Public Key Cryptography

Two public-key algorithms:

both with relatively large key sizes!

Diffie-Hellman

Relies on the difficulty of the **discrete logarithm problem**

RSA

Relies on the difficulty of **prime factorization**

In part, keys must be large because we know a lot about these problems

Elliptic Curve Cryptography

An elliptic curve is defined by a formula

$$y^2 = x^3 + \mathbf{A}x + \mathbf{B}$$

or sometimes

$$y^2 = x^3 + Ax^2 + Bx + C$$

or even more generally

$$y^2 + \mathbf{D}yx = x^3 + \mathbf{A}x^2 + \mathbf{B}x + \mathbf{C}$$

P and Q to R on an Elliptic Curve

Martin Kleppmann, "Implementing Curve25519/X25519: A Tutorial on Elliptic Curve Cryptography"

P and Q to R on an Elliptic Curve

Martin Kleppmann, "Implementing Curve25519/X25519: A Tutorial on Elliptic Curve Cryptography"

Power of P on an Elliptic Curve

Pictures show intuition with the field \mathbb{R} of real numbers To actually compute: use a discrete, finite field with modulo integers

Power of P on an Elliptic Curve

Using the finite field, taking N steps to get P^N is fast, but reversing from P^N back to N is infeasible

Elliptic Curve Diffie-Hellman (ECDH)

Alice's secret key is a, public key is $A = P^a$ Bob's secret key is b, public key is $B = P^b$

P followed by a steps followed by b steps = P followed by b steps followed by a steps

> A followed by b steps = B followed by a steps

Some Standard Curves

K-283
$$y^2 + yx = x^3 + B$$
 $B = 1$

X25519

Curve25519 is defined as $y^2 = x^3 + 486662x^2 + x$ **X25519** uses that curve with P at x = 9

256-bit keys

20× faster than 2048-bit RSA

See x25519.c

Block Cipher Mode of Operation

Recall that we need use a block cipher with a mode of operation

Electronic Cookbook

Electronic Cookbook (ECB) refers to using a block cipher separately on each block (i.e., naively)

•••

Electronic Cookbook

Electronic Cookbook (ECB) refers to using a block cipher separately on each block (i.e., naively)

•••

Cipher Block Chaining

Cipher Block Chaining (CBC) adds each previous ciphertext to plaintext before encoding

Output Feedback

Output Feedback (OFB) turns a block cipher intro a stream cipher

Counter

Counter (CTR) also turns a block cipher intro a stream cipher, but using a counter as input to the cipher

Galois/Counter

Galois/counter (GCM) builds on CTR by computing a MAC, which can used for both integrity and authorization

Galois/Counter

Galois/counter (GCM) builds on CTR by computing a MAC, which can used for both integrity and authorization

Galois/Counter

Galois/counter (GCM) builds on CTR by computing a MAC, which can used for both integrity and authorization

Summary

Elliptic key cryptography is an alternative to the traditional number-theory choice of encoding

Same protocol as Diffie-Hellman \Rightarrow **ECDH**

There are several **modes of operation** possible for block ciphers **Galois/counter (GCM)** is a good choice