
Perfect Security

2



Ok, Not Completely Isolated...

The notion of isolation is useful for security, even if it doesn’t mean
completely disconnected from the world

The principle of least privilege means that actors should have only
the capabilities and connectivity that they need

• Implemented in part with access control

• Implemented in part with isolation

Isolation as a kind of capability: If two actors don’t share a thing, then misuse of the thing by
one (whether malicious or accidental) can’t break a use of the thing by the other

Good for maintenance and deployment as well as security

6



Representing Tasks

less isolated

threads
 

processes
 

virtual
machines

e.g., VirtualBox

machines
 

more isolated

��



Representing Tasks

less isolated

threads
 

processes
 

containers

e.g., Docker

virtual
machines

machines
 

more isolated

��



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Threads can easily interfere with
each other via shared objects

��



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Processes mostly have separate
fle descriptors, but can share
them via fork

��



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Virtual machines pretend
to be real machines, but
run within some OS

��



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Containers mostly have their
own flesystems, but can be
made to share with the host

2�



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Containers use host devices,
but virtualized, so that
access can be limited and
adressing can be separate

22



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Unlike a virtual machine, a
container uses the same kernel
as its host—but the rest of the
OS in a container can be different,
because the flesystem is separate

2�



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

2�



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

Especially helpful for deployment

2�



Representing Tasks

less isolated

threads
 

processes
 

containers virtual
machines

machines
 

more isolated

stack

address space

fle descriptors

flesystem

devices

kernel

processor

More points in between: chroot and namespaces

26



Toward Containers: chroot

/

usr home

alice

docs project

a.out data

bob

tmp opt

2�



Toward Containers: chroot

/

usr home

alice

docs project

a.out data

bob

tmp opt

$ chroot /home/alice/project /a.out

2�



Toward Containers: chroot

/

usr home

alice

docs project/

a.out data

bob

tmp opt

Filesystem as seen by a.out

$ chroot /home/alice/project /a.out

2�



Toward Containers: chroot

/

usr home

alice

docs project/

a.out data

bob

tmp opt

Filesystem as seen by a.out

$ chroot /home/alice/project /a.out

chroot is tricky to use directly, because executables need shared libraries
that are provided by the operating system

��



Toward Containers: chroot

/

usr home

alice

docs project/

a.out data

bob

tmp opt

Filesystem as seen by a.out

$ chroot /home/alice/project /a.out

Isolates only the flesystem
— and not, for example, process IDs

��



Linux Namespaces

A namespace in Linux is a generalization of chroot

• flesystem

• process IDs

• network interfaces (and therefore addresses)

• interprocess communication

• hostname

• users and groups

• time

Related concept: a sandbox is the
same kind of functionality more generally,
sometimes based on runtime support in a
programming language

A container system is a manageable API for namespaces

��



Docker

Docker builds on Linux namespaces:

• An image contains a flesystem, normally with a copy of an OS

/

usr home

alice

docs project

a.out data

bob

tmp opt

• A container starts with a copy of an image plus a confguration

/

usr home

alice

docs project

a.out data

bob

tmp opt

/

usr home

alice

docs project

a.out data

bob

tmp opt

and similar container systems and similar in other OSes

��



Docker

Typical uses:

• different OS distribution (capatible with host kernel)

• different set of installed libraries

• sandboxing to restrict network access, limit computation time, etc.

• reproducible builds

��



Docker

/

usr home

alice

docs project

a.out data

bob

tmp opt

$ docker image ls
REPOSITORY     TAG        IMAGE ID       CREATED         SIZE
debian         testing    0713af5d6328   8 months ago    117MB
ubuntu         18.04      8d5df41c547b   20 months ago   63.1MB
ubuntu         20.04      ba6acccedd29   2 years ago     72.8MB
archlinux      latest     481b70173ad4   2 years ago     387MB
racket/racket  latest     1ca0bea7d02d   4 months ago    244MB
pkg-build      latest     c6a6792dec0a   2 years ago     1.96GB

/

usr home

alice

docs project

a.out data

bob

tmp opt

$ docker container ls -a
CONTAINER ID   IMAGE           COMMAND      CREATED      ....
8f476a83a297   debian:testing  "bash"       8 months ago ....
7052d25067bd   racket/racket   "/bin/bash"  2 years ago  ....
d88cb393d42f   racket/racket   "/bin/bash"  2 years ago  ....

��



Dockerfles

Docker images are created by Dockerfle scripts

/

usr home

alice

docs project

a.out data

bob

tmp opt

FROM debian:stable-slim

RUN apt-get update -y \
    && apt-get install -y --no-install-recommends ca-certificates curl sqlite3 \
    && apt-get clean

RUN curl --retry 5 -Ls "${RACKET_INSTALLER_URL}" > racket-install.sh \
    && echo "yes\n1\n" | sh racket-install.sh --create-dir --unix-style --dest /usr/ \
    && rm racket-install.sh

ENV SSL_CERT_FILE="/etc/ssl/certs/ca-certificates.crt"
ENV SSL_CERT_DIR="/etc/ssl/certs"

RUN raco setup
RUN raco pkg config --set catalogs \
    "https://download.racket-lang.org/releases/${RACKET_VERSION}/catalog/" \
    "https://pkg-build.racket-lang.org/server/built/catalog/" \
    "https://pkgs.racket-lang.org" \
    "https://planet-compats.racket-lang.org"

Fetched from DockerHub

Smart sharing of data among images and containers makes them
relatively lightweight

�2



Creating Docker Containers

Create and start a container with docker run image

/

usr home

alice

docs project

a.out data

bob

tmp opt $ docker run -it debian:testing

��



Creating Docker Containers

Create and start a container with docker run image

/

usr home

alice

docs project

a.out data

bob

tmp opt $ docker run -it debian:testing

Start an existing container with docker start container_id

$ docker start -ia 8f476a83a297

��



Creating Docker Containers

Create and start a container with docker run image

/

usr home

alice

docs project

a.out data

bob

tmp opt $ docker run -it debian:testing

Start an existing container with docker start container_id

$ docker start -ia 8f476a83a297

Different containers from the same image have separate flesystem state

/

usr home

alice

docs project

a.out data

bob

tmp opt

/

usr home

alice

docs project

a.out data

bob

tmp opt

/

usr home

alice

docs project

a.out data

bob

tmp opt

��



Containers and Isolation

A container can be well isolated from its environment, but it still uses the
same kernel as the host operating system

A kernel bug could allow an exploit to escape a container

/

usr home

alice

docs project

a.out data

bob

tmp opt

/

usr home

alice

docs project

a.out data

bob

tmp opt

��



Virtual Machines

A virtual machine (VM) abstracts hardware instead of abstracting an
operating system

/

usr home

alice

docs project

a.out data

bob

tmp optVM

��



Virtual Machines

A virtual machine (VM) abstracts hardware instead of abstracting an
operating system

/

usr home

alice

docs project

a.out data

bob

tmp optVM

Kernel in a VM can be unrelated to the host OS running the VM

Machine’s interface is even simpler than kernel’s interface

6�



Virtual Machines

/

usr home

alice

docs project

a.out data

bob

tmp optVM
Two kinds of virtual machines

Docker on macOS uses a VM
to run Linux to run containers,
and it can use QEMU

Emulation uses an interpreter machine code

The emulated processor can be unrelated to host processor

example: QEMU

Virtualization uses hardware to interpret directly

Mostly just intercept system calls, must be the same processor

example: VirtualBox

6�



Virtual Machines

/

usr home

alice

docs project

a.out data

bob

tmp optVM
Two kinds of virtual machines

Emulation uses an interpreter machine code

The emulated processor can be unrelated to host processor

example: QEMU

Virtualization uses hardware to interpret directly

Mostly just intercept system calls, must be the same processor

Direct device access is an issue, so recent processors help
by offering specifc virtualization support, such as VT-x

example: VirtualBox

6�



Virtual Machines

/

usr home

alice

docs project

a.out data

bob

tmp optVM
Two kinds of virtual machines

Emulation uses an interpreter machine code

The emulated processor can be unrelated to host processor

example: QEMU

Virtualization uses hardware to interpret directly

Mostly just intercept system calls, must be the same processor

Direct device access is an issue, so recent processors help
by offering specifc virtualization support, such as VT-x

... but this is a hardware resource,
so it should be managed by the kernel

example: VirtualBox

6�



Hypervisor

A kernel supervises programs; a hypervisor supervises kernels

Can be between the hardware and OSes, like Xen:

Can be capable OS, like Linux with KVM:

Either form of hypervisor may
take advantage of hardware
support for virtualization

This is the main technology
behind cloud services

Mainframes have been
doing this since the 1960s

/

usr home

alice

docs project

a.out data

bob

tmp optVM

6�



Tradeoffs

less isolated

threads
 

processes
 

containers
 

virtual
machines

machines
 

more isolated

⇐ faster and easier slower and more secure ⇒

Threads sharing data is very fast, and
and starting a thread is easy, but
any thread failure also takes down other threads

Machines sharing data is slow, and
maintaining machines is diffcult, but
machines are completely autonomous

Containers a great compromise for many purposes

��



Summary

Isolation is good for software architecture, maintenance, and security

Containers and virtual machines provide useful degrees of isolation
in between mere processes and completely separate machines

Any layer of a system can be virtualized, and that creates many possibilities
to trade isolation, convenience, and performance

��


