
TCP

Reliable delivery
all the good things from last time

Connection-oriented

Full duplex (= bidirectional)

1

TCP Echo Server in Java

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;

public class Main {
 public static void main(String[] args) throws IOException {
 int server_port = 5678;
 ServerSocket listener = new ServerSocket(server_port);
 System.out.println("Listening at " + server_port);

 for (int count = 1; true; count++) {
 Socket socket = listener.accept();
 InputStream input = socket.getInputStream();
 OutputStream output = socket.getOutputStream();
 byte[] buffer = new byte[5];

 int got = input.read(buffer);

 System.out.println(count + " Heard from " + socket.getInetAddress() + " " + socket.getPort());
 for (int i = 0; i < got; i++)
 System.out.printf(" %d", buffer[i]);
 System.out.print("\n");

 output.write(buffer, 0, got);

 socket.close();
 }
 }
}

2

TCP Echo Client in Java

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;

public class Main {
 public static void main(String[] args) throws IOException {
 int server_port = 5678;
 Socket socket = new Socket("localhost", server_port);
 InputStream input = socket.getInputStream();
 OutputStream output = socket.getOutputStream();
 byte[] buf = new byte[3];

 buf[0] = 10;
 buf[1] = 20;
 buf[2] = 30;

 output.write(buf);
 int got = input.read(buf);
 for (int i = 0; i < got; i++)
 System.out.printf(" %d", buf[i]);
 System.out.print("\n");

 socket.close();
 }
}

3

Client-Side TCP

application application ... application

operating system10.18.230.214

link

4

Client-Side TCP

application application ... application

operating system10.18.230.214

link

tcp_connect(~on: 155.98.65.55, 22)

5

Client-Side TCP

application application ... application

TCP

1234
to:

155.98.65.55

22

operating system10.18.230.214

link

6

Client-Side TCP

application application ... application

TCP

1234
to:

155.98.65.55

22

operating system10.18.230.214

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22
SYN

connection
request

7

Client-Side TCP

application application ... application

TCP

1234
to:

155.98.65.55

22

operating system10.18.230.214

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22

cat hello.txt

cat hello.txt

8

Server-Side TCP

application application ... application

operating system155.98.65.55

link

9

Server-Side TCP

application application ... application

operating system155.98.65.55

link

lnr = tcp_listen(22)

10

Server-Side TCP

application application ... application

TCP listen

22

operating system155.98.65.55

link

11

Server-Side TCP

application application ... application

TCP listen

22

operating system155.98.65.55

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22
SYN

connection
request

12

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22
SYN

connection
request

13

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

14

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

tcp_accept(lnr)

15

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

16

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

IP header
src: 155.98.65.55
dest: 10.18.230.214
TTL: 59

TCP header
src: 22
dest: 1234

Hello, World!

17

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP

22
to:

128.2.17.45

7796

TCP listen

22

operating system155.98.65.55

link

18

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP

22
to:

128.2.17.45

7796

TCP listen

22

operating system155.98.65.55

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22

cat hello.txt

19

Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP

22
to:

128.2.17.45

7796

TCP listen

22

operating system155.98.65.55

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22

cat hello.txt TCP segment

20

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

21

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

header size in 32-bit words

22

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

CWR and ECE are for
congestion notifcation

23

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

RST, SYN, and FIN are for
connection management

24

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

number of bytes the receiver
is ready to accept

25

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

1’s complement of sum
of 16-bit words

26

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

corresponds to bytes sent
previously, not counting
new data here —
and counts bytes, not packets

27

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

valid when ACK fag is set

28

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

corresponds to all bytes
received, so indicates
next expected byte number

29

TCP Segment Details

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

corresponds to all bytes
received, so indicates
next expected byte number

cumulative acknowledgements

30

Sender and Receiver Fields

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

32 bits

source port destination port
sequence number

acknowledgement number
head lenunused

C
W
R

EC
E

U
R
G

A
C
K

PS
H
R
ST
SY
N
FI
N receive window

checksum urgent data pointer

options

application’s data

packets sent by host A packets sent by host B

31

Example Sequence

host A host B

seq=42, ACK=79, data="abc"

seq=7
9, AC

K=45,
 data

="ok"

seq=45, ACK=81, data="!"

32

Example Sequence

host A host B

seq=42, ACK=79, data="abc"

seq=7
9, AC

K=45,
 data

=""

seq=45, ACK=79, data="!"

33

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

34

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

initiating a connection

35

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

random, chosen by client

36

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

random, chosen by server

37

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...zero ever after

38

TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

application data starts here

39

TCP Handshake: Initiating a Connection

client host

connection
request

s = connect(~on: srv_host, srv_port)

ACK

server host
lnr = listen(srv_port)

connection
granted

s = accept(lnr)

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

40

TCP Handshake: Initiating a Connection

client host

connection
request

s = connect(~on: srv_host, srv_port)

ACK

server host
lnr = listen(srv_port)

connection
granted

s = accept(lnr)

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

41

Buffers and Flow Control

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

42

Buffers and Flow Control

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

43

Buffers and Flow Control

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

When reporting cumulative ACK,
also report allocated buffer size
as the receive window size

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

44

Buffers and Flow Control

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

When reporting cumulative ACK,
also report allocated buffer size
as the receive window size

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

 Use other’s receive window
to size send window

45

Buffers and Flow Control

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

When reporting cumulative ACK,
also report allocated buffer size
as the receive window size

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

 Use other’s receive window
to size send window

But don’t go down to 0!

46

Out-of-Order ACK Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

47

Out-of-Order ACK Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

When receiving packet not expected,
immediately re-ACK for earlier

48

Out-of-Order ACK Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

When the sender see this third,
out-of-order ACK, it will immediately
repeat unACKed packets

49

In-Order ACK Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

When an in-order packet is received,
wait a little while, in case the ACK
can cover more

50

Timeout Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

51

Timeout Policy

sending side of client

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of client

received
and ACKed{

receive base

sending side of server

sent
and ACKed{

send base

sent
but not

yet ACKed

window

not yet
sent{

receiving side of server

received
and ACKed{

receive base

Resend on timeout, but
double timeout if no ACK

⇒ exponential backoff

52

Closing TCP Connections

Each send end of a connection can be closed separately

The shutdown sustem call can close only one direction
of a socket, while close closes both

When a sending end is closed, the other host’s receive end
produces EOF — but new data still can be sent the other way

The connection terminates only after all send ends are closed

The OS socket representing a connection stays allocated until
both the send and receive parts are closed

53

Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close

54

Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close

closed

closed
timed wait

55

Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close

closed

closed
timed wait

Creating a new socket with the same address and the fag
SO_REUSEADDR forces the end of the timed-wait step

56

Summary

TCP: connection-oriented and full duplex

• server listens at a port number

• client connects a socket to that a port number

• server accepts a socket from the listener

In a TCP packet:

• Sequence numbers and acknowledgment numbers implement
cumulative acknowledgments

• Window sizes enable fow control

Setup with SYN ACK, teardown with FIN ACK

57

