
Layers

5–7 application Firefox, ping, ...

messages GET / HTTP/1.1
Host: cs.utah.edu"

4 transport TCP, UDP, ...

segments TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

routers 3 network IP

packets IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

switches 2 link ethernet, WiFi, ...

frames Ethernet
src: A0-44-5F-63-8B-BC

IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

1 physical electrons, photons, ...

1

Layers

5–7 application Firefox, ping, ...

messages GET / HTTP/1.1
Host: cs.utah.edu"

4 transport TCP, UDP, ...

segments TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

checksum

routers 3 network IP

packets IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

checksum

switches 2 link ethernet, WiFi, ...

frames Ethernet
src: A0-44-5F-63-8B-BC

IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

CRC

1 physical electrons, photons, ...

2

Weak: Parity

A 1-bit checksum is a parity check
... since that 1 bit is either on/odd or off/even

10001010 → 1
10011010 → 0
10111010 → 1

Fast, but two corrupt bits cancel, which is
especially bad when corruption is bursty

10001010 → 1
11101010 → 0

4

Better: Checksum

Adding numbers and keeping low bits is better

10001010 11111010
10011110 10011110
10111010 10111010
10111110 10111110

10100000 ≠ 00010000

But it can miss many kinds of regular patterns

10001010 10001110
10011110 10011010
10111010 10111110
10111110 10111010
10100000 = 10100000

6

Strong: Cyclic Redundancy Check

Division is much better at mixing numbers

 2871088
43 ⟌

 5
 344
 349
 344
 378
 0
 37
 43
 46
 301
 305
 344
 374
 86
123456789

7

Strong: Cyclic Redundancy Check

Division is much better at mixing numbers

 2871088
43 ⟌

 5
 344
 349
 344
 378
 0
 37
 43
 46
 301
 305
 344
 374
 86
123456789

 2873413
43 ⟌

 30
 129
 159
 043
 058
 172
 177
 129
 146
 301
 315
 344
 375
 86
123556789

18

Strong: Cyclic Redundancy Check

Division is much better at mixing numbers

 2871088
43 ⟌

 5
 344
 349
 344
 378
 0
 37
 43
 46
 301
 305
 344
 374
 86
123456789

 2873413
43 ⟌

 30
 129
 159
 043
 058
 172
 177
 129
 146
 301
 315
 344
 375
 86
123556789

General division is
expensive on a CPU

Specialized division
can be fast, especially
in hardware

19

Strong: Cyclic Redundancy Check

A cyclic redundancy check (CRC) takes advantage of division:

R = remainder of D × 2r

G

d = number of bits to check
D = d bits of data
r = bits for hash result (typically 8, 12, 16, or 32)
G = a carefully chosen, agreed-on r+1-bit number
R = the result for D

For r = 32, IEEE standard is G = 0x104C11DB7

21

Strong: Cyclic Redundancy Check

A cyclic redundancy check (CRC) takes advantage of division:

R = remainder of D × 2r

G

d = number of bits to check
D = d bits of data
r = bits for hash result (typically 8, 12, 16, or 32)
G = a carefully chosen, agreed-on r+1-bit number
R = the result for D

For r = 32, IEEE standard is G = 0x104C11DB7

Detects any r-bit error burst

22

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC

23

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC

destination MAC

24

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC

source MAC

25

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC

IP

26

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC

between 46 and 1500 bytes

27

Ethernet Frame Layout

16 bytes

dest source type

payload

CRC CRC for the whole frame

28

Ethernet Physical Layer Layout

16 bytes

preamble SFD

dest source type

payload

CRC

inter-packet gap

29

Ethernet Physical Layer Layout

16 bytes

preamble SFD

dest source type

payload

CRC

inter-packet gap

Seven 10101010s to sync

30

Ethernet Physical Layer Layout

16 bytes

preamble SFD

dest source type

payload

CRC

inter-packet gap

Seven 10101010s to sync

One 10101011

31

Ethernet Physical Layer

Originally, machines on an ethernet LAN shared a wire

Modern ethernet is always switched: there’s a dedicated wire from each
machine to the switch

This makes MAC addresses somewhat redundant!

Many ethernet frames are not physically ethernet at all, because the easiest
way to create a new physical layer is to emulate an ethernet device

33

Coordinating Communication

Easy mode: point-to-point communication

Hard mode: shared communication medium

35

Coordinating Communication

Easy mode: point-to-point communication

Hard mode: shared communication medium

Goals:
• divide bandwidth fairly
• only one active

⇒ gets full bandwidth

36

Shared-Medium Strategy 1: Channel Partitioning

Time-division multiplexing (TDM):

···

time →
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

···

37

Shared-Medium Strategy 1: Channel Partitioning

Time-division multiplexing (TDM):

···

time →
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

···{
slot

38

Shared-Medium Strategy 1: Channel Partitioning

Time-division multiplexing (TDM):

···

time →
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

···{
slot {

frame

Frequency-division multiplexing (FDM):
same idea, but for simultaneous frequencies

40

Shared-Medium Strategy 1: Channel Partitioning

Time-division multiplexing (TDM):

···

time →
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

···{
slot {

frame

+ No collisions

+ Perfectly fair

- Poor utilization when some are idle

41

Shared-Medium Strategy 2: Turn Taking

Polling:

···
? ? ?

? ? ?

? ? ?

···

42

Shared-Medium Strategy 2: Turn Taking

Polling:

···
? ? ?

? ? ?

? ? ?

···

One node acts as the leader and polls others

43

Shared-Medium Strategy 2: Turn Taking

Polling:

···
? ? ?

? ? ?

? ? ?

···

A node with data to send gets a larger (but limited) window

44

Shared-Medium Strategy 2: Turn Taking

Polling:

···
? ? ?

? ? ?

? ? ?

···

+ Better utilization

- Polling causes delays

- Recovery needed if the leader fails

45

Shared-Medium Strategy 2: Turn Taking

Token passing:

···
!

!

!

!

!

!

 !

!

 !

!

 !

 !

···

46

Shared-Medium Strategy 2: Turn Taking

Token passing:

···
!

!

!

!

!

!

 !

!

 !

!

 !

 !

···

A node sends data, if any, then notifes next

47

Shared-Medium Strategy 2: Turn Taking

Token passing:

···
!

!

!

!

!

!

 !

!

 !

!

 !

 !

···

+ Better utilization

- Token-passing causes delays

- Recovery needed if any fails

48

Shared-Medium Strategy 3: Random Access

Random access:

···
!

!
!

!

···

Need collision detection and/or carrier sense

Random delay when collision is detected

+ Potentially better utilization

51

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

52

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

On success, a node can keep sending
as long as it has data

53

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

On confict, each node retries on
next slot probability P

54

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

Sometimes, we waste slots due to
those random waits

55

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

Slotted ALOHA, which needs synchronization:

+ Sole active nodes can use full bandwidth

+ Multiple active nodes get fair share

- Even after optimizing P, likely to get only 37% success

56

Random Access: ALOHA

···

a1 b1 c1 c1

a2 a2

a3 b3

a4 a4 a4

success success success success confict success empty confict success

···

Original unslotted ALOHA avoided synchronization:

- Success drop drops by half

because each local slot likely overlaps two other peer slots

57

Random Access: Carrier Sense

Carrier Sense Multiple Access (CSMA) means
“don’t talk when someone else is talking”

a1

a3 b3

59

Random Access: Carrier Sense

Carrier Sense Multiple Access (CSMA) means
“don’t talk when someone else is talking”

The catch: there’s a delay between the time that one node sends
and another node starts to sense it

a1

a3 b3

60

Random Access: Carrier Sense

Carrier Sense Multiple Access (CSMA) means
“don’t talk when someone else is talking”

The catch: there’s a delay between the time that one node sends
and another node starts to sense it

a3 b3

61

Random Access: Carrier Sense

Carrier Sense Multiple Access (CSMA) means
“don’t talk when someone else is talking”

The catch: there’s a delay between the time that one node sends
and another node starts to sense it

a1

a3 b3

62

Handling Conficts in CSMA/CD

a1

a3 b3

63

Handling Conficts in CSMA/CD

a1

a3 b3

Don’t send second when confict is detected

64

Handling Conficts in CSMA/CD

a1

a3

65

Handling Conficts in CSMA/CD

a1

a3

Stop send in progress when confict is detected

66

Handling Conficts in CSMA/CD

a1

a3 b3

67

Handling Conficts in CSMA/CD

a1

a3 b3

Some time need for confict detection

68

Handling Conficts in CSMA/CD

Random delay before retry

a1

a3 b3

69

Handling Conficts in CSMA/CD

a1 a1

a3 a3 b3

70

Handling Conficts in CSMA/CD

a1 a1

a3 a3 b3

Sends and re-sends do not need slot synchronization

71

Handling Conficts in CSMA/CD

Exponential back-off:
If another confict, double average retry delay

a1 a1

a3 a3 b3

72

Handling Conficts in CSMA/CD

a1 a1

a3 a3 b3

dprop = max delay for signal

dtrans = max duration for frame
effciency =

1

1 + 5
dprop
dtrans

73

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

74

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

Cable modem
termination system
(CMTS)
is in control

75

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz

31.7 MHz

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Shared line is split into
channels by frequency

— which is an example
of FDM

76

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz

31.7 MHz

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

More download channels
than upload channels

77

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz

31.7 MHz

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

All modems see all
download channels

Since only CMTS writes,
no need for slots or
collision handling

78

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz

31.7 MHz

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Shared upload channel
has slots

79

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz

31.7 MHz

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Shared upload channel
has slots

Slots are allocated
by CMTS

80

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz ! ? ?

31.7 MHz ! ? ?

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Shared upload channel
has slots

Periodic polling uses
designated slots

Slots are allocated
by CMTS

81

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz ! ? ?

31.7 MHz ! ? ?

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Shared upload channel
has slots

Periodic polling uses
designated slots

Slots are allocated
by CMTS

Centralized polling
ok, since CMTS
must always work

82

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz ! ? !!

31.7 MHz ! ? ?

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Requests may collide,
detected by not
getting an upload slot

83

DOCSIS Cable Internet Protocol

modem modem modem modem
CMTS

30.5 MHz ! ? !!

31.7 MHz ! ? ?

705.0 MHz

711.0 MHz

717.0 MHz

723.0 MHz

Requests may collide,
detected by not
getting an upload slot

Collision handled
by random delay
and then retry

84

Summary

Cyclic-redundancy check (CRC) commonly used at link layer

Link-to-physical transition often involves negotiating a shared medium

Two ways to share:

• Time-division multiplexing (TDM)

• Frequency-division multiplexing (FDM)

Three ways to allocate a division:

• polling

• token-passing

• random access

... with carrier sense and/or collision detection

85

Layers — Done!

5–7 application Firefox, ping, ...

messages GET / HTTP/1.1
Host: cs.utah.edu"

4 transport TCP, UDP, ...

segments TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

3 network IP

packets IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

2 link ethernet, WiFi, ...

frames Ethernet
src: A0-44-5F-63-8B-BC

IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

1 physical electrons, photons, ...

86

Layers — Done!

5–7 application Firefox, ping, ...

messages GET / HTTP/1.1
Host: cs.utah.edu"

4 transport TCP, UDP, ...

segments TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

3 network IP

packets IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

2 link ethernet, WiFi, ...

frames Ethernet
src: A0-44-5F-63-8B-BC

IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

1 physical electrons, photons, ...

When building systems, we
mostly get to work at this
level of abstraction

87

Layers — Done!

5–7 application Firefox, ping, ...

messages GET / HTTP/1.1
Host: cs.utah.edu"

4 transport TCP, UDP, ...

segments TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

3 network IP

packets IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

2 link ethernet, WiFi, ...

frames Ethernet
src: A0-44-5F-63-8B-BC

IP
src: 10.0.1.23

TCP
src port: 7786

GET / HTTP/1.1
Host: cs.utah.edu"

1 physical electrons, photons, ...

When building systems, we
mostly get to work at this
level of abstraction

Attacks sometimes
work by breaking a
leaky abstraction

88

