

• bind different 〈variable〉: substitute in the body

73-74

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is bound in

_let x = 5
_in x + 1

75-76

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is free in

x + 1

77

Nested Let Binding: Body

_let x = 5
_in _let x = 6

_in x + 1

In other words, substitution replaces free variables, and it does not
replace bound variables

x is free in

_let z = 5
_in x + 1

78

Nested Let Binding: RHS

_let x = 5
_in _let x = x + 2

_in x + 1

Substitution of 〈variable〉 with 〈expr〉 at _let:

• Always substitute in the right-hand side

79-82

