
What is the output of this program?

#include <iostream>

int main(int argc, const char * argv[]) {
 int x;
 std::cout << x << "\n";
 return 0;
}

A) 0

B) -272632584

C) Nobody expects the Spanish Inquisition!

D) Any of the above, and more

���

What is the output of this program?

#include <iostream>

int main(int argc, const char * argv[]) {
 int x;
 std::cout << x << "\n";
 return 0;
}

A) 0

B) -272632584

C) Nobody expects the Spanish Inquisition!

D) Any of the above, and more

6

Undefned Behavior

Using an uninitialized variable is undefned behavior

Undefned behavior doesn’t just mean that the number is unspecifed

It means that anything can happen

Safe languages do not have this kind of “anything can happen” rule

���

Loop Indexing

How many times does this loop iterate?

int sum_handful(int *arr, int start) {
 int sum = 0, end = start + 5;
 for (int i = start; i < end; i++)
 sum += arr[i];
 return sum;
}

��

Loop Indexing

How many times does this loop iterate?

int sum_handful(int *arr, int start) {
 int sum = 0, end = start + 5;
 for (int i = start; i < end; i++)
 sum += arr[i];
 return sum;
}

What if start is INT_MAX?

Since integer overfow is undefned behavior, a compiler is allowed to
generate code to always iterate 5 times

Or not

�����

Loop Indexing

__Z11sum_handfulPhi:
100000af0: 55 pushq %rbp
100000af1: 48 89 e5 movq %rsp, %rbp
100000af4: 48 63 c6 movslq %esi, %rax
100000af7: 0f b6 0c 07 movzbl (%rdi,%rax), %ecx
100000afb: 0f b6 54 07 01 movzbl 1(%rdi,%rax), %edx
100000b00: 01 ca addl %ecx, %edx
100000b02: 0f b6 4c 07 02 movzbl 2(%rdi,%rax), %ecx
100000b07: 01 d1 addl %edx, %ecx
100000b09: 0f b6 54 07 03 movzbl 3(%rdi,%rax), %edx
100000b0e: 01 ca addl %ecx, %edx
100000b10: 0f b6 44 07 04 movzbl 4(%rdi,%rax), %eax
100000b15: 01 d0 addl %edx, %eax
100000b17: 5d popq %rbp
100000b18: c3 retq

clang++ -O2

��

Loop Indexing

How many times does this loop iterate?

int sum_handful(int *arr, unsigned start) {
 int sum = 0; unsigned end = start + 5;
 for (unsigned i = start; i < end; i++)
 sum += arr[i];
 return sum;
}

Overfow for unsigned is not undefned behavior

����6

Loop Indexing

__Z11sum_handfulPhj:
100000ae0: 55 pushq %rbp
100000ae1: 48 89 e5 movq %rsp, %rbp
100000ae4: 31 c0 xorl %eax, %eax
100000ae6: 83 fe fa cmpl $-6, %esi
100000ae9: 77 2e ja 46 <__Z11sum_handfulPhj+0x39>
100000aeb: 89 f1 movl %esi, %ecx
100000aed: 83 c6 05 addl $5, %esi
100000af0: 0f b6 04 0f movzbl (%rdi,%rcx), %eax
100000af4: 48 8d 51 01 leaq 1(%rcx), %rdx
100000af8: 48 39 f2 cmpq %rsi, %rdx
100000afb: 73 1c jae 28 <__Z11sum_handfulPhj+0x39>
100000afd: 0f b6 54 0f 01 movzbl 1(%rdi,%rcx), %edx
100000b02: 01 d0 addl %edx, %eax
100000b04: 0f b6 54 0f 02 movzbl 2(%rdi,%rcx), %edx
100000b09: 01 c2 addl %eax, %edx
100000b0b: 0f b6 74 0f 03 movzbl 3(%rdi,%rcx), %esi
100000b10: 01 d6 addl %edx, %esi
100000b12: 0f b6 44 0f 04 movzbl 4(%rdi,%rcx), %eax
100000b17: 01 f0 addl %esi, %eax
100000b19: 5d popq %rbp
100000b1a: c3 retq

clang++ -O2

��

Why Undefned Behavior

Behavior is undefned in C/C++ because there’s a cost to run-time checks

• Invalid array access: arr[i]

• Use after free: free(x);
y = malloc(10);
*x = 3

• Integer overfow: x + y

• Use before initialization: int x;
if (complicated())
 x = 1;
if (also_complicated())
 return x;

• ...

�����

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

Ok:

copy_from("hello", 5);

as long as BUFSIZE is ≥ 5

����6

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

Also ok:

copy_from("hello", 6);

as long as BUFSIZE is ≥ 6

�����

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

Undefned:

copy_from("hello", -2);

because memcpy requires a non-negative length

�����

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

Ok:

copy_from("hello", 0);

for any BUFSIZE

�����

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

Undefned:

copy_from(NULL, 5);

because memcpy requires non-NULL arguments

�����

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

???:

copy_from(NULL, 0);

undefned because memcpy requires non-NULL arguments

����6

Library Function Constraints

char buffer[BUFSIZE];

int copy_from(const char *src, int len) {
 // len bytes from scr to buffer:
 memcpy(buffer, src, len);
 return (src == NULL);
}

???:

copy_from(NULL, 0); might return 0!

undefned because memcpy requires non-NULL arguments

��

Library Function Constraints

0000000000000000 <copy_from>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: 48 63 d6 movslq %esi,%rdx
 7: b9 10 00 00 00 mov $0x10,%ecx
 c: 48 89 fe mov %rdi,%rsi
 f: bf 00 00 00 00 mov $0x0,%edi
 14: e8 00 00 00 00 callq 19 <copy_from+0x19>
 19: 31 c0 xor %eax,%eax
 1b: 48 83 c4 08 add $0x8,%rsp
 1f: c3 retq

gcc -O2

��

Undefned Behavior and Functions

Your functions inherit undefned behavior from primitives and library
functions

void rows(unsigned count, unsigned columns) {
 return (count+columns-1) % columns;
}

The rows function is defned only for non-zero columns

�����

Undefned Behavior and Programs

$ msdscript
2147483647
2147483647

$ msdscript
2147483647+1
-2147483648

�����

Undefned Behavior and Programs

$ msdscript
2147483647
2147483647

$ msdscript
2147483647+1
-2147483648 always?

��

Undefned Behavior and Programs

class NumVal : public Val {
 int rep;

};

PTR(Val) NumVal::add_to(PTR(Val) other_val) {
 PTR(NumVal) other_num_val = CAST(NumVal)(other_val);
 if (other_num_val == nullptr)
 throw std::runtime_error("not a number");
 else
 return NEW(NumVal)(rep + other_num_val->rep);
}

��

Undefned Behavior and Programs

class NumVal : public Val {
 int rep;

};

PTR(Val) NumVal::add_to(PTR(Val) other_val) {
 PTR(NumVal) other_num_val = CAST(NumVal)(other_val);
 if (other_num_val == nullptr)
 throw std::runtime_error("not a number");
 else
 return NEW(NumVal)(rep + other_num_val->rep);
}

Undefned on overfow

��

Undefned Behavior Sanitizer in Xcode

enable here

�6

Undefned Behavior Sanitizer in CLion / CMake

In CMakeLists.txt:

SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -fsanitize=undefined")

��

Undefned Behavior Sanitizer Results

$ msdscript
2147483647+1
..../value.cpp:26:28: runtime error: signed integer overflow:
 2147483647 + 1 cannot be represented in type 'int'
-2147483648

��

Arithmetic Solutions

Option 1: use foating-point

class NumVal : public Val {
 double rep;

};

Option 2: use defned overfow

PTR(Val) NumVal::add_to(PTR(Val) other_val) {
 PTR(NumVal) other_num_val = CAST(NumVal)(other_val);
 if (other_num_val == nullptr)
 throw std::runtime_error("not a number");
 else
 return NEW(NumVal)((unsigned)rep + (unsigned)other_num_val->rep);
}

�����

Arithmetic Solutions

Option 1: use foating-point

class NumVal : public Val {
 double rep;

};

Option 2: use defned overfow

PTR(Val) NumVal::add_to(PTR(Val) other_val) {
 PTR(NumVal) other_num_val = CAST(NumVal)(other_val);
 if (other_num_val == nullptr)
 throw std::runtime_error("not a number");
 else
 return NEW(NumVal)((unsigned)rep + (unsigned)other_num_val->rep);
}

specifed to wrap around for unsigned

��

Arithmetic Solutions

Option 1: use foating-point

class NumVal : public Val {
 double rep;

};

Option 2: use defned overfow

PTR(Val) NumVal::add_to(PTR(Val) other_val) {
 PTR(NumVal) other_num_val = CAST(NumVal)(other_val);
 if (other_num_val == nullptr)
 throw std::runtime_error("not a number");
 else
 return NEW(NumVal)((unsigned)rep + (unsigned)other_num_val->rep);
}

Option 3: implement bignums

��

Undefned Behavior Summary

Undefned behavior is

• tricky to understand

• frequently exposed by shifting compiler
optimization levels

• never ok

�����

Safe Languages

Safe languages do not have “anything at all” undefned behavior

• Bad operations tend to become exceptions

Example: 1/0 raises divide-by-zero

• Some operations may still have unspecifed effects

Example: multiple threads writing to a variable

�6���

Safety in Java

In Java:

• Integer arithmetic is fully specifed

◦ 2147483647 + 1 reliably prroduces -2147483648

• Use after free is not possible

◦ there is no free

◦ garbage collection ensures memory safety

• Object and array references cannot be misused

◦ new is the only make to make a reference

◦ Casts are always checked

◦ Array bounds are always checked

���6�

Exceptions versus Segmentation Faults

What’s the difference beteween

my_array[out_of_bound_index]

triggering a seg fault versus raising an exception?

• Exception is raised reliably

⇒ unlikely to be a security risk

• Compiler cannot rearrange computation on the assumption that there will
be no problem

6��6�

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

66�6�

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

Java: Defntely an array of Fish

6�

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

Java: Defntely an array of Fish
... or null

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

JavaScript: Some value

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

Java: Defntely an index integer

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

Java: Defntely an index integer
... maybe in range

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

JavaScript: Some key... or not

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

Defnitely returns a number
that can be added to other numbers

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

JavaScript: Returns some value

�6

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

A type system can reduce the run-time cost of safety, but run-time checks
can also provide safety

��

Types and Safety

safe ≠ typed

safe: no “anything can happen” undefned behavior

typed: static guarantees about run-time behavior

fishes[favorite].swim()

“Stronger” types can provide more guarantees

e.g., Fish means a Fish instance, never null

��

Memory Safety

Historically, safety required automatic memory management:

• garbage collection

• reference counting

• static and stack only

��

Memory Safety

Historically, safety required automatic memory management:

• garbage collection

• reference counting

• static and stack only

General, but prone to pauses

��

Memory Safety

Historically, safety required automatic memory management:

• garbage collection

• reference counting

• static and stack only

Disallows cycles, somewhat prone to pauses

��

Memory Safety

Historically, safety required automatic memory management:

• garbage collection

• reference counting

• static and stack only limited

��

Memory Safety

Historically, safety required automatic memory management:

• garbage collection

• reference counting

• static and stack only

A type system can also guarantee proper memory management

• MLKit (1980s) – inference for allocating in a stack of regions

• Cyclone (2000s) – regions enforced by type system

• Rust (2010s) – ownership tracking in type checker

����6

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 ...
}

�����

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 let s2 = s1;
 // can't use s1 anymore
}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 let s2 = s1;
 // can't use s1 anymore
}

s2 takes ownership

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(s1);
 // can't use s1 anymore
}

fn greet(s2 : String) {

}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(s1);
 // can't use s1 anymore
}

fn greet(s2 : String) {

}

greet takes ownership

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 let s2 = greet(s1);
 // can use s2 here
}

fn String greet(s2 : String) {

}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&s1);
 // can still use s1 here
}

fn greet(s2 : &String) {

}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&s1);
 // can still use s1 here
}

fn greet(s2 : &String) {

}

borrow

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&s1);
 // can still use s1 here
}

fn greet(s2 : &String) {

}

borrow

cannot stash away — enforced by the borrow checker

�6

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&s1, &s1);
 // can still use s1 here
}

fn greet(s2 : &String,
 s3 : &String) {
}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&s1, &s1);
 // can still use s1 here
}

fn greet(s2 : &String,
 s3 : &String) {
}

immutable

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&mut s1);
 // can still use s1 here
}

fn greet(s2 : &mut String) {

}

��

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&mut s1, &s1);
 // can still use s1 here
}

fn greet(s2 : &mut String,
 s3 : &String) {
}

not allowed

���

Ownership in Rust

• Every object has a single owner variable

• When the owner goes away, the object goes away

{
 let s1 = String::from("hello");
 greet(&mut s1, &mut s1);
 // can still use s1 here
}

fn greet(s2 : &mut String,
 s3 : &mut String) {
}

not allowed

���

Types

Types provide guarantees about run-time behavior

Some guarantees are useful for performance

���

