
TCP

Reliable delivery
all the good things from last time

Connection-oriented

Full duplex (= bidirectional)
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TCP Echo Server in Java

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;

public class Main {
    public static void main(String[] args) throws IOException {
        int server_port = 5678;
        ServerSocket listener = new ServerSocket(server_port);
        System.out.println("Listening at " + server_port);

        for (int count = 1; true; count++) {
            Socket socket = listener.accept();
            InputStream input = socket.getInputStream();
            OutputStream output = socket.getOutputStream();
            byte[] buffer = new byte[5];

            int got = input.read(buffer);

            System.out.println(count + " Heard from " + socket.getInetAddress() + " " + socket.getPort());
            for (int i = 0; i < got; i++)
                System.out.printf(" %d", buffer[i]);
            System.out.print("\n");

            output.write(buffer, 0, got);

            socket.close();
        }
    }
}
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TCP Echo Client in Java

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;

public class Main {
    public static void main(String[] args) throws IOException {
        int server_port = 5678;
        Socket socket = new Socket("localhost", server_port);
        InputStream input = socket.getInputStream();
        OutputStream output = socket.getOutputStream();
        byte[] buf = new byte[3];

        buf[0] = 10;
        buf[1] = 20;
        buf[2] = 30;

        output.write(buf);
        int got = input.read(buf);
        for (int i = 0; i < got; i++)
            System.out.printf(" %d", buf[i]);
        System.out.print("\n");

        socket.close();
    }
}
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Client-Side TCP

application application ... application

operating system10.18.230.214

link
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Client-Side TCP

application application ... application

operating system10.18.230.214

link

tcp_connect(~on: 155.98.65.55, 22)
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Client-Side TCP
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Client-Side TCP

application application ... application
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Server-Side TCP

application application ... application

operating system155.98.65.55

link
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Server-Side TCP

application application ... application

operating system155.98.65.55

link

lnr = tcp_listen(22)
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Server-Side TCP
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link
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Server-Side TCP
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Server-Side TCP
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Server-Side TCP
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Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

16



Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP listen

22

operating system155.98.65.55

link

IP header
src: 155.98.65.55
dest: 10.18.230.214
TTL: 59

TCP header
src: 22
dest: 1234

Hello, World!
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Server-Side TCP
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Server-Side TCP

application application ... application

TCP

22
to:

10.18.230.214

1234

TCP

22
to:

128.2.17.45

7796

TCP listen

22

operating system155.98.65.55

link

IP header
src: 10.18.230.214
dest: 155.98.65.55
TTL: 64

TCP header
src: 1234
dest: 22

cat hello.txt

19



Server-Side TCP

application application ... application
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TCP Segment Details

32 bits

source port destination port
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head lenunused
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application’s data
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TCP Segment Details
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previously, not counting
new data here —
and counts bytes, not packets
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TCP Segment Details
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TCP Segment Details
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cumulative acknowledgements
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Sender and Receiver Fields

32 bits

source port destination port
sequence number

acknowledgement number
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packets sent by host A packets sent by host B
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Example Sequence

host A host B

seq=42, ACK=79, data="abc"

seq=7
9, AC

K=45,
 data

="ok"

seq=45, ACK=81, data="!"
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Example Sequence

host A host B

seq=42, ACK=79, data="abc"

seq=7
9, AC

K=45,
 data

=""

seq=45, ACK=79, data="!"
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TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...
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TCP Handshake: Initiating a Connection
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initiating a connection
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TCP Handshake: Initiating a Connection
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TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...zero ever after
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TCP Handshake: Initiating a Connection

client host

connection
request

ACK

server host

connection
granted

SYN=1, seq=C

SYN=1,
 seq=S

, ACK=
C+1

SYN=0, seq=C+1, ACK=S+1, data=...

application data starts here
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TCP Handshake: Initiating a Connection
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Buffers and Flow Control
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Buffers and Flow Control
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But don’t go down to 0!
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Out-of-Order ACK Policy
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Out-of-Order ACK Policy
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When receiving packet not expected,
immediately re-ACK for earlier
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Out-of-Order ACK Policy
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When the sender see this third,
out-of-order ACK, it will immediately
repeat unACKed packets
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In-Order ACK Policy
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When an in-order packet is received,
wait a little while, in case the ACK
can cover more
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Timeout Policy
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Timeout Policy
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Resend on timeout, but
double timeout if no ACK

⇒ exponential backoff
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Closing TCP Connections

Each send end of a connection can be closed separately

The shutdown sustem call can close only one direction
of a socket, while close closes both

When a sending end is closed, the other host’s receive end
produces EOF — but new data still can be sent the other way

The connection terminates only after all send ends are closed

The OS socket representing a connection stays allocated until
both the send and receive parts are closed
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Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close
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Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close

closed

closed
timed wait
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Closing TCP Connections

Host A Host B

FIN

ACK

FIN

ACK

close

close

closed

closed
timed wait

Creating a new socket with the same address and the fag
SO_REUSEADDR forces the end of the timed-wait step
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Summary

TCP: connection-oriented and full duplex

• server listens at a port number

• client connects a socket to that a port number

• server accepts a socket from the listener

In a TCP packet:

• Sequence numbers and acknowledgment numbers implement
cumulative acknowledgments

• Window sizes enable fow control

Setup with SYN ACK, teardown with FIN ACK
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