Side Channels

A side channel is visible information about how your program runs that
is not part of its normal input and output

X (
il

timing power emissions remenance

String Comparison

int check password(char *provided,

char *expected,

if (p_len != e len)

return 0O;

for (int 1 = 0; 1 < p len; 1i++)

if (provided[i]
return O;

return 1;

!= expected[i])

int p len,
int e len)

{

mwn

nwon
a

"aaaaa"
"aaaaaa"
"baaaaa"

"saaaaa"

"secaaa"

"secret"

I ns
Ins

I ns
2ns
2ns
3ns

S5ns

success!

11

Timing-Safe String Comparison

int check password(char *provided, int p len,
char *expected, int e len) {

int ok = (p_len == e len);
for (int 1 = 0; 1 < p len; 1i++)
ok = ok & (1 < e len) & (provided[1] == expected[i1 $ e len]);

return ok;

Time to check depends only on provided string length

Timing-Safe String Comparison

int check password(char *provided, int p len,
char *expected, int e len) {

int ok = (p_len == e len);
for (int 1 = 0; 1 < p len; 1i++)
ok = ok & (1 < e len) & (provided[1] == expected[i1 $ e len]);

return ok;

Time to check depends only on provided string length

... unless the C compiler notices a shortcut

Cauligi et al., SecDev 2017

FaCT: A Flexible, Constant-Time
Programming Language

Sunjay Cauligit Gary Soeller'

Ranjit Jhalaf

*Stanford University

Abstract—We argue that C is unsuitable for writing timing-
channel free cryptographic code that is both fast and readable.
Readable implementations of crypto routines would contain high-
level constructs like if statements, constructs that also introduce
timing vulnerabilities. To avoid vulnerabilities, programmers
must rewrite their code to dodge intuitive yet dangerous con-
structs, cluttering the codebase and potentially introducing new
errors. Moreover, even when programmers are diligent, compiler
optimization passes may still introduce branches and other
sources of timing side channels. This status quo is the worst of
both worlds: tortured source code that can still yield vulnerable
machine code. We propose to solve this problem with a domain-
specific language that permits programmers to intuitively express
crypto routines and reason about secret values, and a compiler
that generates efficient, timing-channel free assembly code.

Fraser Brown™ Brian Johannesmeyer! Yunlu Huang’

Deian Stefan'
tUC San Diego

been susceptible to timing attacks that allowed (even remote
network) attackers to recover secret keys.

To avoid introducing timing vulnerabilities, developers
translate unsafe C functions into safe constant-time func-
tions using a selection of standard recipes. For example,
to implement a safe version of the conditional assignment
from the RSA function above, the alert developer rewrites
“if (secret) x = expr” to avoid branching on the se-
cret; they choose their favorite “recipe” to convert the
snippet into constant-time code. Conceptually, this vulnera-
ble code is equivalent to the branchless arithmetic assign-
ment “x = (secret * expr) + (1 - secret) * x.” In this
rewrite, x takes on the value expr if the secret bit is

anmal ta Ana+ it ramainc tha cama whan carrat+ ic ammal

15

Another ldea: Don’t Compare Password Strings

As you know, a server should not store and compare password strings

Comparing hashes is not so dangerous:
* Hash of input depends only on the input length

* Getting a prefix of a hash right doesn’t help find the whole hash

17

Modular Exponentiation for RSA Decryption

Dec(x) = xPV3CKY 16d N

result = x;

for (int i = KEY BITS-1; i >= 0; i--) {
result = (result * result) % N;
1f (is bit set(private key, 1))

result = (x * result) % N;

+ lIteration count is independent of private key
- More work every time a key bit is set
= timing indicates number of bits set

= The extra work is reflected not only by time, but power!

= power indicates which bits are set

21

Modular Exponentiation for RSA Decryption

Dec(x) = xPV3CKY 16d N

result = x;

for (int i = KEY BITS-1; i >= 0; i--) {
result = (result * result) % N;
1f (is bit set(private key, 1))

result = (x * result) % N;

+ Iteration countis

- More work every t

= The extra work is .-

V4 I 7 1

= power indicates which bits are set

22

Genkin et al.,, CHES 2014

------- > Key = 1110111011..

Same idea works with electromagnetic field measurements!

24

Genkin et al., CRYPTO 2014

... or even with sound!

(a) Asus N55SF (b) Dell Inspiron 7720 (c) HP ProBook 4530s

(d) HP Pavilion Sleekbook 15-b005€j (e) Samsung NP300V5A (f) Lenovo ThinkPad W530

Figure 8: Acoustic emanations (2sec, 0-35kHz) of various target computers performing MUL, HLT and
MEM in this order. Note that the three operations can be distinguished on all machines.

25

Acoustic Side Channel Attack

) o YO
-

"superSecret"

B2 i1 I [I3 I I
NENNENENONEE
i Bl I Bl O El BN S O B B
- T EFERET
"lAllelrlGlNIJlKlll I Ism
N N N N N N N N
o AN ol

vvvvv

4
[

Harrison et al. (EuroS&PW’23): practical with 25 samples from each of 36 keys

27

Differential Fault Analysis

Differential fault analysis pokes at hardware to see what happens:
* apply too-high or too-low voltage
* short pins

* expose to radiation

Jog [:';’_\o

... well outside anything you have to worry about in software

29

Remenance

void decrypt(....) {
key private key;

load private key (&private key);
rsa decrypt (&private key,);

void work(....) {
char buffer[lo];

int main () {
decrypt(....);
work(....);

30

Remenance

void decrypt(....) {
key private key;

load private key (&private key);
rsa decrypt (&private key,);

void work(....) {
char buffer[lo];

int main () {
= decrypt (....);
work(....);

stack “bottom”

rsp>

stack “top”

31

Remenance

void decrypt(....) {
key private key;

load private key (&private key);

=) rsa decrypt (&private key,);
}

void work(....) {
char buffer[lo];

int main () {
decrypt(....);
work(....);

stack “bottom”

Secret

super

}private_key

rsp>

stack “top”

32

Remenance

void decrypt(....) {
key private key;

load private key (&private key);
rsa decrypt (&private key,);

void work(....) {
char buffer[lo];

int main () {
decrypt(....);

= work(....);

}

stack “bottom”

rsp>

stack “top”

33

Remenance

void decrypt(....) {
key private key;

load private key (&private key);
rsa decrypt (&private key,);

void work(....) {
=p char buffer[1l6];

int main () {
decrypt(....);
work(....);

stack “bottom”

Secret

super

}buffer

rsp>

stack “top”

34

Remenance

Stack-allocated values are not erased on return

Heap-allocated values are not erased by free

C compiler is likely to eliminate an unnecessary(!) memset

#include <string.h>

extern void go(char *);

_work:
int work () { 00000000
char buffer[10]; 00000004
go (buffer); 00000009
memset (buffer, 0, 10); 0000000e
return 0O; 00000010
} 00000014

subg $0x18, %rsp
leag Oxe(%rsp), Srdi
callg go

xorl %eax, %eax

addg $0x18, S%rsp
retqg

36

Remenance

Stack-allocated values are not erased on return
Heap-allocated values are not erased by free

C compiler is likely to eliminate an unnecessary(!) memset

Java’s SecretKey class versus Key:
* Key has no destructor

* SecretKey destructor zeroes out memory

Unlike malloc, the mmap system call delivers zeroed memory

38

Summary

A side channel exposes program behavior outside of normal I/O
channels:

timing, power, EM, acoustics, remenance

A side channel attack tries to take advantage of side channels

Typical practice: use good languages and APIs, then hope for the best!

39

