Reliable Data Transfer

. AN
==t

Reliable Data Transfer

12

Reliable Data Transfer

o=

13

Reliable Data Transfer

14

Reliable Data Transfer

15

Reliable Data Transfer

==

26

Reliable Data Transfer

-

Focus only on packet-delivery problems

27

Reliable Data Transfer

o= =&

Focus only on packet-delivery problems

28

Reliable Data Transfer

Focus only on packet-delivery problems

39

Reliable Data Transfer

application
transport

network
link

physical

40

Reliable Data Transfer

application

ensure reliable

i

potentially unreliable

network
link

physical

51

Reliable Data Transfer

A
ensure reliable

i

potentiallyv unreliable

lost packets
reordered packets
duplicated packets

corrupted packets

55

Reliable Data Transfer

rdt send (msg)

rdt recv (msqg)

udt send (pkt)

udt recv (pkt)

76

“reliable data transfer”

Reliable Data Transfer

rdt send (msg)

rdt recv (msqg)

udt send (pkt)

udt recv (pkt)

77

“reliable data transfer”

“unreliable data transfer”

Reliable Data Transfer

rdt send (msg)

rdt recv (msqg)

udt send (pkt)

udt recv (pkt)

78

Reliable Data Transfer

rdt send (msg)

rdt recv (msqg)

udt send (pkt)

udt recv (pkt)

79

Reliable Data Transfer

rdt send (msg)

udt send (pkt)

rdt recv (msqg)
A

ransport

udt recv (pkt)

90

{

Reliable Data Transfer

rdt send (msg)

udt send (pkt)
+

udt recv (pkt)

PR

rdt recv (msqg)
A

ransport

udt recv (pkt)
+

udt send (pkt)

P

91

State Machines

condition

action

92

State Machines

condition

action

condition

@

condition

action

action

action

condition

93

State Machines

Vending machine example
button pushed(selection)
&& money >= costof (selection)
&& 1s available (selection)

money = 0
start vend(selection)

Wait for Wait for
coin vend

keep coins (

coin added(value)

money = money + value

c01n_return_lever()

return coins ()
money = 0

94

Assuming Reliable udt send and udt recv

sending host

rdt send (msqg)

pkt = make pkt (msg)
udt send (pkt)

Wait for
application

95

Assuming Reliable udt send and udt recv

sending host receiving host
rdt send (msg) udt recv (pkt)

pkt = make pkt (msg)
udt send (pkt)

msg = extract (pkt)

rdt recv (msqg)

Wait for
application

96

Assuming Reliable udt send and udt recv

What if pkt is corrupted?

sending host receiving host
rdt send (msg) udt recv (pkt)

pkt = make pkt (msg)
udt send (pkt)

msg = extract (pkt)

rdt recv (msqg)

Wait for
application

97

Assuming Reliable udt send and udt recv

sending host

rdt send (msqg)

pkt = make pkt (msg)
udt send (pkt)

Wait for
application

What if pkt is corrupted?

receiving host
udt recv (pkt)

msg = extract (pkt)

rdt recv (msqg)

Send twice and check as the same?

98

Checksum

99

Checksum

I'd like | apple, 2 bananas, and 3 cherries

100

Checksum

I'd like | apple, 2 bananas, and 3 cherries

Ok: | apple, 2 bananas, and 2 cherries

101

Checksum

I'd like | apple, 2 bananas, and 3 cherries

Ok: | apple, 2 bananas, and 2 cherries

102

Checksum

I'd like | apple, 2 bananas, and 3 cherries — which is 6 total

103

Checksum

I'd like | apple, 2 bananas, and 3 cherries — which is 6 total

Ok: | apple, 2 bananas, and 2 cherries — which is 6 total

104

Checksum

I'd like | apple, 2 bananas, and 3 cherries — which is 6 total

Ok: | apple, 2 bananas, and 2 cherries — which is 6 total

105

Using a Checksum

rdt send (msg) udt recv (pkt) && !corrupt (pkt)

pkt = make pkt w chksum(msg) msg = extract (pkt)

udt send (pkt) rdt recv (msg)

Wait for
application

Wait for
packet

106

Using a Checksum

udt recv (pkt) && !corrupt (pkt)
rdt_send (msqg) msg = extract (pkt)
pkt = make pkt w chksum(msg)
udt send (pkt)

rdt recv (msg)

Wait for Wait for

packet

application

107

Using a Checksum

udt recv (pkt) && !corrupt (pkt)
rdt_send (msqg) msg = extract (pkt)
pkt = make pkt w chksum(msg)
udt send (pkt)

rdt recv (msg)

Wait for Wait for

packet

application

udt recv(r pkt) && 1s ack(r pkt)

108

udt recv (r pkt)

Using a Checksum

rdt send (msg)

pkt

make pkt w chksum(msqg)

udt send (pkt)

Wait for

application

&& is ack(r pkt)

udt recv (pkt) && !corrupt (pkt)

msg extract (pkt)
rdt recv (msg)

udp send(ack pkt)

Wait for
packet

109

udt recv (r pkt)

Using a Checksum

rdt send (msg)

pkt

make pkt w chksum(msqg)

udt send (pkt)

Wait for

application

&& is ack(r pkt)

udt recv (pkt) && !corrupt (pkt)

msg extract (pkt)
rdt recv (msg)

udp send (ack pkt)

Wait for
packet

udt recv (pkt) && corrupt (pkt)

udp_ send (nack pkt)

110

Using a Checksum

udt recv (pkt) && !corrupt (pkt)

rdt send (msg)

msg = extract (pkt)
rdt recv (msg)
udp send (ack pkt)

pkt = make pkt w chksum(msg)
udt send (pkt)

Wait for

Wait for

application packet

udt recv(r pkt) && 1s ack(r pkt)

udt recv (pkt) && corrupt (pkt)

udt recv(r pkt) && is nack(r pkt)
= = = = udp_ send (nack pkt)

udt send (pkt)

111

Using a Checksum

udt recv (pkt) && !corrupt (pkt)
rdt_send (msqg) msg = extract (pkt)
pkt = make pkt w chksum(msg)
udt send (pkt)

rdt recv (msg)

udp send (ack pkt)

Wait for
packet

Wait for

application

udt recv(r pkt) && 1s ack(r pkt)

udt recv (pkt) && corrupt (pkt)

udt recv(r pkt) && is nack(r pkt)
udt send (pkt)

udp_ send (nack pkt)

What if r pkt is corrupt?

112

Using a Checksum

udt recv (pkt) && !corrupt (pkt)
rdt_send (msqg) msg = extract (pkt)
pkt = make pkt w chksum(msg)
udt send (pkt)

rdt recv (msg)

udp send(ack pkt)

Wait for

Wait for

application packet

udt recv(r pkt) && 1s ack(r pkt)

udt recv (pkt) && corrupt (pkt)

udt recv(r pkt) && is nack(r pkt)
udt send (pkt)

udp_ send (nack pkt)

How do we avoid an ACK of ACK of ACK...?

113

rdt send (msg)

pkt = make pkt w chksum(msg, O0)
udt_send (pkt)

Wait for

Wait for
ACK

0

application

0

udt recv (r pkt)
&& 1s_ack(r pkt,

udt recv (r pkt)

&& 1is _ack(r pkt, 1)

Wait for
application

rdt send (msg)

pkt =

make pkt w chksum(msg, 1)
udt send (pkt)

Handling ACK Corruption

udt recv (pkt)

&& 'corrupt (pkt, 0)

= extract (pkt)
rdt recv (msg)

udt send(ack pkt 0)

msg

Wait for

packet packet
0

Wait for

udt recv (pkt)

&& 'corrupt (pkt, 1)

msg = extract (pkt)
rdt recv (msg)

udt send(ack pkt 1)

114

rdt send (msg)

pkt = make pkt w chksum(msg,
udt send (pkt)

Wait for

Wait for
ACK

0

application

0

udt recv (r pkt)

&& 1is _ack(r pkt, 1)

Wait for
application

rdt send (msg)

pkt =

make pkt w chksum(msg, 1)
udt send (pkt)

&& 1s_ack(r pkt,

Handling ACK Corruption

udt recv (r pkt)

udt recv (pkt)
0) &&

!corrupt (pkt, 0)

extract (pkt)
rdt recv (msg)

udt send(ack pkt 0)

msg

udt recv (pkt)

&& corrupt (pkt, 1)
udt send (nack pkt)

Wait for

packet

udt recv (pkt) |
&& corrupt (pkt, 0)

udt send(nack pkt)

udt recv (pkt)

&& 'corrupt (pkt, 1)

msg = extract (pkt)
rdt recv (msg)

udt send(ack pkt 1)

115

rdt send (msg)

pkt = make pkt w chksum(msg,

0)
udt send (pkt)

Wait for

Wait for
ACK

0

application

0

udt recv (r pkt)
&& 1is _ack(r pkt, 1)

Wait for
application

rdt send (msg)

make pkt w chksum(msg,
udt send (pkt)

pkt = 1)

udt recv (r pkt)

Handling ACK Corruption

We can use udt send(ack pkt 1) as

a NACK for udt send(ack pkt 0)
and vice versa

udt recv (pkt)
&& 1s_ack(r_pkt, 0)

&& 'corrupt (pkt, 0)
msg

extract (pkt)
rdt recv (msg)

udt send(ack pkt 0)

udt recv (pkt)
&& corrupt (pkt, 1)
udt send(ack pkt 0)

Wait for
packet

0

Wait for
packet

udt recv (pkt)
&& corrupt (pkt, 0)
udt send(ack pkt 1)

udt recv (pkt)
&& 'corrupt (pkt, 1)

msg

= extract (pkt)
rdt recv (msg)

udt send(ack pkt 1)

116

Handling ACK Corruption

rdt send (msg)

pkt = make pkt w chksum(msg, O0)
udt_send (pkt)

Wait for
application

0

Wait for

0

udt recv (r pkt)

udt recv (r pkt)
&& 1s_ack(r_pkt, 0)

&& !is _ack(r_pkt, 0)
udt send (pkt)

udt recv (r pkt)

&& !is_ ack(r_ pkt, 1)
udt send (pkt)

udt recv (r pkt)

&& 1is _ack(r pkt, 1)

Wait for
application

rdt send (msg)

pkt = make pkt w chksum(msg, 1)
udt_send (pkt)

udt recv (pkt)
&& corrupt (pkt, 0)

udt send(ack pkt 1)

udt recv (pkt)
&& !'corrupt (pkt, O

)

msg

extract (pkt)
rdt recv (msg)
udt send(ack pkt 0)

udt recv (pkt)
&& 'corrupt (pkt, 1)

Wait for
packet

msg

extract (pkt)
rdt recv (msg)
udt send(ack pkt 1)

udt recv (pkt)
&& corrupt (pkt, 1)

udt send(ack pkt 0)

117

Handling Corrupt and Lost Packets

rdt send (msg)

pkt = make pkt w chksum(msg, O0)
udt_send (pkt)

Wait for
application

0

Wait for

0
udt recv(r pkt) udt_recv (pkt)
udt recv(r pkt) && is ack(r pkt, 0) && !corrupt (pkt, 0)

&& !is _ack(r_pkt, 0)
|| timeout

udt send (pkt)

msg = extract (pkt)
rdt recv (msg)
udt send(ack pkt 0)

udt recv (pkt)
&& corrupt (pkt, 1)
udt send(ack pkt 0)

udt recv (r_pkt)
&& !is ack(r_ pkt, 1)
| | timeout

udt send (pkt)

Wait for
packet

udt recv (r pkt)
&& 1is _ack(r pkt, 1)

udt recv (pkt)
&& corrupt (pkt, 0)
udt send(ack pkt 1)

Wait for
application

udt recv (pkt)
&& 'corrupt (pkt, 1)

msg = extract (pkt)
rdt recv (msg)
udt send(ack pkt 1)

rdt send (msg)

pkt = make pkt w chksum(msg, 1)
udt_send (pkt)

118

Handling Corrupt and Lost Packets

rdt send (msg)

kt = k kt w chk (, 0) .
b oeemaiorn To handle duplicated and reordered packets,

use a sequence number that always counts up
instead of just 0 and |

Wait for
application

0

Wait for

0
udt recv(r pkt) udt recv (pkt)
&& is ack(r pkt, 0) && !corrupt (pkt, 0)

udt recv (r pkt)
&& !is _ack(r_pkt, 0)

| | timeout

udt send (pkt)

msg = extract (pkt)
rdt recv (msg)
udt send(ack pkt 0)

udt recv (pkt)
&& corrupt (pkt, 1)
udt send(ack pkt 0)

udt recv (r_pkt)
&& !is ack(r_ pkt, 1)

| | timeout
udt send (pkt)

Wait for
packet

0

Wait for
packet

udt recv (r pkt)

&& 1is _ack(r pkt, 1) udt recv (pkt)

&& corrupt (pkt, 0)
udt send(ack pkt 1)

Wait for
application

udt recv (pkt)
&& 'corrupt (pkt, 1)

msg = extract (pkt)
rdt recv (msg)
udt send(ack pkt 1)

rdt send (msg)

pkt = make pkt w chksum(msg, 1)
udt_send (pkt)

119

Choosing a Timeout

RTT is minimum useful timeout

* too small = resend data and ACKs unnecessarily

* too large = sender waits too long to resend

scale % avg(RTT) + stddev(RTT) is a good approach

122

Sequential Messages

time sender receiver

Throughput is limited by latency

124

Pipelined Messages

time sender receiver

0
0
A

0
X
A

\4

Need a way to track multiple packets in flight

126

Buffers

sending host

sent

sent but not

and ACKed sent

—— yet ACKed =

not yet

receiving host

received
and ACKed

—

127

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent

send base

receiving host

received
and ACKed

—

receive base

128

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent

send base

receiving host

received
and ACKed

—

receive base

129

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent

send base

receiving host

received
and ACKed

—

receive base

130

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent

send base

receiving host

received
and ACKed

—

receive base

131

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent
window—>

send base

receiving host

received
and ACKed

—

receive base

132

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Like a timeout, the window size needs to be chosen well

133

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent
K
window—>

send base

receiving host

received
and ACKed

—

receive base

134

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent
window—>

send base

receiving host

received
and ACKed

—

receive base

135

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Selective repeat: on timeout, re-send unACKed

136

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Selective repeat: on timeout, re-send unACKed
Each packet must be specifically ACKed

137

Buffers

sending host

sent
sent but not not yet
and ACKed yet ACKed sent
window—>
send base

receiving host

received
and ACKed

—

receive base

Go-Back=-=N: on timeout, re-send in window

138

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Go-Back=-=N: on timeout, re-send in window
Can use a cumulative ACK

139

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Go-Back=-=N: on timeout, re-send in window
Can use a cumulative ACK

140

Buffers

sending host receiving host
sent .
sent but not not yet received
and ACKed yet ACKed sent and ACKed
window—>
send base receive base

Go-Back=-=N: on timeout, re-send in window
Can use a cumulative ACK

141

Summary

Reliable data transfer can be implemented on top of an unreliable layer

State machines abstract over program details to explain just the
program’s states and transitions

« ACKs and NACKs
* sequence numbers for both ACKs and implicit NACKs

» cumulative ACKs versus selective repeat

142

