Communication with Shared Secrets

We have several ways for Alice and Bob to send confidential messages, and all require a **____** as a **shared secret**

How do Alice and Bob get a shared secret in the first place?

It turns out that it's possible to turn private secrets into a shared secret through a *public* conversation!

Two widely used algorithms to create shared secrets:

• Diffie-Hellman

• RSA

Both from the 1970s with similar capabilities—but different immediate uses, and RSA dominates for historical and commercial reasons

Two widely used algorithms to create shared secrets:

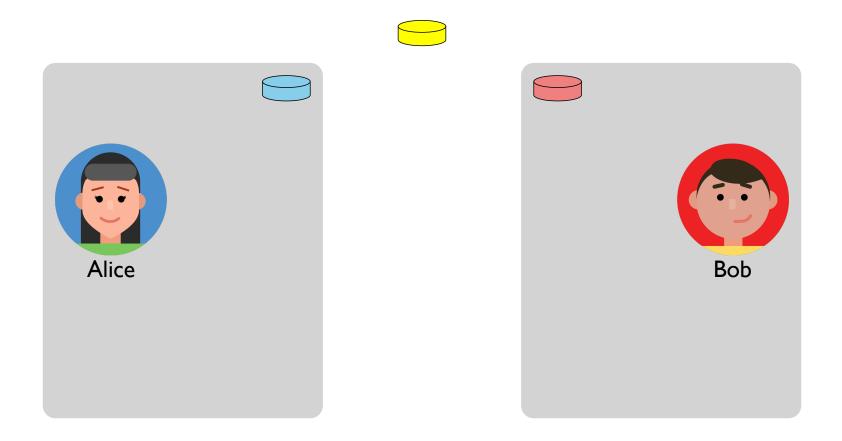
- Diffie-Hellman-Merkel
- RSA

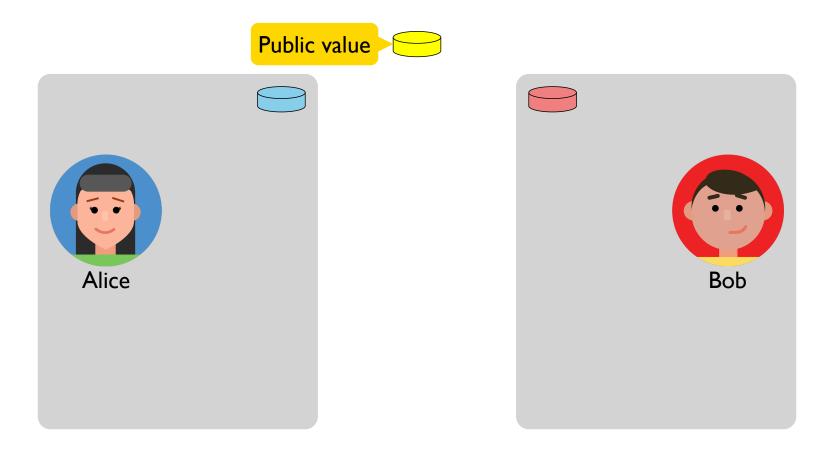
Both from the 1970s with similar capabilities—but different immediate uses, and RSA dominates for historical and commercial reasons

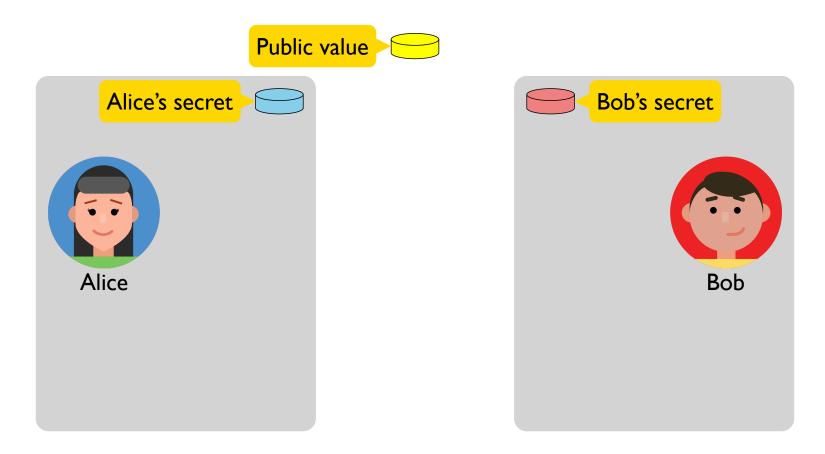
Two widely used algorithms to create shared secrets:

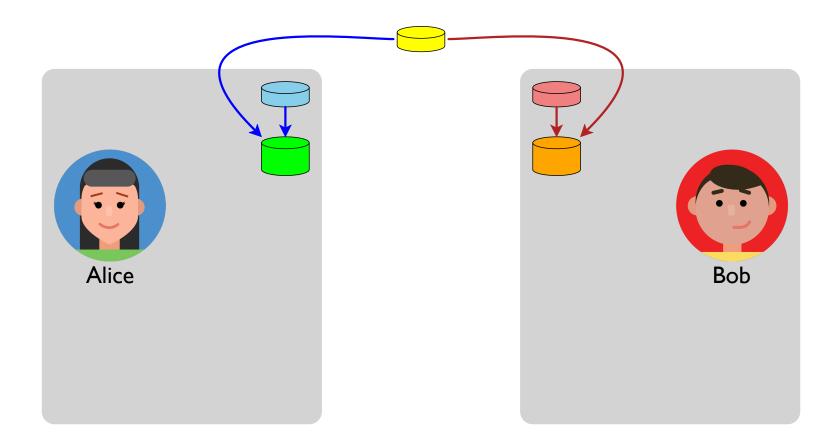
- Diffie-Hellman-Merkel
- Rivest-Shamir-Adelman

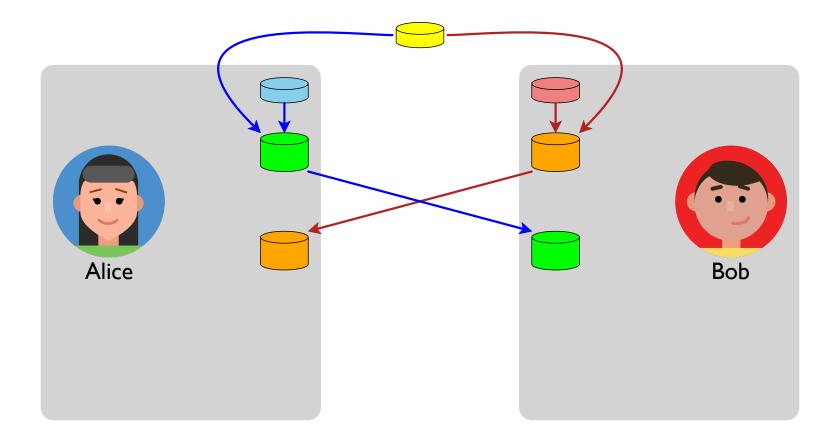
Both from the 1970s with similar capabilities—but different immediate uses, and RSA dominates for historical and commercial reasons

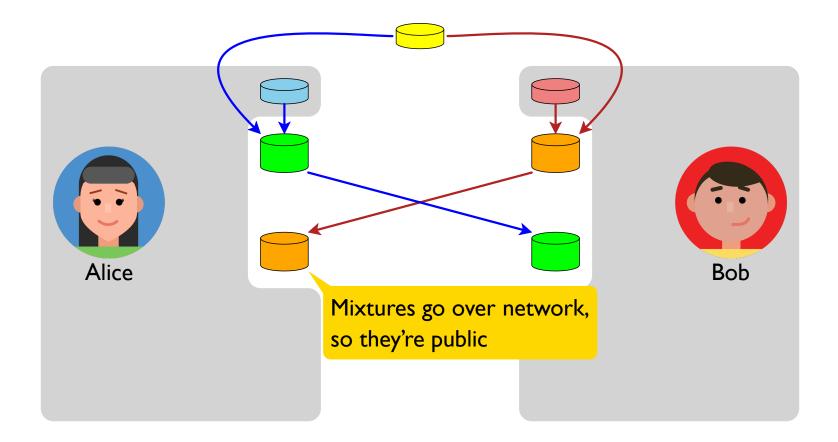


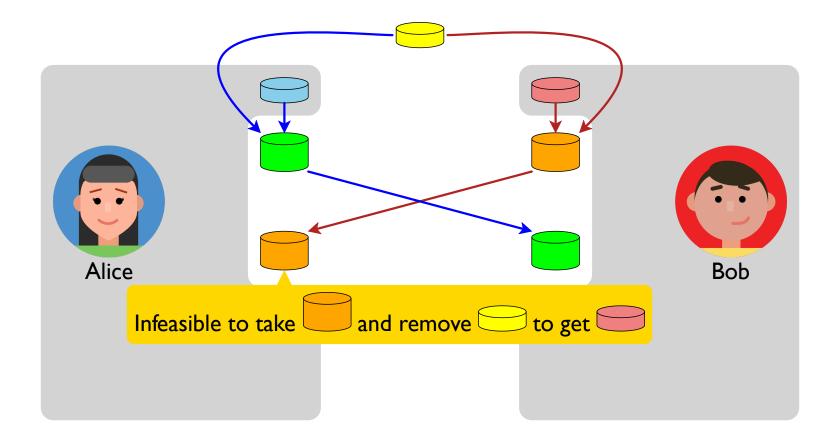


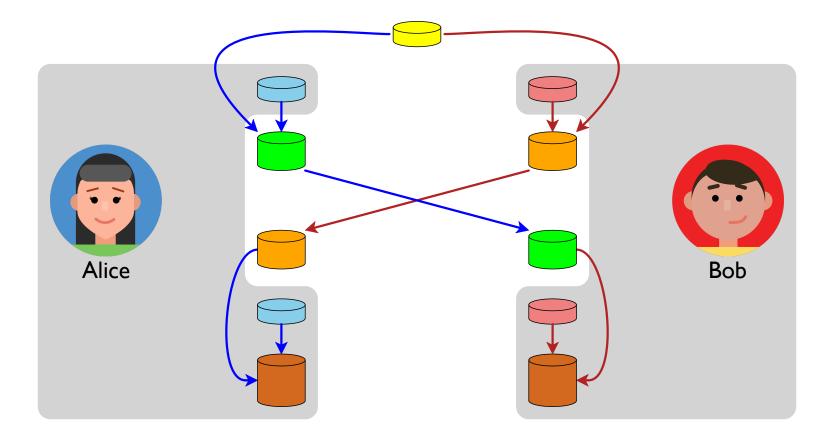




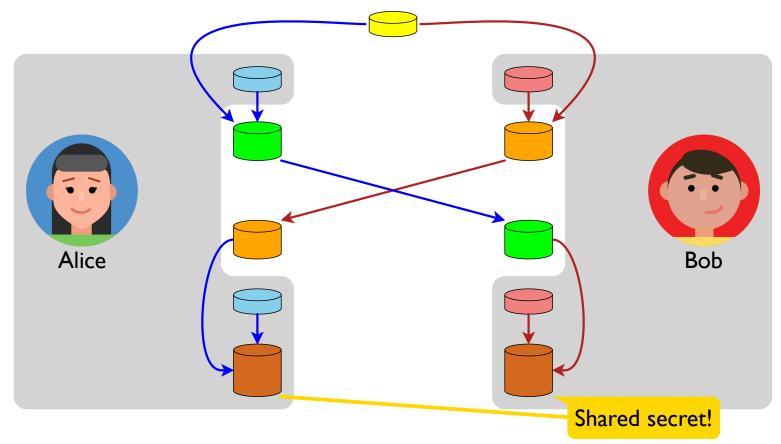




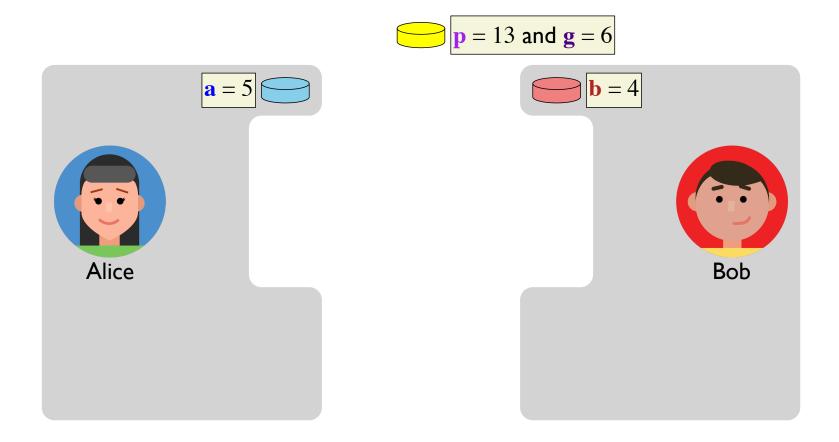


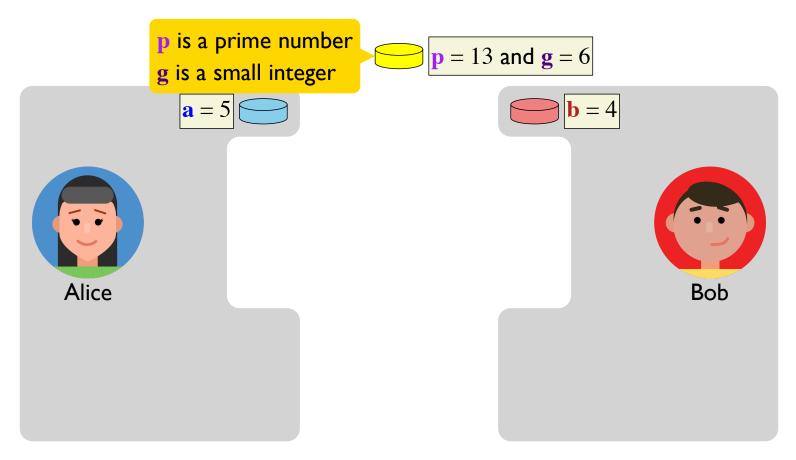


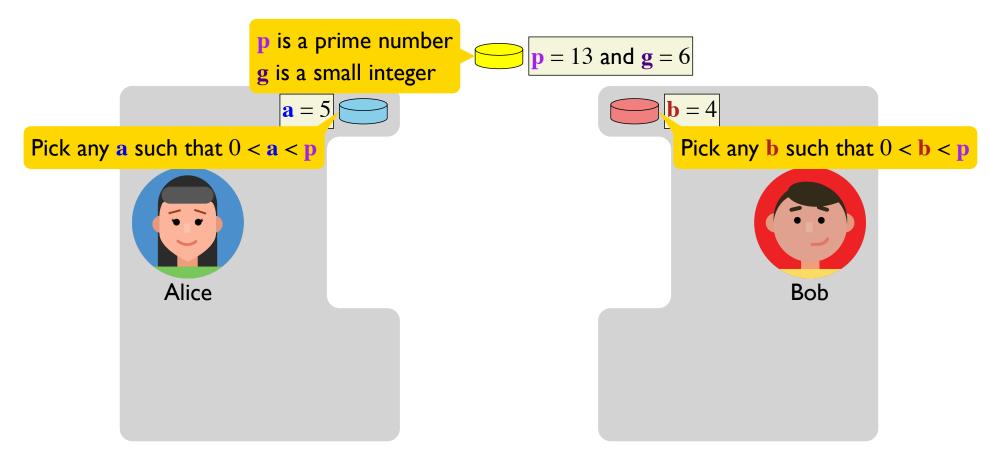
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

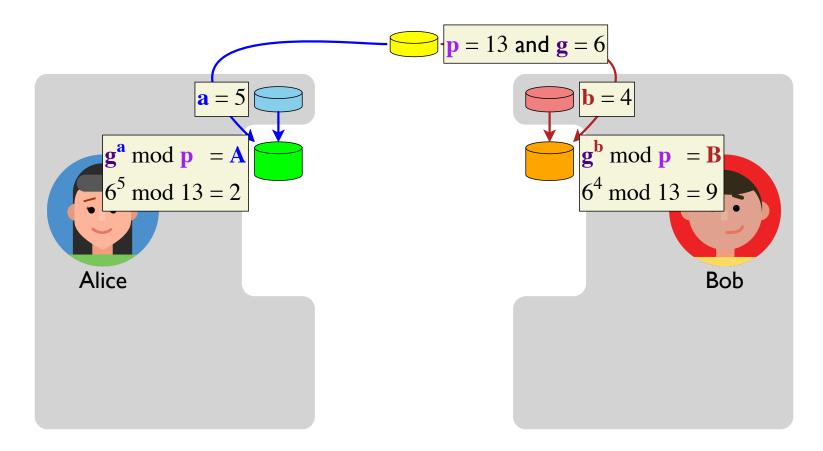


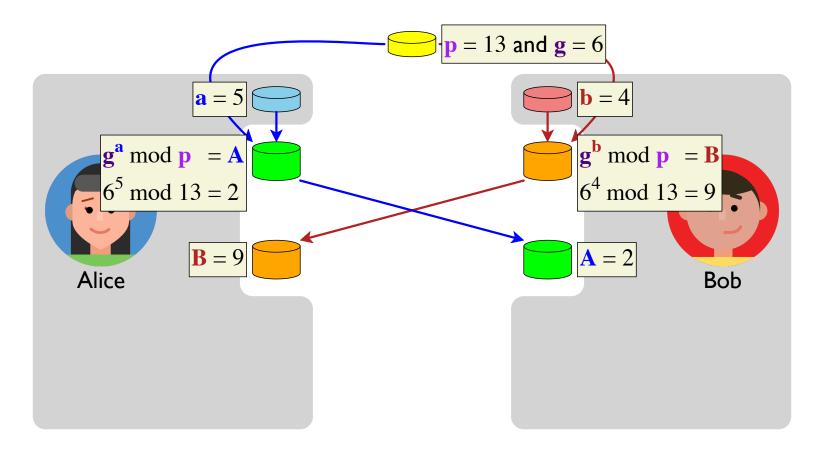
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

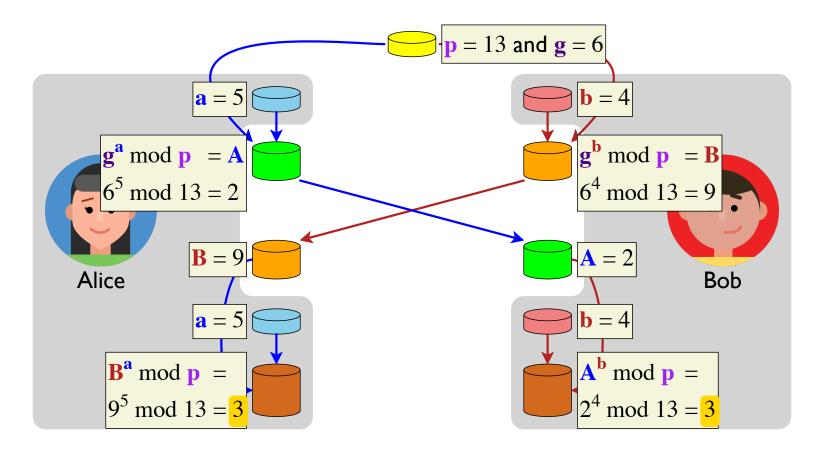


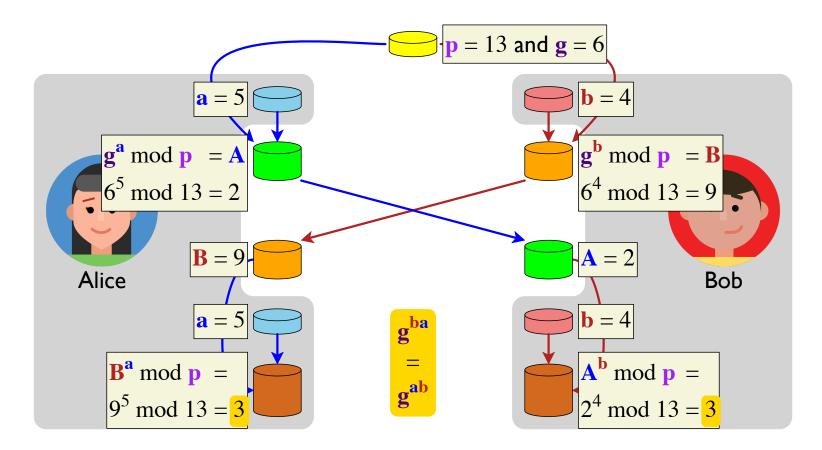


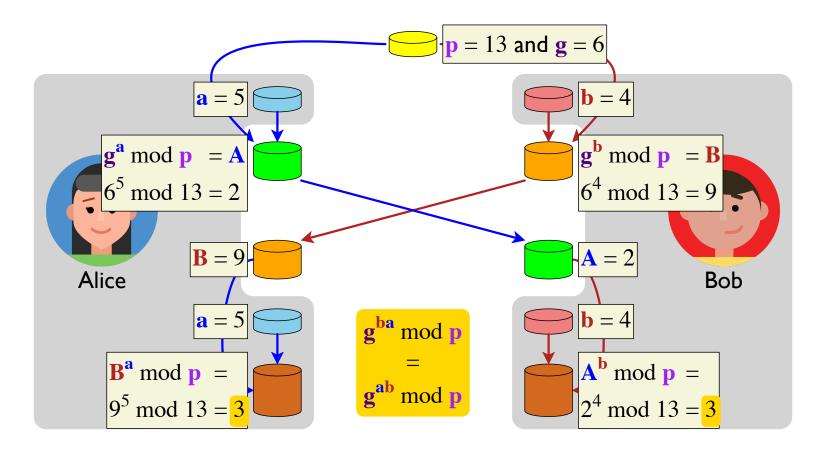


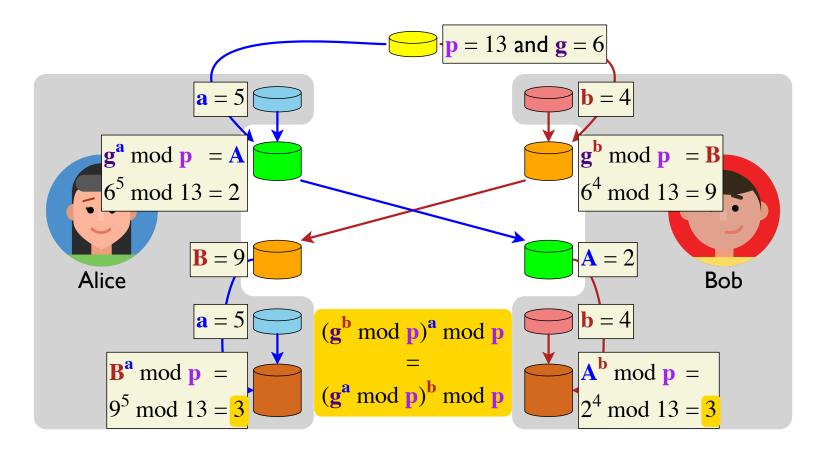












Discrete Logarithm Problem

For a large **p**, **a**, and **b**, it's infeasible to get from

 $\mathbf{A} = \mathbf{g}^{\mathbf{a}} \mod \mathbf{p}$ $\mathbf{B} = \mathbf{g}^{\mathbf{b}} \mod \mathbf{p}$

back to **a** or **b**

"Large" in practice means 1024 to 8192 bits for p, a, and b

At that scale, g^a , g^b , and g^{ab} do not remotely fit in in the universe, but the values mod p are small and can be computed quickly

Discrete Logarithm Problem

For a large **p**, **a**, and **b**, it's infeasible to get from

 $\mathbf{A} = \mathbf{g}^{\mathbf{a}} \mod \mathbf{p}$ $\mathbf{B} = \mathbf{g}^{\mathbf{b}} \mod \mathbf{p}$

back to **a** or **b**

"Large" in practice means 1024 to 8192 bits for p, a, and b

At that scale, g^a , g^b , and g^{ab} do not remotely fit in in the universe, but the values mod p are small and can be computed quickly

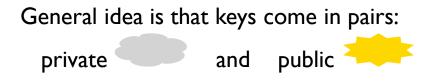
$$x^2 \mod \mathbf{p} = (x \mod \mathbf{p})^2 \mod \mathbf{p}$$

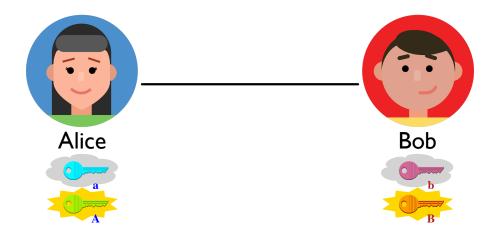
 \Rightarrow divide and conquer

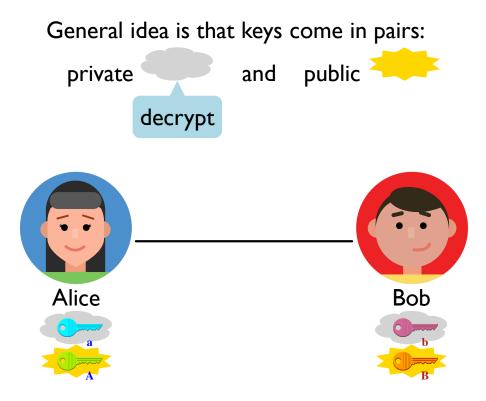
Internet Key Exchange (IKE)

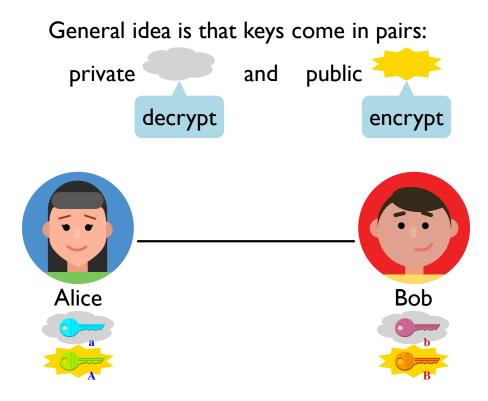
RFC 3526's 2048-bit **p** with **g** = 2:

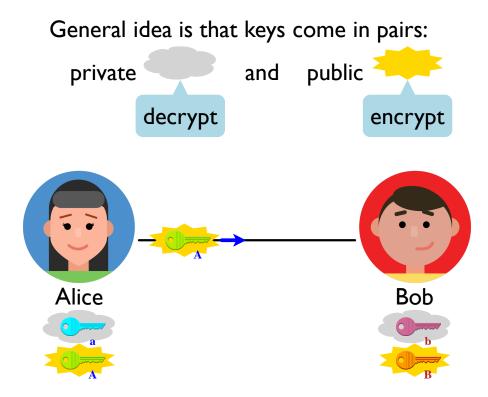
FFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFFFFFFF

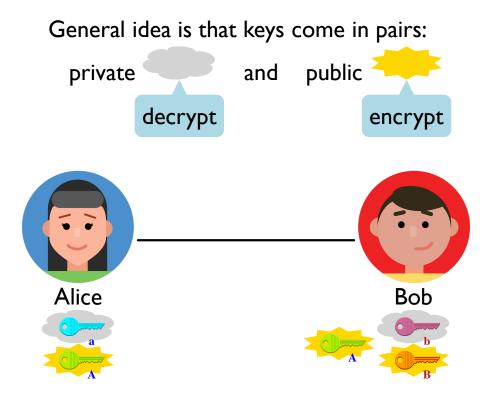


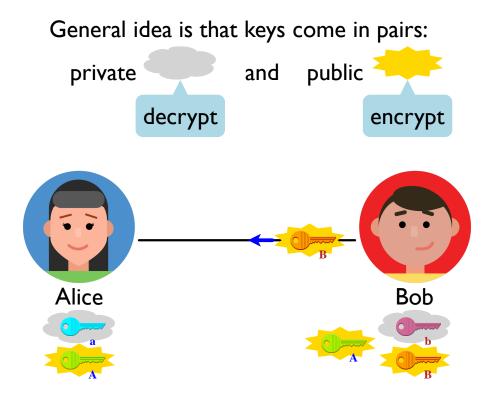


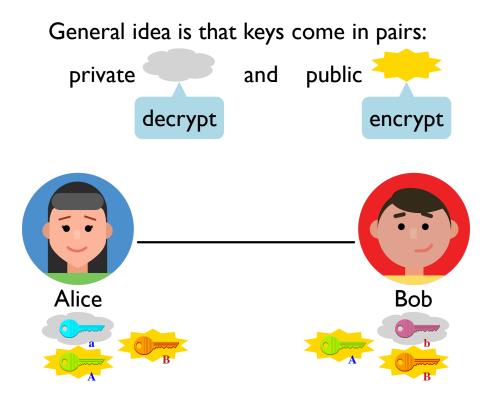




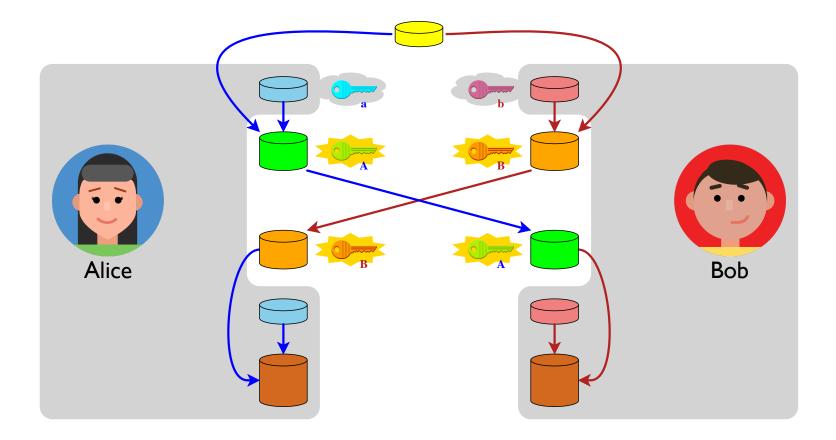


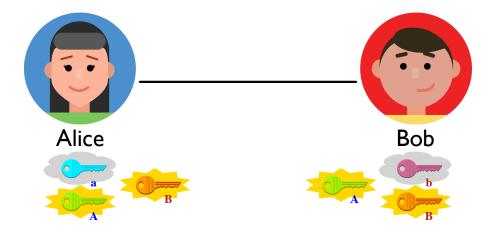




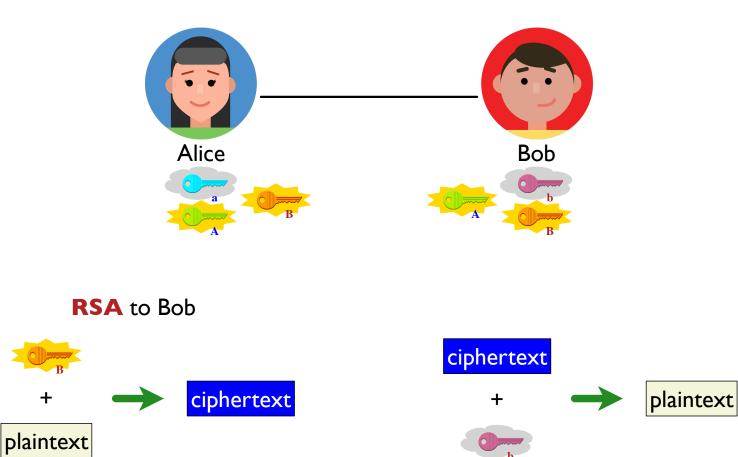


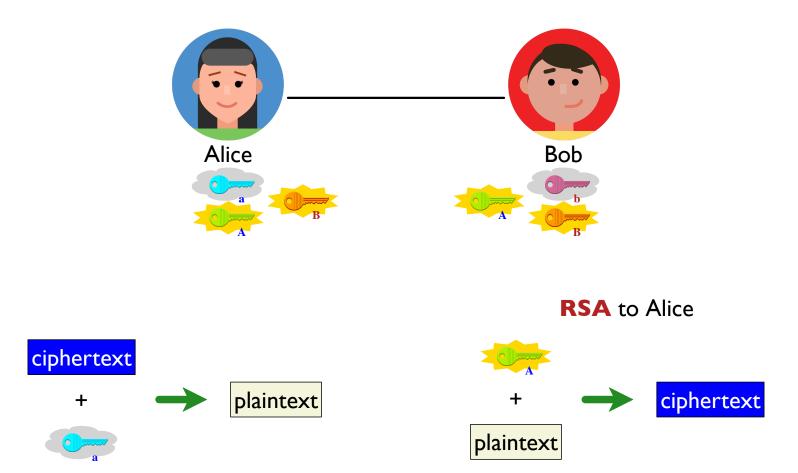
Diffie-Hellman Key Exchange as Public Key Infrastructure



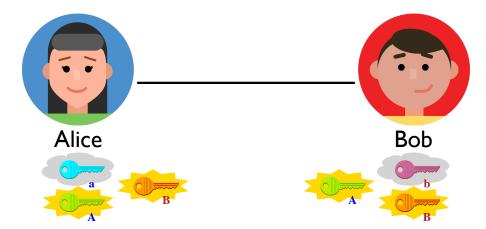


Diffie-Hellman

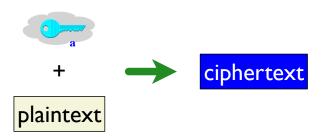


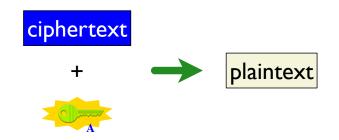


Public Key Cryptography

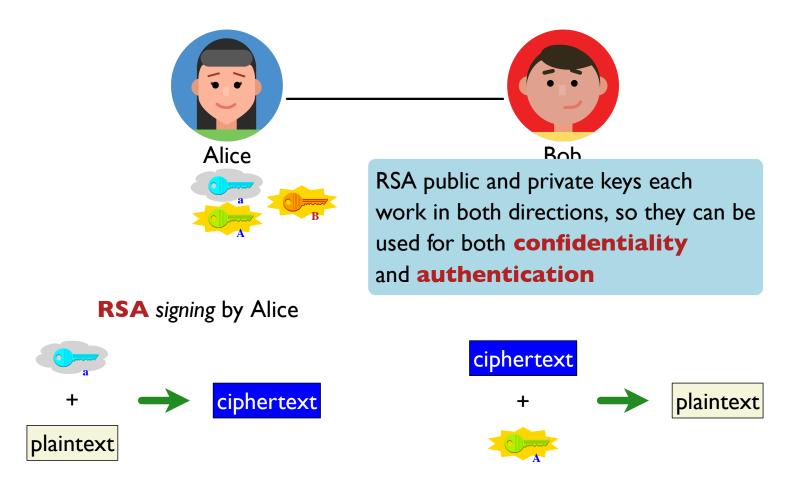


RSA signing by Alice





Public Key Cryptography



Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Alice picks

Something like 1024 to 8192

- \mathbf{p} and \mathbf{q} as large, random, $\hat{\mathbf{k}}$ -bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

RSA	Easy to generate with high probability
	due to density of prime numbers and
	a quick "probably prime" test

Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Even easier: arbitrary number plus a check that GCD is 1

Alice picks

• **p** and **q** as large, random, k-bit prime numbers

• e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $N = p \times q$

Alice picks

• \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers

• e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $\mathbf{N} = \mathbf{p} \times \mathbf{q}$

Modular inverse using extended Euclidean algorithm

Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $\mathbf{N} = \mathbf{p} \times \mathbf{q}$

Factoring out **p** and **q** is infeasible

Alice picks

• \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers

• e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $N = p \times q$

Then $x^{de} \mod N = x$ for any x < N

Alice picks

- **p** and **q** as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $\mathbf{N} = \mathbf{p} \times \mathbf{q}$

Then $x^{de} \mod N = x$ for any x < N

Proof by Euler's theorem or Fermat's little theorem

Alice picks

- **p** and **q** as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $\mathbf{N} = \mathbf{p} \times \mathbf{q}$

Then $x^{de} \mod N = x$ for any x < N

$$a = \langle \mathbf{d}, \mathbf{N} \rangle$$

 $A = \langle \mathbf{e}, \mathbf{N} \rangle$

Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $\mathbf{N} = \mathbf{p} \times \mathbf{q}$

Then $x^{de} \mod N = x$ for any x < N

Alice picks

- \mathbf{p} and \mathbf{q} as large, random, k-bit prime numbers
- e as relatively prime to $(p-1) \times (q-1)$

Find **d** so that $(\mathbf{e} \times \mathbf{d}) \mod ((\mathbf{p}-1) \times (\mathbf{q}-1)) = 1$

Define $N = p \times q$ Then $x^{de} \mod N = x$ for k-bit chunk of message $a = \langle d, N \rangle$ plaintext_i^e mod N =ciphertext_i $A = \langle e, N \rangle$ ciphertext_i^d mod N =plaintext_i

RSA versus a Block Cipher

Compared to AES

- RSA is 1000x slower
- RSA has 10x larger keys (e.g., 2048 bits vs. 192 bits)
- RSA is more complex

... but RSA requires no initial shared secret

Using RSA

Generate a key pair:

openssl genrsa -out private.pem 1024

openssl rsa -pubout -in private.pem > public.pem

Sign a message:

openssl rsautl -sign -inkey private.pem -in a.txt > sig

Verify a signed message:

openssl rsautl -verify -pubin -inkey public.pem -in sig

Summary

Public key cryptography uses public information to bootstrap a private conversation

Diffie-Hellman

A way to arrive at a shared secret 😏 🖛

Shared **can** then be used for a stream cipher, for example

Relies on the difficulty of the **discrete logarithm problem**

RSA

Published public key readers confidential message to owner, authentication by owner

Relies on the difficulty of **prime factorization**