Latency Numbers Every Programmer Should Know (Dean 2009)

LI cache reference	¹ / ₂ ns		
Branch mispredict	5 ns		
L2 cache reference	7 ns		
Mutex lock/unlock	25 ns		
Main memory reference	100 ns		
Compress I K bytes with Zippy	3,000 ns	3 µs	
Send I K bytes over I Gbps network	10,000 ns	10 µs	
Read 4 K randomly from SSD	150,000 ns	150 μs	
Read I MB sequentially from memory	250,000 ns	250 µs	
Round trip within same datacenter	500,000 ns	500 µs	
Read I MB sequentially from SSD	1,000,000 ns	I,000 µs	l ms
Disk seek	10,000,000 ns	10,000 µs	10 ms
Read I MB sequentially from disk	20,000,000 ns	20,000 µs	20 ms
Send packet CA→Netherlands→CA	150,000,000 ns	Ι 50,000 μs	150 ms

Propagation Delay

Time to travel along medium

Propagation Delay

Time to travel along medium, depends on physics

- distance travelled
- speed of link some fraction of the speed of light

 $delay_{propagation} = \frac{scale \times distance}{speed of light}$

Transmission Delay

Time to convert from bytes to medium

Transmission Delay

Time to convert from bytes to medium, depends on device and data

- device rate R
 - ° fiber, ethernet: I-400 Gbps
 - WiFi: ~10 Mbps
 - dial-up: 56.6 Kbps
- packet size

$$delay_{transmission} = \frac{size}{R}$$

Processing Delay

Time to inspect bytes and choose next step

Processing Delay

Time to inspect bytes and choose next step, depends on device speed

Typically a few nanoseconds, so we ignore it

 $delay_{processing} = 0$

Time packets bytes are held in a queue

Time packets bytes are held in a queue, depends on traffic

Time packets bytes are held in a queue, depends on traffic

incoming data rate = *average packet size* × *incoming packet rate*

traffic intensity =
$$\frac{incoming \ data \ rate}{R}$$

traffic intensity $\leq 1 \Rightarrow$ no delay

Time packets bytes are held in a queue, depends on traffic

incoming data rate = *average packet size* × *incoming packet rate*

traffic intensity =
$$\frac{incoming \ data \ rate}{R}$$

traffic intensity
$$> 1 \Rightarrow$$
 delay growing

Time packets bytes are held in a queue, depends on traffic

 $delay_{queue} = ???$

Total Delay

 $delay = delay_{\text{propagation}} + delay_{\text{transmission}} + delay_{\text{processing}} + delay_{\text{queueing}}$

$$delay_{propagation} = \frac{scale \times distance}{speed of light}$$

$$delay_{transmission} = \frac{size}{R}$$

$$delay_{processing} = 0$$

 $delay_{queue} = ???$


```
laptop$ ping www.cs.utah.edu
PING wp.wpenginepowered.com (141.193.213.10): 56 data bytes
64 bytes from 141.193.213.10: icmp_seq=0 ttl=51 time=35.962 ms
64 bytes from 141.193.213.10: icmp_seq=1 ttl=51 time=28.266 ms
64 bytes from 141.193.213.10: icmp seq=2 ttl=51 time=34.257 ms
```

```
64 bytes from 141.193.213.10: icmp_seq=4 ttl=51 time=135.983 ms

^C

--- wp.wpenginepowered.com ping statistics ---

5 packets transmitted, 5 packets received, 0.0% packet loss
```

64 bytes from 141.193.213.10: icmp seq=3 ttl=51 time=37.075 ms

round-trip min/avg/max/stddev = 28.266/54.309/135.983/40.950 ms

Inferring Delay Components

Suppose that we take 5 pings using a packet of size 100:

	22ms
l2ms	
	45ms
19ms	
	29ms

and for the same destination, 5 pings using a packet of size 200:

19ms		
] 46ms	
l 4ms		
		81 ms
I 5ms		

Each measurement is a *delay*

 $delay = delay_{\text{propagation}} + delay_{\text{transmission}} + delay_{\text{processing}} + delay_{\text{queueing}}$

Inferring Delay Components

Suppose that we take 5 pings using a packet of size 100:

	22ms
I2ms	
	45ms
	19ms
	29ms

and for the same destination, 5 pings using a packet of size 200:

		19ms		
			46ms	
		l 4ms		
				81 ms
] 15ms		
Each me	easi	rement is a <i>delay</i>		

application	Firefox, ping,
transport	TCP, UDP, ICMP,
network	IP
link	ethernet, WiFi,
physical	electrons, photons,

traceroute uses this trick systematically to explore the network

laptop\$ traceroute www.cs.utah.edu

traceroute: Warning: www.cs.utah.edu has multiple addresses; using 141.193.213.10 traceroute to wp.wpenginepowered.com (141.193.213.10), 64 hops max, 52 byte packets

- 1 10.0.0.1 (10.0.0.1) 11.987 ms 4.197 ms 4.602 ms
- 2 100.93.170.195 (100.93.170.195) 15.651 ms 100.93.170.194 (100.93.170.194) 18.858 ms 100.93.170.195 (100.93.170.195) 16.754 ms
- 3 po-333-417-rur501.saltlakecity.ut.utah.comcast.net (96.216.76.73) 16.825 ms po-333-418-rur502.saltlakecity.ut.utah.comcast.net (96.216.76.81) 15.903 ms po-333-417-rur501.saltlakecity.ut.utah.comcast.net (96.216.76.73) 18.208 ms

```
• • • •
```

- 15 50.242.151.238 (50.242.151.238) 33.149 ms 172.69.132.4 (172.69.132.4) 39.945 ms 66.208.229.106 (66.208.229.106) 42.951 ms
- 16 141.193.213.10 (141.193.213.10) 33.762 ms 172.71.156.2 (172.71.156.2) 60.377 ms 141.193.213.10 (141.193.213.10) 32.911 ms

Latency vs. Throughput

Latency ⇒ how long you have to wait for one small thing

 a time, such as milliseconds
 RTT can help us understand latency

• **Throughput** ⇒ how long you have to wait for everything

a rate, such as bytes per second

Mailing a box of flash drives can have very high throughput, but also high latency

Summary

Network delays are largely beyond our control, but we can reason about them

Four kinds of delay add up:

- propagation depends on distance
- **transmission** depends on size and medium
- processing practically 0
- **queuing** random