
Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

1

Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in 1 + x2 + ... x100

2

Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in 1 + x2 + ... x100

each + is a new AddExpr

3

Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in 1 + x2 + ... x100

so, about 100 new AddExprs

4

Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in 1 + x2 + ... x100

 _let x3 = 3
...
_in _let x100 = 100
_in 1 + 2 + ... x100

5

Evaluation and Substitution

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in 1 + x2 + ... x100

 _let x3 = 3
...
_in _let x100 = 100
_in 1 + 2 + ... x100

Substituting 100 times
means 100 big copies

6

Separate Variable Dictionary

Idea: a dictionary on the side

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

7

Separate Variable Dictionary

Idea: a dictionary on the side

x1 = 1

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

8

Separate Variable Dictionary

Idea: a dictionary on the side

x2 = 2
x1 = 1

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

9

Separate Variable Dictionary

Idea: a dictionary on the side

x2 = 2
x1 = 1

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

no copy needed in each step

1�

Separate Variable Dictionary

Idea: a dictionary on the side

x2 = 2
x1 = 1

_let x1 = 1
_in _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x2 = 2
_in _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

 _let x3 = 3
...
_in _let x100 = 100
_in x1 + x2 + ... x100

no copy needed in each step

adding to dictionary
can be fast

11

Separate Variable Dictionary

Idea: a dictionary on the side

x100 = 100
...
x2 = 2
x1 = 1

...

x1 + x2 + ... x100

12

Just One Dictionary?

_let x = 1
_in _let x = 2
_in x

13

Just One Dictionary?

x = 1

_let x = 1
_in _let x = 2
_in x

 _let x = 2
_in x

14

Just One Dictionary?

x = 2
x = 1

_let x = 1
_in _let x = 2
_in x

 _let x = 2
_in x

 x

Seems ok if we always use the newest value

15�16

Just One Dictionary?

_let x = 1
_in (_let x = 2 _in x) + x

17

Just One Dictionary?

x = 1

_let x = 1
_in (_let x = 2 _in x) + x

 (_let x = 2 _in x) + x

18

Just One Dictionary?

x = 2
x = 1

_let x = 1
_in (_let x = 2 _in x) + x

 (_let x = 2 _in x) + x

 (x) + x

19

Just One Dictionary?

x = 2
x = 1

_let x = 1
_in (_let x = 2 _in x) + x

 (_let x = 2 _in x) + x

 (x) + x

 (2) + x

2�

Just One Dictionary?

x = 2
x = 1

_let x = 1
_in (_let x = 2 _in x) + x

 (_let x = 2 _in x) + x

 (x) + x

 (2) + x

 (2) + 2

Not consistent with substitution, so it’s wrong

A single dictionary is wrong because it applies everywhere, but substitution
applies to a specifc expression

21�23

Closures

To accurately imitate substitution, pair an expression and a dictionary

The pair is called a closure

The dictionary is called an environment y = 2

x = 1

_let x = 3
_in x+y

y = 4

24

Closures

To accurately imitate substitution, pair an expression and a dictionary

The pair is called a closure

The dictionary is called an environment y = 2

x = 1

_let x = 3
_in x+y

y = 4 x+y x = 3

y = 4

25

Closures

To accurately imitate substitution, pair an expression and a dictionary

The pair is called a closure

The dictionary is called an environment y = 2

x = 1

x+y x = 3

y = 4

26

Closures

To accurately imitate substitution, pair an expression and a dictionary

The pair is called a closure

The dictionary is called an environment y = 2

x = 1

x+y x = 3

y = 4

x x = 3

y = 4

y x = 3

y = 4

27

Different Environments

∅

_let x = 1
_in (_let x = 2
 _in x) + x

28

Different Environments

∅

_let x = 1
_in (_let x = 2
 _in x) + x

(_let x = 2
 _in x) + x

x = 1

29

Different Environments

∅

_let x = 1
_in (_let x = 2
 _in x) + x

(_let x = 2
 _in x) + x

x = 1

_let x = 2
_in x

x = 1 x x = 1

3�

Different Environments

∅

_let x = 1
_in (_let x = 2
 _in x) + x

(_let x = 2
 _in x) + x

x = 1

_let x = 2
_in x

x = 1

x x = 2

x = 1

x x = 1

31

Representing Environments

class Env {
 virtual PTR(Val) lookup(std::string find_name) = 0;
};

32

Representing Environments

class Env {
 virtual PTR(Val) lookup(std::string find_name) = 0;
};

used by VarExp::interp

33

Representing Environments

class Env {
 virtual PTR(Val) lookup(std::string find_name) = 0;
};

An environment is either
• empty
• a name and value added to an environment

class EmptyEnv : public Env {
 PTR(Val) lookup(std::string find_name) {
 throw std::runtime_error("free variable: "
 + find_name);
 }
};

class ExtendedEnv : public Env {
 std::string name;
 PTR(Val) val;
 PTR(Env) rest;

 PTR(Val) lookup(std::string find_name) {
 if (find_name == name)
 return val;
 else
 return rest->lookup(find_name);
 }
};

34�35

Closure Parts

x + y x = 3

y = 4

36

Closure Parts

x + y x = 3

y = 4

Expr Env

37

Closure Parts

x + y x = 3

y = 4

AddExpr ExtendedEnv

38

Closure Parts

x + y x = 3

y = 4

Expr Env

39

Implicit Closures

Shortcut: Don’t actually allocate a closure to interp it;
instead, pass an environment to interp

class Expr {

 virtual PTR(Val) interp(PTR(Env) env) = 0;
};

So,

expr->interp(env)

evaluates the closure combining body and env

4��41

Implicit Closures

Shortcut: Don’t actually allocate a closure to interp it;
instead, pass an environment to interp

class Expr {

 virtual PTR(Val) interp(PTR(Env) env) = 0;
};

So,

expr->interp(env)

Expr Env

evaluates the closure combining body and env

42

Interpreting Subexpressions

x+y x = 3

y = 4

x x = 3

y = 4

y x = 3

y = 4

this

lhs
rhs

env env env

Passing env to subexpressions propagates the environment:

PTR(Val) AddExpr::interp(PTR(Env) env) {
 return lhs->interp(env)->add_to(rhs->interp(env));
}

43�44

Interpreting Subexpressions

_let x = 3
_in x+y

y = 4 x+y x = 3

y = 4

this

env new_env

body

Extend env to to add a binding:

PTR(Val) LetExpr::interp(PTR(Env) env) {
 PTR(Val) rhs_val = rhs->interp(env);
 PTR(Env) new_env = NEW(ExtendedEnv)(lhs, rhs_val, env);
 return body->interp(new_env);
}

45�46

Allocating Explicit Closures

Passing an Env to interp mostly avoids the need to allocate closures

PTR(Val) FunExpr::interp(PTR(Env) env) {
 return NEW(FunVal)(formal_arg, body);
}

47�48

Allocating Explicit Closures

Passing an Env to interp mostly avoids the need to allocate closures

PTR(Val) FunExpr::interp(PTR(Env) env) {
 return NEW(FunVal)(formal_arg, body);
}

_fun (x) x + y y = 4
_fun (x) x + y

This would be wrong, because body loses its environment in a FunVal

49

Allocating Explicit Closures

Passing an Env to interp mostly avoids the need to allocate closures

PTR(Val) FunExpr::interp(PTR(Env) env) {
 return NEW(FunVal)(formal_arg, body);
}

_fun (x) x + y y = 4 _fun (x) x + y y = 4

PTR(Val) FunExpr::interp(PTR(Env) env) {
 return NEW(FunVal)(formal_arg, body, env);
}

This is right, because env is kept with body in a FunVal
So, add an env feld to FunVal (but not FunExpr)

5��52

Calling Functions

Call _fun (x) x + y y = 4
with actual_arg

PTR(Val) FunVal::call(PTR(Val) actual_arg) {
 return body->interp(NEW(ExtendedEnv)(formal_arg, actual_arg, env));
}

x + y x = actual_arg

y = 4

53�54

Interpreter Changes

• Expr::interp should not call Expr::subst, anymore

• Expr::subst can be removed

• Val::to_expr can be removed

• Val::to_string is needed to print Expr::interpret results

◦ print function values as just [function]

55

Performance

fib(fib)(28)

Debug Release
substitution
 no free 4.38 2.49
 shared_ptr 23.98 7.43
environment
 no free 1.05 0.59
 shared_ptr 5.16 1.60

racket -j 0.14

56�57

Performance

fib(fib)(28)

Debug Release
substitution
 no free 4.38 2.49
 shared_ptr 23.98 7.43
environment
 no free 1.05 0.59
 shared_ptr 5.16 1.60

racket -j 0.14
racket 0.008

58

Performance

fib(fib)(28)

Debug Release
substitution
 no free 4.38 2.49
 shared_ptr 23.98 7.43
environment
 no free 1.05 0.59
 shared_ptr 5.16 1.60

racket -j 0.14
racket 0.008

racket direct 0.002
g++ -O2 direct 0.002

“direct” means fib as a normal
recursive function

59

