What is the output of this program?

#include <iostream>

int main(int argc, const char * argv[]) {
int x;
std: :cout << x << "\n";
return O;

}
A) 0
B) -272632584

C) Nobody expects the Spanish Inquisition!

D) Any of the above, and more

1-5

What is the output of this program?

#include <iostream>

int main(int argc, const char * argv[]) {
int x;
std: :cout << x << "\n";
return O;

}
A) 0
B) -272632584

C) Nobody expects the Spanish Inquisition!

D) Any of the above, and more

Undefined Behavior

Using an uninitialized variable is undefined behavior

Undefined behavior doesn’t just mean that the number is unspecified

It means that anything can happen

Safe languages do not have this kind of “anything can happen” rule

7-9

Loop Indexing

How many times does this loop iterate!?

int sum handful (int *arr, int start) {
int sum = 0, end = start + 5;
for (int i1 = start; i < end; i++)
sum += arr[i];
return sum;

10

Loop Indexing

How many times does this loop iterate!?
What if start is INT MAX?

int sum handful (int *arr, int start) {
int sum = 0, end = start + 5;
for (int i1 = start; i < end; i++)
sum += arr[i];
return sum;

Since integer overflow is undefined behavior, a compiler is allowed to
generate code to always iterate 5 times

Or not

11-13

__Zllsum handfulPhi:
100000af0:
100000afl:
100000af4:
100000af7:
100000afb:
100000b00:
100000b02:
100000b07:
100000b09:
100000b0e:
100000b10:
100000b15:
100000b17:
100000b18:

55
48
48
of
of
01
of
01
of
01
of
01
5d
c3

89
63
bé
bé
ca
bé
dl
bé
ca
b6
do

Loop Indexing

e5

c6

Oc 07

54 07 01
addl

4c 07 02
addl

54 07 03
addl

44 07 04
addl
pPopgq
retq

pushqg $rbp

movq %$rsp, %rbp
movslg %esi, %rax
movzbl (%rdi,%rax), %ecx

movzbl 1(%rdi,%rax), %edx
%$ecx, %edx

movzbl 2 (%rdi,%rax), %ecx
%$edx, %$ecx

movzbl 3(%rdi, %$rax), %edx
%ecx, %edx

movzbl 4 (%rdi,%rax), %eax
%$edx, %eax

$rbp

clang++ -02

14

Loop Indexing

How many times does this loop iterate!?

int sum handful (int *arr, unsigned start) ({
int sum = 0; unsigned end = start + 5;
for (unsigned i = start; i < end; i++)
sum += arr|[i];
return sum;

Overflow for unsigned is not undefined behavior

15-16

__Z1lsum handfulPhj:
100000ae0:
100000ael:
100000ae4:
100000ae6:
100000ae9:
100000aeb:
100000aed:
100000af0:
100000af4:
100000af8:
100000afb:
100000afd:
100000b02:
100000b04:
100000b09:
100000b0b:
100000b10:
100000b12:
100000b17:
100000b19:
100000bla:

55
48
31
83
77
89
83
Of
48
48
73
0f
01
0f
01
0f
01
0f
01
5d
c3

89
cO
fe
2e
f1
cé6
b6
8d
39
1c
b6
do
b6
c2
b6
de
b6
£0

Loop Indexing

pushqg
e5
xorl
fa
ja
movl
05
04 0f
51 01
£2
Jjae
54 0f 01
addl
54 0f 02
addl
74 0f 03
addl
44 0f 04
addl
popq
retq

srbp

movqg %rsp, %rbp

%$eax, %eax

cmpl $-6, %esi

46 <_Zllsum handfulPhj+0x39>
%esi, %ecx

addl $5, %esi

movzbl (%rdi,%rcx), %eax
leaqg 1(%rcx), %rdx

cmpq %rsi, %rdx

28 < Zllsum_ handfulPhj+0x39>
movzbl 1(%rdi,%rcx), %edx
%edx, %eax

movzbl 2 (%rdi,%rcx), %edx
%eax, %edx

movzbl 3(%rdi,%rcx), %esi
%edx, %esi

movzbl 4 (%rdi,%rcx), %eax
%esi, %eax

$rbp

clang++ -02

17

Why Undefined Behavior

Behavior is undefined in C/C++ because there’s a cost to run-time checks

* Invalid array access: arr[i]

* Use after free: free (x) ;
y = malloc(10);
*x = 3

* Integer overflow: x + y

* Use before initialization: int x;
if (complicated())
x =1;
if (also_complicated())
return x;

18-23

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

Ok:

copy from("hello", 5);

as long as BUFSIZE is 2 5

24-26

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

Also ok:

copy from("hello", 6);

as long as BUFSIZE is 2 6

27-28

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

Undefined:

copy from("hello", -2);

because memcpy requires a non-negative length

29-30

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

Ok:

copy from("hello", 0);

for any BUFSIZE

31-32

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

Undefined:

copy from(NULL, 5);

because memcpy requires non-NULL arguments

33-34

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) ({

memcpy (buffer, src, len);
return (src == NULL) ;

20
copy from(NULL, O0);

undefined because memcpy requires non-NULL arguments

35-36

Library Function Constraints

char buffer[BUFSIZE] ;
int copy from(const char *src, int len) {

memcpy (buffer, src, len);
return (src == NULL) ;

.
copy_ from(NULL, O0); might return 0!

undefined because memcpy requires non-NULL arguments

37

Library Function Constraints

0000000000000000 <copy from>:
0O: 48 83 ec 08
4 48 63 dé6
7: b9 10 00 00 00
c: 48 89 fe
£f: bf 00 00 00 0O
14: e8 00 00 00 0O

19: 31 cO
lb: 48 83 c4 08
1f: c3

sub $0x8,%rsp

movslqg %esi,srdx

mov $0x10, $ecx

mov $rdi, $rsi

mov $0x0, %edi

callg 19 <copy from+0x19>
Xor eax, seax

add $0x8,%rsp

retq

gcc -02

38

Undefined Behavior and Functions

Your functions inherit undefined behavior from primitives and library
functions

void rows (unsigned count, unsigned columns) {
return (count+columns-1) % columns;

The rows function is defined only for non-zero columns

39-40

Undefined Behavior and Programs

msdscript
2147483647
2147483647

msdscript
2147483647+1
-2147483648

41-42

Undefined Behavior and Programs

msdscript
2147483647
2147483647

msdscript
2147483647+1
-2147483648

always!?

43

Undefined Behavior and Programs

class NumVal : public Val {
int rep;

};

PTR (Val) NumVal::add to(PTR(Val) other wval) ({
PTR (NumVal) other num val = CAST (NumVal) (other wval);
if (other num val == nullptr)
throw std::runtime error("not a number");
else
return NEW(NumVal) (rep + other num val->rep);

44

Undefined Behavior and Programs

class NumVal : public Val {
int rep;

};

PTR (Val) NumVal::add to(PTR(Val) other wval) ({
PTR (NumVal) other num val = CAST (NumVal) (other wval);
if (other num val == nullptr)
throw std::runtime error("not a number");
else
return NEW(NumVal) (rep + other num val->rep);

Undefined on overflow

45

Undefined Behavior Sanitizer in Xcode

| arith4) B8 My Mac

=)

o T

[uly
Or

1

1

@ arith4) B My Mac

Build
> } 2 targets
> Run
Debug
Test
> , Debug
> Profile

Release

Analyze
> a Debug

Archive
Release

Duplicate Scheme

Finished running arith4 : arith4

o

Manage Schemes...

Info Arguments Options Diagnostics

Runtime Sanitization || Address Sanitizer

| Thread Sanitizer ©
Undefined Behavior Sanitizer ©

Runtime API Checking Main Thread Checker ©

Memory Management [| Malloc Scribble
Malloc Guard Edges
| Guard Malloc
| Zombie Objects
Malloc Stack

<

Shared

enable here

Close

or

fa

e

46

Undefined Behavior Sanitizer in CLion / CMake

In CMakelLists. txt:

SET (CMAKE CXX FLAGS "${CMAKE CXX FLAGS} -fsanitize=undefined")
SET (CMAKE_EXE LINKER FLAGS "${CMAKE EXE LINKER FLAGS} -fsanitize=undefined")

47

Undefined Behavior Sanitizer Results

msdscript
2147483647+1
..../value.cpp:26:28: runtime error: signed integer overflow:
2147483647 + 1 cannot be represented in type 'int'
-2147483648

48

Arithmetic Solutions

Option |: use floating-point

class NumVal : public Val {
double rep;

};

Option 2: use defined overflow

PTR(Val) NumVal::add to(PTR(Val) other val) ({

PTR (NumVal) other num val = CAST(NumVal) (other val);

if (other num val == nullptr)
throw std::runtime error("not a number");
else

return NEW(NumVal) ((unsigned)rep + (unsigned)other num val->rep);

49-50

Arithmetic Solutions

Option |: use floating-point

class NumVal : public Val {
double rep;

};

Option 2: use defined overflow

PTR(Val) NumVal::add to(PTR(Val) other val) ({
PTR (NumVal) other num val = CAST(NumVal) (other val);
if (other num val == nullptr)
throw std::runtime error("not a number");
else
return NEW(NumVal) ((unsigned)rep + (unsigned)other num val->rep);

specified to wrap around for unsigned

51

Arithmetic Solutions

Option |: use floating-point

class NumVal : public Val {
double rep;

};

Option 2: use defined overflow

PTR(Val) NumVal::add to(PTR(Val) other val) ({

PTR (NumVal) other num val = CAST(NumVal) (other val);

if (other num val == nullptr)
throw std::runtime error("not a number");
else

return NEW(NumVal) ((unsigned)rep + (unsigned)other num val->rep);

Option 3: implement bignums

52

Undefined Behavior Summary

Undefined behavior is
* tricky to understand

* frequently exposed by shifting compiler
optimization levels

* never ok

53-55

Safe Languages

Safe languages do not have “anything at all” undefined behavior

* Bad operations tend to become exceptions

Example: 1/0 raises divide-by-zero

« Some operations may still have unspecified effects

Example: multiple threads writing to a variable

56-58

Safety in Java

In Java:

* Integer arithmetic is fully specified
© 2147483647 + 1 reliably prroduces -2147483648

* Use after free is not possible
° there is no free

° garbage collection ensures memory safety

* Object and array references cannot be misused

> new is the only make to make a reference
° Casts are always checked

° Array bounds are always checked

59-61

Exceptions versus Segmentation Faults

What’s the difference beteween

my array[out of bound index]

triggering a seg fault versus raising an exception?

* Exception is raised reliably

= unlikely to be a security risk

« Compiler cannot rearrange computation on the assumption that there will
be no problem

62-65

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior
typed: static guarantees about run-time behavior

fishes[favorite] .swim()

66-68

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

Java: Defintely an array of Fish

69

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

Java: Defintely an array of Fish
..ornull

70

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

JavaScript: Some value

71

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

Java: Defintely an index integer

72

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior
typed: static guarantees about run-time behavior

fishes[favorite] .swim()

Java: Defintely an index integer
... maybe in range

73

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

JavaScript: Some key... or not

74

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior
typed: static guarantees about run-time behavior

fishes[favorite] .swim()

Definitely returns a number
that can be added to other numbers

75

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior

typed: static guarantees about run-time behavior

fishes[favorite] .swim()

JavaScript: Returns some value

76

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior
typed: static guarantees about run-time behavior

fishes[favorite] .swim()

A type system can reduce the run-time cost of safety, but run-time checks
can also provide safety

77

Types and Safety

safe # typed

safe: no “anything can happen” undefined behavior
typed: static guarantees about run-time behavior

fishes[favorite] .swim()

“Stronger” types can provide more guarantees

e.g., Fish means a Fish instance, never null

78

Memory Safety

Historically, safety required automatic memory management:
* garbage collection
* reference counting

* static and stack only

79

Memory Safety

Historically, safety required automatic memory management:
* garbage collection General, but prone to pauses
* reference counting

* static and stack only

80

Memory Safety

Historically, safety required automatic memory management:
* garbage collection
* reference counting Disallows cycles, somewhat prone to pauses

* static and stack only

81

Memory Safety

Historically, safety required automatic memory management:
* garbage collection
* reference counting

* static and stack only limited

82

Memory Safety

Historically, safety required automatic memory management:
* garbage collection
* reference counting

* static and stack only

A type system can also guarantee proper memory management

- MLKit — inference for allocating in a stack of regions
- Cyclone — regions enforced by type system
* Rust — ownership tracking in type checker

83-86

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

87-88

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

let s2 = s1;
// can't use sl anymore

89

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

s2 takes ownership let s2 = sl1;
// can't use sl anymore

90

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

{
let sl1 = String::from("hello");
greet(sl) ;
// can't use sl anymore
}

fn greet(s2 : String) {

91

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

{
let sl1 = String::from("hello");
greet(sl) ;
// can't use sl anymore
}

greet takes ownership

fn greet(s2 : String) {

92

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

let s2 = greet(sl);
// can use s2 here

fn String greet(s2 : String) {

93

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

greet(&sl) ;
// can still use sl here

fn greet(s2 : &String) {

94

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl = String::from("hello") ;

greet (&sl) borrow
// can still use sl here

fn greet(s2 : &String) {

95

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl = String::from("hello") ;
greet (&sl; borrow
// can still use sl here

fn greet(s2 : &String) {
cannot stash away — enforced by the borrow checker

96

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

greet(&sl, &sl);
// can still use sl here

fn greet(s2 : &String,
s3 : &String) {

97

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

greet(&sl, &sl);
// can still use sl here

immutable

fn greet(s2 : &String,
s3 : &String) {

98

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");

greet (&mut sl);
// can still use sl here

fn greet(s2 : &mut String) {

99

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");
greet (&mut sl, &sl), not allowed
// can still use sl here

fn greet(s2 : &mut String,
s3 : &String) {

100

Ownership in Rust

* Every object has a single owner variable

* When the owner goes away, the object goes away

let sl1 = String::from("hello");
greet (&mut sl, &mut sl), not allowed
// can still use sl here

fn greet(s2 : &mut String,
s3 : &mut String) {

101

Types

Types provide guarantees about run-time behavior

Some guarantees are useful for performance

102

