
Denial of Service

1

Denial of Service

So far, we have looked at attacks that are about making a system do
something that it shouldn't

• jumping to the wrong code via buffer overfow

• running user input as code via code injection

• leaking information through side channels

A denial of service (DoS) attack is about preventing a system from
doing what it should

• making a server unresponsive to requests

• preventing an OS from running useful processes

3

Denial of Service

So far, we have looked at attacks that are about making a system do
something that it shouldn't

• jumping to the wrong code via buffer overfow

• running user input as code via code injection

• leaking information through side channels

A denial of service (DoS) attack is about preventing a system from
doing what it should

• making a server unresponsive to requests

• preventing an OS from running useful processes }
by keeping the system busy
or just crashing it

4

Why DoS Attacks?

Some possible reasons:

• Disadvantage a competitor

• Revenge

• Extortion

... and because it’s not that diffcult

6

Denial of Service

In general, a DoS involves using up some resource

• processing time

• network bandwidth

• memory

• ...

Attacker’s cost needs to be ≪ victim’s cost

8

Using Up an OS Resource

while (true) {
 fork();
}

A fork bomb like this tends to be a short-lived bug
instead of an attack!

Resources used up: process IDs, thread-scheduler time

Why it “works”:
easier to ask for a new process than to create one

1�

Network Attacks

Sending many requests from host to server is unlikely to create DoS:
server’s resources are likely on par with host’s

Successful attacks usually depend on one of these:

• using a small request to provoke an expensive response

• using a cheap resource to occupy a rare resource

• exploiting bystander hosts to offoad costs

• exploiting compromised bystander hosts to form a botnet

14

Expensive Response

Be careful about providing public interfaces to arbitrary computation

Examples:

• Handin server that runs homework submissions

• Directory service that allows arbitrarily complex queries

• File-format conversion service

Any service like these will need sandboxing and time/memory limits

1�

Occupying a Rare Resource

The HTTP protocol does not put a limit on a request size but a server can
easily impose a sensible limit

Less easily handled: a request that comes in slowly, occupying a socket
resource meanwhile

GET /index.html HTTP/1.1

1�

Occupying a Rare Resource

The HTTP protocol does not put a limit on a request size but a server can
easily impose a sensible limit

Less easily handled: a request that comes in slowly, occupying a socket
resource meanwhile

GET /index.html HTTP/1.1
Host: www.cs.utah.edu

��

Occupying a Rare Resource

The HTTP protocol does not put a limit on a request size but a server can
easily impose a sensible limit

Less easily handled: a request that comes in slowly, occupying a socket
resource meanwhile

GET /index.html HTTP/1.1
Host: www.cs.utah.edu
Accept-Encoding: gzip,

�1

Occupying a Rare Resource

The HTTP protocol does not put a limit on a request size but a server can
easily impose a sensible limit

Less easily handled: a request that comes in slowly, occupying a socket
resource meanwhile

GET /index.html HTTP/1.1
Host: www.cs.utah.edu
Accept-Encoding: gzip, deflate

Slowloris tries to keep a server’s connections occupied while sending it as
little data as possible and as infrequently as possible

�3

Occupying a Rare Resource: TCP SYNACK

client host

connection
request

ACK

server host

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

SYN=0,
 seq=C+1,

 ACK=S+1,
 data=...

�4

Occupying a Rare Resource: TCP SYNACK

client host

fake
connection
request

server host

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

��

Occupying a Rare Resource: TCP SYNACK

client host

fake
connection
request

server host

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

Makes the server allocate
and keep a socket

�6

Occupying a Rare Resource: TCP SYNACK

client host

fake
connection
request

server host

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

��

Occupying a Rare Resource: TCP SYNACK

client host

fake
connection
request

server host

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

Pick S based on C and client IP and port

�8

Occupying a Rare Resource: TCP SYNACK

client host

connection
request

ACK

server host

connection
granted

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

SYN=0,
 seq=C+1,

 ACK=S+1,
 data=...

��

Occupying a Rare Resource: TCP SYNACK

client host

connection
request

ACK

server host

connection
granted

connection
granted

SYN=1,
 seq=C

SYN=1,

seq=S,

ACK=C+
1

SYN=0,
 seq=C+1,

 ACK=S+1,
 data=...

Assuming S matches C, IP, and port

3�

Exploiting Bystanders

One problem with making a request is that you have to deal with the
answer

... unless you pretend to be someone else asking

Spoofng is using someone else as the “from” in a message that you write

email address, IP address, etc.

33

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

34

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

src: A src: B src: C src: D src: B src: A

3�

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

dest: A dest: B

dest: C dest: D

dest: B dest: A

36

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

dest:
 A

dest:
 C

dest:
 A

de
st
: B

de
st
: D

de
st
: B

3�

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

src: A src: B src: C src: D src: B src: A

dest:
 A

dest:
 C

dest:
 A

de
st
: B

de
st
: D

de
st
: B

dest: A dest: B

dest: C dest: D

dest: B dest: A

38

Exploiting Bystanders

Attack a DNS server:

Send many DNS requests
result can be much larger than request

Spoof return address
results go to other parts of the network

src: A src: B src: C src: D src: B src: A

dest:
 A

dest:
 C

dest:
 A

de
st
: B

de
st
: D

de
st
: B

dest: A dest: B

dest: C dest: D

dest: B dest: A

Possible solution: check packet src before forwarding

3�

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

4�

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

41

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

4�

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

43

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

44

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

1.3Tb/s sent to GitHub for 15 minutes

4�

Exploiting Bystanders

A 2018 GitHub attack used memcached requests,
and spoofed the request src to send all results to GitHub

answer can be much larger than query

1.3Tb/s sent to GitHub for 15 minutes

Should not have been publicly accessible

46

Compromised Bystanders

A botnet is a large collection of hosts that have been compromised and
made to run external code

botmaster

command and control
servers

rootkit-owned bots

victim

4�

Compromised Bystanders

A botnet is a large collection of hosts that have been compromised and
made to run external code

botmaster

command and control
servers

rootkit-owned bots

victim

Gradually amassed by scanning
addresses and ports to fnd
vulnerable hosts — often as
a periodic task of existing bots

48

Compromised Bystanders

A botnet is a large collection of hosts that have been compromised and
made to run external code

botmaster

command and control
servers

rootkit-owned bots

victim

Can direct bots to send messages
to the victim host all at once:
a distributed DoS (DDoS)
attack

4�

Compromised Bystanders

Early botnet days: many home computers suddenly on the internet with
poor security confgurations

Newer home OSes tend to be confgured and maintained more defensively

Modern bots: internet of things (IoT) devices

cameras, refrigerators, routers, etc.

IoT devices tend to run stripped-down Linux with a default password

��

Mirai Botnets

Since 2016, botnets based on Mirai malware have launched DDos attacks
and otherwise exploited (e.g., cryto mining) IoT devices

Try a web search on “mirai botnet news”

Bot-recruiting approach:

• scan addresses and ports by sending TCP SYN probes

• try logging into discovered hosts using a directory of default passwords

• clean out other malware(!)

• periodically scan peers to reinfect them in case of reboots

�4

Defenses

Primary tool against botnets is traffc classifcation to detect and reject
malicious packets

This is diffcult, because botnet traffc by design looks like normal traffc

Other strategies:

• timeouts to prevent SYN fooding and Slowloris

• rate-limiting to prevent a client from making too many requests

• traffc limiting through frewalls

• anti-spoofng routing

��

Summary

A denial of service (DoS) attack prevents a server from doing its job

A distributed denial of service (DDoS) attack solves the problem of
scaling requests to exceed a server’s capacity

A botnet is a way to scale and distribute an attack without having to pay
for it

�6

